

Behavioral analysis of aggregation in multicriteria decision aid

Jean-Luc Marichal
University of Liège, Belgium

TRENTO' 2000

SKETCH OF THE PRESENTATION

Assumptions : cardinal setting, commensurable evaluations

aggregation of decision criteria

Weighted arithmetic mean

Additive measure

Problem: interaction phenomena ?

Choquet integral

Fuzzy measure

Problem: how to interpret it ?

Behavioral indices :

- global importance of criteria
- influence of criteria
- interaction among criteria
- tolerance of the decision maker
- dispersion of the importance of criteria

Aggregation in multicriteria decision making

- Alternatives $A = \{a, b, c, \dots\}$
- Criteria $N = \{1, 2, \dots, n\}$
- Profile $a \in A \longrightarrow (x_1^a, \dots, x_n^a) \in \mathbb{R}^n$
commensurable partial scores
(defined on the same interval scale)
- Aggregation operator $M : \mathbb{R}^n \rightarrow \mathbb{R}$
 $M : [0, 1]^n \rightarrow [0, 1]$

Alternative	crit. 1	...	crit. n	global score
a	x_1^a	...	x_n^a	$M(x_1^a, \dots, x_n^a)$
b	x_1^b	...	x_n^b	$M(x_1^b, \dots, x_n^b)$
\vdots	\vdots		\vdots	\vdots

Example : Evaluation of students w.r.t. three subjects: statistics, probability, algebra.

Student	St	Pr	AI		St	Pr	AI
a	19	15	18	→	0.95	0.75	0.90
b	19	18	15		0.95	0.90	0.75
c	11	15	18		0.55	0.75	0.90
d	11	18	15		0.55	0.90	0.75

(marks are expressed on a scale from 0 to 20)

An often used operator: the weighted arithmetic mean

$$\text{WAM}_\omega(x) := \sum_{i=1}^n \omega_i x_i$$

with $\sum_i \omega_i = 1$ and $\omega_i \geq 0$ for all $i \in N$

$$\left. \begin{array}{l} \omega_{\text{St}} = 35\% \\ \omega_{\text{Pr}} = 35\% \\ \omega_{\text{AI}} = 30\% \end{array} \right\} \Rightarrow$$

Student	global evaluation
a	0.750
b	0.872
c	0.725
d	0.732

$$b \succ a \succ d \succ c$$

$$\text{WAM}_\omega(1, 0, 0) = \omega_{\text{St}} = 0.35$$

$$\text{WAM}_\omega(0, 1, 0) = \omega_{\text{Pr}} = 0.35$$

$$\text{WAM}_\omega(1, 1, 0) = 0.70 !!!$$

What is the importance of $\{\text{St}, \text{Pr}\}$?

Definition (Choquet, 1953; Sugeno, 1974)

A fuzzy measure on N is a set function $v : 2^N \rightarrow [0, 1]$ such that

- i) $v(\emptyset) = 0, v(N) = 1$
- ii) $S \subseteq T \Rightarrow v(S) \leq v(T)$

$v(S)$ = weight of S
= degree of importance of S
= power of S to make the decision alone
(without the remaining criteria)

A fuzzy measure is additive if

$$v(S \cup T) = v(S) + v(T) \quad \text{if } S \cap T = \emptyset$$

→ independent criteria

$$v(\text{St}, \text{Pr}) = v(\text{St}) + v(\text{Pr}) (= 0.70)$$

The discrete Choquet integral

Definition

Let $v \in \mathcal{F}_N$. The (discrete) Choquet integral of $x \in \mathbb{R}^n$ w.r.t. v is defined by

$$\mathcal{C}_v(x) := \sum_{i=1}^n x_{(i)} [v(A_{(i)}) - v(A_{(i+1)})]$$

with the convention that $x_{(1)} \leq \dots \leq x_{(n)}$.

Also, $A_{(i)} = \{(i), \dots, (n)\}$.

