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SKETCH OF THE PRESENTATION

Assumptions : cardinal setting, commensurable evaluations

aggregation of decision criteria

Weighted arithmetic mean
Additive measure
Problem: interaction phenomena ?

Choquet integral
Fuzzy measure
Problem: how to interpret it ?

Behavioral indices

- global importance of criteria

- influence of criteria

- Interaction among criteria

- tolerance of the decision maker

- dispersion of the importance of criteria



Aggregation in multicriteria decision making

e Alternatives A = {a,b,c,...,}

e Criteria N ={1,2,...,n}

e Profile aec A — (z¢,...,25) € R"?
commensurable partial scores

(defined on the same interval scale)

e Aggregation operator M : I R" —- R
M :[0,1]" — [0, 1]

Alternative | crit. 1 --- crit. n | global score
a :1:;{ a:% M(f’jga"wx%)
b - x| M(xy,...,75)




Example :  Evaluation of students w.r.t. three subjects:
statistics, probability, algebra.

Student | St Pr Al St Pr Al
a 19 15 18 0.95 0.75 0.90
b 19 18 15|—1]0.95 0.90 0.75
c 11 15 18 0.55 0.75 0.90
d 11 18 15 0.55 0.90 0.75

(marks are expressed on a scale from 0 to 20)

An often used operator: the weighted arithmetic mean
n
WAMy(z) 1= ) wiz;
i=1

with >, w;, =1landw; > Oforallz € N

Student | global evaluation
wst = 35% a 0.750
wpr = 35% = b 0.872
wa| — 30% C 0.725
d 0.732

b>a>d>c




WAM,,(1,0,0) = wgt = 0.35
WAM,,(0,1,0) = wp, = 0.35
WAM,(1,1,0) = 0.70 !

What is the importance of {St, Pr} ?

Definition (Choquet, 1953; Sugeno, 1974)
A fuzzy measure on N is a set function v : 2%V — [0, 1]

such that
i) v(@)=0,v(N)=1
1) SCT=v(S) <v(T)

v(S) weight of S
— degree of importance of S
power of S to make the decision alone

(without the remaining criteria)

A fuzzy measure is additive if

v(SUT) =v(S)+v(T) ifSNT =1

— Iindependent criteria

v(St, Pr) = v(St) + v(Pr) (= 0.70)



The discrete Choquet integral

Definition
Let v € Fpn. The (discrete) Choquet integral of z € R"
w.r.t. v Is defined by

n

Co(z) 1= ) zy[v(Ayy) — v(AG41))]

i=1
with the convention that T(1) <. < T(n):
Also, A(z) = {(Z), ceey (n)}

Example: If x3 < x1 < x5, we have

CU($1,$2,I3) — I3 [U(?’a 172) T U(1,2)]
+ z1 [v(1,2) —v(2)]
+ 22 v(2)

Particular case:

v additive = Cy = WAM,

Indeed,

Co(@) = Y. agyo(@) = Y @i0()
1=1 w;

1=1



Properties of the Choquet integral

Linearity w.r.t. the fuzzy measure :
There exist 2™ functions fr : R™ — R (1" C N) such that

Co= > () fr (veEFn)
TCN
Indeed, on can show that

Co(z) = Y o(T) Y (—1)ETming;

TCN KOT ek

7

fr(z)

Stability w.r.t. positive linear transformations
Foranyxz € R",» > 0,s € IR,

Co(rxzi+s,....,rxn+5s) =rCy(xq,...,2n) + s

Example : marks obtained by students

-on a [0,20] scale : 16, 11, 7, 14

-ona [0, 1] scale : 0.80, 0.55, 0.35, 0.70
-ona|[—1,1] scale: 0.60, 0.10, —0.30, 0.40

Remark : The partial scores may be embedded in [0, 1]



Monotonicity
For any z, 2’ € IR", one has

v, <z, Vie N = Cy(x)<Cy(a))

Cy IS properly weighted by v
Cu(eg) =v(S) (SCN)

eg = characteristic vector of S'in {0, 1}"
Example : €{1,3) = (1,0,1,0,...)

Independent criteria Dependent criteria
VVAMw(e{Z}> — Wy CU(G{Z}) — ’U(Z)
WAMw(e{z-)j}) — Wy + wj Cv(e{@',j}) — U(i,j)

Example :

v(St,Pr) < v(St) +  v(Pr)

I I !
Cv(1,1,0)  Cu(1,0,0)  Cu(0,1,0)



Axiomatic characterization of the class of
Choquet integrals with n arguments

Theorem
The operators M, : R" — IR (v € Fy) are

e linear w.r.t. the underlying fuzzy measure v
M, is of the form

My= > oM fr (veFy)
TCN

where fr’s are independent of v

e stable for the positive linear transformations :

My(rz1+s,...,7ron+s) =r My(x1,...,2n) + s
forallr e R™",r >0,s € R

e non-decreasing in each argument (monotonic)

e properly weighted by v :
My(es) =v(S) (S C N,veFy)

If and only if M, = C,, for all v € Fy.



