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Abstract

The purpose of this paper is to prove that the
unnormalized filter associated with a nonlinear
filtering problem with unbounded observation
coefficients and infinite dimensional dependent
noise admits a smooth density with respect to
the Lebesgue measure.

1 Introduction

The purpose of this paper is to prove that the
unnormalized filter associated with a nonlinear
filtering problem with infinite dimensional de-
pendent noises and a scalar observation process
the coefficients of which are unbounded admits
a smooth density with respect to the Lebesgue
measure.

This problem has already been investigated
when the noise appearing in the system process
is finite dimensional by many authors. Michel
[7] and Bismut and Michel [1] have solved this
problem under a local Hormander condition in
the case of systems with dependent noises and
bounded coefficients.  The case of indepen-
dent noises and unbounded observation coeffi-
cients has been handled by Ferreyra [2] whereas
Ilorchinger [4] has treated the case of dependent
noises.

Tn [5], by means of the Malliavin calculus, it
is proved, under a local Hormander condition,

that the filter associated with nonlinear filter-
ing systems with independent noises, bounded
coefficients and a state process driven by infi-
nite dimensional noises admits a smooth density
with respect to the Lebesgue measure.

This paper is divided in three sections organized
as follows. In section one, we introduce the non-
linear filtering problem studied in this paper and
we recall some notations that we need in the se-
quel. In section two, we define an unnormalized
filter linked with the filter defined in the previ-
ous section by means of a KNallianpur-Striebel
formula. In section three, we state and prove
the main result of the paper.

2 Setting of the problem

Let (Q,F,P) he an usual probability space,
{wh 1 €[0,7),k € N*} a sequence of indepen-
dent standard Wiener processes and v a stan-
dard Wiener process independent of the pro-
cesses w*, k€ IN*. Denote by ||.|| the nornt
on the space of matrices in IR™ x RN given by
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Assume that we are given a family {X) & > 0}
of vector fields on IR" which we write as
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such that the map X : R" — (IR")]N, X =
{X,k >0}, is a ¢ function with bounded
derivatives of any order.

Consider the nonlinear filtering problem asso-
ciated with the system process—observation pair
(zs, ) € IR™ x IR solution of the stochastic dif-
ferential system, .

\ fe (1)
+ | X(xs)o(h(zs)ds+dvs) 7

!
Y = / h(zs)ds + vy

\ 0

where,

1. 2 has distribution my.
2. X is a Cf° vector fields on IR™ which
we write as
B 0
X = Xi(z)—"
(@)= LX)z

=1

3. his a function in C*°(IR™,IR) which is
as well as its derivatives of any order
of less than exponential growth.

4. X+ hX is of less than linear growth
(in order to avoid explosives solutions
of the system (1)).

As usually in nonlinear filtering problems define
the filter associated with the system (1) as fol-
lows.

Definition 2.1 For every t in [0,T], denote by
7 the filter associated with the system (1) de-
fined for any function ¥ in Cy(IR™,IR) by

mep = B [ih(z1)/ V1]

where Yy = o(ys /0 < s <1).

3 The unnormalized filter

The assumptions on function h do not allow to
define, as usually in nonlinear filtering probleimns,
a reference probability measure; indeed the Gir-
sanov exponential associated with the system (1)

is not necessarily a martingale and Girsanov the-
orem cannot be applied. To get round this diffi-
culty, we define a formal unnormalized filter and
prove a Kallianpur—Striebel formula.

In order to get rid of the dependence of the
noises, introduce the following definitions and
notations.

Definition 3.1 Denote by @, the deterministic
flow associated with the vector field X (i.e. ®, is
the unique solution of the deterministic equation

o=o+ [2 X (®(2))ds).

‘Convention In the rest of this paper, the sumn-

mation sign is omitted for repeated indices ap-
pearing once at the top and once at the bottom.

Notation 3.2 If X denotes a vector field on
R" such that for any x in IR", X (z) = X’(m)dih
and F is a function in C*(IR",IR"™) then, for cv-
ery ¢ in R”, set

oF
a$1’

XF(z) = X'(2)— ()

and,
(@7 X)F(z) = (D®(x))” X (@4(x)) DF(z).

Then, since the observation process y; is one di-
mensional, one can substitute the time param-
eter in the expression of the deterministic flow
®,; by y;, and introduce, as in [1], a stochastic
process Z; € IR™ solution of the stochastic dif-
ferential equation

ot

Iy = .’Eo+/ (@;:an)(f’s)dq
0

+0o st
+ Z/ (@37 X)) (%) o duwk.  (2)
=1 0

Then, the following result holds.

