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Foreword 
 
 
 
 
    The volume you have in hand includes a number of contributions presented during the joint 
DIMACS - LAMSADE workshop on Computer Science and Decision Theory, Paris, 27-29 
October 2004.  
    The workshop focused on modern computer science applications of methods developed by 
decision theorists, in particular methods involving consensus and associated order relations. 
The broad outlines concern connections between computer science and decision theory, devel-
opment of new decision-theory-based methodologies relevant to the scope of modern CS prob-
lems, and investigation of their applications to problems of computer science and also to prob-
lems of the social sciences which could benefit from new ideas and techniques. 
     The workshop has been organised within the DIMACS - LAMSADE project funded by the 
NSF and the CNRS aiming to promote join research around the above issues and is expected to 
be followed by other similar initiatives. 
     This initiative has been possible thanks to the contribution of NSF, the CNRS and Univer-
sité Paris-Dauphine.  
 
A special thanks goes to Bruno Escoffier and Meltem Öztürk for their valuable help in organis-
ing the workshop and editing this volume. 
 
 

 
Denis Bouyssou, Mel Janowitz, Fred Roberts, Alexis Tsoukiàs 
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The Majority Rule and Combinatorial
Geometry (via the Symmetric Group)

James Abello∗

Abstract

The Marquis du Condorcet recognized 200 years ago that majority rule can pro-
duce intransitive group preferences if the domain of possible (transitive) individual
preference orders is unrestricted. We present results on the cardinality and structure
of those maximal sets of permutations for which majority rule produces transitive
results (consistent sets). Consistent sets that contain a maximal chain in the Weak
Bruhat Order inherit from it an upper semimodular sublattice structure. They are
intrinsically related to a special class of hamiltonian graphs called persistent graphs.
These graphs in turn have a clean geometric interpretation: they are precisely visi-
bility graphs of staircase polygons. We highlight the main tools used to prove these
connections and indicate possible social choice and computational research direc-
tions.

1 Introduction

Arrow’s impossibility theorem [5], says that if a domain of voter preference profiles is
sufficiently diverse and if each profile in the domain is mapped into a social order on the
alternatives that satisfies a few appealing conditions, then a specific voter is a dictator
in the sense that all of his or her strict preferences are preserved by the mapping. One
interesting question is how to determine restrictions on sets of voters preference orders
which guarantee that every non-empty finite subset of candidatesS contains at least one
who beats or ties all others under pairwise majority comparisons [14, 15, 17]. When voters
express their preferences via linear preference orders over{1, . . . , n} (i.e. permutations
in Sn) a necessary and sufficient condition is provided by the following proposition. It
identifies embedded 3x3 latin squares as the main reason for intransitivity of the majority
rule.

∗abello@dimacs.rutgers.edu, jabello@ask.com
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The Majority Rule and Combinatorial Geometry (via the Symmetric Group)

Figure 1: A maximal consistent subset ofS6. It is conjectured to be maximum in [15]

Definition 1.1 A three subset {α, β, γ} ⊂ Sn contains an embedded 3x3 latin square if
there exist {i, j, k} ⊂ {1, . . . , n} such that αi = βj = γk, αj = βk = γi and αk = βi =
γj . C ⊂ Sn is called consistent if no three subset of C contains an embedded 3x3 latin
square.

Proposition 1.2 [15] For a finite set of voters P with preference orders in a subset C of
Sn , denote by |aPb| the number of voters that prefer a to b. For every subset S of at least
three candidates,

{a ∈ S : ∀b ∈ S − a, |aPb| ≥ |bPa|} �= ∅
if and only if C does not contain an embedded 3 by 3 latin square ( i.e. Consistent sets
produce transitive results under majority rule).

It has been conjectured that for everyn the maximum cardinality of such consistent
sets is not more than3n−1 [1]. Maximal consistent sets that contain a maximal chain in
the Weak Bruhat order ofSn are upper semimodular sublattices of cardinality bounded by
then-th Catalan number [4](Theorem 2.2). This result is the basis of an output sensitive
algorithm to compute these sublattices ( see Remark 2.3 and Corollary 2.4 ). With such
sublattices we associate a class of graphs (called persistent) that offers a bridge from the
combinatorics of consistent sets of permutations to non degenerate point configurations
(see Section 2.3 and Theorem 2.8). Every graph in this apparently ”new” class can be
realized as the visibility graph of a staircase polygon(see Section 3). A colorful way to
view these abstract connections is that if the aggregate collection of voters is realizable as
a non-degenerate collection of points then majority rule produces transitive results. Under
this interpretation point configurations represent the candidates aggregate view provided
by the voters rankings (one point per candidate).
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Annales du LAMSADE n◦3

Figure 2: The weak Bruhat order forS4. A maximal chain is
{1234, 1324, 1342, 3142, 3412, 4312, 4321}.The identity is at the bottom and the
identity reverse is at the top. By suitable relabeling we can in fact have any permutation
at the top and its reverse at the bottom.

2 The Weak Bruhat Order, Balanced Tableaux and Per-
sistent Graphs

2.1 The Weak Bruhat Order of Sn

For n ≥ 2, let Sn denote the symmetric group of all permutations of the set{1, . . . , n}.
As a Coxeter groupSn is endowed with a natural partial order called the weak Bruhat
order ( [2, 4, 12]. This order is generated by considering a permutationγ an immediate
successor of a permutationα if and only if γ can be obtained fromα by interchanging a
consecutive pair of non inverted elements ofα. The partial order≤ WB is the transitive
closure of this relation. The unique minimum and maximum elements are the identity and
the identity reverse respectively, ( Figure 2 ).

(Sn,≤ WB) is a ranked poset where the rank of a permutationα is its inversion num-
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The Majority Rule and Combinatorial Geometry (via the Symmetric Group)

ber i(α) = |{(αi, αj) : i < j andαi > αj}| . From now on, consider all permutations
in Sn written in one line notation and letsi denote the adjacent transposition of the let-
ters in positionsi and i + 1 . With this conventionαsi is the permutation obtained by
switching the symbolsαi andαi+1 in α. Every permutation is then representable as a
word over the alphabet{ s1, . . . ,sn−1 } where the juxtaposition expressα as a left to right
product of thesi’s. Among these representations, those words that involve exactlyi(α)
transpositions are called the reduced words forα. Those reduced words that represent the
maximum element have lengthN =

(
n
2

)
= (n ∗ (n − 1))/2 and they are themaximal

chains in (Sn,≤ WB) from the identity permutation to its reverse. They constitute the
central combinatorial object in this work. In particular, the majority rule produces tran-
sitive results when applied to them. We define now a closure operator that allow us to
characterize those maximal consistent sets of permutations that contain maximal chains.

Definition 2.1 For α ∈ Sn, let Triples(α) = {(αi, αj, αk) : i < j < k} and for
C ⊂ Sn, Triples(C) =

⋃{Triples(α) : α ∈ C}. The Triples closure of a set C ⊂ Sn is
Closure(C) = {α ∈ Sn : Triples(α) ⊂ Triples(C)}.

It is natural to ask how to obtainClosure(C) for a given setC ⊂ Sn. In particular,
what is the cardinality and structure of maximal consistent sets? We provide next an
answer to these questions for the case thatCh is a maximal chain in(Sn,≤ WB).

2.1.1 Maximal Connected Consistent Sets

It is not difficult to see that any three permutations that contain an embedded 3x3 latin
square can not be totally ordered in(Sn,≤ WB). This means that a maximal chainCh is
a consistent set. Moreover,|Triples(Ch)| = 4

(
n
3

)
. ThereforeClosure(Ch) is a maximal

consistent set. The size ofClosure(Ch) varies widely depending onCh. In some cases,
it is of O(n2) and in many others is of size> 2n−1 + 2n−2 − 4 for n ≥ 5 ([1]). It has
been conjectured (since 1985) in [2] that the maximum cardinality of a consistent set in
Sn is ≤ 3n−1. The next result provides information about the structure and maximum
cardinality of those consistent sets containing a maximal chain in the weak Bruhat order.
It is a useful result because it furnishes an algorithm to generate the Closure of a maximal
chainCh. This allow us to have at our disposal all the possible rankings that are compat-
ible with Ch. They represent in this case the maximum allowable set of ranking choices
for the voters if we want to obtain transitivite results from the majority rule. Transitivity
conditions like Inada’s single peakedness [16] correspond to the choice of a particular
maximal chain in(Sn,≤ WB).

Theorem 2.2 [4]The closure of any maximal chain in (Sn,≤ WB) is an upper semi-
modular sublattice of (Sn,≤ WB) that is maximally consistent. Its cardinality is ≤ the
nth Catalan number.
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Figure 3: The maximal consistent subset ofS6 of Figure 1 viewed as a sublattice of
the Weak Bruhat Order.The subsets enclosed in rectangles are the ones obtained by a
projection. The maximal chain is the one defined by the sequence of transpositions
Path(Ch) = {45, 46, 23, 25, 26, 24, 13, 15, 16, 14, 12, 35, 36, 34, 56}. Incoming arrows
to a rectangle correspond to a single transposition used to project a previous subset. These
transpositions are{23, 25, 13, 15, 16, 35, 36, 34, 56}.

Remark 2.3 The question that comes to mind next is where a permutation α ∈ Clo-
sure(Ch) lives in the Hasse diagram of (Sn,≤ WB) ?. The answer is that it lies close
to Ch. Namely, Closure(Ch) is a connected subgraph (the undirected version) in the
Hasse diagram of the weak Bruhat order. To see this let Path(Ch) be the labeled or-
dered path from the identity to the identity reverse, defined by Ch, in the Hasse diagram
of (Sn,≤ WB), ie. Path(Ch) = (t1, . . . , tN) where tl = (i, j) if the symbols i and j
were interchanged by the lth transposition in Ch. Notice that this is an alternate nota-
tion referring to the actual symbols in a permutation rather than their positions but it is
better suited for this portion of the paper. Let Pathk(Ch) denote the set of permutations
appearing in the first k steps of Path(Ch), for k = 1, . . . , N . It follows from the proof of
the previous theorem that Closure(Pathk(Ch)) has a unique maximum element which is
precisely the maximum element in Pathk(Ch). Call this element the kth bottom element.
Moreover, Closure(Pathk+1(Ch)) − Closure(Pathk(Ch)) = a projection of certain
connected subset of Closure(Pathk(Ch)) that is determined by the adjacent transposi-
tion tk+1. This is stated more precisely in the following corollary.

Corollary 2.4 For a maximal chain Ch in the weak Bruhat order of Sn, let Projec-
tablek+1(Ch) be the set of γ ∈ Closure(Pathk(Ch)) for which there exists a downward
path from γ to the bottom element of Closure(Pathk(Ch)) such that all the adjacent
transpositions used in the path are disjoint from tk+1. Closure(Ch) can be computed by
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an iterated application of the following property.

Closure(Pathk+1(Ch)) − Closure(Pathk(Ch)) = {α ∈ Sn :

∃γ ∈ Projectablek+1(Ch) for which tk+1(γ) = α}

Remark 2.5 The previous corollary can be turned into an algorithm that computes Clo-
sure(Ch) in time proportional to |Closure(Ch)|, i.e. is an output sensitive algorithm.
To our knowledge, no consistent set has been found of cardinality larger than the ones
produced by this algorithm. The reason could be that maximal consistent sets that are
not connected are not larger than connected ones. Figure 1 is an example of a maxi-
mal consistent subset of S6 with 45 permutations which is conjectured in [15] to be the
overall maximum in this case. It was constructed by ad hoc methods but since it con-
tains a maximal chain it can be described succintly as Closure(Ch) where Path(Ch) =
{45, 46, 23, 25, 26, 24, 13, 15, 16, 14, 12, 35, 36, 34, 56}. Its overall structure is illustrated
by a coarse drawing of the corresponding sublattice of (S6,≤ WB) in Figure 3. Each
subset obtained by a projection is isomorphic to its pre-image. Incoming arrows into a
rectangle depict the pieces that form the preimage of a projection by an adjacent trans-
position.

Next we present an alternative encoding of these maximal chains by special tableux
of staircase shape called balanced tableaux. These tableaux provide the bridge between
the weak Bruhat order and special combinatorial graphs called persistent.

2.2 Balanced Tableaux

A Ferrer’s diagram of staircase shape is the figure obtained fromn − 1 left justified
columns of squares of lengthsn − 1, n − 2, ... , 1. A tableauT of staircase shape is
a filling of the cells of the Ferrer’s diagram of staircase shape with the distinct integers
in the set{ 1, . . . , N} whereN =

(
n
2

)
. We denote bySS(n) the set of tableux of stair-

case shape and assume for the indexesi,j andk that i < j < k. A tableauT ∈ SS(n)
is said to be balanced if for any three entriesT (j, i), T (k, i), T (k, j) we have either
T (j, i) < T (k, i) < T (k, j) or T (j, i) > T (k, i) > T (k, j). The key property that we
exploit is a beautiful bijection due to Edelman and Greene [12]. Namely, given a maximal
chain in(Sn,≤ WB), setT (j, i) = l if and only if i andj are the symbols interchanged
in going from the(l − 1)th permutation to thelth permutation in the chain. It is proved
in [12] that this mapping defines a one to one correspondence between balanced tableux
in SS(n) and maximal chains in(Sn,≤ WB) (The balanced tableau associated with the
maximal chain used in Figure 3 is depicted below. In this casen = 6 andN = 15).

6
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1
11 2
7 3 3
10 6 14 4
8 4 12 1 5
9 5 13 2 15 6

With each balanced tableauT we associate a graphskeleton(T ) with vertex set
{1, . . . , n} and edge set ={ (k, i) : T (k, i) > T (k′, i) ∀k′, i < k′ < k }. In other
words, the edges inskeleton(T ) record those entries inT whose values are larger than all
the entries above in its column (i.e. they are restricted local maximum in their columns).
By the balanced property this is equivalent to{(k, i) : T (k, i) < T (k, i′),∀i′, i < i′ < k}
(i.e. they are restricted local minimum in their rows). The skeleton corresponding to the
above balanced tableau(i.e. the maximal chain used in Figure 3) is

1
1 2
0 1 3
0 1 1 4
0 0 0 1 5
0 0 0 1 1 6

The reader may be pondering about the properties of these graphs that arise as skele-
tons of the balanced tableaux associated with maximal chains in the weak Bruhat or-
der.The next section offers a graph theoretical characterization.

2.3 Persistent Graphs

Chordal graphs are a well studied class with a variety of applications. We introduce now
an ordered version of chordality that together with an additional property called inversion
completeness define what we call persistent graphs ([8]).

Definition 2.6 A connected graph G = (V, E) with an specified linear ordering H =
(1, . . . , n) on V is called chordal with respect to H if every H-ordered cycle of length
≥ 4 has a chord. G is called inversion complete with respect to H if for every 4-tuple
i < j < k < l, it is the case that {(Hi, Hk), (Hj, Hl)} ⊂ E(G) implies that (Hi, Hl) ∈
E(G).

In other words, pairs of edges that interlace in the order provided byH force the existence
of a third edge joining the minimum and maximum(in the order) of the involved vertices.

7
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Definition 2.7 A graph G = (V, E) with a Hamiltonian path H is called H-persistent if
it is ordered chordal and inversion complete with respect to H .

The following theorem provides a graph theoretical characterization of the skeletons
of balanced tableaux. Namely, they are precisely persistent graphs.

Theorem 2.8 A graph G = (V, E) is H-persistent if and only if is the skeleton of a
balanced tableau T ∈ SS(n) where |V | = n and H = (1, 2, . . . , n).

Proof Sketch: That the skeleton of a balanced tableauT ∈ SS(n) is hamiltonian with
hamiltonian pathH = (1, . . . , n) follows from the definition of the skeleton. That the
obtained graph isH-persistent is a consequence of the balanced property. The interesting
direction is how to associate with a givenH-persistent graph a balanced tableau. The core
of the proof relies on the following facts.

1. Any H persistent graph with at leastn edges has at least an edgee such thatG − e
is H-persistent. Call such an edge a reversible edge.

2. The complete graph isH-persistent forH = (1, 2, . . . , n) and it is the skeleton of
the balanced tableauT where forj > i, T (j, i) = (((j − 1) ∗ (j − 2)/2) + i) for
i ∈ {1, . . . , j − 1} . Each row and column is sorted in increasing order.

3. Given anH-persistent graphG, [3] presents andO(n5) algorithm that provides a
sequence of persistent graphs that starts with the complete graphKn and ends with
G. The algorithm deletes successively a set{e1, . . . , ek} of reversible edges and
constructs for eachi = 1, . . . , k a maximal chainChi in (Sn,≤ WB) such that
skeleton(Chi) is isomorphic to the persistent graphGi = G − {e1, . . . , ei}.

4. Gk is isomorphic to a persistent graphG given as input.

Items1, 2, 3, 4 above allow us to conclude that any persistent graphG is the skeleton
of a balanced tableauT ∈ SS(n) whereT is the encoding of the maximal chainChk

produced by the algorithm wherek is the number of edges that have to be deleted from
Kn to obtainG •

Since balanced tableaux and maximal chains in the weak Bruhat order ofSn are just
different encodings of the same objects we will abuse notation by usingSkeleton(Ch)
to refer to the graph associated with the balanced tableau corresponding toCh. It makes
sense them to define an equivalence relation on maximal chains based on the skeletons
of their corresponding balanced tableaux. Namely, two maximal chains are related if
their corresponding balanced tableaux have the same graph skeleton. The reader may
be wandering what this has to do with the majority rule. The answer is that ifCh′ is
a maximal chain⊂ Closure(Ch) thenSkeleton(Ch′) is identical toSkeleton(Ch), i.e.

8
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each maximal connected consistent setC in the weak Bruhat ofSn has a unique persistent
graph associated with it. This graph encodes the local column maximums (and local row
minimums)of the tableaux associated with any of the maximal chains appearing inC. The
corresponding graph represents a global characteristic of the set of rankings which offers
a ”novel” approach to understanding voters profiles. As an example, the well known
single peakedness condition for transitivity corresponds to a very special persistent graph.
This line of thinking brings immediately the characterization question, i.e. do persistent
graphs characterize maximal connected consistent sets? In other words, is theClosure
of a maximal chainCh equal to the union of all maximal chainsCh′ which have the
same skeleton asCh?. The answer is not always. For sure we know thatClosure(Ch) is
contained in the set of all chains that have the same skeleton asCh but the reverse is not
true. However, we can provide a geometric characterization and this is the purpose of the
next section.

3 Maximal Chains in the Weak Bruhat Order with the
same Skeleton and Non-degenerate Point Configurations

Let Conf be a non-degenerate configuration ofn points on the plane. Without loss of
generality, assume that not two points have the same x-coordinate and label the points
from 1 throughn in increasing order of their x-coordinates. The points in the configu-
ration determineN =

(
n
2

)
straight lines. We can construct a tableauT of shapeSS(n)

that encodes the linear order on the slopes of these lines by settingT (i, j) = l if and only
if the rank of the slope of the line throughi andj in this linear order isl. As the reader
may suspect the obtained tableau is a balanced tableau and therefore it encodes a maximal
chain in the weak Bruhat Order. This chain is precisely the first half of the Goodman and
Pollack circular sequence associated with the configuration ([13]). The question is what is
a geometric interpretation of the skeleton of the corresponding tableau?. In other words,
what geometric property is encoded by the corresponding persistent graph?. The answer
lies in the notion of visibility graphs of staircase polygons ( Definition 3.2 ). This is the
subject of the remaining part of this paper. It contains a proof sketch of one of the main
results of this work (Theorem 3.4)

Definition 3.1 Consider a configuration Conf of n points {p1, . . . , pn} with coordinates
(xi, yi) for point pi. Conf is called a staircase configuration if for every i < j, xi < xj

and yi > yj . A staircase path consists of a staircase configuration plus the n − 1 straight
line segments joining pi and pi+1, for i = 1, . . . , i = n − 1. A staircase polygon P is a
staircase path together with the segments from the origin to p1 and from the origin to pn,
(Figure 4 illustrates a staircase polygon).

9
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Figure 4: A staircase polygon. Since vertex0, that is the origin, sees everybody it is
removed from consideration.

Definition 3.2 Two vertices p and q of a simple polygon P are said to be visible if the
open line segment (p, q) joining them is completely contained in the interior of P or if the
closed segment [p, q] joining them is a segment of P ’s boundary. The visibility graph of a
simple polygon P is denoted by V is(P ) = (V, E) where V is the set of vertices of P and
E is the set of polygon vertex pairs that are visible.

Proposition 3.3 The visibility graph of a staircase polygon P with ordered vertex set
(p1, . . . , pn) is a persistent graph with respect to the hamiltonian path H = (p1, . . . , pn).