Example: If $x_3 \leq x_1 \leq x_2$, we have

$$\begin{aligned} \mathcal{C}_v(x_1, x_2, x_3) &= x_3 [v(3, 1, 2) - v(1, 2)] \\ &\quad + x_1 [v(1, 2) - v(2)] \\ &\quad + x_2 v(2) \end{aligned}$$

Particular case:

$$v \text{ additive} \Rightarrow \mathcal{C}_v = \text{WAM}_\omega$$

Indeed,

$$\mathcal{C}_v(x) = \sum_{i=1}^n x_{(i)} v((i)) = \sum_{i=1}^n x_i \underbrace{v(i)}_{\omega_i}$$

Properties of the Choquet integral

Linearity w.r.t. the fuzzy measure :

There exist 2^n functions $f_T : \mathbb{R}^n \rightarrow \mathbb{R}$ ($T \subseteq N$) such that

$$\mathcal{C}_v = \sum_{T \subseteq N} v(T) f_T \quad (v \in \mathcal{F}_N)$$

Indeed, one can show that

$$\mathcal{C}_v(x) = \sum_{T \subseteq N} v(T) \underbrace{\sum_{K \supseteq T} (-1)^{|K|-|T|} \min_{i \in K} x_i}_{f_T(x)}$$

Stability w.r.t. positive linear transformations :

For any $x \in \mathbb{R}^n, r > 0, s \in \mathbb{R}$,

$$\mathcal{C}_v(r x_1 + s, \dots, r x_n + s) = r \mathcal{C}_v(x_1, \dots, x_n) + s$$

Example : marks obtained by students

- on a $[0, 20]$ scale : 16, 11, 7, 14
- on a $[0, 1]$ scale : 0.80, 0.55, 0.35, 0.70
- on a $[-1, 1]$ scale : 0.60, 0.10, -0.30, 0.40

Remark : The partial scores may be embedded in $[0, 1]$

Monotonicity

For any $x, x' \in \mathbb{R}^n$, one has

$$x_i \leq x'_i \quad \forall i \in N \quad \Rightarrow \quad \mathcal{C}_v(x) \leq \mathcal{C}_v(x')$$

\mathcal{C}_v is properly weighted by v

$$\mathcal{C}_v(e_S) = v(S) \quad (S \subseteq N)$$

e_S = characteristic vector of S in $\{0, 1\}^n$

Example : $e_{\{1,3\}} = (1, 0, 1, 0, \dots)$

Independent criteria

$$\text{WAM}_\omega(e_{\{i\}}) = \omega_i$$

$$\text{WAM}_\omega(e_{\{i,j\}}) = \omega_i + \omega_j$$

Dependent criteria

$$\mathcal{C}_v(e_{\{i\}}) = v(i)$$

$$\mathcal{C}_v(e_{\{i,j\}}) = v(i, j)$$

Example :

$$\begin{array}{ccc} v(\text{St}, \text{Pr}) & < & v(\text{St}) + v(\text{Pr}) \\ \parallel & & \parallel \\ \mathcal{C}_v(1, 1, 0) & & \mathcal{C}_v(1, 0, 0) + \mathcal{C}_v(0, 1, 0) \end{array}$$

Axiomatic characterization of the class of Choquet integrals with n arguments

Theorem

The operators $M_v : \mathbb{R}^n \rightarrow \mathbb{R}$ ($v \in \mathcal{F}_N$) are

- **linear w.r.t. the underlying fuzzy measure v :**
 M_v is of the form

$$M_v = \sum_{T \subseteq N} v(T) f_T \quad (v \in \mathcal{F}_N)$$

where f_T 's are independent of v

- **stable for the positive linear transformations :**

$$M_v(r x_1 + s, \dots, r x_n + s) = r M_v(x_1, \dots, x_n) + s$$

for all $x \in \mathbb{R}^n, r > 0, s \in \mathbb{R}$

- **non-decreasing in each argument (monotonic)**
- **properly weighted by v :**

$$M_v(e_S) = v(S) \quad (S \subseteq N, v \in \mathcal{F}_N)$$

if and only if $M_v = \mathcal{C}_v$ for all $v \in \mathcal{F}_N$.