Back to the example of evaluation of students

Student | St Pr Al

a 19 15 18
b 19 18 15
C 11 15 18
d 11 18 15

Assumptions :
- St and Pr are more important than Al
- St and Pr are somewhat substitutive

Behavior of the decision maker :
When a student is good at statistics (19), it is preferable that
he/she is better at algebra than probability, so

a>=b

When a student is not good at statistics (11), it is preferable
that he/she is better at probability than algebra, so

d > c

Additive model : WAM,,

a>b & wpl > wpr

No solution !
d>c & wal < wpy



Non-additive model : C,
v(St) = 0.35
v(Pr) = 0.35
v(Al) = 0.30

v(St,Pr) = 0.50
»(St, Al) = 0.80
v(Pr, Al) = 0.80

v(0) =0
v(St,Pr,Al) =1

(redundancy)
(complementarity)
(complementarity)

Student | St Pr Al | Global evaluation
a 19 15 18 17.75
b 19 18 15 16.85
C 11 15 18 15.10
d 11 18 15 15.25

a>-b>=d=c
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Particular cases of Choquet integrals

1) Weighted arithmetic mean

n n
WAM,(z) = > wiz;, > w;=1, w; >0
1=1 1=1

Proposition
Let v € Fp. The following assertions are equivalents :
i) v is additive
i1) 3 a weight vector w such that C, = WAM,,
111) Cy is additive, i.e. Cy(z + 2') = Cy(z) + Co (")

v(S) = ) w; (SCN)
1eS
v(17) (i€ N)

Wi

e arithmeticmean (w=(1/n,...,1/n))

1 n
1=1

e k-th projection (w = egy)
Pr(z) = xy

11



2) Ordered weighted averaging (Yager, 1988)
n n
OWAw(w) — Z wzaz(z) y Z wW; — 1, Wy 2 O
i=1

i=1
with the convention that T(1) <. < T(p):

Proposition (Grabisch, 1995)

Let v € Fj. The following assertions are equivalents :
i) v is cardinality-based : |S| = |S’| = v(S) = v(S5")
i¢) 3 aweight vector w such that C, = OWA,
1i1) Cyp is a symmetric function.

n

v(S) = ) w;  (SCN,S#0)
1=n—s+1
wn—s = v(SU) —v(S) (1€ N,SCN\i)

e arithmeticmean (w=(1/n,...,1/n))

o k-th order statistic  (w = egj))

OSi(z) = z(p)
Note. If n = 2k — 1 then OS; = median
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3) Partial minima and maxima

Let T" C N, with T' = 0.

minp(x) = Z_Ei:P x;
(S) = { 1 ifSDOT
0 else

maxp(x) = maxx;

i€T
v(5) = {(1) ZIfeﬂT ~!
e minimum (T = N)
v(5) = {é i(:Iksge: :
e maximum (T = N)
v(5) = {é i(:lfe# :
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Behavioral analysis of aggregation
Given a fuzzy measure v € Fy,

how can we interpret it ?

Behavioral indices

global importance of criteria
iInfluence of criteria
Interaction among criteria
tolerance / intolerance of the decision maker
dispersion of the importance of criteria

14



Global importance of criteria

Given : € N, it may happen that
e v(i1) =0
e v(TUW) >v(T) formanyT C N \i

The overall importance of : € N should not be solely deter-
mined by v(z), but by all v(T'U ¢) such that " C N \ .

Marginal contribution of ¢ in combination 7" C N \ ¢ :

v(T'U1) —o(T)

Shapley power index (Shapley, 1953)
= Average value of the marginal contribution of ¢ alone in all
combinations :
1=l o1
(v, i) 1= — > > [w(Tud) —o(T)]

n—1
tZO( ¢ )TQN\Z'
1T |=t

4

average over all the subsets
of the same size t

(n—t—1)!¢l

y [v(T'U i) —v(T)]

¢(v,3) = )

TCN\i
(proposed in MCDM by Murofushi in 1992)
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Properties of the Shapley power index
i) o¢(v,i) € [0,1]foralli e N
W) Yi¢(v,i) =1
i) v additive = ¢(v,i) = v(i) foralli € N

Axiomatic characterization

Theorem (Shapley, 1953)
The numbers ¢ (v,i) (i € N,v € Fy)

e are linear w.r.t. the fuzzy measure v :
(v, 1) is of the form

Y(v,i) = Zv(T)piT (1€ N,v € Fn)
TCN

where p'.'s are independent of v

e are symmetric, i.e., independent of the labels :

Y(v,1) =P(mo,7(i)) (1€ N,v € Fy)
for any permutation = on N

e fulfill the “null criterion” axiom :

v(TUi) =v(T) YVI'CN\i = ¢(v,i)=0

o fulfill the “efficiency” axiom :

if and only if ¢ = ¢ (Shapley power index).