Proof Sketch:The first half period of the Goodman and Pollack circular sequence ([13])
associated with the point configuration, defined by the vertexes of a staircase polygonP ,
is a maximal chain in the weak Bruhat order. Therefore its associated tableauT which
completely encodes the ordering of the slopes is balanced and its associated skeleton is
persistent by Theorem 2.8. To see that this graph is identical to the visibility graph ofP
let mik denote the magnitude of the slope between pointspi andpk wherek > i + 1. pi

is visible frompk if and only if the open line segment joining them lies in the interior of
P . For the case of staircase polygons this implies that there is noj, k < j < i such that
mik ≤ mij. Thereforemik > mjk for j = i − 1, i − 2, . . . , k + 1. SinceT encodes this
ordering this means thatvi is visible fromvk iff T (i, k) is larger than all entries that lie
above it, i.e.T (i, k) is a restricted local maximum.•

From the majority rule view point the previous proposition says that when the voters
rankings have a corresponding staircase point configuration the candidates can be placed
on a staircase path and each voter’s ranking correspond to his/her view, of the candidates

10
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in the configuration, when the voter is located outside the convex hull of the point set.
The local maximum statistics obtained from the slopes ranking are encoded by geometric
visibility among the candidates within the corresponding staircase polygon. What about a
converse, i.e. Is it clear when is it that the voters rankings have a corresponding staircase
configuration?. The next result states that if the set of voters rankings is theClosure(Ch)
for someCh ∈ (Sn,≤ WB) then there exists a staircase polygonP on n points so that
its V isibility graph is isomorphic toSkeleton(Ch).

Theorem 3.4 Let Mn denote a maximal consistent set and let Ch be a maximal chain in
(Sn,≤ WB). Mn = Closure(Ch) iff Skeleton(Ch) is the visibility graph of a staircase
polygon P on n points.

Proof Sketch:[3] (←) The visibility graph of a staircase polygonP is identical toske-
leton(T ) whereT encodes the ranking of theN =

(
n
2

)
slopes determined by then poly-

gon vertices as in the previous proposition. By lettingCh denote the corresponding max-
imal chain in(Sn,≤ WB) and using Theorem 2.2 the result follows•
Proof Sketch: (→) Mn = Closure(Ch) implies thatSkeleton(Ch) is H-persistent
whereH = (1, 2, . . . , n) by Theorem 2.8 . The difficult part is to prove that there exists
a staircase polygonP such thatV is(P ) is identical toSkeleton(Ch). The tricky aspect
is thatCh may not be realizable at all as a non-degenerate configuration of points. In
fact, deciding if a givenCh is realizable in the sense described in this paper is NP-hard.
However, what we are able to prove constructively is that there exists a maximal chain
Ch′ in (Sn,≤ WB) such thatSkeleton(Ch′) is identical toSkeleton(Ch) even though
Ch may not be realizable. This means that there is a geometric staircase ordering of
the candidates whose corresponding set of local maximum is the same as those of any
chain inClosure(Ch). In other words by lifting the hard question of direct realizability
of maximal chains to persistent graphs we get out of a difficult mathematical stumbling
block. The essential tool is an inductive geometric simulation of the main steps followed
in the proof of Theorem 2.8. Namely, takeSkeleton(Ch) and create corresponding ge-
ometric steps that produce from a convex staircase configuration, realizing the complete
graphKn, staircase configurations whose visibility graphs are precisely the intermediate
persistent graphsGi = G − {ei, e2, . . . , ei} where thee′is are reversible edges. In this
way a staircase realization ofGk = Skeleton(Ch) is eventually produced. Full details
are deferred to the full paper version•

4 Conclusions

Maximal chains in the weak Bruhat order of the symmetric group are consistent sets that
determine structurally maximally connected consistent sets. With each such maximal
consistent set we associate a persistent graph that turns out to be a visibility graph of

11
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a simple polygon. An interpretation of these results is that these classes of voters pro-
files can be represented by non-degenerate staircase configuration of points(one point per
candidate) where each ranking in the set corresponds to a voter’s view of the point con-
figuration. This offers a wide generalization of conditions for transitivity of the majority
rule. Among the many interesting questions remaining to be answered we mention the
following.

1. Are there any maximal consistent subsets ofSn of larger cardinality than those
which are characterized asClosure(Ch) with Ch a maximal chain in(Sn,≤ WB) ?

2. GivenC ⊂ Sn what is the complexity of determining ifC ⊂ Closure(Ch) for
someCh a maximal chain in(Sn,≤ WB) ?

3. How to generalize the results obtained here to weak orders instead of linear orders?
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Characterizing Neutral Aggregation
on Restricted Domains

Eyal Beigman∗

Abstract

Sen [6] proved that by confining voters to value restricted (acyclic) domains vot-
ing paradoxes (intransitive relations) can be avoided in aggregation by majority. We
generalize this result to any neutral monotone aggregation. In addition, we show that
acyclicity is neither necessary nor sufficient for transitivity for neutral non monotone
aggregation: we construct a cyclic transitive domain and introduce strong acyclicity
as a sufficient condition for transitivity. We also show that strong acyclicity is neces-
sary if repeated transitivity is sought. Finally, we present a cyclic domain repeatedly
transitively aggregatable by a non neutral function.

1 Introduction

The concept of restricted preference domains was first introduced by Black [2]. In the pa-
per from 1948, he showed that ’single peaked’ domains are transitive for majority, namely,
by restricting the voters to these domains aggregation by majority will always produce
a transitive binary relation. The importance of this concept became more eminent two
years later with the publication of Arrow’s seminal work [1]. Arrow specified the basic
requirements from a social welfare function (SWF): the Pareto condition, independence
of irrelevant alternatives (IIA) and unrestricted domain. He showed that an aggregation
satisfying these requirements generates an intransitive relation for at least one profile of
voter preferences. Later work by Sen and Pattanaik [6], [7] showed that for any odd
number of voters a necessary and sufficient condition for majority to produce a transitive
relation is a condition on the domain they called ’value restriction’ or ’acyclicity’.1

∗The Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
eyal42@math.huji.ac.il

1For an extensive discussion see Sen’s book [5]; for an historical perspective see Gaertner [3].
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How important is domain acyclicity for SWFs other than majority? Maskin [4] proved
that domain acyclicity is a necessary but insufficient condition for transitivity under a
neutral and symmetric SWF that is not majority. Maskin conjectured that acyclicity is
necessary but insufficient for transitivity under a neutral SWF without dummies, i.e. the
symmetry requirement can be substituted with a weaker requirement that every voter has
some influence. In this paper we show that acyclicity is necessary and sufficient for
transitivity under any neutral monotone SWF and that acyclicity is preserved in the image
and therefore the domain is transitive for repeated aggregation. We construct a class of
cyclic domains and present a general criteria for transitivity on these domains and give
some examples of a non monotone neutral SWFs that satisfy these criteria thus refuting
the conjecture. We show that transitivity does not imply repeated transitivity on these
domains. For non monotone SWFs that do not satisfy the criteria we show that transitivity
requires a condition called strong acyclicity and that this condition suffices for repeated
aggregation for all neutral SWFs.

2 Preliminaries

We begin by briefly describing the model we will be using. A voting game G is a tuple
([n],W) where [n] = [1, . . . , n] is a set of voters and W is a set of coalitions (subsets
of [n]) such that ∅ �∈ W , [n] ∈ W . The set W designates the winning coalitions. G is
a simple voting game if either S ∈ W or [n] − S ∈ W for every coalition S ⊂ [n]. A
game is monotone if S ∈ W and S ⊂ T imply T ∈ W . A simple monotone voting
game is equivalent to a strong simple game as defined in [8]. Note that we do not require
monotonicity in the definition of voting game, indeed non monotonicity is essential for
the construction of the example refuting Maskin’s conjecture.

A voter is influential or effective if his or her vote may have some impact on the
outcome. In a voting game G this would mean that the voter is a pivot for at least one
coalition, namely S �∈ W and S ∪ {i} ∈ W for some coalition S ⊂ [n] − {i}.

Definition 1 Let G = ([n],W) and G′ = ([n′],W ′) be simple voting games. We say that
G embeds G′ if there exists a surjective function ϕ : [n] → [n′] such that S ∈ W ′ iff
ϕ−1(S) ∈ W for every S ⊂ [n′].

We denote embedding by G′ = G ◦ ϕ−1. For a partition B1, B2, B3 of [n] (Bi ∩ Bj = ∅
i, j = 1, 2, 3 and B1 ∪ B2 ∪ B3 = [n]) define ϕ(i) = j iff i ∈ Bj j = 1, 2, 3 and denote
G(B1, B2, B3) = G◦ϕ−1. Thus for any partition of [n] into three sets there corresponds an
embedding of a simple three voter game. There are four such games: dictator D3, majority
Maj3, parity Prty3 and anti dictator AntiD3 (see table 1). If B1, B2, B3 are three loosing
coalitions then G embeds Maj3 since the union of any two is winning. If B1, B2, B3 are
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v1 v2 v3 Maj3 Prty3 D1
3 D2

3 D3
3 AntiD1

3 AntiD2
3 AntiD3

3

0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 1 1 1 0
0 1 0 0 1 0 1 0 1 0 1
0 1 1 1 0 0 1 1 1 0 0
1 0 0 0 1 1 0 0 0 1 1
1 0 1 1 0 1 0 1 0 1 0
1 1 0 1 0 1 1 0 0 0 1
1 1 1 1 1 1 1 1 1 1 1

Table 1: The three place voting games. 1 for v1, v2, v3 means the variable is in a coalition;
1 in the other columns means the coalition is a winning one

winning coalitions then G embeds Prty3 since any one coalition is winning but the union
of any two is loosing. If B1 is a loosing coalition and B2, B3 are winning coalitions then
G embeds AntiD3 and if B1 is winning and B2, B3 are loosing then G embeds D3.

Lemma 1 Let G be a simple voting game on n > 3 effective voters.

1. If G is monotone then it embeds Maj3.

2. If G is non monotone then it embeds at least one of Prty3 and AntiD3.

Proof: (1) Monotonicity and simplicity imply that no two winning coalitions are disjoint.
We show that the intersection of all winning coalitions K = ∩{S : S ∈ W} is empty. If
|K| > 1 then let K1 and K2 be a partition of K and let K ′

1 and K ′
2 be a partition of [n]−K

hence K1 ∪ K ′
1 = [n] − K2 ∪ K ′

2. Neither of K1 ∪ K ′
1 or K2 ∪ K ′

2 is a winning coalition
(since K is a subset of any winning coalition) contradicting simplicity. If |K| = 1 then
G is dictatorial, hence the assumption of at least three effective voters implies K = ∅. A
coalition A ⊂ [n] is a minimal winning coalition if A ∈ W and B �∈ W if B � A. Every
winning coalition is a superset of a minimal wining coalition hence the intersection of all
minimal winning coalitions is a subset of K and therefore empty. This shows that there
exist two distinct minimal coalitions A1 �= A2. If [n] − A1 � A2 is a winning coalition
then B1 = A1 ∩ A2, B2 = A1 � A2 and B3 = [n] − A1 ∪ A2 (B3 �= ∅ since otherwise
A1 ∩A2 is winning coalition contrary to the minimality assumption) is a partition to three
loosing coalitions therefore G embeds Maj3. If [n]−A1 � A2 is a loosing coalition then
the same follows for B1 = [n] − A1 � A2, B2 = A1 − A2 and B3 = A2 − A1.

(2) If G is non monotone then there exist a winning coalition A1 that is a subset of
a loosing coalition A′. This implies there exists a winning coalition A2 ⊂ [n] − A′.
Thus we have two disjoint winning coalitions A1 and A2. B1 = A1, B2 = A2 and
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B3 = [n]−A1 ∪A2 is a partition with two winning coalitions. Consequentially if B3 is a
winning coalition then G embeds Prty3 and if it is loosing G embeds AntiD3 �

Let [m] be a set of m > 2 alternatives. Designate the set of all complete antisymmetric
binary relations on [m] by ∆ and the set of all linear orders Ω ⊂ ∆. In our model a
preference is a linear order (we disregard indifference) and a domain is a subset of Ω. An
n voter social welfare function (SWF) on domain C ⊂ Ω is a function f : Cn → ∆ such
that any P = f(P1, . . . , Pn) satisfies independence of irrelevant alternatives (IIA) : the
preference of P on alternatives a, b ∈ [m] depends only on the individual preferences of
each voter between these two alternatives, and the Pareto condition: if all voters prefer a
to b then so does P . It is implied by these conditions that a function f is a SWF iff there
exists a collection of voting games {Gab}a,b∈[m] such that aPb iff {j ∈ [n] : aPjb} is a
winning coalition in Gab. Notice that such a collection must satisfy Wba = {[n] − S :
S ∈ Wab − {[n]}} ∪ {[n]}. A SWF is neutral if Gab = G for all a, b ∈ [m] and G is a
simple voting game, in this case we shall occasionally identify f with G. A voter k ∈ [n]
is influential in f if it is influential in Gab for at least one pair of alternatives.

Let P ∈ Ω be a linear order on m alternatives, we denote by P (a1, . . . , ak) the order
induced by P on alternatives a1, . . . , ak ∈ [m], thus P (a, b) = [ab] if aPb and P (a, b, c) =
[abc] if aPb, bPc and aPc. Let C(a1, . . . , ak) denote the domain of orders on {a1, . . . , ak}
induced by C. A domain is called cyclic if there exist three alternatives a, b, c ∈ [m] such
that C(a, b, c) contains a cycle, namely, a set of the form {[abc], [cab], [bca]}.

Let C ⊂ Ω be a preference domain with a SWF f . The image Im(f) is the set of all
binary relations generated from preferences in the domain. The Pareto principle implies
C ⊂ Im(f). We say that C is transitive for f if the image is a domain of transitive
relations, i.e. Im(f) ⊂ Ω.

Let f and f ′ be neutral SWF defined by G and G′, respectively, such that there is an
embedding G′ = G◦ϕ−1. For any P = f ′(P1, . . . , Pn′) by definition f(Pϕ(1), . . . , Pϕ(n)) =
f ′(P1, . . . , Pn′) = P and, consequently, Im(f ′) ⊂ Im(f). Thus, transitivity for an n-
place neutral monotone non dictatorial aggregation implies transitivity for Maj3 and tran-
sitivity for a neutral non monotone aggregation implies transitivity for Prty3 or AntiD3.

3 Neutral Monotone Aggregation

Sen [6] showed that acyclic domains are transitive for majority; we generalize this result
to any neutral monotone SWF.

Theorem 1 Let f be a neutral monotone non dictatorial SWF, and let C be a domain of
linear orders.

1. C is transitive for f iff it is acyclic.
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2. C acyclic implies Im(f) acyclic.

Proof: (1) It follows from lemma 1 that C is transitive for f if it is transitive for Maj3.
Condorcet’s paradox shows Maj3 aggregates a cycle to an intransitive relation, hence C

must be acyclic. In the other direction, suppose f is a neutral monotone non dictatorial
SWF such that C is not transitive for f , thus there exists a profile P1, . . . , Pn ∈ C and
P = f(P1, . . . , Pn) such that aPbPcPa. Let A1 = {i : aPib}, A2 = {i : bPic} and
A3 = {i : cPia} these sets are winning coalitions by definition. Monotinicity implies
A1 ∩ A2 �= ∅. If j ∈ A1 ∩ A2 then aPjbPjc, from transitivity follows aPjc therefore
[abc] ∈ C(a, b, c). Likewise A1 ∩ A3 �= ∅ and A2 ∩ A3 �= ∅ imply [cab], [bca] ∈ C(a, b, c)
consequently C is cyclic.

(2) It suffices to show that [abc], [cab] ∈ C(a, b, c) ⊂ Im(f)(a, b, c) implies [bca] �∈
Im(f)(a, b, c). Assuming the contrary, let P = f(P1, . . . , Pn) such that P (a, b, c) =
[bca]. Let A1 = {j : bPjc} and A2 = {j : cPja}, both are winning coalitions since
bPcPa. If j ∈ A1 ∩ A2 then bPjcPja, transitivity gives bPja implying Pj(a, b, c) = [bca]
which by assumption is not in the domain, hence A1∩A2 = ∅ contradicting monotinicity �

This shows that acyclicity guarantees transitivity not only for majority but for any
monotone neutral SWF and shows that the image remains acyclic. Thus, in a complex
multi-tier voting process we know that as long as the voters in the lowest level are re-
stricted to an acyclic preference domain and on each tier the local committees vote via a
neutral monotone SWF the repeated aggregation will be transitive.

4 A Cyclic Transitive Domain

We define a cyclic domain C = {[πj(1) . . . πj(m)] : j = 0, . . . m − 1} where πj(i) =
i + j mod m, called the unicyclic domain.

Theorem 2 The unicyclic domain is transitive for any neutral SWF f defined by a game
G not embedding Maj3 and Prty3.

Proof: Suppose f is a neutral monotone non dictatorial SWF such that C is not transitive
for f . If there exists a profile P1, . . . , Pn ∈ C and P = f(P1, . . . , Pn) such that aPbPcPa
then the coalitions A1 = {i : aPib}, A2 = {i : bPic} and A3 = {i : cPia} are winning
coalitions. If j ∈ A1 −A2 ∩A3 then Pj(a, b, c) = [acb] �∈ C(a, b, c) hence A1 ⊂ A2 ∩A3.
Likewise A2 ⊂ A1 ∪ A3 and A3 ⊂ A1 ∩ A2 thus A1 ∩ A2, A1 ∩ A3 and A2 ∩ A3 is a
partition of [n] into three loosing coalitions implying G embeds Maj3.

If there exists a profile P1, . . . , Pn ∈ C and P = f(P1, . . . , Pn) such that aPcPbPa
then the coalitions A1 = {i : bPia}, A2 = {i : cPib} and A3 = {i : aPic} are winning
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coalitions. If j ∈ A1 ∩ A2 then Pj = [cba] �∈ C(a, b, c) hence A1 ∩ A2 = ∅. Likewise
A2 ∩ A3 = ∅ and A2 ∩ A3 = ∅ thus A1, A2 and A3 is a partition of [n] into three winning
coalitions implying G embeds Prty3 �

We observe that if f is defined by a game G such that G(B1, B2, B3) = AntiD3

for a partition B1, B2, B3 then for a profile P1, . . . , Pn such that Pi(a, b, c) = [abc] if
i ∈ B1, Pi(a, b, c) = [cab] if i ∈ B2 and Pi(a, b, c) = [bca] if i ∈ B3 it follows that
f(P1, . . . , Pn)(a, b, c) = [cba] �∈ C(a, b, c). Thus, C is not closed to aggregation by f .
Furthermore for a profile P1, . . . , Pn such that Pi(a, b, c) = [cba] if i ∈ B1, Pi(a, b, c) =
[cab] if i ∈ B2 and Pi(a, b, c) = [bca] if i ∈ B3 it follows that P = f(P1, . . . , Pn)(a, b, c)
is intransitive since aPbPcPa. Consequently, Im(f) is intransitive for f . This shows
that if voters in a committee are restricted to the unicyclic domain then a voting process
defined by a game that does not embed Maj3 or Prty3 does not produce paradoxes.
However, if this process is repeated on a multi-tiered voting system the restriction is
insufficient, since paradoxes may appear in second tier committees.

To refute Maskin’s conjecture, it suffices to show there exists a family of games with
an unbounded number of effective voters such that games in the family do not embed
neither Maj3 nor Prty3. We shall give two examples of such games. The anti dictator
game on n voters AntiDn is defined by W = 2[n]−{1} ∪ {[n]} the proper subsets of [n]
that do not include voter 1 (the ’anti dictator’) and [n]. Every voter apart form 1 is a
pivot for the coalition [n] and 1 is a pivot for any other non empty coalition therefore
no voter is a dummy. For any partition B1, B2, B3 such that 1 ∈ B1 it follows that B1

is a loosing coalition and B2 and B3 are winning coalitions hence AntiDn embeds only
AntiD3. For n odd let Ω1 ⊂ [n] be the odd indices and Ω2 the even. The balance game
G = ([n],W) is defined by W = {A : |A ∩ Ω1| > |A ∩ Ω2|}. Every voter j is a pivot in
Aj = {i ∈ [m] : i < j} therefore no voter is a dummy. For a partition B1, B2, B3 there
is at least one winning coalition and one loosing coalition hence balance game cannot
embed Maj3 or Prty3.

5 Neutral Non Monotone Aggregation

In the previous section we saw that the image of a transitive domain may be intransitive.
We introduce a condition that strengthens the acyclicity requirement and ensures repeated
transitivity.

Definition 2 A domain is called strongly acyclic if [abc], [cab] ∈ C(a, b, c) implies [acb],
[bca] �∈ C(a, b, c).

