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General description of Nagin's model

We have a collection of individual trajectories.

We try to divide the population into a number of homogenous
subpopulations and to estimate a mean trajectory for each subpopulation.

This is still an inter-individual model, but unlike other classical models
such as standard growth curve models, it allows the existence of
subpolulations with completely different behaviors.
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The Likelihood Function (1)

Consider a population of size N and a variable of interest Y.

Let Y; = yi,, Yi, .-, Yiy be T measures of the variable, taken at times
t1,...tT for subject number i.

P(Y;) denotes the probability of Y;
@ count data = Poisson distribution

@ binary data = Binary logit distribution

@ censored data = Censored normal distribution

Aim of the analysis: Find r groups of trajectories of a given kind (for
instance polynomials of degree 4, P(t) = o + Bit + Bat? + B3t + ﬂ4ta
|

v
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7; . probability of a given subject to belong to group number j

= m;j is the size of group j.
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The Likelihood Function (2)

7; . probability of a given subject to belong to group number j

= m;j is the size of group j.

We try to estimate a set of parameters Q2 = {5{;, {,ﬁfé,ﬁé, B{;,wj} which
allow to maximize the probability of the measured data.
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The Likelihood Function (2)
7; . probability of a given subject to belong to group number j

= m;j is the size of group j.

We try to estimate a set of parameters Q = {5{;, {,ﬁfé,ﬁé, B{;,wj} which
allow to maximize the probability of the measured data.

Pi(Y;) : probability of Y; if subject i belongs to group j

= P(Y)) =) _mPI(Y)). (1)

Jj=1
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The Likelihood Function (2)
7; . probability of a given subject to belong to group number j

= m; is the size of group j.

We try to estimate a set of parameters Q2 = {ﬁé, {,ﬁé,ﬂé, 6£,Wj} which
allow to maximize the probability of the measured data.

PJi(Y;) : probability of Y; if subject i belongs to group j

= P(Y) =) mP/(Y3). (1)

Jj=1

Finite mixture model (Daniel S. Nagin (Carnegie Mellon University))
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The Likelihood Function (2)
7; . probability of a given subject to belong to group number j

= m; is the size of group j.

We try to estimate a set of parameters Q2 = {ﬁé, {,ﬁé,ﬁé, ﬂi,ﬂ'j} which
allow to maximize the probability of the measured data.

PJi(Y;) : probability of Y; if subject i belongs to group j

= P(Y) =) mP/(Y3). (1)

Jj=1

Finite mixture model (Daniel S. Nagin (Carnegie Mellon University))

@ finite : sums across a finite number of groups

. . . >
@ mixture : population composed of a mixture of unobserved groups gt
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The case of a censored normal distribution

If all the measures are in the interval [Spmin, Smax], We get

L%ﬁimfw(—” ‘f‘*’f). 2)

i=1j=1 t=1
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L%ﬁimfw(—y’f ‘ft’f). 2)

i=1j=1 t=1

It is too complicated to get closed-forms equations
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The case of a censored normal distribution
If all the measures are in the interval [Spmin, Smax|, We get

L%ﬂimﬁas(—y’f ‘ft’f). 2)

i=1j=1 t=1

It is too complicated to get closed-forms equations
= quasi-Newton procedure maximum research routine

Software:

SAS-based Proc Traj procedure
by Bobby L. Jones (Carnegie Mellon University).
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A computational trick

The estimations of 7; must be in [0, 1].
It is difficult to force this constraint in model estimation.
Instead, we estimate the real parameters 6; such that

e¥i

= 3 s
> e
j=1

7j
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A computational trick

The estimations of 7; must be in [0, 1].
It is difficult to force this constraint in model estimation.

Instead, we estimate the real parameters 6; such that

T =

9y
> e
=1

Finally,
N r T

L= I A TTe (7). @

i=1 j= lzeejt 1
j=1 ]ml
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Model Selection

Bayesian Information Criterion:
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Model Selection

Bayesian Information Criterion:

BIC = log(L) — 0,5k log(N), (5)

where k denotes the number of parameters in the model.
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Model Selection

Bayesian Information Criterion:
BIC = log(L) — 0,5k log(N), (5)
where k denotes the number of parameters in the model.

Rule:
The bigger the BIC, the better the model! J
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Posterior Group-Membership Probabilities

Posterior probability of individual i's membership in group j : P(j/Y;).
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Posterior Group-Membership Probabilities

Posterior probability of individual i's membership in group j : P(j/Y;).

Bayes's theorem
, P(Yi/i)#;
= PU/Yi) = —= —. (6)

> P(Yi/i)R
j=1

Jang SCHILTZ (University of Luxembourg) Robustness of results June 7, 2012 10 / 28



Posterior Group-Membership Probabilities

Posterior probability of individual i's membership in group j : P(j/Y;).
Bayes's theorem
. P(Yi/i)#j
= P/ = (6)
> P(Yi/i)#;
j=1

Bigger groups have on average larger probability estimates.
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Posterior Group-Membership Probabilities

Posterior probability of individual i's membership in group j : P(j/Y;).
Bayes's theorem

> P(Yi/i)R
j=1

S Py = LR (6)

Bigger groups have on average larger probability estimates.

To be classified into a small group, an individual really needs to be
strongly consistent with it.
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Application: Salary trajectories
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Result for 3 groups :
workers beginning their career in 1982
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Result for 3 groups :
workers beginning their career in 1983
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Result for 3 groups :
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Result for 3 groups :
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Result for 3 groups :
workers beginning their career in 1986
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Result for 3 groups :
workers beginning their career in 1987
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The statistical shape analysis approach

Comparing the geometrical figure of the trajectories

— statistical shape analyis:
Compute the mean shape of the different results.

