
ENTROPY OF DISCRETE FUZZY MEASURES

Jean-Luc MARICHAL
Department of Management, University of Liège
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jl.marichal@ulg.ac.be

Marc ROUBENS
Institute of Mathematics, University of Liège
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Abstract

The concept of entropy of a discrete fuzzy measure has been recently introduced in
two different ways. A first definition was proposed by Marichal [10] in the aggregation
framework, and a second one by Yager [25] in the framework of uncertain variables. We
present a comparative study between these two proposals and point out their properties.
We also propose a definition for the entropy of an ordinal fuzzy measure, that is, a fuzzy
measure taking its values in an ordinal scale in the sense of measurement theory.

Keywords: entropy, fuzzy measure, aggregation, Choquet integral, Sugeno integral, un-
certain variable, ordinal fuzzy measure.

1 Introduction

Consider a random experiment having n possible outcomes with probabilities p1, . . . , pn. In
order to appraise the average uncertainty associated with the prediction of these outcomes,
or equivalently, the amount of information received from the knowledge of which of these
outcomes occured, several information measures have been introduced. Among them, the
best known is probably the Shannon entropy (see [17, 18]), defined by

H(p) := −
n∑

i=1

pi ln pi ,

with the convention that 0 ln 0 := 0.
It was proved in numerous ways, from several well-justified axiomatic characterizations,

that this function is the only sensible measure of uncertainty in probability theory, see e.g.
[1, 3].

It is known that probability is not the only type of uncertainty used to represent partial
knowledge. A large class of types of partial information can be expressed by means of
fuzzy measures, which were introduced by Sugeno [20, 21] to model the subjective aspect
of uncertainty. Formally a (discrete) fuzzy measure on a finite space N = {θ1, . . . , θn} is
a set function µ : 2N → [0, 1] such that µ(∅) = 0, µ(N) = 1, and µ(S) ≤ µ(T ) whenever
S ⊆ T ⊆ N . Since this concept is clearly a generalization of that of probability measure, the
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following natural question arises: how can we appraise the average uncertainty associated
with a fuzzy measure in the spirit of Shannon entropy?

For particular fuzzy measures, such as belief and plausibility measures, two entropy-like
measures were proposed in evidence theory in the early 1980s, namely the measure of dis-
sonance and the measure of confusion, see e.g. [2, 8, 9, 22]. For general fuzzy measures it
seems that no definition of entropy was given until 1999 when two proposals were intro-
duced successively by Marichal [10, 13, 15] and Yager [25]. Although they have yet to be
axiomatically characterized, these proposals satisfy properties considered as requisites for
defining an entropy. Particularly, they collapse into the Shannon entropy as soon as the
fuzzy measure is additive.

In this paper we present a comparative analysis of these new definitions (see Section 3).
This analysis is mainly done on the basis of extensions of some classical properties fulfilled
by the Shannon entropy. We also propose a definition for the entropy of discrete fuzzy
measures that range in a finite ordinal scale (see Section 4).

Throughout the paper, we will use the notation

γt(n) :=
(n− t− 1)! t!

n!
(t = 0, 1, . . . , n),

and the function
h(x) :=

{−x ln x if x > 0,
0 if x = 0.

2 Entropy of discrete fuzzy measures

Two definitions of entropy for discrete fuzzy measures have been recently proposed by
Marichal [10] and Yager [25]. These definitions are very similar but have been introduced
independently and within completely different frameworks. The first one gives the degree
to which one uses the information contained in numerical values when aggregating them by
a Choquet integral. The second one measures the amount of information in a fuzzy measure
when it is being used to represent the knowledge about an uncertain variable. In this section
we briefly present these two frameworks and the corresponding proposed entropies. In the
next section we discuss the relevance of each entropy to its own framework.