Obviously strong acyclicity implies acyclicity, thus monotone SWF are repeatedly tran-
sitive for such domains. A domain is mixed unicyclic and strongly acyclic if C(a, b, c) is
either unicyclic or strongly acyclic for every a, b, c ∈ [m].
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Theorem 3 Let f be a neutral non monotone SWF defined by a game G and let C be a
domain of linear orders.

1. If G embeds Prty3 or Maj3 then:

(a) C is transitive iff it is strongly acyclic.

(b) C strongly acyclic implies Im(f) strongly acyclic.

2. If G does not embed Prty3 or Maj3 then:

(a) C is transitive iff it is mixed unicyclic and strongly acyclic.

(b) Im(f) is transitive iff C is strongly acyclic.

Proof: (1a) If C is strongly acyclic and there exists a profile P1, . . . , Pn and P =
f(P1, . . . , Pn) such that aPbPcPa then the coalitions A1 = {j : aPjb}, A2 = {j : bPjc}
and A3 = {j : cPja} are winning. If j ∈ A2 ∩ A3 then bPjcPja therefore Pj(a, b, c) =
[bca], j ∈ A1 − A2 ∪ A3 implies aPjcPjb hence Pj(a, b, c) = [acb]. Strong acyclicity
implies A2 ∩ A3 = ∅ and A2 ∪ A3 = [n] thus A3 = [n] − A2 contradicting simplicity.

If C is not strongly acyclic and [abc], [cab] ∈ C(a, b, c) for alternatives a, b, c ∈ [m]
then either [acb] ∈ C(a, b, c) or [bca] ∈ C(a, b, c). If the former case let P1, P2, P3 such
that P1(a, b, c) = [abc], P2(a, b, c) = [cab] and P3(a, b, c) = [acb]. If G embeds Prty3

then there exists a partition B1, B2, B3 of winning coalitions. Let P1, . . . , Pn a profile such
that Pi = Pj if i ∈ Bj j = 1, 2, 3. Since all three coalitions are winning it follows that
P = f(P1, . . . , Pn) satisfies aPbPcPa and therefore intransitive. If G embeds AntiD3

then there exists a partition where B1 is a loosing coalition and B2, B3 are winning.
Let P1, . . . , Pn a profile such that Pi = Pj if i ∈ Bj j = 1, 2, 3. Again by definition
P = f(P1, . . . , Pn) is intransitive. Lemma 1 shows that any non monotone G embeds
either Prty3 or AntiD3 hence f is not transitive for C. A similar argument shows that f
is not transitive if [bca] ∈ C(a, b, c) and f embeds Prty3. Theorem 1 shows the same if f
embeds Maj3.

(1b) Let C be a strong acyclic domain such that [abc], [cab] ∈ C(a, b, c) ⊂ Im(f)(a, b,
c). If there exists P = f(P1, . . . , Pn) such that P1, . . . , Pn ∈ C and P (a, b, c) = [bca]
then A1 = {j : bPja}, A2 = {j : bPjc} and A3 = {j : cPja} are winning coalitions.
j ∈ A1 ∩ A2 ∩ A3 implies Pj(a, b, c) = [bca] and j ∈ [n] − A1 ∪ A2 ∪ A3 implies
Pj(a, b, c) = [acb] hence strong acyclicity implies A1 ∩A2 ∩A3 = ∅ and A1 ∪A2 ∪A3 =
[n]. j ∈ A2 ∩ A3 implies bPjcPjaPjb thus A2 ∩ A3 = ∅. Also A1 − A2 ∪ A3 implies
bPjaPjcPjb therefore A1 ⊂ A2 ∪ A3. Consequently, A2 ∪ A3 = [n] and A2 ∩ A3 = ∅ or
rather A3 = [n] − A2 which contradicts simplicity, thus [bca] �∈ Im(f)(a, b, c).

If there exists a profile P1, . . . , Pn ∈ C such that P = f(P1, . . . , Pn) and P (a, b, c) =
[acb], then A1 = {j : aPjb}, A2 = {j : cPjb} and A3 = {j : aPjc} are winning
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coalitions. Strong acyclicity implies A1∩A2∩A3 = ∅ and A1∪A2∪A3 = [n]. As before,
transitivity of voter preferences implies A2 ∩ A3 = ∅ and A1 ⊂ A2 ∪ A3 contradicting
simplicity, hence [acb] �∈ Im(f)(a, b, c).

(2a) If C(a, b, c) is unicyclic for alternatives a, b, c ∈ [m] then it follows from theo-
rem 2 that P = f(P1, . . . , Pn) is transitive on a, b, c for any profile P1, . . . , Pn. The proof
of (1a) implies the same if C(a, b, c) is strongly acyclic.

(2b) It follows from the proof of (1b) that if C is strongly acyclic then Im(f) is tran-
sitive. In the other direction, it follows from lemma 1 that f embeds AntiD3, the remark
following theorem 2 shows that in this case Im(f)(a, b, c) is intransitive if C(a, b, c) is
unicyclic �

To summarize: dictatorial SWFs are transitive on any domain, non dictatorial mono-
tone SWFs are transitive only on acyclic domains. Non monotone SWFs embedding
Prty3 or Maj3 are transitive only on strongly acyclic domains. SWFs embedding only
AntiD3 and D3 are transitive on mixed unicyclic/strongly acyclic domains but repeatedly
transitive only on strongly acyclic domains.

6 Non Neutral Aggregation

The relation between the domain and aggregation function becomes more complex for
transitive SWF when the neutrality condition is relaxed. We give an example of a non
neutral monotone SWF that is repeatedly transitive on a cyclic domain. Thus we see that
the dichotomy in the neutral case does not hold in the non neutral case.

A domain is called a P -domain for P ∈ Ω if P (a, b, c) = [abc] implies {[acb], [bac]} �⊂
C(a, b, c). It follows from this definition that every acyclic domain is a proper subset of
some cyclic P -domain for an appropriate P ∈ Ω. We define a function fP : Cn → Ω such
that fP (P1, . . . , Pn) = AntiDn+1(P, P1, . . . , Pn), it is easy to see that fP is a non neutral
SWF, notice also that it is monotone and symmetric (voters are interchangeable).

Theorem 4 A P -domain is transitive for fP .

Proof: Assume aQbQcQa for Q = fP (P1, . . . , Pn) = AntiDn+1(P, P1, . . . , Pn), let
(Q1, . . . , Qn+1) = (P, P1, . . . , Pn) and take A1 = {j : aQjb}, A2 = {j : bQjc} and
A3 = {j : cQja} which by assumption are winning coalitions. From the transitivity of
Q1, . . . Qn+1 it follows that A1 ∩ A2 ∩ A3 = ∅ and A1 ∪ A2 ∪ A3 = [n + 1]. Since
aPb ≡ aQ1b it follows that 1 ∈ A1 and by definition of AntiDn+1 it follows that A1 =
A2 = [n+1], but this implies aQjc for all j hence from the Pareto principle it follows that
aQc contradicting the assumption on Q. Since P (a, b, c) = [abc] these three alternatives
are not arbitrary as before hence we must rule out the other cycle as well. Assume this time
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aQcQbQa for Q,Q1, . . . , Qn+1 as above and take A1 = {j : bQja}, A2 = {j : cQjb}
and A3 = {j : aQjc}. Since aPc ≡ aQ1c it follows that 1 ∈ A3 hence A3 = [n + 1].
Consequentially A1, A2 ⊂ A3, but j ∈ A1∩A3 implies Pj(a, b, c) = [bac] and j ∈ A2∩A3

implies Pj(a, b, c) = [acb]. It follows from the P -domain assumption that A1 = A1∩A3 =
∅ or A2 = A2 ∩ A3 = ∅ and in either case this contradicts A1 and A2 being winning
coalitions �

Theorem 5 A P -domain is repeatedly transitive for fP .

Proof: It suffices to show that Im(fp) is a P -domain. If Q(a, b, c) = [acb] for Q =
fP (P1, . . . , Pn) = AntiDn+1(P, P1, . . . , Pn) as above let (Q1, . . . , Qn+1) = (P, P1, . . . ,
Pn) and take A1 = {j : aQjb}, A2 = {j : cQjb} and A3 = {j : aQjc}. A1∩A2∩A3 = ∅
since [acb] �∈ C(a, b, c). From aQc it follows that 1 ∈ A3 thus A3 = [n + 1] and therefore
A2 ⊂ A3. If j ∈ A2 ∩ A3 then aQjcQjbQja contradicting the transitivity of Pj hence
A2 = ∅. The same argument shows [bac] �∈ Im(fP )(a, b, c) �

References

[1] Arrow, Kenneth J. (1951) Social Choice and Individual Values New York: John
Wiley & Sons, Inc.

[2] Black Duncan, (1948) ’On the Rational of group decision making’, The Journal of
Political Economy 56:23-34.

[3] Gaertner, Wulf, (2002) ’Domain Restrictions’ In Handbook of Social Choice and
Welfare Vol. 1 Edited by K. Arrow, A. Sen, and K. Suzumura, Elsevier, Amsterdam.

[4] Maskin, Eric S., (1995) ’Majority Rule, Social Welfare Functons, and Game Forms’
In Choice Welfare , and Development Edited by K. Basu, P. Pattanik, and K. Suzu-
mura, Clarendon Press Oxford.

[5] Sen, Amartya K., (1970) Collective Choice and Social Welfare San Francisco:
Holden-Day, Inc.

[6] Sen, Amartya K., (1966) ’A possibility theorem on majority decisions’, Economet-
rica 34:491-499.

[7] Sen, Amartya K., Pattanaik P.K. (1969) ’Necessary and sufficient conditions for
rational choice under majority decision’, Journal of Economic Theory 1:178-202.

[8] Shapley, Lloyd S., (1962) ’Simple games: an outline of the descriptive theory’,
Behavioral Science 7:59-66.

23





Preference aggregation with multiple criteria of
ordinal significance

Raymond Bisdorff∗

Abstract

In this paper we address the problem of aggregating outranking situations in the
presence of multiple preference criteria of ordinal signiÞcance. The concept of ordi-
nal concordance of the global outranking relation is deÞned and an operational test
for its presence is developed. Finally, we propose a new kind of robustness analysis
for global outranking relations taking into account classical dominance, ordinal and
classical majority concordance in a same ordinal valued logical framework.

Key words : Multicriteria aid for decision, ordinal signiÞcance weights, robust out-
ranking

1 Introduction

Commonly the problem of aggregating preference situations along multiple points of view
is solved with the help of cardinal weights translating the signiÞcance the decision maker
gives each criteria (Roy and Bouyssou, 1993). However, determining the exact numerical
values of these cardinal weights remains one of the most obvious practical difÞculty in
applying multiple criteria aid for decision (Roy and Mousseau, 1996).

To address precisely this problem, we generalize in a Þrst section the classical con-
cordance principle, as implemented in the Electre methods (Roy, 1985), to the context
where merely ordinal information concerning these signiÞcance of criteria is available.
Basic data and notation is introduced and the classical cardinal concordance principle is
reviewed. The ordinal concordance principle is formally introduced and illustrated on a
simple car selection problem.

∗Operations Research Unit, University of Luxembourg, Campus Limpertsberg, Avenue de la Fa¬õencerie,
L-1511, Luxembourg.raymond.bisdorff@uni.lu
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In a second section, we address theoretical foundations and justiÞcation of the deÞ-
nition of ordinal concordance. By the way, an operational test for assessing the presence
or not of the ordinal concordance situation is developed. The core approach involves
the construction of a distributional dominance test similar in its design to the stochastic
dominance approach.

In a last section we Þnally address the robustness problem of multricriteria decision
aid recommendations in the context of the choice problematics. Classical dominance, i.e.
unanimous concordance, ordinal as well as cardinal majority concordance are considered
altogether in a common logical framework in order to achieve robust optimal choice rec-
ommendation. We rely in this approach on previous work on good choices from ordinal
valued outranking relations (see Bisdorff and Roubens, 2003).

2 The ordinal concordance principle

We start with setting up the necessary notation and deÞnitions. We follow more or less
the notation used in the French multicriteria decision aid community.

2.1 Basic data and notation

As starting point, we require a setA of potential decision actions. To assess binary out-
ranking situations between these actions we consider a coherent familyF = {g1, . . . , gn}
of n preference criteria (Roy and Bouyssou, 1993, Chapter 2).

The performance tableau gives us for each couple of decisions actionsa, b ∈ A their
corresponding performance vectorsg(a) =

(
g1(a), ..., gn(a)

)
andg(b) =

(
g1(b), ..., gn(b)

)
.

A Þrst illustration, shown in Table 1, concerns a simple car selection problem taken
from Vincke (1992, pp. 61Ð62)). We consider here a setA = {m1, . . . ,m7} of potential
car models which are evaluated on four criteria:Price, Comfort, SpeedandDesign. In this

Table 1: Car selection problem: performance tableau
Cars qj pj m1 m2 m3 m4 m5 m6 m7 w

1: Price 10 50 -300 -270 -250 -210 -200 -180 -150 5/15
2: Comfort 0 1 3 3 2 2 2 1 1 4/15
3: Speed 0 1 3 2 3 3 2 3 2 3/15
4: Design 0 1 3 3 3 2 3 2 2 3/15

Source:Vincke, Ph. 1992, pp. 61Ð62
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supposedly coherent family of criteria, thePricecriterion works in the negative direction
of the numerical amounts. The evaluations on the qualitative criteria such asComfort,
SpeedandDesignare numerically coded as follows: 3 meansexcellentor superior, 2
meansaverageor ordinary, 1 meansweak.

In general, we may observe on each criteriongj ∈ F an indifference thresholdqj ≥ 0
and a strict preference thresholdpj ≥ qj (see Roy and Bouyssou, 1993, pp. 55Ð59). We
suppose for instance that the decision-maker admits on thePricecriterion an indifference
threshold of10 and a preference threshold of50 units.

To simplify the exposition, we consider in the sequel that all criteria support the deci-
sion makerÕs preferences along a positive direction. Let∆j(a, b) = gj(a) − gj(b) denote
the difference between the performances of the decision actionsa andb on criteriongj.
For each criteriongj ∈ F , we denote Òa Sj bÓ the semiotic restriction of assertion Òa
outranksbÓ to the individual criteriongj.

Definition 1. ∀a, b,∈ A, the level of credibilityr(a Sj b) of assertion Òa Sj bÓ is deÞned
as:

r(a Sj b) =




1 if ∆j(a, b) ≥ −qj
pj+∆j(a,b)

pj−qj
if − pj ≤ ∆j(a, b) ≤ −qj

0 if ∆j(a, b) < −pj.

(1)

The level of credibilityr(a Sj b) associated with the truthfulness of the negation of the
assertion Òa Sj bÓ is deÞned as follows:

r(a Sj b) = 1 − r(a Sj b). (2)

Following these deÞnitions, we Þnd in Table 1 that modelm6 clearly outranks model
m2 on thePrice criterion (∆1(m6,m2) = 90 andr(m6 S1 m2) = 1) as well as on the
Speedcriterion (∆3(m6,m2) = 1 andr(m6 S3 m2) = 1).

Inversely, modelm2 clearly outranks modelm6 on theComfort criterion as well
as on theDesigncriterion. Indeed∆2(m2,m6) = 2 andr(m2 S2 m6) = 1 as well as
∆4(m2,m6) = 1 andr(m2 S4 m6) = 1.

A given performance tableau, if constructed as required by the corresponding decision
aid methodology (see Roy, 1985), is warrant for the truthfulness of these ÒlocalÓ, i.e. the
individual criterion based preferences of the decision maker. To assess however global
preference statements integrating all available criteria, we need to aggregate these local
warrants by considering the relative signiÞcance the decision-maker attributes to each
individual criterion with respect to his global preference system.
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2.2 The classical concordance principle

In the Electre based methods, this issue is addressed by evaluating if, yes or no, a more
or less signiÞcant majority of criteria effectively concord on supporting a given global
outranking assertion (see Roy and Bouyssou, 1993; Bisdorff, 2002). This classical major-
ity concordance principle for assessing aggregated preferences from multiple criteria was
originally introduced by Roy (1968).

Definition 2. Let w = (w1, ..., wn) be a set of signiÞcance weights corresponding to the
n criteria such that:0 ≤ wj ≤ 1 and

∑n
j=1 wj = 1. For a, b ∈ A, let a S b denote the

assertion that Òa globally outranksbÓ1. We denoterw(a S b) the credibility of assertion
a S b considering given signiÞcance weightsw.

rw(a S b) =
n∑

j=1

(
wj · r(a Sj b)

)
. (3)

Assertion Òa S bÓ is consideredrather true than false, as soon as the weighted sum of
criterial signiÞcance in favour of the global outranking situation obtains a strict major-
ity, i.e. the weighted sum of criterial signiÞcance is greater than50%. To clearly show
the truth-functional denotation implied by our credibility functionrw, we shall introduce
some further notations.

Definition 3. Let Òa S bÓ denote the fact thata globally outranksb. We denote‖a S b‖w the
logical denotation of the credibility calculus taking its truth values in a three valued truth
domainL3 = {fw, u, tw} wherefw meansrather false than trueconsidering importance
weightsw, tw meansrather true than falseconsidering importance weightsw andu means
logically undetermined.

‖a S b‖w =




tw if rw(a S b) > 0.5 ;

fw if rw(a S b) < 0.5 ;

u otherwise.

(4)

In our example, let us suppose that the decision-maker admits the signiÞcance weights
w shown in Table 1. ThePrice criterion is the most signiÞcant with a weight of5/15.
Then comes theComfortcriterion with4/15 and Þnally, both theSpeedand theDesign

1Readers familiar with the outranking concept will notice the absence of thevetoissue in our deÞnition
of the outranking situation. The veto principle, also called discordance principle by Roy, requires some
measurable distance on the criteria scales. For robustness purposes we prefer to keep with solely the sound
ordinal properties of the criterion function concept. And the concordance principle already naturally inte-
grates a balancing reasons principle by weighting concordant against discordant arguments (see Bisdorff
and Roubens, 2003)
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criteria have identical weights3/15. By assuming that the underlying family of criteria
is indeed coherent, we may thus state that the assertion Òm6 Sw m2Ó with aggregated sig-
niÞcance of53.3% is rather true than falsewith respect to the given importance weights
w.

The majority concordance approach obviously requires a precise numerical knowl-
edge of the signiÞcance of the criteria, a situation which appears to be difÞcult to achieve
in practical applications of multicriteria decision aid.

Substantial efforts have been concentrated on developing analysis and methods for
assessing these cardinal signiÞcance weights (see Roy and Mousseau, 1992, 1996). Fol-
lowing this discussion, Dias and Cl«õmaco (2002) propose to cope with imprecise signiÞ-
cance weights by delimiting sets of potential signiÞcance weights and enrich the proposed
decision recommendations with a tolerance in order to achieve robust recommendations.

In this paper we shall not contribute directly to this issue but rely on the fact that in
practical application the ordinal weighting of the signiÞcance of the criteria are generally
easier to assess and more robust than any precise numerical weights.

2.3 Ordinal concordance principle

Let us assume that instead of a given cardinal weight vectorw we observe a complete
pre-orderπ on the family of criteriaF which represents the signiÞcance rank each crite-
rion takes in the evaluation of the concordance of the global outranking relationS to be
constructed onA.

In our previous car selection example, we may notice for instance that the proposed
signiÞcance weights model the following rankingπ: Price > Comfort> { Speed, De-
sign}.

A precise setw of numerical weights may now be compatible or not with such a given
signiÞcance ranking of the criteria.

Definition 4. w is aπ-compatible set of weights if and only if:

wi = wj for all couples(gi, gj) of criteria which are of the same signiÞcance with
respect toπ;

wi > wj for all couples(gi, gj) of criteria such that criteriongi is certainly more
signiÞcant than criteriongj in the sense ofπ.

We denoteW (π) the set of allπ-compatible weight vectorsw.
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Definition 5. Fora, b ∈ A, let Òa Sπ bÓ denote the fact that“ a globally outranksb with a
significant majority for everyπ-compatible weight vector”.

a Sπ b ⇐ (
rw(a S b) > 0.5, ∀w ∈ W (π)

)
. (5)

For short, we say thata globally outranksb in the sense of the ordinal concordance
principle.

2.4 Theoretical justification

In other words, thea Sπ b situation is given if for allπ-compatible weight vectorsw, the
aggregated signiÞcance of the assertiona Sw b outranks the aggregated signiÞcance of the
negationa Sw b of the same assertion.

Proposition 1.

a Sπ b ⇐ (
rw(a S b) > rw(a S b); ∀w ∈ W (π)

)
. (6)

Proof. Implication 6 results immediately from the observation that:∑
gj∈F

wj · r(a Sj b) >
∑
gj∈F

wj · r(a Sj b) ⇔
∑
gj∈F

wj · r(a Sj b) >
1

2
.

