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General description of Nagin’s model

We have a collection of individual trajectories.

We try to divide the population into a number of homogenous
subpopulations and to estimate a mean trajectory for each subpopulation.

This is still an inter-individual model, but unlike other classical models
such as standard growth curve models, it allows the existence of
subpolulations with completely different behaviors.
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The Likelihood Function (1)

Consider a population of size N and a variable of interest Y .

Let Yi = yi1 , yi2 , ..., yiT be T measures of the variable, taken at times
t1, ...tT for subject number i .

P(Yi ) denotes the probability of Yi

count data ⇒ Poisson distribution

binary data ⇒ Binary logit distribution

censored data ⇒ Censored normal distribution

Aim of the analysis: Find r groups of trajectories of a given kind (for
instance polynomials of degree 4, P(t) = β0 + β1t + β2t

2 + β3t
3 + β4t

4.)
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The Likelihood Function (2)

πj : probability of a given subject to belong to group number j

⇒ πj is the size of group j .

We try to estimate a set of parameters Ω =
{
βj0, β

j
1, β

j
2, β

j
3, β

j
4, πj

}
which

allow to maximize the probability of the measured data.

P j(Yi ) : probability of Yi if subject i belongs to group j

⇒ P(Yi ) =
r∑

j=1

πjP
j(Yi ). (1)

Finite mixture model
(
Daniel S. Nagin (Carnegie Mellon University)

)
finite : sums across a finite number of groups

mixture : population composed of a mixture of unobserved groups
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The case of a censored normal distribution

If all the measures are in the interval [Smin,Smax ], we get

L =
1

σ

N∏
i=1

r∑
j=1

πj

T∏
t=1

φ

(
yit − βj tit

σ

)
. (2)

It is too complicated to get closed-forms equations

⇒ quasi-Newton procedure maximum research routine

Software:

SAS-based Proc Traj procedure
by Bobby L. Jones (Carnegie Mellon University).
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A computational trick

The estimations of πj must be in [0, 1].

It is difficult to force this constraint in model estimation.

Instead, we estimate the real parameters θj such that

πj =
eθj
r∑

j=1

eθj

, (3)

Finally,

L =
1

σ

N∏
i=1

r∑
j=1

eθj
r∑

j=1

eθj

T∏
t=1

φ

(
yit − βj tit

σ

)
. (4)
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Model Selection

Bayesian Information Criterion:

BIC = log(L)− 0, 5k log(N), (5)

where k denotes the number of parameters in the model.

Rule:

The bigger the BIC, the better the model!
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Posterior Group-Membership Probabilities

Posterior probability of individual i ’s membership in group j : P(j/Yi ).

Bayes’s theorem

⇒ P(j/Yi ) =
P(Yi/j)π̂j
r∑

j=1

P(Yi/j)π̂j

. (6)

Bigger groups have on average larger probability estimates.

To be classified into a small group, an individual really needs to be
strongly consistent with it.
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Application: Salary trajectories
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Result for 3 groups :
workers beginning their career in 1982
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Result for 3 groups :
workers beginning their career in 1983
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Result for 3 groups :
workers beginning their career in 1984

Jang SCHILTZ (University of Luxembourg) joint work with Jean-Daniel GUIGOU (University of Luxembourg), & Bruno LOVAT (University Nancy II) ()Robustness of results June 7, 2012 15 / 28



Result for 3 groups :
workers beginning their career in 1985
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Result for 3 groups :
workers beginning their career in 1987
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The statistical shape analysis approach

Comparing the geometrical figure of the trajectories

−→ statistical shape analyis:

Compute the mean shape of the different results.

Use Ziezold’s test for every set of trajectories to see if it is significantly
different from the mean set of trajectories.

Remark:

This apporach is just useful to compare a whole set of models.
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The mean shape

To compare the standardized and centered sets of landmarks, we need to
define the mean shape of all the objects and a distance function which
allows us to evaluate how ”near” every object is from this mean shape.

The term ”mean” is here used in the sense of Fréchet (1948).

If X demotes a random variable defined on a probability space (Ω,F ,P)
with values in a metric space (Ξ, d), an element m ∈ Ξ is called a mean of
x1, x2, ..., xk ∈ Ξ if

k∑
j=1

d(xj ,m)2 = inf
α∈Ξ

k∑
j=1

d(xj , α)2. (7)

That means that the mean shape is defined as the shape with the smallest
variance of all shapes in a group of objects.
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Ziezold’s test

We consider to subsets A and B of the sample of size n and N − n
respectively.

The subset A is a realization of a distribution P and the subset B is an
independent realization of a distribution Q.

The test hypotheses are:

Hypothesis: H0 : P = Q
Alternative: H1 : P 6= Q
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Ziezold’s test (2)

1 Computing the mean shape m0 of subset A.

2 Computing the u-value

u0 =
n∑

j=1

card
(
bk : d(bk ,m0) < d(aj ,m0)

)
.