16



v $(v,1)
VWAM,, | Wi
vowA, | 1/n

Probabilistic interpretation

Define

A;Cy(z) =Cy(z|z; =1) — Cy(x | x; = 0)

(marginal contribution of criterion ¢z on the aggregation at x)

We have

Bv,i) = [ B Cul@) da

[0,1]™
that is,
¢(v,1) = E[A; Cy(z)]

where the expectation is defined from the uniform distribu-
tion over [0, 1]™.

o(v,1) = expected value of the amplitude of the range of
Cy that criterion = may control when assigning partial evalu-
ations to the other criteria at random
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Influence of criteria on the aggregation

Marginal contribution of S C N in combinationT" C N \ S':

v(TUS) —o(T)

The influence of S on the aggregation operator C, is defined
as the average value of the marginal contribution of S in all
outer combinations :

> Ww(TuUs) —v(1)]

TCN\S
T |=t

1(Co, i) :—n_s+ i =
— t

7

average over all the subsets
of the same size t

Properties of the influence function
i) I(Cy,S)e[0,1]forall S C N
i1) I(Cy,i) = ¢p(v,i) foralli e N
iii) v additive = I(Cy,S) = v(S) forall S C N

18



CU I(vas)
WAM,, > w;
€5
1 n
OWA, n—s—l—li;wi min(i,s,n—1+1,n—s+ 1)

Probabilistic interpretation

We have

I1(Cy,S) = /[O 1]n[CU(ac |lxg=1) — Cy(x | zg = 0)] dx

that is,

I(Cy,S) = E[Cv(z |25 =1) = Cy(x | zg = 0)]

I1(Cy, S) = expected value of the amplitude of the range of
Cy that criteria S may control when assigning partial evalu-
ations to the other criteria at random
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Interaction among criteria

Consider a pair {z, j} of criteria. If

(T Uij) —v(TUi) < o(TUj)—o(T) (T C N\ij)

contribution of 5 in contribution of 5 in
the presence of ¢ the absence of ¢

then there is an overlap effect between ¢ and ;.

Marginal interaction between ¢ and j, conditioned to the
presence of T C N \ ij :

v(TUj) —v(T Ui) —v(T Uj) 4+ v(T)

< 0 — 7 and j are competitive
> 0 — 7 and j are complementary
= 0 — ¢ and j do not interact

Interaction index (Owen, 1972)
= Average value of the marginal interaction between ¢ and

7] -

1 =2 1

I(v,3j) = S >

— > [w(Tuij) —..]
=0 (%) réxty

7

average over all the subsets
of the same size t

(proposed in MCDM by Murofushi and Soneda in 1993)
20



Probabilistic interpretation

Define

=Cy(z|z;=2;,=1) = Cy(z |2, = 1,2; = 0)
—Cy(z | x; = 0,2, = 1) + Cy(z | &; = x; = 0)

(marginal interaction between ¢ and j at x)

We have

I(U,’I:j) = /[0 1] Az] CU(ZC) dx

E[Aij Cov(z)]

Generalization to any combination S
(Grabisch and Roubens, 1998)

I(v,8) := E[AgCo(2)]

(n—t—s)!t!

I(v,8) = Y S (—1)Fu(KUT)

TCN\S (n—s+1)! KCS
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Properties of the interaction
i) I(v,ij) € [-1,1] forallij € N
i) I(v,1) = ¢(v,7) foralli ¢ N
i) v additive = I(v,S) =0forall S C N,|S| > 2

(Y I(U7S)7|S|22

VWAM,, 0

s—2
Y (T ) w1 — )

UOWA,

22




Conjunction and disjunction degrees

Average value of C, over [0, 1]™:

E[Cy(z)] = /[O,l]ncv(ac) di
— gives the average position of C,, within the interval [0, 1].
Since
minz; < Cy(z) < maxuz;
we have

E(min) < E(Cy) < E(max)

Conjunction degree :

E(max) — E(Cy)

andness(Cy) := E(max) — E(min)

Disjunction degree :

E(Cy) — E(min)
E(max) — E(min)

orness(Cy) =

(Dujmovic, 1974)
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Properties
i) andness(Cy),orness(Cy) € [0, 1]
ii) andness(Cy) + orness(Cy) = 1
111) orness(Cy) = 0 (resp. 1) < Cy = min (resp. max)

We have
n—1
orness(Cy) = —— Z (1) > (1)
)

average over all

the subsets of
the same size t

Co orness(Cy)
WAM,, 1/2

1 n
OWA,, | —— 3 (G- 1w
n — _

\

as prc;f)osed
by Yager in 1988
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Veto and favor effects

A criterion 7 € N IS

e aveto for Cy if

Co(z) <z; (z€][0,1]")
e afavor for Cy if

Co(z) >z;  (z€[0,1]")
(Dubois and Koning, 1991, Grabisch, 1997)
Proposition
1) ¢ is a veto for Cy iff 3\ € [0, 1] s.t.