Indeed,∀gj ∈ F we observe thatr(a Sj b) + r(a Sj b) = 1. This fact implies that:∑
gj∈F

wj · r(a Sj b) +
∑
gj∈F

wj · r(a Sj b) = 1.

Coming back to our previous car selection problem, we shall later on verify that model
m6 effectively outranks all other 6 car models following the ordinal concordance princi-
ple, With anyπ-compatible set of cardinal weights, modelm6 will always outrank all
other car models with a ÕsignificantÕ majority of criteria.

We still need now a constructive approach for computing such ordinal concordance
results.

3 Testing for ordinal concordance

In this section, we elaborate general conditions that must be fulÞlled in order to be sure
that there exists an ordinal concordance in favour of the global outranking situation. By
the way we formulate an operational procedure for constructing a relationSπ on A from
a given performance tableau.
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3.1 Positive and negative significance

The following condition is identical to the condition of the ordinal concordance principle
(see DeÞnition 5).

Proposition 2. ∀a, b ∈ A and∀w ∈ W (π):

rw(a S b) > rw(a S b) ⇔ rw(a S b) − rw(a S b) > rw(a S b) − rw(a S b). (7)

Proof. The equivalence between the right hand side of Equivalence 7 and the right hand
side of Implication 6 is obtained with simple algebraic manipulations.

The inequality in the right hand side of Equivalence 7 gives us the operational key for
implementing a test for ordinal concordance of an outranking situation. The same weights
wj and−wj, denoting the ÒconfirmingÓ, respectively the ÒnegatingÓ, signiÞcance of each
criterion, appear on each side of the inequality.

Furthermore, the sum of the coefÞcientsr(a Sj b) andr(a Sj b) on each side of the
inequality is a constant equal ton, i.e. the number of criteria inF . Therefore these
coefÞcients may appear as some kind of credibility distribution on the set of positive and
negative signiÞcance weights.

3.2 Significance distributions

Suppose that the given pre-orderπ of signiÞcance of the criteria containsk equivalence
classes which we are going to denoteπ(k+1), ..., π(2k) in increasing sequence. The same
equivalence classes, but in in reversed order, appearing on the ÒnegatingÓ signiÞcance
side, are denotedπ(1), ..., π(k).

Definition 6. For each equivalence classπ(i), we denotew(i) the cumulated negating,
respectively conÞrming, signiÞcance of all equi-signiÞcant criteria gathered in this equiv-
alence class:

i = 1, ..., k : w(i) =
∑

gj∈π(i)

−wj; i = k + 1, ..., 2k : w(i) =
∑

gj∈π(i)

wj. (8)

We denotec(i) for i = 1, ..., k the sum of all coefÞcientsr(a Sj b) such thatgj ∈ π(i) and
c(i) for i = k + 1, ..., 2k the sum of all coefÞcientsr(a Sj b) such thatgj ∈ π(i). Similarly,
we denotec(i) for i = 1, ..., k the sum of all coefÞcientsr(a Sj b) such thatgj ∈ π(i) and
c(i) for i = k + 1, ..., 2k the sum of all coefÞcientsr(a Sj b) such thatgj ∈ π(i).

With the help of this notation, we may rewrite Equivalence 7 as follows:
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Proposition 3. ∀a, b ∈ A andw ∈ W (π):

rw(a S b) > rw(a S b) ⇔
2k∑
i=1

c(i) · w(i) >
2k∑
i=1

c(i) · w(i). (9)

CoefÞcientsc(i) andc(i) represent two distributions, one the negation of the other, on
an ordinal scale determined by the increasing signiÞcancew(i) of the equivalence classes
in π(i).

3.3 Ordinal distributional dominance

We may thus test the right hand side inequality of Equivalence 7 with the classical stochas-
tic dominance principle originally introduced in the context of efÞcient portfolio selection
(see Hadar and Russel, 1969; Hanoch and Levy, 1969).

We denoteC(i), respectivelyC(i), the increasing cumulative sums of coefÞcientsc(1),
c(2), ...,c(i), respectivelyc(1), c(2), ...,c(i).

Lemma 1.

( 2k∑
i=1

c(i)·w(i) >

2k∑
i=1

c(i)·w(i)

)
, ∀w ∈ W (π) ⇔

{
C(i) ≤ C(i), i = 1, ..., 2k;

∃i ∈ 1, ..., 2k : C(i) < C(i).
(10)

Proof. Demonstration of this lemma (see for instance Fishburn, 1974) goes by rewriting
the right hand inequality of Equivalence 9 with the help of the repartition functionsC(i)

andC(i). It readily appears then that the term by term difference of the cumulative sums
is conveniently oriented by the right hand conditions of Equivalence 10.

This concludes the proof of our main result.

Theorem 1. ∀a, b ∈ A, let C(i)(a, b) represent the increasing cumulative sums of credi-
bilities associated with a given significance ordering of the criteria:

a Sπ b ⇐
{

C(i)(a, b) ≤ C(i)(a, b), i = 1, ..., 2k;

∃i ∈ 1, ..., 2k : C(i)(a, b) < C(i)(a, b).
(11)

We observe an ordinal concordant outranking situation between two decision actionsa
and b as soon as the repartition of credibility on the significance ordering of actiona
dominates the same of actionb.
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Table 2: Assessing the assertion Òm4 Sπ m5Ó
π(i) -Price -Comfort -Speed, Design Speed,Design Comfort Price

c(i) 0 0 1 1 1 1
c(i) 1 1 1 1 0 0

C(i) 0 0 1 2 3 4
C(i) 1 2 3 4 4 4

The preceding result gives us the operational key for testing for the presence of an
ordinal concordance situation. LetL3 = {fπ, u, tπ}, wherefπ meansrather false than
true with any π-compatible weightsw, u meanslogically undeterminedand tπ means
rather true than falsewith any π-compatible weightsw. For each pair of decision ac-
tions evaluated in the performance tableau, we may compute such a logical denotation
representing truthfulness or falseness of the presence of ordinal concordance in favour of
a given outranking situation.

Definition 7. Let π be a signiÞcance ordering of the criteria.∀a, b ∈ A, let C(i)(a, b) and
C(i)(a, b) denote the corresponding cumulative sums of increasing sums of credibilities
associated with the the relationSπ. We deÞne a logical denotation‖a S b‖π in L3 as
follows:

‖a S b‖π =




tπ if

{
C(i)(a, b) ≤ C(i)(a, b), i = 1, ..., 2k and

∃i ∈ 1, ..., 2k : C(i)(a, b) < C(i)(a, b);

fπ if

{
C(i)(a, b) ≥ C(i)(a, b), i = 1, ..., 2k and

∃i ∈ 1, ..., 2k : C(i)(a, b) > C(i)(a, b);

u otherwise.

(12)

Coming back to our simple example, we may now apply this test to car modelsm4

andm5 for instance. In Table 2 we have represented the six increasing equi-signiÞcance
classes we may observe. From Table 1 we may compute the credibilitiesc(i) (respectively
c(i)) associated with the assertion that modelm4 outranks (respectively does not outrank)
m5 as well as the corresponding cumulative distributionsC(i) andC(i) as shown in Table 2.

Applying our test, we may notice that indeed‖m4 S m5‖π = tπ, i.e. it is true that the
assertion Òmodelm4 outranks modelm5Ó will be supported by a more or less signiÞcant
majority of criteria for allπ-compatible sets of signiÞcance weights.

For information, we may reproduce in Table 3, the complete ordinal outranking rela-
tion onA. It is worthwhile noticing that, faithful with the general concordance principle,
the outranking situationsa Sπ b appearing with valuetπ are warranted to be true. Simi-
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Table 3: The ordinal concordance of the pairwise outranking
‖x S y‖π m1 m2 m3 m4 m5 m6 m7

m1 - tπ u u u u u
m2 tπ - tπ fπ u fπ u
m3 u tπ - u u u u
m4 tπ tπ tπ - tπ tπ u
m5 tπ tπ tπ tπ - tπ u
m6 tπ tπ tπ tπ tπ - tπ
m7 u tπ u tπ tπ tπ -

larly, the situations showing credibilityfπ, are warranted to be false. The other situations,
appearing with credibilityu are to be considered undetermined (see Bisdorff, 2000).

As previously mentioned, modelm6 gives the unique dominant kernel, i.e. a stable
and dominant subset, of the{fπ, u, tπ}-valuedSπ relation. Therefore this decision ac-
tion represents a robust good choice decision candidate in the sense that it appears to be
a rather true than false good choice with all possibleπ-compatible sets of signiÞcance
weights (see Bisdorff and Roubens, 2003). Indeed, if we apply the given cardinal signif-
icance weights, we obtain in this particular numerical setting that modelm6 is not only
among the potential good choices but also, and this might not necessarily always be the
case, the most signiÞcant one (73%).

Let us now address the robustness issue.

4 Analyzing the robustness of global outrankings

Let us suppose that the decision maker has indeed given a precise setw of signiÞcance
weights. The classical majority concordance will thus deliver a mean weighted outranking
relationSw onA.

In our car selection problem the result is shown in Table 4. We may notice here that
for instancer(m4 Sw m5) = 80%. But we know also from our previuos investigation
that‖m4 S m5‖π = tπ. The outranking situation is thus conÞrmed with anyπ-compatible
weight setw.

Going a step further we could imagine adream modelthat is the cheapest, the most
comfortable, very fast and superior designed model, denoted asmtop. It is not difÞcult to
see that this model will indeed dominate all the setA with r(mtop S x) = 100%, i.e. with
unanimous concordance∀x ∈ A. It will naturally also outrank allx ∈ A in the sense of
the ordinal concordance.
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Table 4: The cardinal majority concordance of the outranking of the car models
rw(S) m1 m2 m3 m4 m5 m6 m7

m1 - .83 .67 .67 .67 .67 .67
m2 .80 - .72 .47 .67 .47 .67
m3 .73 .73 - .75 .67 .67 .67
m4 .53 .53 .80 - .80 .63 .67
m5 .53 .73 .80 .80 - .72 .67
m6 .73 .73 .73 .73 .73 - .83
m7 .33 .53 .33 .53 .53 .60 -

4.1 Unanimous concordance

Definition 8. ∀a, b ∈ A we say that Òa outranksb in the sense of the unanimous con-
cordance principleÓ, denoted Òa ∆ bÓ, if the outranking assertion considered restricted to
each individual criterion israther true than false.

We capture once more the potential truthfulness of this dominance assertion with the
help of a logical robustness denotation‖a S b‖∆ taking its values inL3 = {f∆, u, t∆},
wheref∆ meansunanimously false, t∆ meansunanimously trueandu meansundeter-
minedas usual.

∀a, b ∈ A : ‖a S b‖∆ =




t∆ if ∀gj ∈ F : r(a Sj b) > 1
2
;

f∆ if ∀gj ∈ F : r(a Sj b) < 1
2
;

u otherwise.

(13)

In our example, neither of the seven models imposes itself on the level of the unani-
mous concordance principle and the relation∆ remains uniformly undetermined onA.

We are now going to integrate all three outranking relations, i.e. the unanimous, the
ordinal and the majority concordance in a common logical framework.

4.2 Integrating unanimous, ordinal and classical majority concor-
dance

Let w represent given numerical signiÞcance weights andπ the underlying signiÞcance
preorder. We deÞne the following ordinal sequence (increasing from falsity to truth) of
logical robustness degrees:f∆ meansunanimous concordantly false, fπ meansordinal
concordantly false with anyπ-compatible weights, fw meansmajority concordantly false
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Table 5: Robustness of the outranking on the car models
‖S‖ m1 m2 m3 m4 m5 m6 m7

m1 - tπ tw tw tw tw tw
m2 tπ - tπ fπ tw fπ tw
m3 tw tπ - tw tw tw tw
m4 tπ tπ tπ - tπ tπ tw
m5 tw tπ tπ tπ - tπ tw
m6 tπ tπ tπ tπ tπ - tπ
m7 fw tπ fw tπ tπ tπ -

with weightsw, u meansundetermined, tw meansmajority concordantly true with weights
w, tπ meansordinal concordantly true with anyπ-compatible weightsandt∆ meansunan-
imous concordantly true.

On the basis of a given performance tableau, we may thus evaluate the global outrank-
ing relationS onA as follows:

Definition 9. Let L7 = {f∆, fπ, fw, u, tw, tπ, t∆}. ∀a, b ∈ A, we deÞne an ordinal robust-
ness denotation‖a S b‖ ∈ L7 as follows:

‖a S b‖ =




t∆ if ‖a S b‖∆ = t∆ ;

tπ if (‖a S b‖∆ 
= t∆) ∧ (‖a S b‖π = tπ) ;

tw if (‖a S b‖π 
= tπ) ∧ (‖a S b‖w = tw) ;

f∆ if ‖a S b‖∆ = f∆ ;

fπ if (‖a S b‖∆ 
= f∆) ∧ (‖a S b‖π = fπ) ;

fw if (‖a S b‖π 
= fπ) ∧ (‖a S b‖w = fw) ;

u otherwise.

(14)

On the seven car models, we obtain for instance the results shown in Table 5. If we
apply our methodology for constructing good choices from such an ordinal valued out-
ranking relation we obtain a single ordinal concordant good choice: modelm6, and four
classical majority concordance based good choices:m1, m3, m4 andm5. The Þrst good
choice remains an admissible good choice with any possibleπ-compatible set of signif-
icance weights, whereas the others are more or less dependent on the precise numerical
weights given. Similarly, we discover two potentially bad choices:m2 at the leveltπ and
m5 at the leveltw. The Þrst represents therefore a bad choice on the ordinal concordance
level.2

2Conducting a similar analysis with taking into account the veto principle and thresholds given in Vincke
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Table 6: Criteria for selecting a parcel sorting installation
criterion title signiÞcance

weights

g1 quality of the working place 3/39
g2 quality of operating environment 2/39
g3 operating costs 5/39
g4 throughput 3/39
g5 ease of operation 3/39
g6 quality of maintenance 5/39
g7 ease of installation 2/39
g8 number of sorting bins 2/39
g9 investment costs 5/39
g10 bar-code addressing 1/39
g11 service quality 5/39
g12 development stage 3/39

Source:Roy and Bouyssou (1993, p. 527)

4.3 Practical applications

In order to illustrate the practical application of the ordinal concordance principle we
present two case studies: the Þrst, a classical historical case, well discussed in the lit-
erature and a second, very recent real application at the occasion of the EURO 2004
Conference in Rhodes.

4.3.1 Choosing the best postal parcels sorting machine

Let us Þrst reconsider the problem of choosing a postal parcels sorting machine thor-
oughly discussed in Roy and Bouyssou (1993, pp 501Ð541).

We observe a setA = {a1, . . . , a9} of 9 potential installations evaluated on the coher-
ent familyF = {g1, . . . , g12} of 12 criteria shown in Table 6. The provided signiÞcance
weights (see last column) determines the following signiÞcance ordering:w10 < w2 =
w7 = w8 < w1 = w4 = w5 = w12 < w3 = w6 = w9 = w11. Thus we observe on the pro-

(1992), we Þnd that no ordinal concordance is observed anymore. Applying the given numerical signiÞ-
cance weights, one gets however that modelsm3 andm4 appear both as potential good choice. Indeed,
modelm6 has a weak evaluation on thecomfortcriterion compared to the excellent evaluation of modelm1

for instance, and the same modelm1 is the most expensive one, therefore a veto appears on this criterion
in comparison with the prize of modelm7 for instance. Modelsm3 andm4 represent therefore plausible
compromises with respect to the numerical signiÞcance weights of the criteria. By the way, our example is
a nice justiÞcation of the usefulness of the veto principle in suitable practical applications.
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Table 7: Qualifying outranking situationa1 Sj a5 anda4 Sj a5

gj 1 2 3 4 5 6 7 8 9 10 11 12

qj 5 5 5 5 5 10 8 0 1 10 5 10
gj(a1) 75 69 68 70 82 72 86 74 -15.23 83 76 29
gj(a4) 73 57 82 90 75 61 93 60 -15.55 83 71 29
gj(a5) 76 46 55 90 48 46 93 60 -30.68 83 50 14

r(a1 Sj a5) 1 1 1 0 1 1 1 1 1 1 1 1
r(a4 Sj a5) 1 1 1 1 1 1 1 1 1 1 1 1

r(a1 Sj a5) 0 0 0 1 0 0 0 0 0 0 0 0
r(a4 Sj a5) 0 0 0 0 0 0 0 0 0 0 0 0

Source:Roy and Bouyssou (1993, p. 527)

Table 8: cumulative signiÞcance distribution of outrankinga1 S a5

π(i) π(1) π(2) π(3) π(4) π(5) π(6) π(7) π(8)

C(i)(a1, a5) 0 1 1 1 2 5 8 12

C(i)(a1, a5) 4 7 10 11 11 12 12 12

posed family of criteria 4 positive equivalence classes:π(5) = {g10}, π(6) = {g2, g7, g8},
π(7) = {g1, g4, g5, g12}, andπ(8) = {g3, g6, g9, g11} and 4 mirrored negative equivalence
classes:π(1) = {g3, g6, g9, g11}, π(2) = {g1, g4, g5, g12}, π(3) = {g2, g7, g8}, π(4) = {g10}.

A previous decision aid analysis has eventually produced a performance tableau of
which we show an extract in Table 7. The evaluations on each criterion, exceptg9 (costs
of investmentin millions of French francs), are normalized such that0 ≤ gj(ai) ≤ 100. If
we consider for instance the installationsa1 anda5, we may deduce the local outranking
credibility coefÞcientsr(a1 Sj a5) shown in Table 7. There is no unanimous concordance
in favour ofa1 S a5. Indeed we observe on criteriong4 (throughput) a signiÞcant negative
difference in performance. We may nevertheless observe an ordinal concordance situ-
ation a1 Sπ a5 as distributionC(i)(a1, a5) is entirely situated to the right of distribution
C(i)(a1, a5) (see Table 8).

On the complete set of pairwise outrankings of potential installations, we observe the
robustness denotation shown in Table 9. We may notice the presence of one unanimous
concordance situationa4∆a5 qualifying the outranking ofa4 overa5 (see Table 7). Com-
puting from this ordinally valued robust outranking relation all robust good choices, i.e.
minimal dominant sets in the sense of the robust concordance, we obtain that installations
a1, a2, a3 anda4 each one gives a robust good choice at leveltπ, whereas the installations
a5 anda9 give each one a robust bad choice again at leveltπ. If we apply in particular the
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Table 9: Robustness degrees of outranking situations
‖ai S aj‖ a1 a2 a3 a4 a5 a6 a7 a8 a9

a1 - tπ tπ tπ tπ tπ tπ tπ tπ
a2 tπ - tπ tπ tπ tπ tπ tπ tπ
a3 tπ tπ - tπ tπ tπ tπ tπ tπ
a4 tπ tπ tπ - t∆ tπ tπ tπ tπ
a5 fπ fπ fπ fπ - fπ fπ fw tπ
a6 tw fw tw tπ tπ - tw tw tπ
a7 tπ tπ tw tπ tπ tπ - tπ tπ
a8 tw tπ tπ tπ tπ tπ tπ - tπ
a8 fw tπ tπ tπ tπ fw fw tπ -

given numerical signiÞcance weights (see Table 6), we furthermore obtain thata1 gives
among the four potential good choices the most credible (67%) one whereas among the
admissible bad choices it is installationa5 which gives the most credible (67%) worst
one. This result precisely conÞrms and even formally validates the robustness discussion
reported in Roy and Bouyssou (1993, p. 538).

4.3.2 The Euro Best Poster Award 2004: finding a robust consensual ranking

The Programme Committee of the 20th European Conference on Operational Research,
Rhodes 2004 has introduced a new type of EURO K conference participation consisting
in a daily poster session linked with an oral 30 minutes presentation in front of the poster,
a presentation style similar to poster sessions in traditional natural sciences congresses.
In order to promote these new discussion presentations,the organizers of the conference
proposed a EURO Best Poster Award (EBPA) consisting of a diploma and a prize of
1000e. Each contributor accepted in the category of the discussion presentations was
invited to submit a pdf image of his poster to a Þve member jury.

