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Abstract

In this paper, we give small time estimates (Varadhan
estimates) of the logarithm of the density of a degener-
ate diffusion with time dependent coefficients, by means
of a semi-Riemannian distance. The main tools of the
proof are the stochastic calculus of variations (Malliavin
Calculus) and large derivation theory.
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1 INTRODUCTION

Consider the Markov semigroup on IR™ associated with
the second order differential operator

d
b= 3
i=1

where X; j = 0, ..., d are vector fields on IR™ with bounded
derivatives of any order.

If the vector fields X;, j # 0 generate IR™, one can
provide IR” with a structure of a Riemannian manifold.
In that case the second order part of L becomes the second
order part of the Laplace-Beltrami operator associated
with the Riemannian metric.

Moreover the semigroup admits a smooth density

pi(z,y) with respect to Lebesgue measure on IR™ and
S.R.S. Varadhan [9] has proved that

lim 2t log py(2,y) = ~d*(z,y). (1)
On the other hand, under the Hormander condition

i.e. if the Lie algebra generated by the vector fields

X;, j # 0 equals R™, the diffusion still admits a smooth

density and one can define a sub-Riemannian metric as-
sociated with the subelliptic operator L (cf.[4]).

R. Léandre ([6], [7]) has proved that in this case the
formula (1) remains valid.

The purpose of this paper is to generalize the re-
sults of R. Léandre to the case where the vector fields
Xj,j=0,...,d are time dependent.

It is divided in five sections organized as follows. In
the second section we introduce the diffusion, the heat
kernel of which we want to estimate. In the third section
we recall the definitions of two metrics associated with
our operator L that one can find in the literature and we
show that they are in fact identical. The aim of the fourth
respectively fifth section is to prove the upper respectively
the lower bound of the Varadhan estimate.

2 SETTING OF THE PROBLEM

Let (22, F, (Ft)iep0,11, P) be a complete probability space
and w a d-dimensional Brownian motion on this space. If
1 1s a semimartingale on (Q, F, Fy, P), odz, (respectively
dz;) denotes its Stratonovitch (respectively 1t8) differen-
tial.

Let us consider d + 1 time dependent vector fields
Xo, ..., Xm on IR™ which we write as

- 8
1 'Y —_— m LI
Xj(t,:n)azi, ceR™ j=1,..d

We assume that the vector fields X;, 0 < j < d, as well
as all their derivatives in z are Holder continuous in ¢
uniformly in [0, 1] x K for any compact subset K in IR™,
C* bounded in & when ¢ is a fixed element in [0,1] and
that all their derivatives in z are uniformly bounded.

Denote by z; € IR™ the solution of the stochastic
differential equation
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dz, = Xo(t, z:) dt + X;(t, z;) o dw!

|

zp 15 a fixed element in IR™

Let us suppose furthermore that a local strong Hormander
condition is satisfied i.e. that Lie(Xy, ..., X4)(0,z5) = IR™.

Then (cf.[3]) we know that for all ¢ in ]0,1] the law of
the stochastic process z; admits a smooth density pe(,y)
with respect to Lebesgue measure on IR™.

Our aim is to study the asymptotic behaviour of p, (z, )
when 1 tends to 0, which amounts to studying the asymp-
totic behaviour when ¢ tends to 0 of p§(x, y), where pf de-

notes the density of the law of the diffusion z§, solution
of the stochastic differential equation

da§ = €2 Xo(t, z5) dt + € X; (¢, £5) o dw!
TH=¢2

Indeed, the scaling property of the Brownian motion
implies that p.2,(x,y) = pi(=z, y).

3 SOME SUBRIEMANNIAN
GEOMETRY

Definition 3.1 AnIR™-valued Lipschitzian path v, para-
metrized by [0, p] is said to be subunit if for a.e. 1 and all
&mR"

d
(7(2),6) <D (X, (t,7(1)), €)%

i=1
We set

di(z,y) = inf{p /3 a subunit path vs.t.7(0) = =
and y(p) = y}

Then, (cf.[2]) the function (z,y) — d;(z, y) is well defined
and continuous on IR™ x IR™.

On the other hand, consider for any h € H := L,([0, 1], IR?)
the deterministic process 4§ (z), solution of the ordinary
differential system

d
dyp =) Xj(t,v) b dt
j=1

A o_
To =12

77 (x) is said to be a horizontal curve issued from z and
we denote by I(y") the energy of v* defined by
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I(h):/0 |hl?ds =" (hi)* ds.