Back to the example of evaluation of students

Student	St	Pr	AI
a	19	15	18
b	19	18	15
c	11	15	18
d	11	18	15

Assumptions :

- St and Pr are more important than AI
- St and Pr are somewhat substitutive

Behavior of the decision maker :

When a student is good at statistics (19), it is preferable that he/she is better at algebra than probability, so

$$a \succ b$$

When a student is not good at statistics (11), it is preferable that he/she is better at probability than algebra, so

$$d \succ c$$

Additive model : WAM $_{\omega}$

$$\left. \begin{array}{l} a \succ b \Leftrightarrow \omega_{AI} > \omega_{Pr} \\ d \succ c \Leftrightarrow \omega_{AI} < \omega_{Pr} \end{array} \right\} \text{No solution !}$$

Non-additive model : \mathcal{C}_v

$$v(\text{St}) = 0.35$$

$$v(\text{Pr}) = 0.35$$

$$v(\text{AI}) = 0.30$$

$$v(\text{St}, \text{Pr}) = 0.50 \quad (\text{redundancy})$$

$$v(\text{St}, \text{AI}) = 0.80 \quad (\text{complementarity})$$

$$v(\text{Pr}, \text{AI}) = 0.80 \quad (\text{complementarity})$$

$$v(\emptyset) = 0$$

$$v(\text{St}, \text{Pr}, \text{AI}) = 1$$

Student	St	Pr	AI	Global evaluation
a	19	15	18	17.75
b	19	18	15	16.85
c	11	15	18	15.10
d	11	18	15	15.25

$$a \succ b \succ d \succ c$$

Particular cases of Choquet integrals

1) Weighted arithmetic mean

$$\text{WAM}_\omega(x) = \sum_{i=1}^n \omega_i x_i, \quad \sum_{i=1}^n \omega_i = 1, \quad \omega_i \geq 0$$

Proposition

Let $v \in \mathcal{F}_N$. The following assertions are equivalents :

- i) v is additive
- ii) \exists a weight vector ω such that $\mathcal{C}_v = \text{WAM}_\omega$
- iii) \mathcal{C}_v is additive, i.e. $\mathcal{C}_v(x + x') = \mathcal{C}_v(x) + \mathcal{C}_v(x')$

$$\begin{aligned} v(S) &= \sum_{i \in S} \omega_i & (S \subseteq N) \\ \omega_i &= v(i) & (i \in N) \end{aligned}$$

- arithmetic mean $(\omega = (1/n, \dots, 1/n))$

$$\text{AM}(x) = \frac{1}{n} \sum_{i=1}^n x_i$$

- k -th projection $(\omega = e_{\{k\}})$

$$\mathsf{P}_k(x) = x_k$$

2) Ordered weighted averaging (Yager, 1988)

$$\text{OWA}_\omega(x) = \sum_{i=1}^n \omega_i x_{(i)}, \quad \sum_{i=1}^n \omega_i = 1, \quad \omega_i \geq 0$$

with the convention that $x_{(1)} \leq \dots \leq x_{(n)}$.