The Programme Committee retained the following evaluation criteria:scientific qual-
ity (sq),contribution to OR theory and/or practice(ctp), originality (orig) andpresenta-
tion quality (pq) in decreasing order of importance. 13 candidates actually submitted a
poster in due time and the Þve jury members were asked to evaluate the 13 posters on each
criteria with the help of an ordinal scale : 0 (very weak) to 10 (excellent) and to propose
a global ranking of the posters.
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Table 10: Global outranking of the posters
rw(S) p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13

p1 - .58 .24 .12 .46 .68 .34 .76 .65 .04 .63 .08 .28
p2 .42 - .34 .34 .34 .42 .42 .40 .61 .24 .45 .34 .26
p3 .82 .74 - .54 .66 .98 .86 .96 .69 .16 .81 .58 .46
p4 .98 .68 .62 - .76 .98 .82 .98 .69 .28 .75 .70 .54
p5 .64 .68 .72 .48 - 1.0 .78 .98 .69 .26 .75 .52 .0
p6 .54 .58 .10 .10 .34 - .42 .86 .65 .0 .63 .04 .0
p7 .68 .72 .32 .46 .30 .86 - .82 .65 .10 .69 .50 .36
p8 .50 .60 .16 .20 .30 .66 .40 - .71 .02 .67 .16 .0
p9 .43 .49 .35 .35 .41 .49 .37 .49 - .0 .39 .37 .35
p10 1.0 .80 1.0 .84 1.0 1.0 .90 1.0 .71 - .81 .88 .80
p11 .71 .61 .37 .29 .29 .43 .39 .59 .69 .0 - .31 .43
p12 .98 .66 .70 .62 .64 .96 .78 .94 .69 .32 .75 - .56
p13 .1.0 .76 .70 .60 .80 .80 .70 .96 .69 .48 .81 .64 -

As all Þve jury members were ofÞcially equal in signiÞcance, we may consider to
be in the presence of a family of5 × 4 = 20 criteria gathered into four equivalence
classes listed hereafter in decreasing order of signiÞcance:π(1) = {sq1, sq2, sq3, sq4, sq5},
π(2) = {pct1, pct2, pct3, pct4, pct5}, π(3) = {orig1, orig2, orig3, orig4, orig5} andπ(4) =
{pq1, pq2, pq3, pq4, pq5}.

The cardinal signiÞcance weights associated with the four classes of equi-signiÞcant
criteria were eventually the following:wsqi

= 4, wctpi
= 3, worigi

= 2 andwpqi
= 1, for

i = 1 to 4.

The decision problem we are faced with is to aggregate the 20 rankings of the 13
posters on the basis of the given performance tableau. To do so we Þrst computed the
credibility indexrw of the global outranking relationS shown in Table 10 using the given
signiÞcance weightsw.

Considering the ordinal character of the criterial scales involved, indifference and
preference thresholds were considered to be identically zero, respectively one, on all cri-
teria and no veto thresholds were to be considered.

Applying our bipolar ranking approach (see Bisdorff, 1999) to this classical outrank-
ing relation gives the following ranking of the posters:
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Table 11: Robust outranking of the posters
‖S‖ p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13

p1 - tπ fπ fπ fw tπ fπ tπ tπ fπ tπ fπ fπ

p2 fπ - fπ fπ fπ fπ fπ fπ tπ fπ fw fπ fπ

p3 tπ tπ - tw tw tπ tπ tπ tπ fπ tπ tw fw

p4 tπ tπ tπ - tπ tπ tπ tπ tπ fw tπ tπ tπ
p5 tπ tπ tπ fw - t∆ tπ tπ tπ fπ tπ tw f∆

p6 tw tπ fπ fπ fπ - fπ tπ tπ f∆ tπ fπ f∆

p7 tπ tπ fπ fw fπ tπ - tπ tπ fπ tπ u fπ

p8 u tπ fπ fπ fπ tπ fπ - tπ fπ tπ fπ f∆

p9 fπ fπ fπ fπ fπ fπ fπ fπ - f∆ fπ fπ fπ

p10 t∆ tπ t∆ tπ t∆ t∆ tπ t∆ tπ - tπ tπ tπ
p11 tπ tπ fπ fπ fπ fπ fπ tπ tπ f∆ - fπ fπ

p12 tπ tπ tπ tw tπ tπ tπ tπ tπ fw tπ - tπ
p13 t∆ tπ tπ tw tπ tπ tπ tπ tπ fw tπ tπ -

Bipolar ranking of the 13 posters from relation S
Best choice p10

2nd best choice p13

3rd best choice p4, p12

4th best choice p3

5th best choice p5

6th best choice p7

6th worst choice p1

5th worst choice p6

4th worst choice p8

3rd worst choice p11

2nd worst choice p2

Worst choice p9

Posterp10 appears majoritarian as the best candidate as it globally outranks all other
poster with a comfortable weighted signiÞcance of 80%, followed in a second position by
posterp13 and postersp4 andp12 ex eaquo in a third position. On the other side, poster
p9 appears to be the least appreciated by the judges (overall signiÞcance: 60%), preceded
by posterp2 in the second worst position. But is this precise consensual ordering not an
artifact induced by our more or less arbitrarily chosen cardinal importance weights: 4, 3,
2, 1 ? To check this point, we compute the robustness degrees of the previous outranking
relation as shown in Table 11. Directly applying the same bipolar ranking approach to the
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ordinal valued‖S‖ outranking relation, we obtain the following ordering:

Bipolar ranking of the 13 posters from relation ‖S‖
Best choice p10

2nd best choice p4

3rd best choice p12, p13

4th best choice p5

5th best choice p3

6th best choice p7

6th worst choice p7

5th worst choice p1

4th worst choice p6

3rd worst choice p8, p11

2nd worst choice p2

Worst choice p9

Previous results get well conÞrmed on the whole. Indeed with a robustness degree oftπ,
i.e. rather true than false with anyπ-compatible weights, posterp10 is conÞrmed in the
Þrst3 and posterp9 in the last position4.

Attributing the EBPA 2004 to posterp10 was therefore indeed independent of the
choice of any precise numerical signiÞcance weights verifying the signiÞcance ordering
of the four criteria as imposed by the Programme Committee.

5 Conclusion

In this paper we have presented a formal approach for assessing binary outranking situa-
tions on the basis of a performance tableau involving criteria of solely ordinal signiÞcance.
The concept of ordinal concordance has been introduced and a formal testing procedure
based on distributional dominance is developed. Thus we solve a major practical problem
concerning the precise numerical knowledge of the individual signiÞcance weights that
is required by the classical majority concordance principle as implemented for instance
in the Electre methods. Applicability of the concordance based aggregation of prefer-
ence is extended to the case where only ordinal signiÞcance of the criteria is available.

3Posterp10, which obtained the EBPA 2004, was submitted by Federica RICCA, Bruno SIMEONE
and Isabella LARI onPolitical Districting via Weighted Voronoı̈ Regionsfrom the University of Rome ÒLa
SapienzaÓ.

4It is worthwhile noticing that our bipolar ranking method was not designed to be necessarily stable
with respect to the above robustness analysis. And indeed, we may notice a slight order reversal concerning
respective positions of postersp4 andp13. But otherwise there appears no major divergence between both
orderings.
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Furthermore, even if precise numerical signiÞcance is available, we provide a robustness
analysis of the observed preferences by integrating unanimous, ordinal and majority based
concordance in a same logical framework.
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On some ordinal models for decision making
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Abstract

In the field of Artificial Intelligence many models for decision making under un-
certainty have been proposed that deviate from the traditional models used in Deci-
sion Theory, i.e. the Subjective Expected Utility (SEU) model and its many variants.
These models aim at obtaining simple decision rules that can be implemented by
efficient algorithms while based on inputs that are less rich than what is required in
traditional models. One of these models, called the likely dominance (LD) model,
consists in declaring that an act is preferred to another as soon as the set of states on
which the first act gives a better outcome than the second act is judged more likely
than the set of states on which the second act is preferable. The LD model is at much
variance with the SEU model. Indeed, it has a definite ordinal flavor and it may
lead to preference relations between acts that are not transitive. This paper proposes
a general model for decision making under uncertainty tolerating intransitive and/or
incomplete preferences that will contain both the SEU and the LD models as particu-
lar cases. Within the framework of this general model, we propose a characterization
of the preference relations that can be obtained with the LD model. This characteri-
zation shows that the main distinctive feature of such relations lies in the very poor
relation comparing preference differences that they induce on the set of outcomes.

Key words : Decision under uncertainty, Subjective Expected Utility, Conjoint mea-
surement, Nontransitive preferences, Likely Dominance model.

∗LAMSADE, Université Paris-Dauphine, Place du Maréchal de Lattre de Tassigny, 75775 Paris cedex
16, France. bouyssou@lamsade.dauphine.fr
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1 Introduction

The specific needs of Artificial Intelligence techniques have led many Computer Scien-
tists to propose models for decision under uncertainty that are at variance with the classi-
cal models used in Decision Theory, i.e. the Subjective Expected Utility (SEU) model and
its many variants (see Fishburn, 1988; Wakker, 1989, for overviews). This gives rise to
what is often called “qualitative decision theory” (see Boutilier, 1994; Brafman and Ten-
nenholtz, 1997, 2000; Doyle and Thomason, 1999; Dubois et al., 1997, 2001; Lehmann,
1996; Tan and Pearl, 1994, for overviews). These models aim at obtaining simple decision
rules that can be implemented by efficient algorithms while based on inputs that are less
rich than what is required in traditional models. This can be achieved, e.g. comparing acts
only on the basis of their consequences in the most plausible states (Boutilier, 1994; Tan
and Pearl, 1994) or refining the classical criteria (Luce and Raiffa, 1957; Milnor, 1954) for
decision making under complete ignorance (see Brafman and Tennenholtz, 2000; Dubois
et al., 2001).

One such model, called the “likely dominance” (LD) model, was recently proposed
by Dubois et al. (1997) and later studied in Dubois et al. (2003a, 2002) and Fargier and
Perny (1999). It consists in declaring that an act a is preferred to an act b as soon as the
set of states for which a gives a better outcome than b is judged “more likely” than the
set of states for which b gives a better outcome than a. Such a way of comparing acts has
a definite ordinal flavor. It rests on a simple “voting” analogy and can be implemented
as soon as a preference relation on the set of outcomes and a likelihood relation between
subsets of states (i.e. events) are known. Contrary to the other models mentioned above,
simple examples inspired from Condorcet’s paradox (see Sen, 1986) show that the LD
model does not always lead to preference relations between acts that are complete or
transitive. Such relations are therefore quite different from the ones usually dealt with in
Decision Theory.

Previous characterizations (see Dubois et al., 2003a, 2002; Fargier and Perny, 1999)
of the relations that can be obtained using the LD model (of, for short, LD relations)
have emphasized their “ordinal” character via the use of variants of a “noncompensation”
condition introduced in Fishburn (1975, 1976, 1978) that have been thoroughly studied in
the area of multiple criteria decision making (see Bouyssou, 1986, 1992; Bouyssou and
Vansnick, 1986; Dubois et al., 2003b; Fargier and Perny, 2001; Vansnick, 1986). Since
this condition is wholly specific to such relations, these characterizations are not perfectly
suited to capture their essential distinctive features within a more general framework that
would also include more traditional preference relations.

The purpose of this paper is twofold. We first introduce a general axiomatic frame-
work for decision under uncertainty that will contain both the SEU and LD models as
particular cases. This general framework tolerating incomplete and/or intransitive pref-
erences is based on related work in the area of conjoint measurement (see Bouyssou and
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Pirlot, 2002). The second aim of this paper is to propose an alternative characterization of
the preference relations that can be obtained using the likely dominance rule within this
general framework. This characterization will allow us to emphasize the main distinctive
feature of such relations, i.e. the poor relation comparing preference differences that they
induce on the set of outcomes. This analysis specializes the one in Bouyssou and Pirlot
(2004b) to the case of decision making under uncertainty.

It should be noticed that the interest of studying models tolerating intransitive pref-
erences was forcefully argued by Fishburn (1991). It has already generated much work
(see, e.g. Fishburn, 1982, 1984, 1988, 1989, 1990, 1991; Fishburn and Lavalle, 1987a,b,
1988; Lavalle and Fishburn, 1987; Loomes and Sugden, 1982; Nakamura, 1998; Sugden,
1993). These models all use some form of an additive nontransitive model. The orig-
inality of our approach is to replace additivity by a mere decomposability requirement
which, at the cost of much weaker uniqueness results, allows for a very simple axiomatic
treatment.

This paper is organized as follows. Section 2 introduces our setting and notation. The
LD model is introduced in section 3. Our general framework for decision making under
uncertainty is presented and analyzed in section 4. Section 5 characterize the relations
that can be obtained using the LD model within our general framework. A final section
discusses our results and presents several extensions of our analysis. An appendix con-
tains examples showing the independence of the conditions used in the paper. The rest of
this section is devoted to our, classical, vocabulary concerning binary relations.

A binary relation R on a set X is a subset of X × X; we write a R b instead of
(a, b) ∈ R. A binary relation R on X is said to be:

• reflexive if [a R a],

• complete if [a R b or b R a],

• symmetric if [a R b] ⇒ [b R a],

• asymmetric if [a R b] ⇒ [Not [b R a]],

• transitive if [a R b and b R c] ⇒ [a R c],

• Ferrers if [(a R b and c R d) ⇒ (a R d or c R b)],

• semi-transitive if [(a R b and b R c) ⇒ (a R d or d R c)]

for all a, b, c, d ∈ X .

A weak order (resp. an equivalence) is a complete and transitive (resp. reflexive, sym-
metric and transitive) binary relation. If R is an equivalence on X , X/R will denote the
set of equivalence classes of R on X . An interval order is a complete and Ferrers binary
relation. A semiorder is a semi-transitive interval order.
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2 The setting

We adopt a classical setting for decision under uncertainty with a finite number of states.
Let Γ = {α, β, γ, . . .} be the set of outcomes and N = {1, 2, . . . , n} be the set of states.
It is understood that the elements of N are exhaustive and mutually exclusive: one and
only one state will turn out to be true. An act is a function from N to Γ. The set of all
acts is denoted by A = ΓN . Acts will be denoted by lowercase letters a, b, c, d, . . .. An
act a ∈ A therefore associates to each state i ∈ N an outcome a(i) ∈ Γ. We often abuse
notation and write ai instead of a(i).

Among the elements of A are constant acts, i.e. acts giving the same outcome in all
states. We denote α the constant act giving the outcome α ∈ Γ in all states i ∈ N . Let
E ⊆ N and a, b ∈ A. We denote aEb the act c ∈ A such that ci = ai, for all i ∈ E and
ci = bi, for all i ∈ N \ E. Similarly αEb will denote the act d ∈ A such that di = α, for
all i ∈ E and di = bi, for all i ∈ N \ E. When E = {i} we write aib and αib instead of
a{i}b and α{i}b.

In this paper � will always denote a binary relation on the set A. The binary relation
� is interpreted as an “at least as good as” preference relation between acts. We note �
(resp. ∼) the asymmetric (resp. symmetric) part of �. A similar convention holds when
� is starred, superscripted and/or subscripted. The relation � induces a relation �Γ on
the set Γ of outcomes via the comparison of constant acts letting:

α �Γ β ⇔ α � β.

Let E be a nonempty subset of N . We define the relation �E on A letting, for all
a, b ∈ A,

a �E b ⇔ [aEc � bEc, for all c ∈ A].

When E = {i} we write �i instead of �{i}.

If, for all a, b ∈ A, aEc � bEc, for some c ∈ A, implies a �E b, we say that � is
independent for E. If � is independent for all nonempty subsets of states we say that �
is independent. It is not difficult to see that a binary relation is independent if and only if
it is independent for N \ {i}, for all i ∈ N (see Wakker, 1989). Independence as defined
here is therefore nothing else than the Sure Thing Principle (postulate P2) introduced by
Savage (1954).

We say that state i ∈ N is influent (for �) if there are α, β, γ, δ ∈ Γ and a, b ∈ A such
that αia � βib and Not [γia � δib] and degenerate otherwise. It is clear that a degenerate
state has no influence whatsoever on the comparison of the elements of A and may be
suppressed from N . In order to avoid unnecessary minor complications, we suppose
henceforth that all states in N are influent. Note that this does not rule out the existence
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of null events E ⊆ N , i.e. such that aEc ∼ bEc, for all a, b, c ∈ A. This is exemplified
below.

Example 1
Let N = {1, 2, 3, 4} and Γ = R. Let p1 = p2 = p3 = p4 = 1/4. Define � on A letting

a � b ⇔
∑

i ∈ S(a,b)

pi ≥
∑

j ∈ S(b,a)

pj − 1/4.

for all a, b ∈ A, where S(a, b) = {i ∈ N : ai ≥ bi}. With such a relation, it is easy to
see that all states are influent while they are all null. Observe that � is complete but is not
transitive. We shall shortly see that this relation can be obtained with the LD model. �

3 The likely dominance model

The following definition, building on Dubois et al. (1997) and Fargier and Perny (1999),
formalizes the idea of a LD relation, i.e., of a preference relation that has been obtained
comparing acts by pairs on the basis of the “likelihood” of the states favoring each element
of the pair.

Definition 1 (LD relations)
Let � be a reflexive binary relation on A. We say that � is a LD relation if there are:

• a complete binary relation S on Γ,

• a binary relation � between subsets of N having N for union that is monotonic
w.r.t. inclusion, i.e. such that for all A,B,C,D ⊆ N ,

[A � B,C ⊇ A,B ⊇ D,C ∪ D = N ] ⇒ C � D, (1)

such that, for all a, b ∈ A,

a � b ⇔ S(a, b) � S(b, a), (2)

where S(a, b) = {i ∈ N : ai S bi}. We say that 〈�, S〉 is a representation of �.

Hence, when � is a LD relation, the preference between a and b only depends on the
subsets of states favoring a or b in terms of the complete relation S. It does not depend
on “preference differences” between outcomes besides what is indicated by S. A major
advantage of the LD model is that it can be applied to compare acts as soon as there is a
binary relation allowing to compare outcomes and a relation allowing to compare events
in terms of likelihood.

49



On some ordinal models for decision making under uncertainty

Let � be a LD relation with a representation 〈�, S〉. We denote by I (resp. P) the
symmetric part (resp. asymmetric part) of S. For all A,B ⊆ N , we define the relations �,
� and �� between subsets of N having N for union letting: A � B ⇔ [A � B and B �

A], A � B ⇔ [A � B and Not [B � A]], A �� B ⇔ [Not [A � B] and Not [B � A]].

The following lemma takes note of some elementary properties of LD relations; it
uses the hypothesis that all states are influent.

Lemma 1
If � is a LD relation with a representation 〈�, S〉, then:

1. P is nonempty,

2. for all A,B ⊆ N such that A∪B = N exactly one of A � B, B � A, A � B and
A �� B holds and we have N � N ,

3. for all A ⊆ N , N � A,

4. N � ∅,

5. � is independent,

6. � is marginally complete, i.e., for all i ∈ N , all α, β ∈ Γ and all a ∈ A, αia � βia
or βia � αia,

7. S = �Γ,

8. for all i ∈ N and all a, b ∈ A, either a �i b ⇔ ai S bi or a ∼i b,

9. � has a unique representation.

PROOF

Part 1. If P is empty, then, since S is complete, S(a, b) = N , for all a, b ∈ A. Hence, for
all i ∈ N , all α, β, γ, δ ∈ Γ, and all a, b ∈ A,

S(αia, βib) = S(γia, δib) and

S(βib, αia) = S(δib, γia).

This implies, using (2), that state i ∈ N is degenerate, contrarily to our hypothesis.

Part 2. Since the relation P is nonempty and S is complete, for all A,B ⊆ N such
that A ∪ B = N , there are a, b ∈ A such that S(a, b) = A and S(b, a) = B. We have,
by construction, exactly one of a � b, b � a, a ∼ b and [Not [a � b] and Not [b � a]].
Hence, using (2), we have exactly one of A � B, B � A, A � B and A �� B. Since the
relation S is complete, we have S(a, a) = N . Using the reflexivity of �, we know that
a ∼ a, so that (2) implies N � N .

50



Annales du LAMSADE n◦3

Parts 3 and 4. Let A ⊆ N . Because N � N , the monotonicity of � implies N � A.
Suppose that ∅ � N . Then the monotonicity of � would imply that A � B, for all
A,B ⊆ N such that A∪B = N . This would contradict the fact that each state is influent.

Part 5. Using the completeness of S, we have, for all α, β, γ, δ ∈ Γ and all a, b ∈ A,

S(αia, αib) = S(βia, βib) and

S(αib, αia) = S(βib, βia).

Using (2), this implies that, for all i ∈ N , all α, β ∈ Γ and all a, b ∈ A, αia � αib ⇔
βia � βib. Therefore, � is independent for N \ {i} and, hence, independent.

Part 6 follows from the fact that S is complete, N � N and N � N \ {i}, for all
i ∈ N .