=il

h
Set O = ®F. Then, ®} is the solution of the ordi-

©
nary differential system

4 8X;

de} =" 6_;(1,7{') ®! bl di
j=1
@g = [dgpm

The function (z,h) — [t — (y(z) @}, (®2)~1)] is of
class € from IR™ x H into the space of functions from
[0,1] into IR™ x GI(IR™) x GI(IR™) equipped with the
uniform topology.

Notation 3.2 IfJ is a flow with differential , and Y a
vector field on [0,1] x IR™, then we set

@) veo = () we)

Theorem 3.3 ([2]) The function h — v} from H to IR
is a submersion if and only if the quadratic form

4 1
MR =Y [ (@) X2), 97

is invertible. M (x, h) is said to be the Malliavin quadratic
Jorm associated with the horizontal curve v(z, ).

Moreover, for every integer k, denote by Ck(t,z) the
vector space generated by the Lie brackets of the vector
flelds X;, j = 1,...,d of length smaller then k, taken in
(t, ).

Suppose furthermore that the following hypothesis is
satisfied:

(H)

For any 2 in IR™, there exists an integer r(x)
such that for any ¢ in [0,1], Cr(z)(t, ) = R™.

Under this assumption (cf.[2]) it is possible to connect
any couple of points by a horizontal curve.

Definition 3.4 For any ¢ and y in R™ denote by da(z, y)
the distance defined by

d%(:c, y) - ¥ hoirII'lzfontnl I(’Yh)'
=z, yh=y

Then (cf.[2]) the function (z,y) — d(, y) is contin-
uous and we have the following easy extension of propo-
sition 3.1. from [4]
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Theorem 3.5 The two distances previously introduced
are identical i.e. for any z and y in R™,

di(z,y) = da(z,y).

From now on, we denote this distance by d and we call
it the sub-Riemannian distance associated with the vector

fields X;, 7 =1,....d.

4 THE UPPER BOUND

In this section we give the upper bound of the density.
We have the following result

Theorem 4.1 Under hypothesis (H), we have for any
multi-index of integers o

— o
Tim 21 log (‘gy—fpt(w, y)D < —&(z,y)
In particular,
lim 2t log pr(z, ) < —~d*(z, y).

To prove the theorem, we need the following two lem-
mas:

Lemma 4.2 ([1]) If ¢ denotes a fized strictly positive real
number,

}5152t log

/ pe(z,z)dz | < — inf d*(z,2) (2)
jz—-y|<e [z—y|<e

uniformly in (x,y) on any compact set K in IR™ x IR™.
1f € is a fized strictly positive real number.

Lemma 4.3 ([5]) For any multi-index of integers o, there
exists an integer N (o) and a real number C(a) such that

o

;?pt(x, y)| < C(a) =N (o),

sup
zeR™

yeR™

(3)

For any n > 0, there exists a strictly positive real number
C(n), a real number C(a) and an integer N(a) such that

104

0 —N(a) C(v)
lxs;’i% Wp,(rc,y)lg()(a)t exp[——Zt—]. (4)

proof of the thecrem:

The proof is essentially the same as the one of propo-
sition 1 of [7]. We recall it for the sake of completeness.

Fix a compact K in R™ x IR™. Since the function
(x,y) — d*(z,y) is continuous, we have that for any
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€ > 0, there exists an n > 0 such that for all (z,y) in K,
d*(z,y) < d*(z,z) +¢, as soon as |z — y| < 0.

By means of relation (2), we can then find a real num-
ber tp such that for any (z,y) in K and all 0 < ¢; < g,

d*(z,y) — ¢

e 0

Ji(z,y) ::/ p,l(:c,z)dz_<_exp[—
lz—yl<n

Let K1 x K5 be a compact in IR™ x B™ which contains
K. Set

Ja(z,y) = ;/]‘R,"'—\K pt, (¢, 2)dz = P(zy, € K3).

Consequently by means of the exponential bound of
Stroock-Varadhan (cf.[8]), we have
CA(:c,Kﬁ)]
214 4
here A(z, K5) := inf —yl}?.
where A(z, K5) ygksllm yll

Ja(2,y) < C exp|-

We choose K3 large enough in order to ensure that
CA(z,K5)> sup d*(z,y)+e. Hence
(z,y)eK
d?*(z,y) — 6]

Ja(z,y) < C eXP[— 5

(6)

Finally, we may suppose that {z/|z — y| < 5} C K.

Set
Jg(il:, y) = /
Ka\{z/|2~y|<n}

Relation (4) then implies that

o

A o Pi—t1 (zl y)

By dz

C(n)

J: < Cla,t,t1, K —_ .