2.1 Entropy in the aggregation framework

Suppose that N = {θ1, . . . , θn} represents a set of criteria (or attributes) in a multicriteria
decision making problem and consider a fuzzy measure µ on N . For any S ⊆ N , µ(S) can
be interpreted as the weight or the degree of importance of the combination S of criteria,
or better, its power to make the decision alone (without the remaining criteria). Thus, in
addition to the usual weights on criteria taken separately, weights on any combination of
criteria are also defined. Monotonicity of µ then means that adding a new element to a
combination cannot decrease its importance. Obviously µ(N) has the maximal value, being
one by convention.

Now, suppose that x1, . . . , xn ∈ IR represent quantitative evaluations of an object with
respect to criteria θ1, . . . , θn, respectively. We assume that these evaluations are comparable,
that is, defined on the same measurement scale. A global evaluation (average value) of this
object can be calculated by means of the Choquet integral with respect to µ.

2



Formally the Choquet integral of x ∈ IRn with respect to a fuzzy measure µ on N is
defined by

Cµ(x) :=
n∑

i=1

x(i) [µ(A(i))− µ(A(i+1))] ,

where (·) is a permutation of indices such that x(1) ≤ · · · ≤ x(n). Also A(i) := {θ(i), . . . , θ(n)},
and A(n+1) := ∅. For more details, see e.g. [5, 11] and the references there.

It would be interesting to appraise how much of the information in the arguments
x1, . . . , xn is really used in the aggregation by the Choquet integral. This amount of in-
formation, which depends only on the importance µ of criteria, can be measured by the
following entropy-like function, proposed and justified by Marichal [10, 13, 15]. We call it
“lower entropy”. This name will be justified in Section 3.7.

Definition 2.1 The lower entropy of a fuzzy measure µ on N is defined by

Hl(µ) :=
n∑

i=1

∑

T⊆N\{θi}
γ|T |(n) h[µ(T ∪ {θi})− µ(T )] .

2.2 Entropy in the framework of uncertain variables

Consider a variable V whose the exact value, which lies in the space N = {θ1, . . . , θn}, is not
completely known. In many situations, the best we can do is to formulate our knowledge
about V by means of a fuzzy measure on N . For each subset S ⊆ N of values, µ(S)
represents a measure associated with our belief (or the confidence we have) that the value
of V is contained in the subset S. Here monotonicity of µ means that we cannot be less
confident that V lies in a smaller set than a larger one.

Now, consider the Shapley value [19] of µ, i.e., the vector

φ(µ) = (φ1(µ), . . . , φn(µ)) ∈ [0, 1]n

whose i-th component, called Shapley index of θi, is defined by:

φi(µ) :=
∑

T⊆N\{θi}
γ|T |(n) [µ(T ∪ {θi})− µ(T )] .

This index, which is a fundamental concept in game theory, can be interpreted as the
average marginal contribution of element θi to a combination not containing it. In the
present framework, it clearly measures the average increment in confidence obtained by
adding θi to a subset not containing it. Thus, φi(µ) somehow reflects our overall belief that
the value of V is θi.

It can be easily proved that the indices φi(µ) always sum up to one, so that the Shapley
value of any fuzzy measure on N is a probability measure on N . From this observation,
Yager [25] proposed to evaluate the uncertainty associated with the variable V by taking
the Shannon entropy of the Shapley value of µ. This leads to the “upper entropy” whose
name will be justified in Section 3.7.

Definition 2.2 The upper entropy of a fuzzy measure µ on N is defined by

Hu(µ) := H(φ(µ)) ,

that is,

Hu(µ) :=
n∑

i=1

h

[ ∑

T⊆N\{θi}
γ|T |(n) [µ(T ∪ {θi})− µ(T )]

]
.
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3 Comparative study of the entropies

Thus defined, the entropies Hl and Hu seem very similar. However, although they fulfill
several properties required for an entropy, they also present very different behaviors.

This section is devoted to a comparative analysis of these two entropies. This analysis
is mainly based on extensions of some well-known properties of the Shannon entropy such
as symmetry, decisivity, expansibility (see e.g. [1, 3]). It will lead to the conclusion that
each entropy is highly relevant for the framework in which it has been defined and not for
the other.