Part 7. Suppose that α �Γ β so that α � β and Not [α S β]. Since S is complete, we
have β P α. Using (2) and N � ∅, we have β � α, a contradiction. Conversely, if α S β
we obtain, using (2) and the fact that N � A, for all A ⊆ N , α � β so that α �Γ β.

Part 8. Let i ∈ N . We know that N � N and N � N \ {i}. If N � N \ {i}, then (2)
implies a �i b for all a, b ∈ A. Otherwise we have N � N \ {i} and N � N . It follows
that α S β ⇒ α �i β and α P β ⇒ α �i β. Since S and �i are complete, it follows that
S = �i.

Part 9. Suppose that � is a LD relation with a representation 〈�, S〉. Suppose that �
has another representation 〈�′, S′〉. Using part 7, we know that S = S′ = �Γ. Using (2),
it follows that � = �′. �

4 A general framework for decision under uncertainty
tolerating intransitive preferences

We consider in this section binary relations � on A that can be represented as:

a � b ⇔ F (p(a1, b1), p(a2, b2), . . . , p(an, bn)) ≥ 0 (UM)

where p is a real-valued function on Γ2 that is skew symmetric (i.e. such that p(α, β) =
−p(β, α), for all α, β ∈ Γ) and F is a real-valued function on

∏n
i=1 p(Γ2) being nonde-

creasing in all its arguments and such that, abusing notation, F (0) ≥ 0.

It is useful to interpret p as a function measuring preference differences between out-
comes. The fact that p is supposed to be skew symmetric means that the preference
difference between α and β is the opposite of the preference difference between β and α,
which seems a reasonable hypothesis for preference differences. With this interpretation
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in mind, the acts a and b are compared as follows. In each state i ∈ N , the preference
difference between ai and bi is computed. The synthesis of these preference differences is
performed applying the function F . If this synthesis is positive, we conclude that a � b.
Given this interpretation, it seems reasonable to suppose that F is nondecreasing in each
of its arguments. The fact that F (0) ≥ 0 simply means that the synthesis of null prefer-
ence differences in each state should be nonnegative; this ensures that � will be reflexive.
Model (UM) is the specialization to the case of decision making under uncertainty of
conjoint measurement models studied in Bouyssou and Pirlot (2002).

It is not difficult to see that model (UM) encompasses preference relations � on A
that are neither transitive nor complete. It is worth noting that this model is sufficiently
flexible to contain many others as particular cases including:

• the SEU model (see, e.g. Wakker, 1989) in which:

a � b ⇔
n∑

i=1

wiu(ai) ≥
n∑

i=1

wiu(bi) (SEU)

where wi are nonnegative real numbers that add up to one and u is a real-valued
function on Γ,

• the Skew Symmetric Additive model (SSA) (see Fishburn, 1988, 1990) in which

a � b ⇔
n∑

i=1

wiΦ(ai, bi) ≥ 0 (SSA)

where wi are nonnegative real numbers that add up to one and Φ is a skew symmet-
ric (Φ(α, β) = −Φ(β, α)) real-valued function on Γ2.

We will show in the next section that model (UM) also contains all LD relations. As
shown below, model (UM) implies that � is independent. It is therefore not suited to
cope with violations of the Sure Thing Principle that have been widely documented in
the literature (Allais, 1953; Ellsberg, 1961; Kahneman and Tversky, 1979), which can be
done, e.g. using Choquet Expected Utility or Cumulative Prospect Theory (see Chew and
Karni, 1994; Gilboa, 1987; Karni and Schmeidler, 1991; Luce, 2000; Nakamura, 1990;
Schmeidler, 1989; Wakker, 1989, 1994, 1996; Wakker and Tversky, 1993).

The flexibility of model (UM) may obscure some of its properties. We summarize
what appears to be the most important ones in the following.

Lemma 2
Let � be a binary relation on A that has a representation in model (UM). Then:

1. � is reflexive, independent and marginally complete,
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2. [a �i b for all i ∈ J ⊆ N ] ⇒ [a �J b],

3. �Γ is complete.

PROOF

Part 1. The reflexivity of � follows from the skew symmetry of p and F (0) ≥ 0. In-
dependence follows from the fact that p(α, α) = 0, for all α ∈ Γ. Not[αia � βia] and
Not[βia � αia] imply, abusing notation, F ([p(α, β)]i, [0]−i) < 0 and F ([p(β, α)]i, [0]−i)
< 0. Since F (0) ≥ 0 and F is nondecreasing, we have p(α, β) < 0 and p(β, α) < 0,
which contradicts the skew symmetry of p. Hence, � is marginally complete.

Part 2. Observe that α �i β is equivalent to F ([p(α, β)]i, [0]−i) ≥ 0 and F ([p(β, α)]i,
[0]−i) < 0. Since F (0) ≥ 0 we know that p(β, α) < 0 using the nondecreasingness of F .
The skew symmetry of p implies p(α, β) > 0 > p(β, α) and the desired property easily
follows using the nondecreasingness of F .

Part 3. Because p is skew symmetric, we have, for all α, β ∈ Γ, p(α, β) ≥ 0 or
p(β, α) ≥ 0. Since F (0) ≥ 0, the completeness of �Γ follows from the nondecreasing-
ness of F . �

The analysis of model (UM) heavily rests on the study of induced relations comparing
preference differences on the set of outcomes. The interest of such relations was already
powerfully stressed by Wakker (1988, 1989) (note however that, although we use similar
notation, our definitions differs from his).

Definition 2 (Relations comparing preference differences)
Let � be a binary relation on A. We define the binary relations �∗ and �∗∗ on Γ2 letting,
for all α, β, γ, δ ∈ Γ,

(α, β) �∗ (γ, δ) ⇔ [for all a, b ∈ A and all i ∈ N, γia � δib ⇒ αia � βib],

(α, β) �∗∗ (γ, δ) ⇔ [(α, β) �∗ (γ, δ) and (δ, γ) �∗ (β, α)].

The asymmetric and symmetric parts of �∗ are respectively denoted by �∗ and ∼∗, a
similar convention holding for �∗∗. By construction, �∗ and �∗∗ are reflexive and transi-
tive. Therefore, ∼∗ and ∼∗∗ are equivalence relations. Note that, by construction, �∗∗ is
reversible, i.e. (α, β) �∗∗ (γ, δ) ⇔ (δ, γ) �∗∗ (β, α).

We note a few useful connections between �∗ and � in the following lemma.

Lemma 3
1. � is independent if and only if (iff) (α, α) ∼∗ (β, β), for all α, β ∈ Γ
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2. For all a, b, c, d ∈ A, all i ∈ N and all α, β ∈ Γ

[a � b and (ci, di) �∗ (ai, bi)] ⇒ cia � dib, (3)

[(cj, dj) ∼∗ (aj, bj), for all j ∈ N ] ⇒ [a � b ⇔ c � d]. (4)

PROOF

Part 1. It is clear that [� is independent] ⇔ [� is independent for N \ {i}, for all i ∈ N ].
Observe that [� is independent for N \ {i}, for all i ∈ N ] ⇔ [αia � αib ⇔ βia � βib,
for all α, β ∈ Γ, all i ∈ N and all a, b ∈ A ] ⇔ [(α, α) ∼∗ (β, β) for all α, β ∈ Γ ].

Part 2. (3) is clear from the definition of �∗, (4) follows. �

The following conditions are an adaptation to the case of decision making under uncer-
tainty of conditions used in Bouyssou and Pirlot (2002) in the context of conjoint mea-
surement. They will prove will prove central in what follows.

Definition 3 (Conditions URC1 and URC2)
Let � be a binary relation on A. This relation is said to satisfy:

URC1 if
αia � βib

and
γjc � δjd


 ⇒




γia � δib
or

αjc � βjd,

URC2 if
αia � βib

and
βjc � αjd


 ⇒




γia � δib
or

δjc � γjd,

for all i, j ∈ N , all a, b, c, d ∈ A and all α, β, γ, δ ∈ Γ.

Condition URC1 suggests that, independently of the state i ∈ N , either the difference
(α, β) is at least as large as the difference (γ, δ) of vice versa. Indeed, suppose that αia �
βib and Not [γia � δib]. This is the sign that the preference difference between α and β
appears to be larger than the preference difference between γ and δ. Therefore if γjc �
δjd, we should have αjc � βjd, which is URC1. Similarly, condition URC2 suggests that
the preference difference (α, β) is linked to the “opposite” preference difference (β, α).
Indeed if αia � βib and Not [γia � δib], so that the difference between γ and δ is not
larger than the difference between α and β, URC2 implies that βjc � αjd should imply
δjc � γjd, so that the difference between δ and γ is not smaller than the difference
between β and α. The following lemma summarizes the main consequences of URC1
and URC2.

Lemma 4
1. URC1 ⇔ [�∗ is complete],

2. URC2 ⇔
[for all α, β, γ, δ ∈ Γ,Not [(α, β) �∗ (γ, δ)] ⇒ (β, α) �∗ (δ, γ)],
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3. [URC1 and URC2] ⇔ [�∗∗ is complete].

4. In the class of reflexive relations, URC1 and URC2 are independent conditions.

5. URC2 ⇒ [� is independent].

PROOF

Part 1. Suppose that URC1 is violated so that αia � βib, γjc � δjd, Not [γia � δib] and
Not [αjc � βjd]. This is equivalent to Not [(α, β) �∗ (γ, δ)] and Not [(γ, δ) �∗ (α, β)].

Part 2. Suppose that URC2 is violated so that αia � βib, βjc � αjd, Not [γia � δib]
and Not [δjc � γjd]. This is equivalent to Not [(γ, δ) �∗ (α, β)] and Not [(δ, γ) �∗ (β, α)].
Part 3 easily follows from parts 1 and 2.

Part 4: see examples 2 and 3 in appendix.

Part 5. Suppose that αia � αib. Using URC2 implies βia � βib, for all β ∈ Γ. Hence,
� is independent. �

The following lemma shows that all relations satisfying model (UM) satisfy URC1 and
URC2; this should be no surprise since within model (UM) the skew symmetric function
p induces on Γ2 a reversible weak order.

Lemma 5
Let � be a binary relation on A. If � has a representation in model (UM) then � satisfies
URC1 and URC2.

PROOF

[URC1]. Suppose that αia � βib and γjc � δjd. Using model (UM) we have:

F ([p(α, β)]i, [p(ak, bk)]k �=i) ≥ 0 and F ([p(γ, δ)]j, [p(c�, d�)]��=j) ≥ 0,

with [·]i denoting the ith argument of F . If p(α, β) ≥ p(γ, δ) then using the nonde-
creasingness of F , we have F ([p(α, β)]j, [p(c�, d�)]��=j) ≥ 0 so that αjc � βjd. If
p(α, β) < p(γ, δ) we have F ([p(γ, δ)]i, [p(ak, bk)]k �=i) ≥ 0 so that γia � δib. Hence
URC1 holds.

[URC2]. Similarly, suppose that αia � βib and βjc � αjd. We thus have:

F ([p(α, β)]i, [p(ak, bk)]k �=i) ≥ 0 and F ([p(β, α)]j, [p(c�, d�)]��=j) ≥ 0.

If p(α, β) ≥ p(γ, δ), the skew symmetry of p implies p(δ, γ) ≥ p(β, α). Using the nonde-
creasingness of F , we have F ([p(δ, γ)]j, [p(c�, d�)]��=j) ≥ 0, so that δjc � γjd. Similarly,
if p(α, β) < p(γ, δ), we have, using the nondecreasingness of F , F ([p(γ, δ)]i, [p(ak, bk)]k �=i)
≥ 0 so that γia � δib. Hence URC2 holds. �
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It turns out that conditions URC1 and URC2 allow to completely characterize model
(UM) when Γ/∼∗∗ is finite or countably infinite.

Theorem 1
Let � be a binary relation on A. If Γ/∼∗∗ is finite or countably infinite, then � has a
representation (UM) iff it is reflexive and satisfies URC1 and URC2.

PROOF

Necessity follows from lemmas 2 and 5. We establish sufficiency.

Since URC1 and URC2 hold, we know from lemma 4 that �∗∗ is complete so that it
is a weak order. This implies that �∗ is a weak order. Since Γ/∼∗∗ is finite or countably
infinite, it is clear that Γ/∼∗ is finite or countably infinite. Therefore, there is a real-valued
function q on Γ2 such that, for all α, β, γ, δ ∈ Γ, (α, β) �∗ (γ, δ) ⇔ q(α, β) ≥ q(γ, δ).
Given a particular numerical representation q of �∗, let p(α, β) = q(α, β)− q(β, α). It is
obvious that p is skew symmetric and represents �∗∗.

Define F as follows:

F (p(a1, b1), p(a2, b2), . . . , p(an, bn)) =

{
exp(

∑n
i=1 p(ai, bi)) if a � b,

− exp(−∑n
i=1 p(ai, bi)) otherwise.

The well-definedness of F follows from (4). To show that F is nondecreasing, suppose
that p(α, β) ≥ p(γ, δ), i.e. that (α, β) �∗∗ (γ, δ). If γia � δib, we know from (3) that
αia � βib and the conclusion follows from the definition of F . If Not [γia � δib], we
have either Not [αia � βib] or αia � βib. In either case, the conclusion follows from the
definition of F . Since � is reflexive, we have F (0) ≥ 0, as required. This completes the
proof. �

Remark 1
Following Bouyssou and Pirlot (2002), it is not difficult to extend theorem 1 to sets of
arbitrary cardinality adding a, necessary, condition implying that the weak order �∗ (and,
hence, �∗∗) has a numerical representation. This will not be useful here and we leave the
details to the interested reader.

We refer to Bouyssou and Pirlot (2002) for an analysis of the, obviously quite weak,
uniqueness properties of the numerical representation of model (UM). Observe that, if �
has a representation in model (UM), we must have that:

(α, β) �∗∗ (γ, δ) ⇒ p(α, β) > p(γ, δ). (5)

Hence, the number of distinct values taken by p in a representation in model (UM) is an
upper bound of the number of distinct equivalence classes of �∗∗. •
Remark 2
Following the analysis in Bouyssou and Pirlot (2002), it is not difficult to analyze variants
of model (UM). For instance, when Γ is finite or countably infinite:
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• the weakening of model (UM) obtained considering a function p that may not be
skew symmetric but is such that p(α, α) = 0, for all α ∈ Γ, is equivalent to suppos-
ing that � is reflexive, independent and satisfies URC1,

• the weakening of model (UM) obtained considering a function F that may not be
nondecreasing is equivalent to supposing that � is reflexive and independent,

• the strengthening of model (UM) obtained considering a function F that is odd
(F (x) = −F (x)) is equivalent to supposing that � is complete and satisfies URC1
and URC2.

In Bouyssou and Pirlot (2004c), we study the strengthening of model (UM) obtained
requiring that F that is odd and strictly increasing in each of its arguments. In the finite
or countably infinite case, this model is shown to be characterized by the completeness
of � and the “Cardinal Coordinate Independence” condition introduced in Wakker (1984,
1988, 1989) in order to derive the SEU model. This condition implies both URC1 and
URC2 for complete relations.

All the above results are easily generalized to cover the case of an arbitrary set of
consequences adding appropriate conditions guaranteeing that �∗ has a numerical repre-
sentation (on these conditions, see Fishburn, 1970; Krantz et al., 1971) •

5 A new characterization of LD relations

We have analyzed in Bouyssou and Pirlot (2004c) the relations between model (UM)
and models (SEU) and (SSA). We show here what has to be added to the conditions of
theorem 1 in order to characterize LD relations. The basic intuition behind this analysis
is quite simple. Consider a binary relation � that has a representation in model (UM)
in which the function p takes at most three distinct values, i.e. a positive value, a null
value and a negative value. In such a case, it is tempting to define the relation S letting
α P β ⇔ p(α, β) > 0 and α I β ⇔ p(α, β) = 0. Since p takes only three distinct
values, the relation S summarizes without any loss the information contained in the skew
symmetric function p. This brings us quite close to a LD relation. We formalize this
intuition below. This will require the introduction of conditions that will limit the number
of equivalence classes of ∼∗ and, therefore, ∼∗∗.
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Definition 4 (Conditions UM1 and UM2)
Let � be a binary relation on a set A. This relation is said to satisfy:

UM1 if
αia � βib

and
γjc � δjd


 ⇒




βia � αib
or

δia � γib
or

αjc � βjd,

UM2 if
αia � βib

and
βjc � αjd


 ⇒




βia � αib
or

γia � δib
or

γjc � δjd,

for all i, j ∈ N , all a, b, c, d ∈ A and all α, β, γ, δ ∈ Γ.

In order to analyze these two conditions, it will be useful to introduce the following two
conditions:

αia � βib
and

γjc � δjd


 ⇒




βia � αib
or

αjc � βjd,
(6)

αia � βib
and

βjc � αjd


 ⇒




βia � αib
or

γjc � δjd,
(7)

for all i, j ∈ N , all a, b, c, d ∈ A and all α, β, γ, δ ∈ Γ. Condition (6) has a simple
interpretation. Suppose that αia � βib and Not [βia � αib]. This is the sign that the
preference difference between α and β is strictly larger than the preference difference
between β and α. Because with LD relations there can be only three types of preference
differences (positive, null and negative) and preference differences are compared in a
reversible way, this implies that the preference difference between α and β must be at
least as large as any other preference difference. In particular, if γjc � δjd, it must follow
that αjc � βjd. This is what condition (6) implies. Condition (7) has an obvious dual
interpretation: if a difference is strictly smaller than its opposite then any other preference
must be at least as large as this difference. Conditions UM1 and UM2 are respectively
deduced from (6) and (7) by adding a conclusion to these conditions. This additional
conclusion ensures that these new conditions are independent from URC1 and URC2.
This is formalized below.

Lemma 6
1. (6) ⇔ [Not [(β, α) �∗ (α, β)] ⇒ (α, β) �∗ (γ, δ)],

2. (7) ⇔ [Not [(β, α) �∗ (α, β)] ⇒ (γ, δ) �∗ (β, α)],
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3. (6) ⇒ UM1,

4. (7) ⇒ UM2,

5. URC2 and UM1 ⇒ (6),

6. URC1 and UM2 ⇒ (7),

7. [URC1, URC2, UM1 and UM2] ⇒ [�∗∗ is a weak order having at most three equiv-
alence classes].

8. In the class of reflexive relations, URC1, URC2, UM1 and UM2 are independent
conditions.

PROOF

Part 1. We clearly have Not [(6)] ⇔ [Not [(β, α) �∗ (α, β)] and Not [(α, β) �∗ (γ, δ)]].
The proof of part 2 is similar. Parts 3 and 4 are obvious since UM1 (resp. UM2) amounts
to adding a possible conclusion to (6) (resp. (7)).

Part 5. Suppose that αia � βib and γjc � δjd. If Not [δja � γjb], UM1 implies
βia � αib or αjc � βjd. Suppose now that δja � γjb. Using URC2 δia � γib and
γja � δjb imply βia � αib or αja � βjb. Hence, (6) holds.

Part 6. Suppose that αia � βib and βjc � αjd. If Not [γia � δib], UM2 implies
βia � αib or γjc � δjd. Suppose now that γia � δib. Using URC1 γia � δib and
βjc � αjd imply βia � αib or γjc � δjd. Hence, (7) holds.

Part 7. Since URC1 and URC2 hold, we know that �∗∗ is complete. Since �∗∗ is
reversible, the conclusion will be false iff there are α, β, γ, δ ∈ Γ such that (α, β) �∗∗

(γ, δ) �∗∗ (α, α).

1. Suppose that (α, β) �∗ (γ, δ) and (γ, δ) �∗ (α, α). Using URC2, we know that
(α, α) �∗ (δ, γ). Using the transitivity of �∗ we have (γ, δ) �∗ (δ, γ). Since
(α, β) �∗ (γ, δ), this contradicts (6).

2. Suppose that (α, β) �∗ (γ, δ) and (α, α) �∗ (δ, γ). Using URC2, we know that
(γ, δ) �∗ (α, α). Using the transitivity of �∗ we have (γ, δ) �∗ (δ, γ). Since
(α, β) �∗ (γ, δ), this contradicts (6).

3. Suppose that (δ, γ) �∗ (β, α) and (γ, δ) �∗ (α, α). Using URC2, we know that
(α, α) �∗ (δ, γ) so that (γ, δ) �∗ (δ, γ). Since (δ, γ) �∗ (β, α), this contradicts (7).

4. Suppose that (δ, γ) �∗ (β, α) and (α, α) �∗ (δ, γ). Using URC2 we have (γ, δ) �∗

(α, α) so that (γ, δ) �∗ (δ, γ). Since (δ, γ) �∗ (β, α), this contradicts (7).