3(1‘,1}) = (al ] I)AZ) exp[ Q(t —tl):l (7)
Moreover by Kolmogorov’s formula, we have for any
1<t

801
a_y?p’(“”y) = /}Rm pi,(z, 2) @Pt—n(z’y) dz. (8)

But

R™ = {2/ |z —y| < n} UK\{z/ |z y| < n} UR™\ K.

Choose N such that N C(n) > sup d%(z,y) + ¢ and
(zy)eX

N > 1and take t; = t(1— %) < t. The formulae (8), (5),
(6) and (7) then imply that

3 dz(m, y) +e

1— 1 S _dz(xy y)+6
N

}1_{% 2t log (

8(1
@Pt(:ﬂ, y)D <

Hence the result follows by letting € tend to 0.
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5 THE LOWER BOUND

In this section we give the lower bound of the density. For
that, we will need the following proposition.

Proposition 5.1 For every strictly positive € one can
find a horizontal curve issued from z with invertible Malli-
avin quadratic form and an energy smaller than ¢.

proof:

Let g € C*°(IR, [0, 1]) be a function such that g'(z) > 0
and g(z) < 1, for all z in IR (for instance g(z)=Arctan ).
Consider d independent Brownian motions vJ, j =1, ...,d.
Let ¥{ (z) be the horizontal curve defined as the solution

of the ordinary differential equation with random coeffi-
cients

{ dyf (z) = vE X; (1,7 (w)) g(v] ) dt
75 (z) = =.

Thus I(19(z)) = ¢ [ g%(v]) dt < € and ®! is the solu-
tion of the differential equation with random coefficients

0X; ;
{ 40! = V& L (t,90(2)) ®f g(vi) dt

Hence
M@,g)=cy / (@4°)71 X;(t, ), )2 dt.

Moreover, the quadratic form M is invertible, since if we
take u € S™~1, there cannot exist an a.s. strictly positive
stopping time 7, such that ((®{*)~! X;(¢,z),u) = 0on
[0,7u], for j = 1,...,d. Indeed, otherwhise this would im-
d .
ply that 32 (9¢°) " [X,, X;](t,2),w)o(v1) = O on [0, 7],
]:
Consequently the martingale part of the last process would
be zero. But the stochastic variation of this martingale

d .
part is equal to Zlfot(((btg*)‘l[Xi, X;1(t, z), u)?(g' (v] ))Zdt.
J:

Since ¢'(x) > 0, ((#7*)~! X;(t,z),u) would be zero on
[0,T.]. By induction, one would get that if Y denotes
a Lie bracket of order k, ((®{")~!u) would be zero on
[0,7.], which leads to a contradiction.

]

That allows us to prove the main theorem of this sec-
tion.

Theorem 5.2 Uniformly on any compact subset of R™ x
R™, we have

limy, o 2t log py(2, y) > —d*(z, y).
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proof:

Actually it is equivalent to prove that on any compact
subset of IR™ x IR™,

lim,_, o 2¢* log ps(, ) > —d*(, y).

It is sufficient to prove that for every choice of an zg and
an yo in IR™ and a strictly positive real 5, we can find
some neighbourhoods V' (zg) and V(yo) such that there
exists a strictly positive g9 such that for any € < ¢,

2e2 log p(xx, y) > —d*(z,y) — 47,
for any 2 in V(z) and y in V(yo).

Lemma 5.3 ({7]) Consider an (x5, y0) in R™ x IR™ and
a strictly positive real number 1. There erists a neigh-
bourhood V(o) of zo and a neighbourhood V (yo) of yo
and an open subset Vi of R™, such that for any x in
V(xo) and any y in V(yo)
inf d*(z,2) < d*(=,y) + 7,
zeV;

(9)
and

inf

Tim2é? lo
e—0 g{ZEVh!IEV(?Io)

pi(2,9)} 2 -n. (10)
Consider the neighbourhoods V(z¢) and V (y) from lemma.
5.3 and introduce the associated neighbourhood V. Con-
sider two positive real numbers €; and ¢, such that €2 +

¢2 = 2. The Markov property implies that
ey = [ s

> [ [ sy e
Vi /JR™

Lemma 5.3 then implies that there exists a real rumber

&g such that for any € < ¢, for any y in V(yo) and any 2z
in V1,

@92 [ Beew[-2a
Vi €3

On the other hand, [1] and formula (10) imply that there

exists an €; such that for any € < &} and all z in V),

2
/ pi(x,z)dz > exp [—w]
i 261

(12)
Hence the relations (11) and (12) allow us to conclude, if
we choose

2 _ 2 dz(l';y)+77

e e e 2
A= Ayt o

P/
d?(z,y) + 3n
(m}
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