Before going on we briefly recall some particular types of fuzzy measure, which will
enable us to point out the behavior of each entropy. A fuzzy measure µ on N is

• additive if, for any S, T ⊆ N , we have

S ∩ T = ∅ ⇒ µ(S ∪ T ) = µ(S) + µ(T ),

• cardinality-based if, for any S, T ⊆ N , we have

|S| = |T | ⇒ µ(S) = µ(T ),

• binary-valued if, for any T ⊆ N , we have µ(T ) ∈ {0, 1},
• the Dirac measure associated with θk ∈ N if, for any T ⊆ N , we have

µ(T ) =
{

1, if T 3 θk,
0, otherwise.

3.1 Connections with the Shannon entropy

When the fuzzy measure µ is additive, we clearly have

µ(T ∪ {θi})− µ(T ) = µ({θi})

for all θi ∈ N and all T ⊆ N \ {θi}. This leads to the following immediate result, which
shows that the entropies Hl and Hu are generalizations of the Shannon entropy.

Proposition 3.1 For any additive measure µ on N , we have

Hl(µ) = Hu(µ) = H(ω) ,

where ω = (ω1, . . . , ωn) is the probability distribution defined by

ωi := µ({θi}) (i = 1, . . . , n).

Let us interpret this result in the aggregation framework. When the fuzzy measure µ is
additive, the Choquet integral Cµ reduces to the weighted arithmetic mean

WAMω(x) =
n∑

i=1

ωi xi (x ∈ IRn),

where ωi = µ({θi}) for all i = 1, . . . , n. In such an aggregation process, it is natural to
evaluate the degree of use of the information contained in the arguments x1, . . . , xn by
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means of the Shannon entropy H(ω), which represents a measure of dispersion associated
with the weight vector ω.

Let us consider the second framework. When the fuzzy measure µ is additive, our
knowledge about the unknown variable V is in the form of probabilistic uncertainty. For
any S ⊆ N , µ(S) is referred to as the measure of probability of S. In this context the
Shannon entropy of this probability distribution naturally provides a measure of uncertainty
associated with the variable V .

3.2 The symmetry property

It is obvious that the Shannon entropy H is symmetric in the sense that permuting the
elements of N has no effect on the entropy. This symmetry property is actually also fulfilled
by Hl and Hu.

Formally, for any permutation π on {1, . . . , n}, we denote by πµ the fuzzy measure on
N defined by πµ(π(S)) = µ(S) for all S ⊆ N , where π(S) := {θπ(i) | θi ∈ S}. We then have
the following result.

Proposition 3.2 For any fuzzy measure µ on N , we have

Hl(πµ) = Hl(µ) and Hu(πµ) = Hu(µ) .

Proof. The first equality was proved in [13]. The second one follows from the fact that
φi(πµ) = φπ−1(i)(µ) for all i = 1, . . . , n, which is very easy to verify.

This accords with the interpretation of the entropy in the aggregation framework. In-
deed, one can easily show that

Cµ(xπ(1), . . . , xπ(n)) = Cπµ(x1, . . . , xn) .

Thus, permuting the arguments of the Choquet integral has no effect on the degree to which
one uses the information contained in these arguments.

We also have an immediate interpretation in the second framework. The uncertainty
associated with the variable V is independent of any permutation of elements of N .

3.3 The expansibility property

The classical expansibility property for the Shannon entropy says that suppressing an out-
come with zero probability does not change the uncertainty of the outcome of an experiment
(see e.g. [1]):

H(p1, . . . , pn−1, 0) = H(p1, . . . , pn−1) .

This property can be extended to the framework of fuzzy measures in the following way.
Let µ be a fuzzy measure on N and let θk ∈ N be a null element for µ, that is such that
µ(T ∪ {θk}) = µ(T ) for all T ⊆ N \ {θk}. Denote also by µ−θk

the restriction of µ to
N \ {θk}. We then have the following result.