Part 8: see examples 4, 5, 6 and 7 in appendix. �
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In view of the above lemma, conditions UM1 and UM2 seem to adequately capture the
ordinal character of the aggregation at work in a LD relation within the framework of
model (UM). Indeed, the following lemma shows that all LD relations satisfy UM1 and
UM2 while having a representation in model (UM).

Lemma 7
Let � be a binary relation on A. If � is a LD relation then,

1. � satisfies URC1 and URC2,

2. � satisfies UM1 and UM2.

PROOF

Let 〈�, S〉 be the representation of �.

Part 1. Let us show that URC1 holds, i.e. that αia � βib and γjc � δjd imply
γia � δib or αjc � βjd.

There are 9 cases to envisage:

γ P δ γ I δ δ P γ
α P β (i) (ii) (iii)
α I β (iv) (v) (vi)
β P α (vii) (viii) (ix)

Cases (i), (v) and (ix) clearly follow from (2). All other cases easily follow from (2) and
the monotonicity of �. The proof for URC2 is similar.

Part 2. Let us show that UM1 holds, i.e. that αia � βib and γjc � δjd imply βia � αib
or γia � δib or αjc � βjd.

If α P β then, using (2) and the monotonicity of �, γjc � δjd implies αjc � βjd.
If β P α then, using (2) and the monotonicity of �, αia � βib implies βia � αib. If
α I β, then β I α so that, using (2), αia � βib implies βia � αib. The proof for UM2 is
similar. �

We are now in position to present the main result of this section.

Theorem 2
Let � be a binary relation on A. Then � is a LD relation iff it is reflexive and satisfies
URC1, URC2, UM1 and UM2.

PROOF

Necessity follows from lemma 7 and the definition of a LD relation. We show that if
� satisfies URC1 and URC2 and is such that ∼∗∗ has at most three distinct equivalence
classes then � is a LD relation. In view of lemma 6, this will establish sufficiency.
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Define S letting, for all α, β ∈ Γ, α S β ⇔ (α, β) �∗∗ (β, β). By hypothesis, we
know that �∗∗ is complete and � is independent. It easily follows that S is complete.

The relation �∗ being complete, the influence of i ∈ N implies that there are γ, δ, α, β ∈
Γ such that (α, β) �∗ (γ, δ). Since �∗∗ is complete, this implies (α, β) �∗∗ (γ, δ). If
(α, β) �∗∗ (β, β) then α P β. If not, then (β, β) �∗∗ (α, β) so that (β, β) �∗∗ (γ, δ)
and, using the reversibility of �∗∗ and the independence of �, δ P γ. This shows that P

is not empty. This implies that �∗∗ has exactly three distinct equivalence classes, since
α P β ⇔ (α, β) �∗∗ (β, β) ⇔ (β, β) �∗∗ (β, α). Therefore, α P β iff (α, β) belongs
to the first equivalence class of �∗∗ and (β, α) to its last equivalence class. Consider any
two subsets A,B ⊆ N such that A ∪ B = N and let:

A � B ⇔ [a � b, for some a, b ∈ A such that S(a, b) = A and S(b, a) = B].

If a � b then, by construction, we have S(a, b) � S(b, a). Suppose now that S(a, b) �

S(b, a), so that there are c, b ∈ A such that c � d and (ci, di) ∼∗∗ (ai, bi), for all i ∈ N .
Using (4), we have a � b. Hence (2) holds. The monotonicity of � easily follows from
(3). This completes the proof. �

We have therefore obtained a complete characterization of LD relation within the
general framework of model (UM). Conditions UM1 and UM2 implying that �∗∗ has at
most three distinct equivalence classes appear as the main distinctive characteristic of LD
relations. Clearly a binary relation � having a representation in models (SEU) or (SSA)
will, in general, have a much richer relation �∗∗.

6 Discussion and extensions

The purpose of this paper was twofold. We have first introduced a general axiomatic
framework for decision under uncertainty that contains both the SEU and the LD models
as particular cases. This model, while tolerating intransitive and/or incomplete prefer-
ences, has a simple and intuitive interpretation in terms of preference differences. It
is nontrivial unlike, e.g., the general model introduced in Chu and Halpern (2003). We
showed that it can be characterized using simple conditions, while avoiding the use of any
unnecessary structural assumptions. The second aim of this paper was to put our general
framework to work, using it to propose an alternative characterization of the preference
relations that can be obtained using the likely dominance rule. This characterization has
emphasized the main specific feature of LD relations, i.e. the fact that they use a very
poor information concerning preference differences admitting only “positive”, “null” and
“negative” differences.
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6.1 Comparison with Fargier and Perny (1999) and Dubois et al.
(2003a)

We compare below our characterization of LD relations with the one proposed in Fargier
and Perny (1999); closely related results are found in Dubois et al. (2003a, 2002). Their
characterization is based on a condition called “qualitative independence” (and later called
“ordinal invariance” in Dubois et al. (2003a, 2002)) that is a slight variant (using a reflex-
ive relation instead of an asymmetric one) of the “noncompensation” condition introduced
in Fishburn (1975, 1976, 1978) which, in turn, is a “single profile” analogue of the inde-
pendence condition used in Arrow’s theorem (see Sen, 1986).

Since our definition of LD relations differs from the one used in Fargier and Perny
(1999) (they do not impose that � is necessarily monotonic w.r.t. inclusion) we reformu-
late their result below. For any a, b ∈ A, let R(a, b) = {i ∈ N : ai �Γ bi}.

Definition 5
Let � be a binary relation on A. This relation is said to satisfy monotonic qualitative
independence (MQI) if,

R(a, b) ⊇ R(c, d)
and

R(b, a) ⊆ R(d, c)


 ⇒ [c � d ⇒ a � b],

for all a, b, c, d ∈ A.

Condition MQI is strengthens the “qualitative independence” condition used in Fargier
and Perny (1999) (this condition is obtained replacing inclusions by equalities in the ex-
pression of MQI; as observed in Dubois et al. (2003a, 2002), it is also possible to use
instead of MQI the original qualitative independence condition together with a condition
imposing that � is monotonic w.r.t. �Γ) to include an idea of monotonicity. Condition
MQI is a “single profile” analogue of the NIM (i.e., Neutrality, Independence, Mono-
tonicity) condition that is classical in Social Choice Theory (see Sen, 1986, p. 1086).

As shown below, in what is an adaptation of Fargier and Perny (1999, proposition 5),
this condition allows for a very simple characterization of LD relations.

Proposition 1
Let � be a binary relation on A. The relation � is a LD relation iff

• � is reflexive,

• �Γ is complete,

• � satisfies MQI.
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PROOF

Necessity. Reflexivity holds by definition of a LD relation. That �Γ must be complete
follows from part 3 of lemma 2. The necessity of MQI follows from (2), using the mono-
tonicity of � and part 7 of lemma 1.

Sufficiency. Let S = �Γ. By hypothesis, S is complete. If �Γ is empty, we have
R(a, b) = N for all a, b ∈ A. Using the reflexivity of � and MQI this implies that
a � b, for all a, b ∈ A and, hence, that all states i ∈ N are degenerate, contrary to our
hypothesis. Hence �Γ = P is nonempty.

Let A,B ⊆ N such that A ∪ B = N . Since P is nonempty there are a, b ∈ A such
that S(a, b) = A and S(b, a) = B. Define � letting:

A � B ⇔ [a � b, for some a, b ∈ A such that S(a, b) = A and S(b, a) = B].

If a � b then, by construction, we have S(a, b) � S(b, a). Suppose now that S(a, b) �

S(b, a). By construction, there are c, d ∈ A such that c � d and S(c, d) = A and
S(d, c) = B. Using MQI, it follows that a � b. That � is monotonic w.r.t. inclusion
clearly follows from MQI. �

We refer to Dubois et al. (2002); Fargier and Perny (1999) for a thorough analysis of this
result, including a careful comparison of the above conditions with the classical ones used
in Savage (1954).

Although proposition 1 offers a simple characterization of LD relations, condition
MQI appears at the same time quite strong (this will be apparent if one tries to reformulate
MQI in terms of �) and wholly specific to LD relations. In our view, the characterization
of LD relations within model (UM) proposed above allows to better isolate what appears
to be the specific features of LD relations while showing their links with more classical
preference relations used in the field of decision under uncertainty.

It should also be stressed that the characterization of LD relations is far from be-
ing the only objective of the above-mentioned papers. Rather, their aim is to study the,
drastic, consequences of supposing that � is a LD relation and has nice transitivity prop-
erties (e.g. � being transitive or without circuits). This analysis, that is closely related to
Arrow-like theorems in Social Choice Theory (see Campbell and Kelly, 2002; Sen, 1986,
for overviews), illuminates the relations between the LD rule, possibility theory and non-
monotonic reasoning. Such an analysis is clearly independent from the path followed to
characterize LD relations.

6.2 Extensions

As already mentioned, model (UM) is the specialization to the case of decision making
under uncertainty of the conjoint measurement models proposed in Bouyssou and Pirlot
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(2002). It is not difficult to see that model (UM) not only allows for intransitive relations
� between acts but also for intransitive relation �Γ between outcomes. This may be
seen as a limitation of model (UM). Indeed, whereas intransitivities are not unlikely
when comparing acts (see Fishburn, 1991), one would expect a much more well behaved
relation when it turns to comparing outcomes. We show in this section how to extend
our results to cover this case. Before doing so, let us stress that it is quite remarkable
that any transitivity hypothesis is unnecessary to obtain a complete characterization of
LD relations. As forcefully argued in Saari (1998), this seems to be an essential feature
of “ordinal” models.

Adapting the analysis in Bouyssou and Pirlot (2004a) to the case of decision under
uncertainty, let us first show that it is possible to specialize model (UM) in order introduce
a linear arrangement of the elements of Γ. We consider binary relations � on A that can
be represented as:

a � b ⇔ F (ϕ(u(a1), u(b1)), . . . , ϕ(u(an), u(bn))) ≥ 0 (UM*)

where u is a real-valued function on Γ, ϕ is a real-valued function on u(Γ)2 that is skew
symmetric, nondecreasing in its first argument (and, therefore, nonincreasing in its second
argument) and F is a real-valued function on

∏n
i=1 ϕ(u(Γ)2) being nondecreasing in all

its arguments and such that F (0) ≥ 0.

Comparing models (UM*) and (UM), it is clear that (UM*) is the special case of
model (UM) in which the function p measuring preference differences between outcomes
may be factorised using a function u measuring the “utility” of the outcomes and a skew
symmetric function ϕ measuring preference differences between outcomes on the basis of
u. It is easy to see that model (UM*) implies that �Γ is complete and that �Γ is transitive.
The analysis below will, in fact, show that model (UM*) implies that �Γ is a semiorder.

The analysis of model (UM*) will require the introduction of three new conditions
inspired from Bouyssou and Pirlot (2004a).

Definition 6 (Conditions UAC1, UAC2 and UAC3)
We say that � satisfies:

UAC1 if
αia � b

and
βjc � d


 ⇒




βia � b
or

αjc � d,

UAC2 if
a � αib

and
c � βjd


 ⇒




a � βib
or

c � αjd,

UAC3 if
a � αib

and
αjc � d


 ⇒




a � βib
or

βjc � d,

for all a, b, c, d ∈ A, all i, j ∈ N and all α, β ∈ Γ.
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Condition UAC1 suggests that the elements of Γ can be linearly ordered considering “up-
ward dominance”: if α “upward dominates” β then βia � b entails αia � b, for all
a, b ∈ A and all i ∈ N . Condition UAC2 has a similar interpretation considering now
“downward dominance”. Condition UAC3 ensures that the linear arrangements of the ele-
ments of Γ obtained considering upward and downward dominance are not incompatible.
The study of the impact of these new conditions on model (UM) will require an additional
definition borrowed from Doignon et al. (1988).

Definition 7 (Linearity)
Let R be a binary relation on a set X2. We say that:

• R is right-linear iff [Not [(y, z) R (x, z)] ⇒ (x,w) R (y, w)],

• R is left-linear iff [Not [(z, x) R (z, y)] ⇒ (w, y) R (w, x)],

• R is strongly linear iff [Not [(y, z) R (x, z)] or Not [(z, x) R (z, y)]] ⇒ [(x,w) R
(y, w) and (w, y) R (w, x)],

for all x, y, z, w ∈ X .

The impact of our new conditions on the relations �∗ and �∗∗ comparing preference
differences between outcomes are noted below.

Lemma 8
1. UAC1 ⇔ �∗ is right-linear,

2. UAC2 ⇔ �∗ is left-linear,

3. UAC3 ⇔ [[Not [(α, γ) �∗ (β, γ)] for some γ ∈ Γ] ⇒ [(δ, α) �∗ (δ, β), for all
δ ∈ Γ]],

4. [UAC1, UAC2 and UAC3] ⇔ �∗ is strongly linear ⇔ �∗∗ is strongly linear.

5. In the class of reflexive relations satisfying URC1 and URC2, UAC1, UAC2 and
UAC3 are independent conditions.

PROOF

Part 1. �∗ is not right-linear iff for some α, β, γ, δ ∈ Γ, we have Not [(γ, β) �∗ (α, β)]
and Not [(α, δ) �∗ (γ, δ)]. This equivalent to

[αia � βib] and Not [γia � βib] and

[γjc � δjd] and Not [αjc � δjd],

for some a, b, c, d ∈ A and some i, j ∈ N . This is exactly Not [UAC1]. Parts 2 and 3 are
established similarly.
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Part 4. The first equivalence is immediate from parts 1 to 3. The second equivalence
directly results from the definitions of �∗ and �∗∗.

Part 5: see examples 8, 9 and 10 in appendix. �

We summarize some useful consequences of model (UM*) in the following:

Lemma 9
Let � be a binary relation on A. If � has a representation in (UM*) then:

1. it satisfies URC1 and URC2,

2. it satisfies UAC1, UAC2 and UAC3,

3. the binary relation T on Γ defined by α T β ⇔ (α, β) �∗∗ (α, α) is a semiorder.

PROOF

Part 1 follows from the definition of model (UM*) and theorem 1.

Part 2. Suppose that αia � b and βjc � d. This implies, abusing notation,

F ([ϕ(u(α), u(bi))]i, [ϕ(u(ak), u(bk))]k �=i) ≥ 0 and

F ([ϕ(u(β), u(dj))]j, [ϕ(u(c�), u(d�))]��=j) ≥ 0.

If u(β) < u(α), since ϕ is nondecreasing in its first argument and F is nondecreasing in
all its arguments, we obtain

F ([ϕ(u(α), u(dj))]j, [ϕ(u(c�), u(d�))]��=j) ≥ 0,

so that αjc � d. If u(β) ≥ u(α), since ϕ is nondecreasing in its first argument and F is
nondecreasing in all its arguments, we obtain

F ([ϕ(u(β), u(bi))]i, [ϕ(u(ak), u(bk))]k �=i) ≥ 0,

so that βia � b. Hence, UAC1 holds. The proof is similar for UAC2 and UAC3.

Part 3. Since URC1 and URC2 hold, we know from lemma 4 that �∗∗ is complete. It
is reversible by construction. From lemma 8, we know that �∗∗ is strongly linear. From
the proof of theorem 2, we know that T is complete. It remains to show that it is Ferrers
and semi-transitive.

[Ferrers]. Suppose that α T β and γ T δ so that (α, β) �∗∗ (β, β) and (γ, δ) �∗∗

(δ, δ). In contradiction with the thesis, suppose that Not [α T δ] and Not [γ T β] so that
(δ, δ) �∗∗ (α, δ) and (β, β) �∗∗ (γ, β). Using the fact that �∗∗ is a weak order, this
implies (α, β) �∗∗ (γ, β) and (γ, δ) �∗∗ (α, δ). This violates the strong linearity of �∗∗.
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[Semi-transitivity]. Suppose that α T β and β T γ so that (α, β) �∗∗ (β, β)
and (β, γ) �∗∗ (γ, γ). In contradiction with the thesis, suppose that Not [α T δ] and
Not [δ T γ] so that (δ, δ) �∗∗ (α, δ) and (γ, γ) �∗∗ (δ, γ). Using the fact that �∗∗ is a
reversible weak order, we obtain (α, β) �∗∗ (α, δ) and (β, γ) �∗∗ (δ, γ). This violates
the strong linearity of �∗∗. Hence, T is semi-transitive. �

The conditions introduced so far allow us to characterize model (UM*) when Γ and,
hence, A, is at most denumerable.

Theorem 3
Suppose that Γ is finite or countably infinite and let � be a binary relation on A. Then
� has a representation (UM*) iff it is reflexive and satisfies URC1, URC2, UAC1, UAC2
and UAC3.

PROOF

Necessity results from lemmas 2, 5 and 9. The proof of sufficiency rests on the following
claim proved in Bouyssou and Pirlot (2004a, Proposition 2).

CLAIM Let R be a weak order on a finite or countably infinite set X2. There is a real-
valued function u on X and a real-valued function ϕ on u(X)2 being nondecreasing in its
first argument and nonincreasing in its second argument, such that, for all x, y, z, w ∈ X ,

(x, y) R (z, w) ⇔ ϕ(u(x), u(y)) ≥ ϕ(u(z), u(w))

iff R is strongly linear. In addition, the function ϕ can be chosen to be skew-symmetric
iff R is reversible.

Sufficiency follows from combining theorem 1 with lemma 8 and the above claim. �

Remark 3
The above result can be extended without much difficulty to sets of arbitrary cardinality.
Note however that, contrary to theorem 1, theorem 3 is only stated here for finite or count-
ably infinite sets A. This is no mistake. In fact, as shown in Fishburn (1973, Theorem
A(ii)), it may well happen that R is a strongly linear weak order on X2, that the set of
equivalence classes induced by R is finite or countably infinite while the above claim
fails. •

We now use the framework of model (UM*) to analyze LD relations in which S is a
semiorder. Let us first show that all such relations have a representation in model (UM*).

Lemma 10
Let � be a binary relation on A. If � is a LD relation with a representation 〈�, S〉 in
which S is a semiorder then � satisfies UAC1, UAC2 and UAC3.
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PROOF

[UAC1]. Suppose that αia � b and βjc � d. We want to show that either βia � b or
αjc � d.

If bi P α or dj P β, the conclusion follows from the monotonicity of �.

If α P bi and β P dj , we have, using the fact that P is Ferrers, α P dj or β P bi. In
either case the desired conclusion follows using the fact that � is a LD relation.

This leaves three exclusive cases: [α I bi and β P dj] or [α P bi and β I dj], or [α I bi

and β I dj]. Using Ferrers, either case implies α S dj or β S bi. If either α P dj or
β P bi, the desired conclusion follows from monotonicity. Suppose therefore that α I dj

and β I bi. Since we have either α I bi or β I dj , the conclusion follows using the fact
that � is a LD relation.

Hence UAC1 holds. The proof for UAC2 is similar, using Ferrers.

[UAC3]. Suppose that a � αib and αjc � d. We want to show that either a � βib or
βjc � d.

If either α P ai or dj P α, the conclusion follows from monotonicity.

If ai P α and α P dj , then semi-transitivity implies ai P β or β P dj . In either case,
the conclusion follows from monotonicity.

This leaves three exclusive cases: [ai I α and α P dj] or [ai P α and α I dj] or
[ai I α and α I dj]. In either case, semi-transitivity implies ai S β or β S dj . If either
ai P β or β P dj . the desired conclusion follows from monotonicity. Suppose therefore
that ai I β or β I dj . Since in each of the remaining cases we have either ai I α or α I dj ,
the conclusion follows because � is a LD relation. �

Although lemma 8 shows that in the class of reflexive binary relations satisfying URC1
and URC2, UAC1, UAC2 and UAC3 are independent conditions, the situation is more
delicate when we bring conditions UM1 and UM2 into the picture since they impose
strong requirements on �∗ and �∗∗. We have:

Lemma 11
1. Let � be a reflexive binary relation on A satisfying URC1, URC2, UM1 and UM2.

Then � satisfies UAC1 iff it satisfies UAC2.

2. In the class of reflexive binary relations satisfying URC1, URC2, UM1 and UM2,
conditions UAC1 and UAC3 are independent.

PROOF

Part 1. The proof uses the following claim.

CLAIM When URC1, URC2, UM1 and UM2 hold then we have one of the following:
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1. (α, β) �∗ (β, β) �∗ (β, α), for all α, β ∈ Γ such that (α, β) �∗∗ (β, β),

2. (α, β) �∗ (β, β) and (β, β) ∼∗ (β, α), for all α, β ∈ Γ such that (α, β) �∗∗ (β, β),

3. (α, β) ∼∗ (β, β) and (β, β) �∗ (β, α), for all α, β ∈ Γ such that (α, β) �∗∗ (β, β),

PROOF OF THE CLAIM

Using part 3 of lemma 4 and part 8 of lemma 8, we know that �∗∗ is a weak order having
at most three distinct equivalence classes. Let α, β ∈ Γ be such that (α, β) �∗∗ (β, β).
By construction, we have either (α, β) �∗ (β, β) or (β, β) �∗ (β, α). There are three
cases to examine.

