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Introduction

Providing concrete interpretations of many-valued logics has always been
an intriguing problem. In [6], MUNDICI develops a model of the RENYT -
ULAM searching games with lies in terms of LUKASIEWICZ logic and MV-
algebras. In this game, a liar picks out a number in a given search space M.
A detective has to guess this number by asking Yes/No questions to the liar
who is allowed to lie a maximum given number of times.

In his model of the game, MUNDICI interprets the states of knowledge of
the detective at a given step of the game as an element of an MV-algebra.
Even though this model provides a way to interpret the effect of the liar’s
answers on the states of knowledge of the game, its language (the language of
MV-algebras) is not rich enough to state specifications about a whole round
of the game.

The starting point of this talk is the will to add a ’dynamic’ layer to
this ’static’ interpretation of the game. We actually develop finitely-valued
generalizations of Propositional Dynamic Logic, which is a multi-modal logic
designed to reason about programs (see |2, 5]). Informally, these new logics
are a mixture of many-valued modal logics (as introduced in [1, 3, 4]) and
algebras of regular programs.

n + 1-valued KRIPKE models

We fix n > 1 for the remainder of the paper and we denote by L, the
sub-MV-algebra {0, %, ey ”T_l, 1} of [0,1].

We denote by II a set of programs and by Form a set of formulas defined
from a countable set Prop of propositional variables p,q... and a countable
set IIp of atomic programs a,b,... by the following BACKUS-NAUR forms

(where ¢ are formulas and « are programs) :
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Definition 1. An n+ 1-valued KRIPKE model M = (W, R, Val) is given by
a non empty set W, a map R : Iy — 2W>*W that assigns a binary relation
R, to any a of IIy and a map Val : W x Prop — L, that assigns a truth
value to any propositional variable p of Prop in any world w of W.

The maps R and Val are extended by mutual induction to formulas and
programs by the following rules (where =01 and — 01 denote LUKASIEWICZ'S
interpretation of = and — on [0, 1]):

1. Ro,3 = Ry 0 Rg;

2. Ry = Ra N Rg;

3. Ry? = {(u,u) | Val(u,v) = 1};

4. Ror = Upew(Ra)™;

5. Val(w, ¢ — ¢) = Val(w, ¢) -1 Val(w,);
6. Val(w, =) = =["UVal(w, ¢);

7. Val(w, [a]y) = A{Val(v,v) | (w,v) € Ry}

If w is a world of a KRIPKE model M and if Val(w,¢) = 1, we write
M, w = ¢ and say that ¢ is true in w. If ¢ is a formula that is true in each
world of a model M then ¢ is true in M. A formula that is true in every
KRIPKE model is called a tautology.

)

Hence, we intend to interpret the operator ¢;’ as the concatenation pro-
gram operator, the operator ‘U’ as the alternative program operator and the

operator ‘x’ as the KLEENE program operator.

n + 1-valued propositional dynamic logics
The purpose of the talk is to characterize the theory of the n + 1-valued
KRIPKE models (Theorem 5).

Definition 2. An n + 1-valued propositional dynamic logic (or simply a
logic) is a subset L of Form that is closed under the rules of modus ponens,
uniform substitution and necessitation (generalization) and that contains the
following axioms:

1. tautologies of the n + 1-valued LUKASIEWICZ logic;

2. for any program «, axioms defining modality [«]:
(a) [a](p = q) = ([alp = [a]g),  (¢) [l(p©p) > [alp© [a]p,
(b) [al(p @ p) < [alp & [elp,

3. the axioms that define the program operators: for any programs a and
B of II:



(a) [aUBlp < [alp A [Blp, (d) [e*]p < (p A [a][a”]p),
(b) [es Blp < [a][Blp,
(©) lg?lp < (=¢" Vp), (e) [a*]p = [a*][e*]p,
4. the induction axiom (p A [a*](p — [a]p)"™) — [a*]p for any program «.

We denote by PDL,, the smallest n + 1-valued propositional dynamic logic.
As usual, a formula ¢ that belongs to a logic L is called a theorem of L.

Completeness result

The classical construction of the canonical model can be adapted for
PDL,,. We denote by F;, the LINDENBAUM - TARSKI algebra of PDL,,. The
reduct of F, to the language of MV-algebras is an MV-algebra. We denote
by MV(F,, L) the set of MV-homomorphisms from the MV-reduct of F,
to Ly,.

Definition 3. The canonical model of PDL,, is defined as the model M¢ =
(We, R¢, Val®) where

1. We= MV(F,, Ly);

2. if a € II, the relation R, is defined by

Re = {(u,v) [ Vo € Fp (u([a]d) =1=v(¢) = 1)}
3. the map Val® is defined by

Val®: W€ x Form : (u, ¢) — u(¢).

Even though the valuation in M€ is defined for any formula, it turns out
that it is compatible with the inductive definition of a valuation in a KRIPKE
model.

Proposition 4. 1. If p € Form, if a € Il and if u is a world of W€ then
Val(u, [a]¢) = A{Val®(v,¢) [ v € RGu}.

2. For any « € 11, the relation Ry~ is a reflexive and transitive extension

of Ry,.

According to the second item of the previous proposition, the canonical
model may not be KRIPKE model. Nevertheless, it is possible to use a
filtration lemma in order to use the canonical model to obtain a completeness
result for PDL,,.

Theorem 5. The logic PDL,, is complete with respect to the n + 1-valued
KRIPKE models, i.e., a formula ¢ is a theorem of PDL,, if and only if ¢ is a
tautology.
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