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University of Liège - Institute of Mathematics

Sart Tilman - B37 - 4000 Liège, Belgium

Abstract

In this paper, we present a model allowing to determine the weights related to
interactive (correlated) criteria. This is done on the basis of the knowledge of a
partial ranking over a reference set of alternatives (prototypes), a partial ranking
over the set of criteria, and a partial ranking over the set of interactions between
pairs of criteria.
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1 Introduction

Let us consider a set of alternatives A = {a, b, c, . . .} and a set of criteria N = {1, . . . , n}
in a multicriteria decision making problem. Each alternative a ∈ A is associated with
a profile x(a) = (x1(a), . . . , xn(a)) ∈ IRn where xi(a) represents the utility of a related
to the criterion i, with xi ∈ Xi, i = 1, . . . , n. We assume that all the utilities xi(a) are
defined according to a same interval scale.

Suppose that the preferences over A of the decision maker are known and expressed by
a binary relation º. In the classical multiattribute utility (MAUT) model [7], the problem
consists in constructing a utility function U : IRn → IR representing the preference of the
decision maker, that is such that

a Â b ⇔ U [x(a)] > U [x(b)], ∀a, b ∈ A.

The binary relation º on X =
∏

i Xi verifies the independence in coordinates (which is
proven to be equivalent to the mutually preferentially independence) iff, for all i, x, y, zi, ti,

(zix−i) º (ziy−i) implies (tix−i) º (tiy−i)
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if (zix−i) represents the vector which has the same coordinates as x ∈ X except for the
i-th coordinative which is zi.

For some problems this principle might be violated as it can be seen in the following
example

criterion 1 (price) criterion 2 (consumption) criterion 3 (comfort)
car 1 10.000 Euro 10 ` /100 km very good
car 2 10.000 Euro 9 `/100 km good
car 3 30.000 Euro 10 `/100 km very good
car 4 30.000 Euro 9 `/100 km good

A decision maker might prefer car 2 to car 1 but also car 3 to car 4.
We know that independence in coordinates is a necessary condition for a utility

function to be additive, i.e. it can be assumed that there exists a weight vector ω =
(ω1, . . . , ωn) ∈ [0, 1]n fulfilling

∑
i ωi = 1 such that

U [x(a)] =
n∑

i=1

ωi xi(a), ∀a ∈ A. (1)

In case of interactive criteria, the weighted arithmetic mean (1) can be extended to a
Choquet integral:

U [x(a)] =
n∑

i=1

x(i)(a) [µ(A(i))− µ(A(i+1))], (2)

where (·) indicates a permutation such that x(1)(a) ≤ . . . ≤ x(n)(a). Also A(i) =
{(i), . . . , (n)}, and A(n+1) = ∅. We thus observe that the weights ωi related to the crite-
ria, which were supposed independent, have been substituted by the weights µ(i1, . . . , ik)
related of any coalition of interactive criteria.

In this paper, we propose a model allowing to identify the weights of interactive criteria
from a partial preorder over a reference set of alternatives, a partial preorder over the set
of values related to each criterion, a partial preorder over interactions between pairs of
criteria, and the knowlegde of the sign of some interactions between pairs of criteria. The
weights can be obtained by solving a linear problem.

2 The Choquet integral as an aggregation operator

A fuzzy measure on the set N of criteria is a monotonic set function µ : 2N → [0, 1] with
µ(∅) = 0 and µ(N) = 1. Monotonicity means that µ(S) ≤ µ(T ) whenever S ⊆ T .

One thinks of µ(S) as the weight of importance of the subset of criteria S. Thus, in
addition to the usual weights on criteria taken separately, weights on any combination of
criteria are also defined.

A fuzzy measure is said to be additive if µ(S ∪T ) = µ(S)+ µ(T ) whenever S ∩T = ∅.
In this case, it suffices to define the n coefficients (weights) µ(1), . . . , µ(n) to define the
measure entirely. In general, one needs to define the 2n coefficients corresponding to the
2n subsets of N .