Use Ziezold's test for every set of trajectories to see if it is significantly
different from the mean set of trajectories.
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The statistical shape analysis approach

Comparing the geometrical figure of the trajectories

— statistical shape analyis:
Compute the mean shape of the different results.

Use Ziezold's test for every set of trajectories to see if it is significantly
different from the mean set of trajectories.

Remark: J

This apporach is just useful to compare a whole set of models.
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The mean shape

To compare the standardized and centered sets of landmarks, we need to
define the mean shape of all the objects and a distance function which
allows us to evaluate how "near” every object is from this mean shape.
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The mean shape

To compare the standardized and centered sets of landmarks, we need to
define the mean shape of all the objects and a distance function which
allows us to evaluate how "near” every object is from this mean shape.

The term "mean" is here used in the sense of Fréchet (1948).

If X demotes a random variable defined on a probability space (2, F, P)
with values in a metric space (=, d), an element m € = is called a mean of
X1, X2, -y X € = if

k
Zd(xj,m)z = infEZd(xj,a)z. (7)

N

Jang SCHILTZ (University of Luxembourg) Robustness of results June 7, 2012 21/ 28



The mean shape

To compare the standardized and centered sets of landmarks, we need to
define the mean shape of all the objects and a distance function which
allows us to evaluate how "near” every object is from this mean shape.

The term "mean" is here used in the sense of Fréchet (1948).

If X demotes a random variable defined on a probability space (2, F, P)
with values in a metric space (=, d), an element m € = is called a mean of
X1, X2, -y X € = if

k k
> d(xj,m)* = inf > d(x;, ), (7)
=1 -

That means that the mean shape is defined as the shape with the smallest
variance of all shapes in a group of objects. gy
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Ziezold's test

We consider to subsets A and B of the sample of size nand N —n
respectively.

The subset A is a realization of a distribution P and the subset B is an
independent realization of a distribution Q.
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Ziezold's test

We consider to subsets A and B of the sample of size nand N —n
respectively.

The subset A is a realization of a distribution P and the subset B is an
independent realization of a distribution Q.

The test hypotheses are:

Hypothesis: ~ Hy: P = Q
Alternative: Hi: P#Q
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Ziezold's test (2)

@ Computing the mean shape mg of subset A.
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Ziezold's test (2)

@ Computing the mean shape mg of subset A.
@ Computing the u-value

n
up = Z card(bk : d(bk, mo) < d(aj, mo)).
j=1
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Ziezold's test (2)

@ Computing the mean shape mg of subset A.
@ Computing the u-value

n
up = Z card(bk : d(bk, mo) < d(aj, mo)).
j=1

© Determination of all the possibilities of dividing the set into two
subset with the same proportion.
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Ziezold's test (2)

@ Computing the mean shape mg of subset A.
@ Computing the u-value

n
up = Z card(bk : d(bk, mo) < d(aj, mo)).
j=1

© Determination of all the possibilities of dividing the set into two
subset with the same proportion.

@ Comparing the wup-value to all possible u-values. Computing the rank
(small u-value mean a small rank).
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Ziezold's test (2)

@ Computing the mean shape mg of subset A.
@ Computing the u-value

up = Z card(bk : d(bk, mo) < d(aj, mo)).
j=1

© Determination of all the possibilities of dividing the set into two
subset with the same proportion.

@ Comparing the wup-value to all possible u-values. Computing the rank

(small u-value mean a small rank).

1

@ Calculate the p-value for Hy. p,—; = ™ fori=1,..., (N) where r

N

n

is the rank for which we assume a uniform distribution.
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The statistical shape analysis approach

Are these sets of trajectories different?
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The statistical shape analysis approach

Are these sets of trajectories different?
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The statistical shape analysis approach

Are these sets of trajectories different?
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The statistical shape analysis approach

Are these sets of trajectories different?
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Shape Analysis says yes, but are they really?
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The statistical shape analysis approach

Alternative methodology

To avoid this kind of situation, one can take the estimated parameters of
the model as landmarks and perform a statistical "shape” analysis on
these.
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The classical statistics approach
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The classical statistics approach

Compare the estimated parameters:
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The classical statistics approach

Compare the estimated parameters:

@ Performing the Wald test to see if the parameters differ between two
models.
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The classical statistics approach

Compare the estimated parameters:

@ Performing the Wald test to see if the parameters differ between two
models.

@ Compare the confidence intervals of the parameters and see if they
have an intersection.
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Functional Data Analysis Approach
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Functional Data Analysis Approach

Compare the set of trajectories as functions:
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Functional Data Analysis Approach

Compare the set of trajectories as functions:

Consider a metrical space on the continuous functions defined on the time
interval of the trajectories and use tests on functional data to analyze the
time stability of the results.

N

Jang SCHILTZ (University of Luxembourg) Robustness of results June 7, 2012 27 /28



Bibliography

@ Nagin, D.S. 2005: Group-based Modeling of Development.
Cambridge, MA.: Harvard University Press.

@ Jones, B. and Nagin D.S. 2007: Advances in Group-based Trajectory
Modeling and a SAS Procedure for Estimating Them. Sociological
Research and Methods, 35 p.542-571.

@ Guigou, J.D, Lovat, B. and Schiltz, J. 2012: Analysis of the salary
trajectories in Luxembourg : a finite mixture model approach. To
appear.

@ Giebel S. 2011: Zur Anwendung der statistischen Formanalyse. Phd
Thesis, University of Luxembourg.

@ Schiltz, J. 2012: Robustness of groups and trajectories in Nagin's
finite mixture model. To appear.

[N

Jang SCHILTZ (University of Luxembourg) Robustness of results June 7, 2012 28 / 28



	Nagin's Finite Mixture Model
	Robustness of the results