Proposition 3.3 (¢f. [1]) For all t in [0,77,
Ty = (I)yi(it)
Furthermore, as usually in nonlinear filtering

problems, define for any ¢ in [0, 7], the Girsanov
exponential associated with the system (1) by :

¢ ot
Zy = exp (/ h(zs)dvs + l/ /12(.rs)cls> :
0 2.y

(3)



Therefore, according with proposition 3.3 and
the definition of the stochastic process y; one
can prove that for any ¢ in [0,7], Z; = exp W,
wliere

1 1 15
= [y, v = 5 [ 1@, @),
0 d

Furthermore, since h is unbounded and the
noises appearing in the system process and the
observation process are dependent, the stochas-
tic process Z; ' is not necessarily a F, mar-
tingale and consequently, we cannot apply Gir-
canov theorem and define as usually an unnor-
malized filter. Nevertheless, one can define a
formal unnormalized filter associated with the
system (1) by means of the expression of the
stochastic process Z; obtained after an integra-
tion by parts in the stochastic integral appearing
in the expression of the stochastic process V;.
Moreover, in order to prove an integrability re-
sult for the stochastic process Z;, assume (as in
the rest of this paper) that for all » > 0 and
e > 0, there exists K, > 0 such that

2
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where (7 is the second order differential operator
defined by

4o
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Then.,

Theorem 3.4 (cf. [3]) For any p > 0, the
stochastic process Zy s i LP(JV © myg) almost
surely in y (here, 1V denotes the Wiener measure
dcfined on the probability space (U F,Fy, P)).

Hence, one can define an unnormalized filter as
[ollows.

Definition 3.5 For any { m [0,7], define for

any function ¥ in Cy,(IR",1R), the unnormalized
filter associated with the system (1) by

p = EY (W(xy)Z,) (5)

where Y denotes the integration with respect to
Woomyg.

Furthermore, the unnormalized filter p; is linked
with the filter m; by means of the following
Kallianpur-Striebel like formula.

Theorem 3.6 (cf. [3]) For any ¢ in [0,T] and
any function ¥ in C,(IR",IR) one has,

(6)

'/Tt\Il = —.
ol

4 Existence of
density for the filter

a regular

Since the filter m; is linked with the unnormal-
ized filter p; by the Kallianpur-Striebel formula
it is equivalent to prove the existence of a smooth
density for the filter 7, or the unnormalized fil-
ter py.

In that aim it is enough to prove that all the
derivatives of the process p; in the sense of dis-
tributions are bounded measures. Thus, since
the Malliavin calculus allows to proceed to an
integration by parts on the Wiener space the re-
sult will follow from the following lemma.

Lemma 4.1 (¢f. [6]) Let v be « finite Radon
measure on IR™. dssume that for all multi-
indices o there exists a finite constant 'y such
that for all function ¥ € C°(IR",IR) one has

| VAU (2)v(de)] < Call¥|eo,
mll

then the measure v admits a smooth density with
respect 1o the Lebesgue measurc on IR".

Then, the main theorem of the paper can he
stated as follows.

Theorem 4.2 Assume thal the vector
spaned by the vector fields

space

AN

X, k> 1; [l\’kl,A\')\-l], by ks >0,

[ [ij_ﬂf\'l‘j] ] ,]{71‘...,/\,’]' 2 U;

evaluated at xy has dimenswon n. Then, for any
t €)0,T], the unnormabized filter p; admils «a
smooth densily with respect 1o the Lebesgue mea-
sure on IR".

Proof Since for any ¢ € [0, 7, one has

-1
—

pr¥ = E¥ (0o dy, (£)7,) (
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and, according with [3], p; is continuous with
respect to the paths of the observation process
y¢ one can fix the path of the process y in (7)
and then work out a Malliavin calculus only on
[unctionals of w and apply the results of proved
n [8].

By means of arguments similar to those used
in [1], on can prove that for all function ¥ in
Ce2(IR".IR) and all t in [0,7], ¥ o &y, (&) and
Z¢ are in Do (W) for all y in Co([0,7],R).

Furthermore, denoting by Ay the Malliavin co-
variance matrix associated with the stochastic
process Z;, one can prove the following integra-
tion by parts formula.

Lemma 4.3 For ellt in [0,7], H in Dy and
alli, 1 <1< n, one has

EY (Vi o &y, (2)Z M H) =

.t Foo '
L (\If [¢] (Dyf(i‘t)Zt (-/ ZDéHDfa_ﬁtdS
0 k=1
4 00
~H [ > D¥logZ,) Dy k,ds

-
0~ k=1

(8)

t +oo

+H Z Dz, )dwf) ) .

0 k=1

Moreover since the hypothesis of the theorem
imply that the vector space spaned by the vector

fields

QEENp k> 1 [T X, B X, ] ke > 05

o [ [®F T X B N ] ] ke Ry > 05

evaluated at (0,x0) has dimension n, one can
deduce from the results proved in [8] that for all
1 €]0, 77, (detMy)~!is in LF(W & my) for all p
in IN*.

Then, according with Lemma 4.1 and equality
(8) one can deduce easily that the unnormal-
ized filter p; admits a density with respect to
the Lebesgue measure.

Furthermore, iterating like in [1] the integration
by parts formula one can deduce that the den-

sity of the unnormalized filter is smooth.

This concludes the proof of Theorem 4.2.
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