

The weighted lattice polynomials as aggregation functions

Jean-Luc Marichal

Applied Mathematics Unit, University of Luxembourg
162A, avenue de la Faïencerie, L-1511 Luxembourg, Luxembourg
jean-luc.marichal@uni.lu

In lattice theory, *lattice polynomials* have been defined as well-formed expressions involving variables linked by the lattice operations \wedge and \vee in an arbitrary combination of parentheses. In turn, such expressions naturally define *lattice polynomial functions*. For instance,

$$p(x_1, x_2, x_3) = (x_1 \wedge x_2) \vee x_3$$

is a 3-ary lattice polynomial function.

The concept of lattice polynomial function can be straightforwardly generalized by regarding some variables as “parameters”, like in the 2-ary polynomial

$$p(x_1, x_2) = (c \vee x_1) \wedge x_2,$$

where c is a constant.

We investigate those “parameterized” polynomial functions, which we shall call *weighted lattice polynomial* functions. Particularly, we show that, in any bounded distributive lattice, those functions can be expressed in disjunctive and conjunctive normal forms. We also show that they include the discrete Sugeno integral, which has been extensively studied and used in the setting of nonlinear aggregation and integration. Finally, we prove that those functions can be characterized by means of a remarkable median based functional system of equations.

References

- [1] G. Birkhoff. *Lattice theory*. Third edition. American Mathematical Society Colloquium Publications, Vol. XXV. American Mathematical Society, Providence, R.I., 1967.
- [2] D. Dubois, J.-L. Marichal, H. Prade, M. Roubens, and R. Sabbadin. The use of the discrete Sugeno integral in decision-making: a survey. *Internat. J. Uncertain. Fuzziness Knowledge-Based Systems*, 9(5):539–561, 2001.
- [3] G. Grätzer. *General lattice theory*. Birkhäuser Verlag, Berlin, 2003. Second edition.
- [4] K. Kaarli and A. F. Pixley. *Polynomial completeness in algebraic systems*. Chapman & Hall/CRC, Boca Raton, FL, 2001.
- [5] H. Lausch and W. Nöbauer. *Algebra of polynomials*. North-Holland Publishing Co., Amsterdam, 1973. North-Holland Mathematical Library, Vol.5.
- [6] J.-L. Marichal. On Sugeno integral as an aggregation function. *Fuzzy Sets and Systems*, 114(3):347–365, 2000.
- [7] S. Ovchinnikov. Invariance properties of ordinal OWA operators. *Int. J. Intell. Syst.*, 14:413–418, 1999.
- [8] M. Sugeno. *Theory of fuzzy integrals and its applications*. PhD thesis, Tokyo Institute of Technology, Tokyo, 1974.
- [9] M. Sugeno. Fuzzy measures and fuzzy integrals—a survey. In *Fuzzy automata and decision processes*, pages 89–102. North-Holland, New York, 1977.