Proposition (Grabisch, 1995)

Let $v \in \mathcal{F}_N$. The following assertions are equivalents :

- i) v is cardinality-based : $|S| = |S'| \Rightarrow v(S) = v(S')$
- ii) \exists a weight vector ω such that $\mathcal{C}_v = \text{OWA}_\omega$
- iii) \mathcal{C}_v is a symmetric function.

$$\begin{aligned} v(S) &= \sum_{i=n-s+1}^n \omega_i & (S \subseteq N, S \neq \emptyset) \\ \omega_{n-s} &= v(S \cup i) - v(S) & (i \in N, S \subseteq N \setminus i) \end{aligned}$$

- arithmetic mean $(\omega = (1/n, \dots, 1/n))$
- k -th order statistic $(\omega = e_{\{k\}})$

$$\text{OS}_k(x) = x_{(k)}$$

Note. If $n = 2k - 1$ then $\text{OS}_k = \text{median}$

3) Partial minima and maxima

Let $T \subseteq N$, with $T \neq \emptyset$.

$$\min_T(x) = \min_{i \in T} x_i$$

$$v(S) = \begin{cases} 1 & \text{if } S \supseteq T \\ 0 & \text{else} \end{cases}$$

$$\max_T(x) = \max_{i \in T} x_i$$

$$v(S) = \begin{cases} 1 & \text{if } S \cap T \neq \emptyset \\ 0 & \text{else} \end{cases}$$

- minimum ($T = N$)

$$v(S) = \begin{cases} 1 & \text{if } S = N \\ 0 & \text{else} \end{cases}$$

- maximum ($T = N$)

$$v(S) = \begin{cases} 1 & \text{if } S \neq \emptyset \\ 0 & \text{else} \end{cases}$$

Behavioral analysis of aggregation

Given a fuzzy measure $v \in \mathcal{F}_N$,

how can we interpret it ?

Behavioral indices

global importance of criteria

influence of criteria

interaction among criteria

tolerance / intolerance of the decision maker

dispersion of the importance of criteria

Global importance of criteria

Given $i \in N$, it may happen that

- $v(i) = 0$
- $v(T \cup i) \gg v(T)$ for many $T \subseteq N \setminus i$

The overall importance of $i \in N$ should not be solely determined by $v(i)$, but by all $v(T \cup i)$ such that $T \subseteq N \setminus i$.

Marginal contribution of i in combination $T \subseteq N \setminus i$:

$$v(T \cup i) - v(T)$$

Shapley power index (Shapley, 1953)

= Average value of the marginal contribution of i alone in all combinations :

$$\phi(v, i) := \underbrace{\frac{1}{n} \sum_{t=0}^{n-1} \frac{1}{\binom{n-1}{t}} \sum_{\substack{T \subseteq N \setminus i \\ |T|=t}} [v(T \cup i) - v(T)]}_{\text{average over all the subsets of the same size } t}$$

$$\phi(v, i) = \sum_{T \subseteq N \setminus i} \frac{(n-t-1)! t!}{n!} [v(T \cup i) - v(T)]$$

(proposed in MCDM by Murofushi in 1992)

Properties of the Shapley power index

- i) $\phi(v, i) \in [0, 1]$ for all $i \in N$
- ii) $\sum_i \phi(v, i) = 1$
- iii) v additive $\Rightarrow \phi(v, i) = v(i)$ for all $i \in N$

Axiomatic characterization

Theorem (Shapley, 1953)

The numbers $\psi(v, i)$ ($i \in N, v \in \mathcal{F}_N$)

- **are linear w.r.t. the fuzzy measure v :**
 $\psi(v, i)$ is of the form

$$\psi(v, i) = \sum_{T \subseteq N} v(T) p_T^i \quad (i \in N, v \in \mathcal{F}_N)$$

where p_T^i 's are independent of v

- **are symmetric, i.e., independent of the labels :**

$$\psi(v, i) = \psi(\pi v, \pi(i)) \quad (i \in N, v \in \mathcal{F}_N)$$

for any permutation π on N

- **fulfill the “null criterion” axiom :**

$$v(T \cup i) = v(T) \quad \forall T \subseteq N \setminus i \quad \Rightarrow \quad \psi(v, i) = 0$$

- **fulfill the “efficiency” axiom :**

$$\sum_{i=1}^n \psi(v, i) = 1 \quad (v \in \mathcal{F}_N)$$

if and only if $\psi = \phi$ (Shapley power index).