In combinatorics, a viewed as a set function on N given by

a(S) =
∑

T⊆S

(−1)s−tµ(T ), ∀S ⊆ N (3)
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is called the Möbius transform of v (see e.g. Rota [10])
Of course, any set of 2n coefficients {a(T ) |T ⊆ N} could not be the Möbius represen-

tation of a fuzzy measure: the boundary and monotonicity conditions must be ensured.
In terms of the Möbius representation, those conditions can be written as follows (see [2]):





a(∅) = 0,
∑

T⊆N

a(T ) = 1,

∑

T :i∈T⊆S

a(T ) ≥ 0, ∀S ⊆ N, ∀i ∈ S.
(4)

Let (x1, . . . , xn) ∈ IRn, and µ be a fuzzy measure on N . The (discrete) Choquet
integral of (x1, . . . , xn) with respect to µ is defined by

Cµ(x1, . . . , xn) =
n∑

i=1

x(i) [µ(A(i))− µ(A(i+1))],

where (·) indicates a permutation such that x(1) ≤ . . . ≤ x(n). Moreover, A(i) = {(i), . . . , (n)},
and A(n+1) = ∅.

The Choquet integral has good properties for aggregation (see e.g. Grabisch [3]). For
instance, it is continuous, non decreasing, comprised between min and max, stable under
the same transformations of interval scales in the sense of the theory of measurement, and
coincides with a weighted arithmetic mean when the fuzzy measure is additive.

In this paper, we substitute the Choquet integral to the weighted arithmetic mean
whenever interactive criteria are considered.

In terms of the Möbius representation, the Choquet integral is written (see [2]):

Cµ(x) =
∑

T⊆N

a(T )
∧

i∈T

xi, x ∈ IRn,

where ∧ stands for the minimum operation.

3 The concept of interaction among criteria

The overall importance of a criterion i ∈ N is not solely determined by the value µ(i),
but also by all µ(S) such that i ∈ S. The importance index or Shapley value of criterion
i with respect to µ is defined by:

φS(i) =
∑

T⊆N\i

(n− t− 1)! t!

n!
[µ(T ∪ i)− µ(T )]. (5)

The Shapley value is a fundamental concept in game theory [12] expressing a power index.
There is in fact another common way of defining a power index, due to Banzhaf [1]. The
so-called Banzhaf value, defined as

φB(i) =
1

2n−1

∑

T⊆N\i
[µ(T ∪ i)− µ(T )], (6)

can be viewed as an alternative to the Shapley value.
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Now, consider a pair {i, j} ⊆ N of criteria. The difference a(i, j) = µ(i, j)−µ(i)−µ(j)
seems to reflect the degree of interaction between i and j. This difference is zero if i and
j are independent criteria. It is positive if there is a synergy effect between i and j
and negative if they are redundant. Here again, the interaction between i an j should
depend on the coefficients µ(S) such that i, j ∈ S. Murofushi and Soneda [8] proposed an
interaction index among a pair of criteria, based on multiattribute utility theory. More
generally, Grabisch [4] introduced an interaction index among a combination S of criteria:
the Shapley interaction index related to µ, defined by

IS(S) :=
∑

T⊆N\S

(n− t− s)! t!

(n− s + 1)!

∑

L⊆S

(−1)s−lµ(L ∪ T ), ∀S ⊆ N, (7)

that is, in terms of the Möbius representation,

IS(S) =
∑

T⊇S

1

t− s + 1
a(T ), ∀S ⊆ N. (8)

Viewed as a set function, the Shapley interaction index coincides on singletons with the
Shapley value (5). Roubens [11] developed a parallel notion of interaction index, based
on the Banzhaf value (6): the Banzhaf interaction index, defined by

IB(S) :=
1

2n−s

∑

T⊆N\S

∑

L⊆S

(−1)s−lv(L ∪ T ), ∀S ⊆ N, (9)

that is, in terms of the Möbius representation,

IB(S) =
∑

T⊇S

(
1

2
)t−s a(T ), ∀S ⊆ N. (10)

It should be noted that the interaction indices IB and IS have been axiomatically char-
acterized by Grabisch and Roubens [5].

4 The 2-order model

We know that a problem involving n criteria requires 2n coefficients in [0, 1] in order to
define the fuzzy measure µ on every coalition. Of course, a decision maker is not able
to give such an amount of information. Moreover, the meaning of the numbers µ(S) and
a(S) for |S| > 2 is not so clear for the decision maker.

To overcome this problem, Grabisch [4] proposed to use the concept of k-order fuzzy
measure. We may think of a fuzzy measure having a polynomial representation of degree
2, or 3, or any fixed integer k. Such a fuzzy measure is naturally called k-order fuzzy
measure since it represents a k-order approximation of its polynomial expression.

We now confine to the 2-order case, which seems to be the most interesting in practical
applications, since it permits to model interaction between criteria while remaining very
simple. Indeed, only n+

(
n
2

)
= n(n+1)

2
coefficients are required to define the fuzzy measure:

µ(S) =
∑

i∈S

a(i) +
∑

{i,j}⊆S

a(i, j), ∀S ⊆ N.