Proposition 3.3 Let µ be a fuzzy measure on N . If θk ∈ N is a null element for µ then

Hl(µ) = Hl(µ−θk
) and Hu(µ) = Hu(µ−θk

) .
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Proof. The first equality was proved in [13]. The second one follows from the expansibility
property of the Shannon entropy and the fact that φk(µ) = 0.

This is a very natural property in the aggregation framework. Since element θk does not
contribute in the decision problem, it can be omitted without changing the result. Indeed,
one can easily show that

Cµ(x1, . . . , xn) = Cµ−θk
(x1, . . . , xk−1, xk+1, . . . , xn)

whenever θk is a null element for µ.
In the second framework, this property clearly shows that suppressing a value θk from

N for which we have no confidence that V = θk does not change the uncertainty associated
to V .

3.4 The decisivity property

For any probability measure p on N , we clearly have H(p) ≥ 0. Now, the decisivity property
for the Shannon entropy says that there is no uncertainty in an experiment in which one
outcome has probability one (see e.g. [1]):

H(1, 0, . . . , 0) = · · · = H(0, . . . , 0, 1) = 0 .

More precisely, H(p) reaches its minimal value (= 0) if and only if p is a Dirac measure on
N .

Concerning the entropies Hl and Hu, we observe two different behaviors, as the following
result shows.

Proposition 3.4 Let µ be a fuzzy measure on N . Then

Hl(µ) ≥ 0 and Hu(µ) ≥ 0 .

Moreover,
i) Hl(µ) = 0 if and only if µ is a binary-valued fuzzy measure,

ii) Hu(µ) = 0 if and only if µ is a Dirac measure.

Proof. The first inequality and property i) were proved in [10, 13]. The second inequality
and property ii) follow from the above property of the Shannon entropy, that is, Hu(µ) = 0
if and only if the Shapley value φ(µ) is a Dirac measure, or equivalently, if and only if µ
itself is a Dirac measure.

Property i) is quite relevant for the aggregation framework. Indeed, it can be shown
(cf. [12, Theorem 5.1]) that µ is a binary-valued fuzzy measure if and only if

Cµ(x) ∈ {x1, . . . , xn} (x ∈ IRn) .

In other terms, Hl(µ) is minimum (= 0) if and only if only one piece of information is really
used in the aggregation. This is a fundamental condition.

In the second framework, property ii) corresponds to the case where the variable V is
known exactly. Indeed, suppose that we know that V = θk. In this case, the measure of
uncertainty associated with V is given by

µ(S) =
{

1 if θk ∈ S,
0 if θk /∈ S,
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which is the Dirac measure associated with θk. Thus, the complete certainty of the value
of V is characterized by a Dirac measure.

We thus see that each of the entropies Hl and Hu is suitable for the framework in which
it has been defined and not for the other.

3.5 The maximality property

The maximality property for the Shannon entropy says that the uncertainty of the outcome
of an experiment is maximum when all outcomes have equal probabilities. Formally, for
any probability measure p on N ,

H(p) ≤ H(1/n, . . . , 1/n) = lnn .

More precisely, H(p) reaches its maximal value (= lnn) if and only if p is the uniform
distribution on N .

Concerning the entropies Hl and Hu, we have the following result.

Proposition 3.5 Let µ be a fuzzy measure on N . Then

Hl(µ) ≤ ln n and Hu(µ) ≤ ln n .

Moreover,
i) Hl(µ) = lnn if and only if µ(S) = |S|/n for all S ⊆ N ,

ii) Hu(µ) = lnn if and only if φi(µ) = 1/n for all i = 1, . . . , n.

Proof. The first inequality and property i) were proved in [10, 13]. The second inequality
and property ii) follow from the above property of the Shannon entropy.

The interpretation of these properties is very simple. On the one hand, Hl(µ) is maxi-
mum if and only if Cµ identifies with the arithmetic mean, which is the weighted arithmetic
mean whose dispersion associated with the weight vector is maximum.

On the other hand, the uncertainty associated with V is maximum if and only if the
overall belief that V has the value θi is 1/n for all i = 1, . . . , n.

