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Abstract

We define the concept of weighted lattice polynomials as lattice polynomials con-
structed from both variables and parameters. We provide equivalent forms of these
functions in an arbitrary bounded distributive lattice. We also show that these func-
tions include the class of discrete Sugeno integrals and that they are characterized by
a remarkable median based decomposition formula.
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1 Introduction

In lattice theory, lattice polynomials have been defined as well-formed expressions involving
variables linked by the lattice operations ∧ and ∨ in an arbitrary combination of paren-
theses; see e.g. Birkhoff [1, §II.5] and Grätzer [3, §I.4]. In turn, such expressions naturally
define lattice polynomial functions. For instance,

p(x1, x2, x3) = (x1 ∧ x2) ∨ x3

is a 3-ary lattice polynomial function.
The concept of lattice polynomial function can be straightforwardly generalized by re-

garding some variables as “parameters”, like in the 2-ary polynomial

p(x1, x2) = (c ∨ x1) ∧ x2,

where c is a constant.
In this paper we investigate those “parameterized” polynomial functions, which we shall

call weighted lattice polynomial functions. Particularly, we show that, in any bounded
distributive lattice, those functions can be expressed in disjunctive and conjunctive normal
forms. We also show that they include the discrete Sugeno integral [7], which has been
extensively studied and used in the setting of nonlinear aggregation and integration. Finally,
we prove that those functions can be characterized by means of a remarkable median based
functional system of equations.
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Throughout, we let L denote an arbitrary bounded distributive lattice with lattice
operations ∧ and ∨. We denote respectively by 0 and 1 the bottom and top elements of L.
For any integer n > 1, we set [n] := {1, . . . , n} and, for any S ⊆ [n], we denote by eS the
characteristic vector of S in {0, 1}n, that is, the n-dimensional vector whose ith component
is 1, if i ∈ S, and 0, otherwise. Finally, since L is bounded, we naturally assume that

∨

x∈∅
x = 0 and

∧

x∈∅
x = 1.

2 Weighted lattice polynomials

Before introducing the concept of weighted lattice polynomial function, let us recall the
definition of lattice polynomials; see e.g. Grätzer [3, §I.4].

Definition 2.1. Given a finite collection of variables x1, . . . , xn ∈ L, a lattice polynomial
in the variables x1, . . . , xn is defined as follows:

1. the variables x1, . . . , xn are lattice polynomials in x1, . . . , xn;

2. if p and q are lattice polynomials in x1, . . . , xn, then p ∧ q and p ∨ q are lattice
polynomials in x1, . . . , xn;

3. every lattice polynomial is formed by finitely many applications of the rules (1) and
(2).

When two different lattice polynomials p and q in the variables x1, . . . , xn represent the
same function from Ln to L, we say that p and q are equivalent and we write p = q. For
instance, x1 ∨ (x1 ∧ x2) and x1 are equivalent.

We now recall that, in a distributive lattice, any lattice polynomial function can be
written in disjunctive and conjunctive normal forms, that is, as a join of meets and dually;
see [1, §II.5].

Proposition 2.1. Let p : Ln → L be any lattice polynomial function. Then there are
integers k, l > 1 and families {Aj}k

j=1 and {Bj}l
j=1 of nonempty subsets of [n] such that

p(x) =
k∨

j=1

∧

i∈Aj

xi =
l∧

j=1

∨

i∈Bj

xi.

Equivalently, there are nonconstant set functions α : 2[n] → {0, 1} and β : 2[n] → {0, 1},
with α(∅) = 0 and β(∅) = 1, such that

p(x) =
∨

S⊆[n]
α(S)=1

∧

i∈S

xi =
∧

S⊆[n]
β(S)=0

∨

i∈S

xi.

The concept of lattice polynomial function can be generalized by regarding some vari-
ables as parameters. Based on this observation, we naturally introduce the weighted lattice
polynomial functions as follows.
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Definition 2.2. A function p : Ln → L is an n-ary weighted lattice polynomial (w.l.p.)
function if there exists an integer m > 0, parameters c1, . . . , cm ∈ L, and a lattice polynomial
function q : Ln+m → L such that

p(x1, . . . , xn) = q(x1, . . . , xn, c1, . . . , cm) (x1, . . . , xn ∈ L).

Using Proposition 2.1, we can easily see that any w.l.p. function can be written in
disjunctive and conjunctive normal forms; see also [4, 6].

Proposition 2.2. Let p : Ln → L be any w.l.p. function. Then there are integers k, l > 1,
parameters a1, . . . , ak, b1, . . . , bl ∈ L, and families {Aj}k

j=1 and {Bj}l
j=1 of subsets of [n]

such that

p(x) =
k∨

j=1

[
aj ∧

∧

i∈Aj

xi

]
=

l∧

j=1

[
bj ∨

∨

i∈Bj

xi

]
.

Equivalently, there exist set functions α : 2[n] → L and β : 2[n] → L such that

p(x) =
∨

S⊆[n]

[
α(S) ∧ ∧

i∈S

xi

]
=

∧

S⊆[n]

[
β(S) ∨ ∨

i∈S

xi

]
.

It follows from Proposition 2.2 that any n-ary w.l.p. function is entirely determined by
2n parameters. That is, only 2n parameters will be taken into account in the definition of
any n-ary w.l.p. function, even if a larger number of parameters have been considered to
construct it.

In the next section, we investigate the link between a given w.l.p. function and the
parameters that define it.

Remark. Proposition 2.2 naturally includes the lattice polynomial functions. To see it,
it suffices to consider nonconstant set functions α : 2[n] → {0, 1} and β : 2[n] → {0, 1}, with
α(∅) = 0 and β(∅) = 1.