v	$\phi(v, i)$
v_{WAM}_{ω}	ω_i
v_{OWA}_{ω}	$1/n$

Probabilistic interpretation

Define

$$\Delta_i \mathcal{C}_v(x) := \mathcal{C}_v(x \mid x_i = 1) - \mathcal{C}_v(x \mid x_i = 0)$$

(marginal contribution of criterion i on the aggregation at x)

We have

$$\phi(v, i) = \int_{[0,1]^n} \Delta_i \mathcal{C}_v(x) dx$$

that is,

$$\phi(v, i) = E[\Delta_i \mathcal{C}_v(x)]$$

where the expectation is defined from the uniform distribution over $[0, 1]^n$.

$\phi(v, i)$ = expected value of the amplitude of the range of \mathcal{C}_v that criterion i may control when assigning partial evaluations to the other criteria at random

Influence of criteria on the aggregation

Marginal contribution of $S \subseteq N$ in combination $T \subseteq N \setminus S$:

$$v(T \cup S) - v(T)$$

The influence of S on the aggregation operator \mathcal{C}_v is defined as the average value of the marginal contribution of S in all outer combinations :

$$I(\mathcal{C}_v, i) := \frac{1}{n-s+1} \underbrace{\sum_{t=0}^{n-s} \frac{1}{\binom{n-s}{t}} \sum_{\substack{T \subseteq N \setminus S \\ |T|=t}} [v(T \cup S) - v(T)]}_{\text{average over all the subsets of the same size } t}$$

Properties of the influence function

- i) $I(\mathcal{C}_v, S) \in [0, 1]$ for all $S \subseteq N$
- ii) $I(\mathcal{C}_v, i) = \phi(v, i)$ for all $i \in N$
- iii) v additive $\Rightarrow I(\mathcal{C}_v, S) = v(S)$ for all $S \subseteq N$

\mathcal{C}_v	$I(\mathcal{C}_v, S)$
WAM_ω	$\sum_{i \in S} \omega_i$
OWA_ω	$\frac{1}{n - s + 1} \sum_{i=1}^n \omega_i \min(i, s, n - i + 1, n - s + 1)$

Probabilistic interpretation

We have

$$I(\mathcal{C}_v, S) = \int_{[0,1]^n} [\mathcal{C}_v(x \mid x_S = 1) - \mathcal{C}_v(x \mid x_S = 0)] dx$$

that is,

$$I(\mathcal{C}_v, S) = E[\mathcal{C}_v(x \mid x_S = 1) - \mathcal{C}_v(x \mid x_S = 0)]$$

$I(\mathcal{C}_v, S)$ = expected value of the amplitude of the range of \mathcal{C}_v that criteria S may control when assigning partial evaluations to the other criteria at random

Interaction among criteria

Consider a pair $\{i, j\}$ of criteria. If

$$\underbrace{v(T \cup ij) - v(T \cup i)}_{\text{contribution of } j \text{ in the presence of } i} < \underbrace{v(T \cup j) - v(T)}_{\text{contribution of } j \text{ in the absence of } i} \quad (T \subseteq N \setminus ij)$$

then there is an overlap effect between i and j .

Marginal interaction between i and j , conditioned to the presence of $T \subseteq N \setminus ij$:

$$v(T \cup ij) - v(T \cup i) - v(T \cup j) + v(T)$$

$$\begin{cases} < 0 & \rightarrow i \text{ and } j \text{ are competitive} \\ > 0 & \rightarrow i \text{ and } j \text{ are complementary} \\ = 0 & \rightarrow i \text{ and } j \text{ do not interact} \end{cases}$$

Interaction index (Owen, 1972)

= Average value of the marginal interaction between i and j :

$$I(v, ij) := \frac{1}{n-1} \sum_{t=0}^{n-2} \underbrace{\frac{1}{\binom{n-2}{t}} \sum_{\substack{T \subseteq N \setminus ij \\ |T|=t}} [v(T \cup ij) - \dots]}_{\text{average over all the subsets of the same size } t}$$