As stated by Yager [25], the problem then arises of identifying all the fuzzy measures
µ such that φi(µ) = 1/n for all i = 1, . . . , n. It is easy to show that all the cardinality-
based fuzzy measures belong to this class. However, as Yager [25] pointed out, there exist
others. We give below a complete description of this class. For this purpose, we consider
the well-known sequence (Bn)n∈IN of Bernoulli numbers defined recursively by





B0 = 1,

n∑
k=0

(n+1
k

)
Bk = 0, (n ∈ IN \ {0}).

We then have the following result.

Proposition 3.6 All the fuzzy measures µ on N such that φi(µ) = 1/n (i = 1, . . . , n), are
of the form

µ(S) =
|S|
n

+
∑
T⊆N
|T |≥2

[ |T∩S|∑

j=1

(
|T ∩ S|

j

)
B|T |−j

]
c(T ) (S ⊆ N ; 0 < |S| < n),
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where the coefficients c(T ) ∈ IR, with |T | ≥ 2, are free up to the constraints

1
n

+
∑
T3θi
|T |≥2

[ |T∩S|∑

j=0

(
|T ∩ S|

j

)
B|T |−j−1

]
c(T ) ≥ 0 (θi ∈ N ; S ⊆ N \ {θi}).

Proof. The result is a particular case of Theorem 5 in [6], which was revisited in [10,
Theorem 6.3.4].

3.6 Case of cardinality-based fuzzy measures

When the fuzzy measure is cardinality-based, there exist coefficients

0 = c0 ≤ · · · ≤ cn = 1

such that
µ(S) = c|S| (S ⊆ N).

We then have
µ(T ∪ {θi})− µ(T ) = c|T |+1 − c|T |

for all θi ∈ N and all T ⊆ N \ {θi}. This leads to the following result (see [10, 13, 25]),
which shows that the entropies Hl and Hu present very different behaviors.

Proposition 3.7 For any cardinality-based fuzzy measure µ on N , we have

Hl(µ) = H(ω) and Hu(µ) = lnn ,

where ω = (ω1, . . . , ωn) is the probability distribution defined from the coefficients ci above
by

ωn−i := ci+1 − ci (i = 0, . . . , n− 1).

The second equality has already been interpreted in Section 3.5. Let us comment on
the first one. It can be shown [4] that, when the fuzzy measure µ is cardinality-based, the
Choquet integrals Cµ reduces to the ordered weighted averaging (OWA) operator [23]

OWAω(x) =
n∑

i=1

ωi x(i) (x ∈ IRn),

where (·) is a permutation of indices such that x(1) ≤ · · · ≤ x(n), and ωn−i := ci+1 − ci for
all i = 0, . . . , n− 1.

Consequently, we see that the degree to which one uses the information contained in
the values x1, . . . , xn ∈ IR is the same when using either the weighted arithmetic mean (cf.
Section 3.1) or the ordered weighted averaging defined from the same weight vector ω. This
is actually a very natural condition since this degree should not depend on a reordering of
the arguments. Furthermore Yager [23] proposed explicitely to use the Shannon entropy of
ω as measure of dispersion for the OWA operators.
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3.7 Numerical comparison between the entropies

The strict concavity of function h can be used to establish a numerical comparison between
the two entropies. This comparison actually justifies the names “lower entropy” and “upper
entropy”. Before presenting the result, recall the Jensen inequality for the strictly concave
functions.

Let I be a real interval. If a function f : I → IR is strictly concave on I then, for all
t1, . . . , tn ∈ I and all λ1, . . . , λn ∈ ]0, 1[ such that

∑n
i=1 λi = 1, one has

n∑

i=1

λi f(ti) ≤ f
( n∑

i=1

λi ti
)

.

The equality occurs only if t1 = · · · = tn.

Proposition 3.8 For any fuzzy measure µ on N , we have
i) Hl(µ) ≤ Hu(µ),

ii) Hl(µ) = Hu(µ) if and only if µ is additive.