3 Determination of all the possibilities of dividing the set into two
subset with the same proportion.

4 Comparing the u0-value to all possible u-values. Computing the rank
(small u-value mean a small rank).

5 Calculate the p-value for H0. pr=i = 1

(Nn)
for i = 1, . . . ,

(N
n

)
, where r

is the rank for which we assume a uniform distribution.

Jang SCHILTZ (University of Luxembourg) joint work with Jean-Daniel GUIGOU (University of Luxembourg), & Bruno LOVAT (University Nancy II) ()Robustness of results June 7, 2012 23 / 28



Ziezold’s test (2)

1 Computing the mean shape m0 of subset A.

2 Computing the u-value

u0 =
n∑

j=1

card
(
bk : d(bk ,m0) < d(aj ,m0)

)
.

3 Determination of all the possibilities of dividing the set into two
subset with the same proportion.

4 Comparing the u0-value to all possible u-values. Computing the rank
(small u-value mean a small rank).

5 Calculate the p-value for H0. pr=i = 1

(Nn)
for i = 1, . . . ,

(N
n

)
, where r

is the rank for which we assume a uniform distribution.

Jang SCHILTZ (University of Luxembourg) joint work with Jean-Daniel GUIGOU (University of Luxembourg), & Bruno LOVAT (University Nancy II) ()Robustness of results June 7, 2012 23 / 28



Ziezold’s test (2)

1 Computing the mean shape m0 of subset A.

2 Computing the u-value

u0 =
n∑

j=1

card
(
bk : d(bk ,m0) < d(aj ,m0)

)
.

3 Determination of all the possibilities of dividing the set into two
subset with the same proportion.

4 Comparing the u0-value to all possible u-values. Computing the rank
(small u-value mean a small rank).

5 Calculate the p-value for H0. pr=i = 1

(Nn)
for i = 1, . . . ,

(N
n

)
, where r

is the rank for which we assume a uniform distribution.

Jang SCHILTZ (University of Luxembourg) joint work with Jean-Daniel GUIGOU (University of Luxembourg), & Bruno LOVAT (University Nancy II) ()Robustness of results June 7, 2012 23 / 28



Ziezold’s test (2)

1 Computing the mean shape m0 of subset A.

2 Computing the u-value

u0 =
n∑

j=1

card
(
bk : d(bk ,m0) < d(aj ,m0)

)
.

3 Determination of all the possibilities of dividing the set into two
subset with the same proportion.

4 Comparing the u0-value to all possible u-values. Computing the rank
(small u-value mean a small rank).

5 Calculate the p-value for H0. pr=i = 1

(Nn)
for i = 1, . . . ,

(N
n

)
, where r

is the rank for which we assume a uniform distribution.

Jang SCHILTZ (University of Luxembourg) joint work with Jean-Daniel GUIGOU (University of Luxembourg), & Bruno LOVAT (University Nancy II) ()Robustness of results June 7, 2012 23 / 28



Ziezold’s test (2)

1 Computing the mean shape m0 of subset A.

2 Computing the u-value

u0 =
n∑

j=1

card
(
bk : d(bk ,m0) < d(aj ,m0)

)
.

3 Determination of all the possibilities of dividing the set into two
subset with the same proportion.

4 Comparing the u0-value to all possible u-values. Computing the rank
(small u-value mean a small rank).

5 Calculate the p-value for H0. pr=i = 1

(Nn)
for i = 1, . . . ,

(N
n

)
, where r

is the rank for which we assume a uniform distribution.

Jang SCHILTZ (University of Luxembourg) joint work with Jean-Daniel GUIGOU (University of Luxembourg), & Bruno LOVAT (University Nancy II) ()Robustness of results June 7, 2012 23 / 28



Ziezold’s test (2)

1 Computing the mean shape m0 of subset A.

2 Computing the u-value

u0 =
n∑

j=1

card
(
bk : d(bk ,m0) < d(aj ,m0)

)
.

3 Determination of all the possibilities of dividing the set into two
subset with the same proportion.

4 Comparing the u0-value to all possible u-values. Computing the rank
(small u-value mean a small rank).

5 Calculate the p-value for H0. pr=i = 1

(Nn)
for i = 1, . . . ,

(N
n

)
, where r

is the rank for which we assume a uniform distribution.

Jang SCHILTZ (University of Luxembourg) joint work with Jean-Daniel GUIGOU (University of Luxembourg), & Bruno LOVAT (University Nancy II) ()Robustness of results June 7, 2012 23 / 28



The statistical shape analysis approach

Are these sets of trajectories different?

Shape Analysis says yes, but are they really?
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The statistical shape analysis approach

Alternative methodology

To avoid this kind of situation, one can take the estimated parameters of
the model as landmarks and perform a statistical ”shape” analysis on
these.
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The classical statistics approach

Compare the estimated parameters:

Performing the Wald test to see if the parameters differ between two
models.

Compare the confidence intervals of the parameters and see if they
have an intersection.
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Functional Data Analysis Approach

Compare the set of trajectories as functions:

Consider a metrical space on the continuous functions defined on the time
interval of the trajectories and use tests on functional data to analyze the
time stability of the results.
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