3 Disjunctive and conjunctive forms

Let us denote by p∨α (resp. p∧β ) the w.l.p. function disjunctively (resp. conjunctively) gener-

ated by the set function α : 2[n] → L (resp. β : 2[n] → L), that is,

p∨α(x) :=
∨

S⊆[n]

[
α(S) ∧ ∧

i∈S

xi

]
,

p∧β (x) :=
∧

S⊆[n]

[
β(S) ∨ ∨

i∈S

xi

]
.

Of course, the set functions α and β are not uniquely determined. For instance, we have
seen that x1 ∨ (x1 ∧ x2) and x1 represent the same function.

We now describe the class of all set functions that disjunctively (or conjunctively) gen-
erate a given w.l.p. function.

For any w.l.p. function p : Ln → L, set αp(S) := p(eS) and βp(S) := p(e[n]\S).

Proposition 3.1. Let p : Ln → L be any w.l.p. function and consider two set functions
α : 2[n] → L and β : 2[n] → L.

3



1. We have p∨α = p if and only if α∗p 6 α 6 αp, where the set function α∗p : 2[n] → L is
defined as

α∗p(S) =





αp(S), if αp(S) > αp(S \ {i}) for all i ∈ S,

0, otherwise.

2. We have p∧β = p if and only if βp 6 β 6 β∗p , where the set function β∗p : 2[n] → L is
defined as

β∗p(S) =





βp(S), if βp(S) < βp(S \ {i}) for all i ∈ S,

1, otherwise.

Example 3.1. The possible disjunctive expressions of x1∨(x1∧x2) as a 2-ary w.l.p. function
are given by

x1 ∨ (c ∧ x1 ∧ x2) (c ∈ [0, 1]).

For c = 0, we retrieve x1 and, for c = 1, we retrieve x1 ∨ (x1 ∧ x2).

We note that, from among all the set functions that disjunctively (or conjunctively)
generate a given w.l.p. function p, only αp (resp. βp) is isotone (resp. antitone). Indeed,
suppose for instance that α is isotone. Then, for all S ⊆ [n], we have

α(S) =
∨

K⊆S

α(K) = αp(S),

that is, α = αp.

4 The discrete Sugeno integral

Certain w.l.p. functions have been considered in the area of nonlinear aggregation and
integration. The best known instances are given by the discrete Sugeno integral, which is a
particular discrete integration with respect to a fuzzy measure (see [7, 8]). In this section,
we show the relationship between the discrete Sugeno integral and the w.l.p. functions. For
a recent survey on the discrete Sugeno integral, see [2].

Definition 4.1. An L-valued fuzzy measure on [n] is an isotone set function µ : 2[n] → L
such that µ(∅) = 0 and µ([n]) = 1.

We now introduce the Sugeno integral in its disjunctive form, which is equivalent to the
original definition (see [7]).

Definition 4.2. Let µ be an L-valued fuzzy measure on [n]. The Sugeno integral of a
function x : [n] → L with respect to µ is defined by

Sµ(x) :=
∨

S⊆[n]

[
µ(S) ∧ ∧

i∈S

xi

]
.

Surprisingly, it appears immediately that any function f : Ln → L is an n-ary Sugeno
integral if and only if it is a w.l.p. function fulfilling f(e∅) = 0 and f(e[n]) = 1. Moreover,
as the following proposition shows, any w.l.p. function can be easily expressed in terms of
a Sugeno integral.
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Proposition 4.1. For any w.l.p. function p : Ln → L, there exists a fuzzy measure µ :
2[n] → L such that

p(x) = median
[
p(e∅),Sµ(x), p(e[n])

]
.

Corollary 4.1. Consider a function f : Ln → L. The following assertions are equivalent:

1. f is a Sugeno integral.

2. f is an idempotent w.l.p. function, i.e., such that f(x, . . . , x) = x for all x ∈ L.

3. f is a w.l.p. function fulfilling f(e∅) = 0 and f(e[n]) = 1.

5 The median based decomposition formula

Given a function f : Ln → L and an index k ∈ [n], we define the functions f 0
k : Ln → L

and f 1
k : Ln → L as

f 0
k (x) = f(x1, . . . , xk−1, 0, xk+1, . . . , xn) (x ∈ Ln),

f 1
k (x) = f(x1, . . . , xk−1, 1, xk+1, . . . , xn) (x ∈ Ln).

Clearly, if f is a w.l.p. function, so are f 0
k and f 1

k .
Now consider the following system of n functional equations, which we will refer to as

the median based decomposition formula:

f(x) = median
[
f 0

k (x), xk, f
1
k (x)

]
(k ∈ [n]) (1)

This remarkable functional system expresses that, for any index k, the variable xk can be
totally isolated in f(x) by means of a median calculated over the variable xk and the two
functions f 0

k and f 1
k , which are independent of xk.

The following result shows that this system characterizes the n-ary w.l.p. functions.

Theorem 5.1. The solutions of the median based decomposition formula (1) are exactly
the n-ary w.l.p. functions.

6 Conclusion

We have introduced the concept of weighted lattice polynomial functions, which generalize
the lattice polynomial functions by allowing some variables to be regarded as parameters.
We observed that these functions include the class of discrete Sugeno integrals, which have
been extensively used not only in aggregation theory but also in fuzzy set theory. Finally, we
have provided a median based system of functional equations that completely characterizes
the weighted lattice polynomial functions.

Just as particular Sugeno integrals (such as the weighted minima, the weighted maxima,
and their ordered versions) have already been investigated and axiomatized (see [2]), certain
subclasses of weighted lattice polynomial functions deserve to be identified and investigated
in detail. This is a topic for future research.
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