;<A = Cy(z) <A

2) ¢ is a favor for Cy, iff 3 A € ]0, 1] s.t.

Problem :
Given ¢ € N and v € Fj;, how can we define a degree of
veto (resp. favor) of z for C,, ?

25



First attempt :
Consider [0, 1]™ as a probability space with uniform distri-
bution

veto(Cy,i) = Pr[Cy(z) < ]
However,

1 If w; — 1
1/2 else

IS non-continuous w.r.t. the fuzzy measure !!!

PriWAMy(z) < z;] = {

Second attempt : axiomatic characterization

veto(Cy, i) 1= 1 — n_il Tcz]:\,\i (n (—nt_—ll))!! £l o)
favor(Gu, 1) = ni D2 . (_nt—_ll))!! : U(TUi)_n—il

TCN\i
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Theorem
The numbers ¥(Cy,7) (i € N,v € Fy)

e are linear w.r.t. the fuzzy measure v
Y (Cy, 1) is of the form

W(Cvyi) = Y v(T)py (1€ N,v € Fy)
TCN

where pt-'s are independent of v

e are symmetric, i.e., independent of the labels :

w(c’vaz) — w(cﬂ'vaﬂ_(i)> (Z € N,’U S fN)
for any permutation = on N

o fulfill the “boundary” axiom : VI'C N,VieT

w(minTai) =1
(cf. miny(x) < x; whenever i € T))

o fulfill the “normalization” axiom :

¢(Cv,z) — ¢(CU7]) \V/Z,] S N
J
W(Cy,1) = andness(Cy) Vie N

If and only if ¢y = veto.
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Properties

i) veto(Cy,1),favor(Cy,7) € [0, 1]

1 n
i) — » veto(Cy,i) = andness(Cy)
ni=1

1 n
wi) — » _ favor(Cy,i) = orness(Cy)
=1

Co veto(Cy, 1) favor(Cy, 1)
1 n(w; —1/n) 1 n(w; —1/n)
WAMG 5 2(n — 1) 5T 2(n — 1)
1 & . 1 &K,
OWA, | —— 3" (n—wj| = 3 (G~ Dwy
j=1 j=1
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Measure of dispersion

Ho) =3 3 (n_tn_!1)!t!h[v(TUi)—v(T)]

i=1 TCN\i

where

h(z) = {—:clognac !f$>0
0 fx=20

H (v) measures the degree to which the aggregation func-
tion C, uses its arguments

Properties

i) H(v) €[0,1]

i) H(vwam,) = H(vowa,) = — ) w;ilogn w;
1=1
iii) Hwv)=1 < v=waM
iv) Hw)=0 <« v(5)e{0,1}
< Cy(x) € {x1,...,zn}
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Back to the example :

Global importance of criteria
o(v,St) = 0.292
o(v,Pr) = 0.292
o(v,Al) = 0.417

Influence of criteria

I(Cy,StUPr) =0.600
I(Cy,StUAI) =0.725
I(Cy,PruUAl) =0.725

Interaction among criteria
I(v,StUPr)=-0.25
I(v,StUAI) =0.10
I(v,PrUAl) =0.10

Conjunction degree
orness(C,) = 0.517

Veto and favor degrees

veto(Cy, St) = 0.437 favor(Cy, St) = 0.500
veto(Cy, Pr) = 0.437 favor(Cy, Pr) = 0.500
veto(Cy, Al) = 0.575 favor(Cy, Al) = 0.550

Dispersion of the importance of criteria
H(v) = 0.820
30



Inverse problem :

How to assess v from the behavior of
the decision maker ?

maximize H(v)

subject to

a>=b (i.e. Cp(19,15,18) > Cy(19,18,15))

d>c

v(St) .

w(Pr) } > v(Al) (local importances)
I(v,STtUPr)<oO (substitutiveness)
0.45 < orness(Cy) < 0.55 (tolerance)

v(0) =0,v(N) =1
Monotonicity of v
etc.

Objective function : strictly concave
Constraints : linear w.r.t. v
31