4



Note that the 2-order case is equivalent to suppose that the Shapley and Banzhaf interac-
tion indices are zero for subsets of at least 3 elements. In this case, the Choquet integral
becomes

Cµ(x) =
∑

i∈N

a(i) xi +
∑

{i,j}⊆N

a(i, j) (xi ∧ xj), x ∈ IRn. (11)

Moreover, the interaction indices coincide (IS = IB = I) and we have immediately:

I(i) = a(i) +
1

2

∑

j∈N\i
a(i, j), i ∈ N, (12)

I(i, j) = a(i, j), i, j ∈ N, (13)

I(S) = 0, ∀S ⊆ N, |S| > 2. (14)

5 Identification of weights

We address now the problem of identification of weights of interactive criteria. More
precisely, we are interested in finding a 2-order fuzzy measure on the basis of a partial
ranking over a set alternatives (prototypes).

In this section, we suppose that we have at our disposal an expert or decision maker
who is able to tell the relative importance of criteria, and the kind of interaction between
them, if any. Formally, the input data of the problem can be summarized as follows:

- The set A of alternatives and the set N of criteria,
- A table of scores (utilities) {xi(a) | i ∈ N, a ∈ A},
- A partial preorder ºA on A (ranking of alternatives),
- A partial preorder ºN on N (ranking of criteria),
- A partial preorder ºP on the set of pairs of criteria (ranking of interaction indices),
- The sign of some interactions a(i, j) : positive, nul, negative (translating synergy,

independence or redundancy).

All these data can be formulated with the help of linear equalities or inequalities. Strict
inequalities can be converted into vague inequalities by introducing a positive slack quan-
tity as the following immediate proposition shows.

x ∈ IRn is a solution of the linear system
{ ∑n

j=1 aij xj ≤ bi, i = 1, . . . , p,∑n
j=1 cij xj < di, i = 1, . . . , q,

if and only if there exists ε > 0 such that
{ ∑n

j=1 aij xj ≤ bi, i = 1, . . . , p,∑n
j=1 cij xj ≤ di − ε, i = 1, . . . , q.

In particular, a solution exists if and only if the following linear program

max z = ε

subject to { ∑n
j=1 aij xj ≤ bi, i = 1, . . . , p,∑n
j=1 cij xj ≤ di − ε, i = 1, . . . , q,
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has an optimal solution x∗ ∈ IRn with an optimal value ε∗ > 0. In this case, x∗ is a
solution of the first system.

Thus, the problem of finding a 2-order fuzzy measure can be formalized with the
help of a linear program. It is obvious that the more the input information is poor, the
more the solution set is big. Hence, it is desirable that the information is as complete as
possible. However, if this information contains incoherences then the solution set could
be empty.

Now, a model for identifying weights could be as follows:

max z = ε

subject to

C(a)− C(b) ≥ δ + ε if a ÂA b
−δ ≤ C(a)− C(b) ≤ δ if a ∼A b

}
partial semiorder with threshold δ

I(i)− I(j) ≥ ε if i ÂN j
I(i) = I(j) if i ∼N j

}
ranking of criteria

a(i, j)− a(k, l) ≥ ε if {i, j} ÂP {k, l}
a(i, j) = a(k, l) if {i, j} ∼P {k, l}

}
ranking of pairs of criteria

a(i, j) ≥ ε (resp. ≤ −ε) if a(i, j) > 0 (resp. < 0)
a(i, j) = 0 if a(i, j) = 0

}
sign of interactions

∑
i I(i) = 1

a(i) ≥ 0 ∀i ∈ N
a(i) +

∑
j∈T a(i, j) ≥ 0 ∀i ∈ N, ∀T ⊆ N \ i





boundary and monotonicity
conditions

I(i) = a(i) + 1
2

∑
j∈N\i a(i, j) ∀i ∈ N

C(a) =
∑

i∈N a(i) xi(a) +
∑
{i,j}⊆N a(i, j) [xi(a) ∧ xj(a)] ∀a ∈ A

}
definitions

It seems natural to assume that the ranking over A is translated into a partial semiorder
over the set of the global evaluations given by the Choquet integral. This partial semiorder
has a fixed threshold δ, which can be tuned as wished.

In order to illustrate the model, two small examples will be presented. They are
constructed in such a way that no generalized weighted arithmetic mean can be used as
utility function.
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