(proposed in MCDM by Murofushi and Soneda in 1993)

Probabilistic interpretation

Define

$$\begin{aligned}\Delta_{ij} \mathcal{C}_v(x) &= \Delta_i \Delta_j \mathcal{C}_v(x) \\ &= \mathcal{C}_v(x \mid x_i = x_j = 1) - \mathcal{C}_v(x \mid x_i = 1, x_j = 0) \\ &\quad - \mathcal{C}_v(x \mid x_i = 0, x_j = 1) + \mathcal{C}_v(x \mid x_i = x_j = 0)\end{aligned}$$

(marginal interaction between i and j at x)

We have

$$\begin{aligned}I(v, ij) &= \int_{[0,1]^n} \Delta_{ij} \mathcal{C}_v(x) dx \\ &= E[\Delta_{ij} \mathcal{C}_v(x)]\end{aligned}$$

Generalization to any combination S
(Grabisch and Roubens, 1998)

$$I(v, S) := E[\Delta_S \mathcal{C}_v(x)]$$

$$I(v, S) = \sum_{T \subseteq N \setminus S} \frac{(n - t - s)! t!}{(n - s + 1)!} \sum_{K \subseteq S} (-1)^{s - k} v(K \cup T)$$

Properties of the interaction

- i) $I(v, ij) \in [-1, 1]$ for all $ij \in N$
- ii) $I(v, i) = \phi(v, i)$ for all $i \in N$
- iii) v additive $\Rightarrow I(v, S) = 0$ for all $S \subseteq N, |S| \geq 2$

v	$I(v, S), S \geq 2$
v_{WAM}_{ω}	0
v_{OWA}_{ω}	$\frac{1}{n-s+1} \sum_{i=1}^{s-2} \binom{s-2}{i} (-1)^{s-i} (\omega_{s-i-1} - \omega_{n-i})$

Conjunction and disjunction degrees

Average value of \mathcal{C}_v over $[0, 1]^n$:

$$E[\mathcal{C}_v(x)] = \int_{[0,1]^n} \mathcal{C}_v(x) dx$$

→ gives the average position of \mathcal{C}_v within the interval $[0, 1]$.

Since

$$\min x_i \leq \mathcal{C}_v(x) \leq \max x_i$$

we have

$$E(\min) \leq E(\mathcal{C}_v) \leq E(\max)$$

Conjunction degree :

$$\text{andness}(\mathcal{C}_v) := \frac{E(\max) - E(\mathcal{C}_v)}{E(\max) - E(\min)}$$

Disjunction degree :

$$\text{orness}(\mathcal{C}_v) := \frac{E(\mathcal{C}_v) - E(\min)}{E(\max) - E(\min)}$$

(Dujmović, 1974)

Properties

- i) $\text{andness}(\mathcal{C}_v), \text{orness}(\mathcal{C}_v) \in [0, 1]$
- ii) $\text{andness}(\mathcal{C}_v) + \text{orness}(\mathcal{C}_v) = 1$
- iii) $\text{orness}(\mathcal{C}_v) = 0$ (resp. 1) $\Leftrightarrow \mathcal{C}_v = \min$ (resp. \max)

We have

$$\text{orness}(\mathcal{C}_v) = \frac{1}{n-1} \sum_{t=1}^{n-1} \underbrace{\frac{1}{\binom{n}{t}} \sum_{\substack{T \subseteq N \\ |T|=t}} v(T)}_{\text{average over all the subsets of the same size } t}$$

\mathcal{C}_v	$\text{orness}(\mathcal{C}_v)$
WAM_ω	$1/2$
OWA_ω	$\underbrace{\frac{1}{n-1} \sum_{i=1}^n (i-1)\omega_i}_{\text{as proposed by Yager in 1988}}$