Proof. The first part follows directly from the Jensen inequality. Let us turn to the second
part. If µ is additive then, by Proposition 3.1, we have Hl(µ) = Hu(µ).

Now suppose that Hl(µ) = Hu(µ) for a given fuzzy measure µ on N . Then, by the
Jensen inequality, we have

∑

T⊆N\{θi}
γ|T |(n) h[µ(T ∪ {θi})− µ(T )] = h

[ ∑

T⊆N\{θi}
γ|T |(n) [µ(T ∪ {θi})− µ(T )]

]
,

for all i = 1, . . . , n. This implies

µ(T ∪ {θi})− µ(T ) = µ(S ∪ {θi})− µ(S)

for all i = 1, . . . , n, and all S, T ⊆ N \ {θi}. Taking S = ∅, we observe that µ is additive.

Rather interestingly, Proposition 3.8 means that the expression

D(µ) := Hu(µ)−Hl(µ)

is non-negative and vanishes if and only if µ is additive.

3.8 Probabilistic interpretations

We now give a probabilistic interpretation of the entropies Hl and Hu. This interpretation
shows that these two entropies have very comparable forms.

First, through the usual identification of subsets S ⊆ N with elements of {0, 1}n, any
fuzzy measure µ on N can be viewed as a pseudo-Boolean function fµ : {0, 1}n → [0, 1] that
is increasing in each variable and such that

fµ(0, . . . , 0) = 0 and fµ(1, . . . , 1) = 1 .

The correspondence is written

fv(x) =
∑

T⊆N

v(T )
∏

i∈T

xi

∏

i/∈T

(1− xi) (x ∈ {0, 1}n) ,
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and
µ(S) = fµ(eS) (S ⊆ N) ,

where eS denotes the characteristic vector of S in {0, 1}n.
Define also the first derivative of fv with respect to i ∈ N by

∆i fµ(x) := fµ(x |xi = 1)− fµ(x |xi = 0) (x ∈ {0, 1}n)

and the gradient of fµ by

(grad fµ)(x) := (∆1 fµ(x), . . . , ∆n fµ(x)) (x ∈ {0, 1}n) .

Now, consider {0, 1}n as a probability space with the following distribution:

p(x) =
1

n + 1

(
n∑
i xi

)−1

(x ∈ {0, 1}n) .

It was proved [13] that, for any fuzzy measure µ on N , Hl(µ) is the mathematical expectation
of the entropy of grad fµ for the distribution above, that is,

Hl(µ) =
1

n + 1

∑

x∈{0,1}n

(
n∑
i xi

)−1

H[(grad fµ)(x)] ,

or equivalently,
Hl(µ) = E[H(grad fµ)] .

Notice that this entropy is well-defined even if the components of grad fµ do not sum up to
one.

It was proved in [7] that, for any fuzzy measure µ on N , we have

φj(µ) =
1

n + 1

∑

x∈{0,1}n

(
n∑
i xi

)−1

∆j fµ(x) = E[∆j fµ]

for all j = 1, . . . , n. From this we deduce immediately that

Hu(µ) = H
[ 1
n + 1

∑

x∈{0,1}n

(
n∑
i xi

)−1

(grad fµ)(x)
]
,

that is,
Hu(µ) = H[E(grad fµ)] ,

where E(grad fµ) = (E[∆1 fµ], . . . , E[∆n fµ]).

4 Entropy of ordinal fuzzy measures

In this final section we propose and investigate a definition for the entropy of ordinal fuzzy
measures. This definition is actually a generalization of a measure of entropy proposed by
Yager [24, §4].

Formally an ordinal fuzzy measure is a monotonic set function µ : 2N → L fulfilling
µ(∅) = inf L and µ(N) = supL, where L is a given finite ordinal scale

L := {l1 < · · · < lm} .

For such fuzzy measures we propose the following measure of entropy.
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Definition 4.1 The entropy of an ordinal fuzzy measure

µ : 2N → L = {l1 < · · · < lm}
is defined by

HL(µ) = l|R|−1 ,

where R := {µ(S) |S ⊆ N}.
We observe that this entropy is actually a measure of the diversity of the coefficients of

the fuzzy measure. The more diversified the coefficients of the fuzzy measure the greater
its entropy.