Veto and favor effects

A criterion $i \in N$ is

- a *veto* for \mathcal{C}_v if

$$\mathcal{C}_v(x) \leq x_i \quad (x \in [0, 1]^n)$$

- a *favor* for \mathcal{C}_v if

$$\mathcal{C}_v(x) \geq x_i \quad (x \in [0, 1]^n)$$

(Dubois and Koning, 1991; Grabisch, 1997)

Proposition

1) i is a veto for \mathcal{C}_v iff $\exists \lambda \in [0, 1[$ s.t.

$$x_i \leq \lambda \Rightarrow \mathcal{C}_v(x) \leq \lambda$$

2) i is a favor for \mathcal{C}_v iff $\exists \lambda \in]0, 1]$ s.t.

$$x_i \geq \lambda \Rightarrow \mathcal{C}_v(x) \geq \lambda$$

Problem :

Given $i \in N$ and $v \in \mathcal{F}_N$, how can we define a degree of veto (resp. favor) of i for \mathcal{C}_v ?

First attempt :

Consider $[0, 1]^n$ as a probability space with uniform distribution

$$\text{veto}(\mathcal{C}_v, i) := \Pr[\mathcal{C}_v(x) \leq x_i]$$

However,

$$\Pr[\text{WAM}_\omega(x) \leq x_i] = \begin{cases} 1 & \text{if } \omega_i = 1 \\ 1/2 & \text{else} \end{cases}$$

is non-continuous w.r.t. the fuzzy measure !!!

Second attempt : axiomatic characterization

$$\begin{aligned} \text{veto}(\mathcal{C}_v, i) &:= 1 - \frac{1}{n-1} \sum_{T \subseteq N \setminus i} \frac{(n-t-1)! t!}{(n-1)!} v(T) \\ \text{favor}(\mathcal{C}_v, i) &:= \frac{1}{n-1} \sum_{T \subseteq N \setminus i} \frac{(n-t-1)! t!}{(n-1)!} v(T \cup i) - \frac{1}{n-1} \end{aligned}$$

Theorem

The numbers $\psi(\mathcal{C}_v, i)$ ($i \in N, v \in \mathcal{F}_N$)

- **are linear w.r.t. the fuzzy measure v :**
 $\psi(\mathcal{C}_v, i)$ is of the form

$$\psi(\mathcal{C}_v, i) = \sum_{T \subseteq N} v(T) p_T^i \quad (i \in N, v \in \mathcal{F}_N)$$

where p_T^i 's are independent of v

- **are symmetric, i.e., independent of the labels :**

$$\psi(\mathcal{C}_v, i) = \psi(\mathcal{C}_{\pi v}, \pi(i)) \quad (i \in N, v \in \mathcal{F}_N)$$

for any permutation π on N

- **fulfill the “boundary” axiom :** $\forall T \subseteq N, \forall i \in T$

$$\psi(\min_T, i) = 1$$

(cf. $\min_T(x) \leq x_i$ whenever $i \in T$)

- **fulfill the “normalization” axiom :**

$$\psi(\mathcal{C}_v, i) = \psi(\mathcal{C}_v, j) \quad \forall i, j \in N$$

\Downarrow

$$\psi(\mathcal{C}_v, i) = \text{andness}(\mathcal{C}_v) \quad \forall i \in N$$

if and only if $\psi = \text{veto}$.

Properties

$$i) \text{ veto}(\mathcal{C}_v, i), \text{favor}(\mathcal{C}_v, i) \in [0, 1]$$

$$ii) \frac{1}{n} \sum_{i=1}^n \text{veto}(\mathcal{C}_v, i) = \text{andness}(\mathcal{C}_v)$$

$$iii) \frac{1}{n} \sum_{i=1}^n \text{favor}(\mathcal{C}_v, i) = \text{orness}(\mathcal{C}_v)$$

\mathcal{C}_v	$\text{veto}(\mathcal{C}_v, i)$	$\text{favor}(\mathcal{C}_v, i)$
WAM_ω	$\frac{1}{2} + \frac{n(\omega_i - 1/n)}{2(n-1)}$	$\frac{1}{2} + \frac{n(\omega_i - 1/n)}{2(n-1)}$
OWA_ω	$\frac{1}{n-1} \sum_{j=1}^n (n-j)\omega_j$	$\frac{1}{n-1} \sum_{j=1}^n (j-1)\omega_j$

Measure of dispersion

$$H(v) := \sum_{i=1}^n \sum_{T \subseteq N \setminus i} \frac{(n-t-1)! t!}{n!} h[v(T \cup i) - v(T)]$$

where

$$h(x) = \begin{cases} -x \log_n x & \text{if } x > 0 \\ 0 & \text{if } x = 0 \end{cases}$$

$H(v)$ measures the degree to which the aggregation function \mathcal{C}_v uses its arguments

Properties

$$i) \quad H(v) \in [0, 1]$$

$$ii) \quad H(v_{\text{WAM}_\omega}) = H(v_{\text{OWA}_\omega}) = - \sum_{i=1}^n \omega_i \log_n \omega_i$$

$$iii) \quad H(v) = 1 \iff v = v_{\text{AM}}$$

$$iv) \quad H(v) = 0 \iff \begin{aligned} & v(S) \in \{0, 1\} \\ & \mathcal{C}_v(x) \in \{x_1, \dots, x_n\} \end{aligned}$$

Back to the example :

Global importance of criteria

$$\phi(v, \text{St}) = 0.292$$

$$\phi(v, \text{Pr}) = 0.292$$

$$\phi(v, \text{AI}) = 0.417$$

Influence of criteria

$$I(\mathcal{C}_v, \text{St} \cup \text{Pr}) = 0.600$$

$$I(\mathcal{C}_v, \text{St} \cup \text{AI}) = 0.725$$

$$I(\mathcal{C}_v, \text{Pr} \cup \text{AI}) = 0.725$$

Interaction among criteria

$$I(v, \text{St} \cup \text{Pr}) = -0.25$$

$$I(v, \text{St} \cup \text{AI}) = 0.10$$

$$I(v, \text{Pr} \cup \text{AI}) = 0.10$$

Conjunction degree

$$\text{orness}(\mathcal{C}_v) = 0.517$$

Veto and favor degrees

$$\text{veto}(\mathcal{C}_v, \text{St}) = 0.437$$

$$\text{veto}(\mathcal{C}_v, \text{Pr}) = 0.437$$

$$\text{veto}(\mathcal{C}_v, \text{AI}) = 0.575$$

$$\text{favor}(\mathcal{C}_v, \text{St}) = 0.500$$

$$\text{favor}(\mathcal{C}_v, \text{Pr}) = 0.500$$

$$\text{favor}(\mathcal{C}_v, \text{AI}) = 0.550$$

Dispersion of the importance of criteria

$$H(v) = 0.820$$

Inverse problem :

How to assess v from the behavior of
the decision maker ?

maximize $H(v)$

subject to

$$a \succ b \quad (\text{i.e. } \mathcal{C}_v(19, 15, 18) > \mathcal{C}_v(19, 18, 15))$$

$$d \succ c$$

$$\left. \begin{array}{l} v(\text{St}) \\ v(\text{Pr}) \end{array} \right\} > v(\text{AI}) \quad (\text{local importances})$$

$$I(v, \text{St} \cup \text{Pr}) < 0 \quad (\text{substitutiveness})$$

$$0.45 < \text{orness}(\mathcal{C}_v) < 0.55 \quad (\text{tolerance})$$

$$v(\emptyset) = 0, v(N) = 1$$

Monotonicity of v

etc.

Objective function : strictly concave

Constraints : linear w.r.t. v