Now, let us examine the properties of this entropy in the framework of ordinal aggre-
gation. Consider an ordinal fuzzy measure µ : 2N → L modeling the importance of subsets
of criteria. Suppose also that x1, . . . , xn ∈ L represent qualitative evaluations of an object
with respect to criteria θ1, . . . , θn, respectively. A global evaluation of this object can be
calculated by means of the Sugeno integral [20, 21], which is defined from the fuzzy measure
µ by

Sµ(x) :=
n∨

i=1

[x(i) ∧ µ(A(i))] ,

where (·) is a permutation of indices such that x(1) ≤ · · · ≤ x(n). Also, ∧ := min, ∨ := max,
and A(i) := {θ(i), . . . , θ(n)}. For a detailed analysis of this aggregation framework, see [12].

In some sense, the entropy HL measures on the scale L how much of the information
in the arguments x1, . . . , xn is really used in the aggregation by the Sugeno integral. This
observation is in accordance with the following properties fulfilled by HL:

• The symmetry property. Entropy HL clearly satisfies the symmetry property.
With the notation of Section 3.2, we have

HL(πµ) = HL(µ) .

This accords with the following property of the Sugeno integral:

Sµ(xπ(1), . . . , xπ(n)) = Sπµ(x1, . . . , xn) .

Thus, permuting the arguments of the Sugeno integral has no effect on the degree to
which one uses the information contained in these arguments.

• The expansibility property. With the notation of Section 3.3, we have

HL(µ) = HL(µ−θk
)

whenever θk is a null element for µ. This means that this element can be ignored in
the aggregation process, as the following equality shows:

Sµ(x1, . . . , xn) = Sµ−θk
(x1, . . . , xk−1, xk+1, . . . , xn)

• Lower and upper bounds. We clearly have the following inequalities

l1 ≤ HL(µ) ≤ lk ,

where k = min(2n,m)− 1.
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• The decisivity property. We have

HL(µ) = l1 ⇔ µ(S) ∈ {l1, lm} (S ⊆ N) .

This is relevant for the ordinal aggregation framework. Indeed, it can be shown (cf.
[12, Theorem 5.1]) that µ(S) ∈ {l1, lm} for all S ⊆ N if and only if

Sµ(x) ∈ {x1, . . . , xn} (x ∈ Ln) .

• The maximality property. If m ≤ 2n, we have

HL(µ) = lm−1 ⇔ {µ(S) |S ⊆ N} = L .

If m ≥ 2n, we have

HL(µ) = l2n−1 ⇔ all µ(S)’s are distinct.

• Particular Sugeno integrals. Let ω = (ω1, . . . , ωn) ∈ Ln. If the Sugeno integral
reduces to either a “weighted maximum”

wmaxω(x) =
n∨

i=1

(ωi ∧ xi) with
n∨

i=1

ωi = lm ,

or a “weighted minimum”

wminω(x) =
n∧

i=1

(ωi ∨ xi) with
n∧

i=1

ωi = l1 ,

or an “ordered weighted maximum”

owmaxω(x) =
n∨

i=1

(ωi ∧ x(i)) with lm = ω1 ≥ · · · ≥ ωn ,

or an “ordered weighted minimum”

owminω(x) =
n∧

i=1

(ωi ∨ x(i)) with ω1 ≥ · · · ≥ ωn = l1 ,

(see [14, 16] for details) then the entropy of the corresponding fuzzy measure µ : 2N →
L is given by

HL(µ) = l|{ω1,...,ωn}|−1 .

5 Conclusions

We have analyzed two recent proposals for the entropy of fuzzy measures and we have
proposed an entropy for ordinal fuzzy measures. These concepts seem promising but need
to be investigated more deeply and applied in practical situations. Particularly, axiomatic
characterizations of these entropies would be welcome.
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