1. Suppose first that (α, β) �∗ (β, β) and (β, β) �∗ (β, α). Consider γ, δ ∈ Γ such
that (γ, δ) �∗∗ (δ, δ). If either (γ, δ) ∼∗ (δ, δ) or (δ, γ) ∼∗ (δ, δ), it is easy to see,
using the independence of � and the definition of �∗∗, that we must have:

(α, β) �∗∗ (γ, δ) �∗∗ (β, β) �∗∗ (δ, γ) �∗∗ (β, α),

violating the fact that ∼∗∗ has at most three distinct equivalence classes. Hence we
have, for all γ, δ ∈ Γ such that (γ, δ) �∗∗ (δ, δ), (γ, δ) �∗ (δ, δ) and (δ, δ) �∗ (δ, γ).

2. Suppose that (α, β) �∗ (β, β) and (β, β) ∼∗ (β, α) and consider any γ, δ ∈ Γ such
that (γ, δ) �∗∗ (δ, δ). If (γ, δ) �∗ (δ, δ) and (δ, δ) �∗ (δ, γ), we have, using the
independence of � and the definition of �∗∗,

(γ, δ) �∗∗ (α, β) �∗∗ (β, β) �∗∗ (β, α) �∗∗ (δ, γ),

violating the fact that ∼∗∗ has at most three distinct equivalence classes. If (γ, δ) ∼∗

(δ, δ) and (δ, δ) �∗ (δ, γ), then URC2 is violated since we have (α, β) �∗ (γ, δ)
and (β, α) �∗ (δ, γ). Hence, it must be true that (γ, δ) �∗∗ (δ, δ) implies (γ, δ) �∗

(δ, δ) and (δ, δ) ∼∗ (δ, γ).

3. Suppose that (α, β) ∼∗ (β, β) and (β, β) �∗ (β, α) and consider any γ, δ ∈ Γ such
that (γ, δ) �∗∗ (δ, δ). If (γ, δ) �∗ (δ, δ) and (δ, δ) �∗ (δ, γ), we have, using the
independence of � and the definition of �∗∗,

(γ, δ) �∗∗ (α, β) �∗∗ (β, β) �∗∗ (β, α) �∗∗ (δ, γ),

violating the fact that ∼∗∗ has at most three distinct equivalence classes. If (γ, δ) �∗

(δ, δ) and (δ, δ) ∼∗ (δ, γ), then URC2 is violated since we have (γ, δ) �∗ (α, β)
and (δ, γ) �∗ (β, α). Hence, it must be true that (γ, δ) �∗∗ (δ, δ) implies (γ, δ) ∼∗

(δ, δ) and (δ, δ) �∗ (δ, γ).

This proves the claim.
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We prove that UAC1 ⇒ UAC2, the proof of the reverse implication being similar.
Suppose UAC2 is violated so that, for some a, b, c, d ∈ A and some α, β ∈ Γ, we have
a � αib c � βjd, Not [a � βib], Not [c � αjd].

This implies (α, β) �∗ (α, δ) and (γ, δ) �∗ (γ, β), so that (α, β) �∗∗ (α, δ) and
(γ, δ) �∗∗ (γ, β).

Because, URC1, URC2, UM1 and UM2 hold, we know that we must be in one of the
cases of the above claim.

If either of the last two cases hold, �∗ has at most two distinct equivalence classes, so
that (α, β) ∼∗ (γ, δ) and (α, δ) ∼∗ (γ, β). This implies (γ, δ) �∗ (α, δ) and (α, β) �∗

(γ, β). Since UAC1 implies the right-linearity of �∗, (γ, δ) �∗ (α, δ) implies (γ, β) �∗

(α, β), a contradiction.

Suppose that the first case holds true. We distinguish several subcases.

1. If both (α, β) and (γ, δ) belong to the middle equivalence class of �∗, we have
[(α, β) ∼∗ (γ, δ)] �∗ [(α, δ) ∼∗ (γ, β)]. As shown above, this leads to a contradic-
tion.

2. Suppose that both (α, β) and (γ, δ) belong to the first equivalence class of �∗. We
therefore have (α, β) ∼∗ (γ, δ), (α, β) �∗ (α, δ) and (γ, δ) �∗ (γ, β). This implies
(α, β) �∗ (γ, β). Using UAC1, we have (α, δ) �∗ (γ, δ), a contradiction.

3. Suppose that (α, β) belongs to the first equivalence class of �∗ and (γ, δ) belongs to
the central class of �∗. This implies, using the reversibility of �∗∗ and the fact that
it has at most three equivalence classes, [(α, β) ∼∗ (β, γ)] �∗ [(γ, δ) ∼∗ (δ, γ)] �∗

[(γ, β) ∼∗ (β, α)]. Hence, we have (β, γ) �∗ (δ, γ) and using UAC1, we have
(β, α) �∗ (δ, α), a contradiction.

Part 2: see examples 11 and 12 in appendix �

This leads to a characterization of LD relations in which S is a semiorder.

Theorem 4
Let � be a binary relation on A. Then � is a LD relation having a representation 〈�, S〉
in which S is a semiorder iff it is reflexive and satisfies URC2, UM1, UM2, UAC1 and
UAC3.

PROOF

The proof of theorem 4 follows from combining lemmas 9, 10 and 11 with the results in
section 5. �
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Let us finally mention that in our definition of LD relations in section 3, the only remark-
able property imposed on � is monotonicity w.r.t. inclusion. In most instances, we would
expect � to be transitive as well. It is easy to devise conditions that imply the transitivity
of �. We leave the details to the interested reader.

Appendices

A Examples related to model (UM)

Example 2 (URC2, Not [URC1])
Let Γ = {α, β, γ} and N = {1, 2}. Let � on A identical to A2 except that, using obvious
notation, Not [α1γ2 � β1α2] and Not [γ1α2 � α1β2].

It is easy to see that � is complete (and, hence, reflexive). It violates URC1 since
α1α2 � β1β2 and γ1γ2 � α1α2 but neither α1γ2 � β1α2 nor γ1α2 � α1β2.

It is not difficult to check that we have:

• [(α, α), (β, β), (γ, γ), (α, γ), (β, α), (β, γ), (γ, β)] �∗ (α, β) and

• [(α, α), (β, β), (γ, γ), (α, γ), (β, α), (β, γ), (γ, β)] �∗ (γ, α),

while (α, β) and (γ, α) are incomparable in terms of �∗. Using part 2 of lemma 4, it is
easy to check that � satisfies URC2. �

Example 3 (URC1, Not [URC2])
Let Γ = {α, β} and N = {1, 2}. Let � on A be such that:

a � b ⇔ p(a1, b1) + p(a2, b2) ≥ 0,

where p is a real valued function on Γ2 defined by the following table (to be read from
line to column):

p α β
α 0 −1
β 1 1

It is easy to see that � is complete (and hence, reflexive) and satisfies URC1 (we have:
[(β, β) ∼∗ (β, α)] �∗ (α, α) �∗ (α, β)). The relation � is not independent since β1α2 �
β1β2 but Not [α1α2) � α1β2]. Hence, URC2 is violated in view of part 5 of lemma 4. �
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B Examples related to LD relations

Example 4 (URC1, URC2, UM2, Not [UM1])
Let Γ = {α, β, γ} and N = {1, 2}. Let � on A be such that:

a � b ⇔ p1(a1, b1) + p2(a2, b2) ≥ 0,

where p1 and p2 are real valued functions on Γ2 defined by the following table:

p1 α β γ
α 0 4 0
β 0 0 0
γ 0 0 0

p2 α β γ
α 0 0 0
β −3 0 0
γ −3 −3 0

The relation � is clearly complete. It is not difficult to see that �∗ is such that:

(α, β) �∗ [(α, α), (β, β), (γ, γ), (α, γ), (β, γ)] �∗ [(β, α), (γ, α), (γ, β)].

This shows, in view of lemma 4, that URC1 and URC2 are satisfied. It is easy to
check that (7) holds, so that the same is true for UM2. We have (α, γ) �∗ (γ, α) but
Not [(α, γ) �∗ (α, β)]. This shows that (6) is violated. Since URC2 holds, this shows that
UM1 is violated in view of part 5 of lemma 6. �

Example 5 (URC1, URC2, UM1, Not [UM2])
Let Γ = {α, β, γ} and N = {1, 2}. Let � on A be such that:

a � b ⇔ g(p1(a1, b1) + p2(a2, b2)) ≥ 0,

where p1 and p2 are real valued functions on Γ2 defined by the following table:

p1 α β γ
α 0 2 2
β −2 0 2
γ −4 −2 0

p2 α β γ
α 0 0 0
β −2 0 0
γ −2 −2 0

and g is such that:

g(x) =

{
x if |x| > 2,
0 otherwise.

The relation � is clearly complete. It is not difficult to see that �∗ is such that:

[(α, α), (β, β), (γ, γ), (α, β), (α, γ), (β, γ)] �∗ [(β, α), (γ, β)] �∗ (γ, α).
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This shows, in view of lemma 4, that URC1 and URC2 are satisfied. It is easy to
check that (6) holds, so that the same is true for UM1. We have (α, β) �∗ (β, α) but
Not [(γ, α) �∗ (β, α)]. This shows that (7) is violated. Since URC1 holds, this shows that
UM2 is violated in view of part 6 of lemma 6. �

Example 6 (URC1, UM1, UM2, Not [URC2])
Let Γ = {α, β} and N = {1, 2}. Let � on A be identical A2 except that Not [β1β2 � α1α2]
and Not [β1β2 � α1β2]. This relation is clearly complete. It is not independent, so that
URC2 is violated in view of lemma 4. We have: [(α, α), (α, β)] �∗ (β, β) �∗ (β, α).
Since �∗ is complete, URC1 holds. In view of parts 1 and 2 of lemma 6, we know that
(6) and (7) hold. Hence, UM1 and UM2 hold. �

Example 7 (URC2, UM1, UM2, Not [URC1])
Let Γ = {α, β, γ} and N = {1, 2, 3}. Let � on A be identical to A2 except that the
following 25 relations are missing: α1α2α3 � γ1α2γ3, α1α2α3 � γ1β2γ3, α1α2α3 �
γ1γ2γ3, α1β2α3 � α1α2γ3, α1β2α3 � β1α2γ3, α1β2α3 � γ1α2γ3, α1β2α3 � γ1β2γ3,
α1β2α3 � γ1γ2γ3, α1γ2α3 � γ1α2γ3, α1γ2α3 � γ1β2γ3, α1γ2α3 � γ1γ2γ3, β1β2α3 �
α1α2α3, β1β2α3 � α1α2β3, β1β2α3 � α1α2γ3, β1β2α3 � β1α2γ3, β1β2α3 � γ1α2γ3,
β1β2β3 � α1α2α3, β1β2β3 � α1α2β3, β1β2β3 � α1α2γ3, β1β2γ3 � α1α2α3, β1β2γ3 �
α1α2β3, β1β2γ3 � α1α2γ3, γ1β2α3 � α1α2γ3, γ1β2α3 � β1α2γ3 and γ1β2α3 � γ1α2γ3.

It is not difficult to check that � is complete. We have:

[(α, α), (β, β), (γ, γ), (β, γ), (γ, α), (γ, β), (γ, β)] �∗ (α, γ) and

[(α, α), (β, β), (γ, γ), (β, γ), (γ, α), (γ, β), (γ, β)] �∗ (β, α),

while (α, γ) and (β, α) are nor comparable in terms of �∗. This shows that URC1 is
violated. Using part 2 of lemma 4, it is easy to check that URC2 holds. Using part 1 of
lemma 6, it is easy to check that (6) holds. In view of part 3 of lemma 6, this shows that
UM1 is satisfied. It remains to check that UM2 holds.

It is not difficult to check that β2a � α2b implies τ2a � σ2b, for all a, b ∈ A and all
(τ, σ) ∈ Γ2. Furthermore, for all (τ, σ), (χ, ψ) ∈ Γ2 \ (β, α), χ2a � ψ2b ⇔ τ2a � σ2b.
Similarly, it is easy to check that α3a � γ3b implies τ3a � σ3b, for all a, b ∈ A and all
(τ, σ) ∈ Γ2. Furthermore, for all (τ, σ), (χ, ψ) ∈ Γ2 \ (α, γ), χ3a � ψ3b ⇔ τ3a � σ3b.

The two premises of UM2 are that τia � σib and σjc � τjd. The three possible
conclusions of UM2 are that σia � τib or χia � ψib or χjc � ψjd.

Suppose first that (τ, σ) is distinct from (γ, α) and (α, β). In this case, we know that
(σ, τ) �∗ (τ, σ), so that τia � σib implies σia � τib. Hence, the first conclusion of UM2
will hold.

Suppose henceforth that (τ, σ) = (γ, α). If i = 2, we know that γ2a � α2b ⇔
α2a � γ2b, so that the first conclusion of UM2 will hold.
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Suppose that i = 3. If j = 3, the second premise of UM2 becomes α3c � γ3d. This
implies γ3c � α3d so that the last conclusion of UM2 will hold. A similar reasoning
shows that the last conclusion of UM2 will hold if j = 1. Suppose that j = 2. The two
premises of UM2 are that γ3a � α3b and α2c � γ2d. The three desired conclusions are
that either γ3a � α3b or χ3a � ψ3b or χ2c � ψ2d. If (χ, ψ) is distinct from (β, α), we
know that α2c � γ2d ⇔ χ2c � ψ2d so that the last conclusion of UM2 will hold. Now if
(χ, ψ) = (β, α), we have that β3a � α3b so that the second conclusion of UM2 holds.

Suppose that i = 1. If (χ, ψ) is distinct from (β, α), γ1a � α1b will imply χ1a � ψ1b,
so that the second conclusion of UM2 will hold. If (χ, ψ) = (β, α), it is easy to check
that there is no a, b ∈ A such that γ1a � α1b, Not [α1a � γ1b] and Not [β1a � α1b]. This
shows that UM2 cannot be violated.

Hence, we have shown that UM2 holds if (τ, σ) = (γ, α). A similar reasoning shows
that UM2 holds if (τ, σ) = (α, β). �

C Examples related to model (UM*)

Throughout the remaining examples, we use the following notation:

α �± β ⇔ [(α, γ) �∗ (β, γ) and (δ, β) �∗ (δ, α),∀γ, δ ∈ Γ] ,

α �+ β ⇔ [(α, γ) �∗ (β, γ),∀γ ∈ Γ] ,

α �− β ⇔ [(δ, β) �∗ (δ, α),∀δ ∈ Γ] .

The reader will easily check that:

UAC1 ⇔ �+ is complete,

UAC2 ⇔ �− is complete,

UAC3 ⇔ [α �+ β ⇒ Not [β �− α]].

It is also interesting to note that:

α �+ β ⇔ [βic � d ⇒ αic � d,∀c, d ∈ A],

α �− β ⇔ [d � αic ⇒ d � βic,∀c, d ∈ A],

α �± β ⇔ [α �+ β and α �− β].

Example 8 (URC1, URC2, UAC2, UAC3, Not [UAC1])
Let Γ = {α, β, γ, δ} and N = {1, 2}. Let � on A be such that:

a � b ⇔ g(p(a1, b1) + p(a2, b2)) ≥ 0,

where p is a real valued function on Γ2 defined by the following table:
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p α β γ δ
α 0 −3 −1 2
β 3 0 1 2
γ 1 −1 0 2
δ −2 −2 −2 0

and g is such that:

g(x) =

{
x if |x| > 2,
0 otherwise.

The relation � is clearly complete and satisfies URC1 and URC2. It is not difficult to
check that we have:

β �− γ �− α �− δ.

We have β �+ γ, γ �+ α and γ �+ δ but neither α �+ δ (because δ1α2 � β1α2 but
Not [α1α2 � β1α2]) nor δ �+ α (because α1α2 � α1γ2 but Not [δ1α2 � α1γ2]). This
shows that UAC2 and UAC3 hold but that UAC1 is violated. �

Example 9 (URC1, URC2, UAC1, UAC3, Not [UAC2])
Let Γ = {α, β, γ, δ} and N = {1, 2}. Let � on A be such that:

a � b ⇔ g(p(a1, b1) + p(a2, b2)) ≥ 0,

where p is a real valued function on Γ2 defined by the following table:

p α β γ δ
α 0 3 1 −2
β −3 0 −1 −2
γ −1 1 0 −2
δ 2 2 2 0

and g is as in example 8.

The relation � is clearly complete and satisfies URC1 and URC2. Observe that p is
defined via the transposition of the table used in example 8. This interchanges the roles
of UAC1 and UAC2. In fact it is not difficult to see that we have:

δ �+ α �+ γ �+ β.

We have: δ �− γ, α �− γ, γ �− β but neither α �− δ nor δ �− α. This shows that
UAC1 and UAC3 hold but that UAC2 is violated. �
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Example 10 (URC1, URC2, UAC1, UAC2, Not [UAC3])
Let Γ = {α, β, γ, δ} and N = {1, 2}. Let � on A be such that:

a � b ⇔ g(p(a1, b1) + p(a2, b2)) ≥ 0,

where p is a real valued function on Γ2 defined by the following table:

p α β γ δ
α 0 −5 0 −2
β 5 0 1 2
γ 0 −1 0 0
δ 2 −2 0 0

and g is as in example 8.

The relation � is clearly complete and satisfies URC1 and URC2. We have:

β �+ γ �+ δ �+ α and

β �− δ �− γ �− α.

This shows that UAC1 and UAC2 hold but that UAC3 is violated since γ �+ δ but
δ �− γ. �

D Examples related to LD relations in which S is a semiorder

Example 11 (URC1, URC2, UM1, UM2, UAC1, UAC2, Not [UAC3])
Let Γ = {α, β, γ, δ} and N = {1, 2}. Let � on A be such that:

a � b ⇔ g(p(a1, b1) + p(a2, b2)) ≥ 0,

where p is a real valued function on Γ2 defined by the following table:

p α β γ δ
α 0 −2 0 −2
β 2 0 0 2
γ 0 0 0 0
δ 2 −2 0 0

and g is as in example 8.
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The relation � is clearly complete and satisfies URC1 and URC2. Since p takes 3
distinct values, it is easy to see that UM1 and UM2 holds. We have:

[β, γ] �+ δ �+ α and

β �− δ �− [γ, α].

This shows that UAC1 and UAC2 hold but that UAC3 is violated since γ �+ δ but
δ �− γ. �

Example 12 (URC1, URC2, UM1, UM2, UAC3, Not [UAC1], Not [UAC2])
Let Γ = {α, β, γ, δ} and N = {1, 2}. Let � on A be such that:

a � b ⇔ g(p(a1, b1) + p(a2, b2)) ≥ 0,

where p is a real valued function on Γ2 defined by the following table:

p α β γ δ
α 0 −2 −2 2
β 2 0 0 0
γ 2 0 0 2
δ −2 0 −2 0

and g is as in example 8.

The relation � is clearly complete and satisfies URC1 and URC2. Since p takes 3
distinct values, it is easy to see that UM1 and UM2 holds. It is easy to see that: β ∼+ γ,
β �+ α, β �+ δ, γ �+ α, γ �+ δ, but neither α �+ δ nor δ �+ α. Similarly we obtain:
γ �− α, γ �− β, γ �− δ, α �− δ, β �− δ but neither α �− β nor β �− α. Hence
UAC3 holds but UAC1 and UAC2 are violated. �
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Abstract

We briefly review previous work on the welfare engineering framework where au-
tonomous software agents negotiate on the allocation of a number of discrete re-
sources, and point out connections to combinatorial optimisation problems, includ-
ing combinatorial auctions, that shed light on the computational complexity of the
framework. We give particular consideration to scenarios where the preferences of
agents are modelled in terms of k-additive utility functions, i.e. scenarios where syn-
ergies between different resources are restricted to bundles of at most k items.

Key words: negotiation, representation of utility functions, social welfare, combina-
torial optimisation, bidding languages for combinatorial auctions

1 Introduction

Distributed systems in which autonomous software agents interact with each other, in
either cooperative or competitive ways, can often be usefully interpreted as societies of
agents; and we can employ formal tools from microeconomics to analyse such systems.
If we model the interests of individual agents in terms of a notion of individual welfare,
then the overall performance of the system provides us with a measure of social welfare.

Individual welfare may be measured either quantitatively, typically by defining a util-
ity function mapping “states of affairs” (outcomes of an election, allocations of resources,
agreements on a joint plan of action, etc.) to numeric values; or qualitatively, by defining
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a preference relation over alternative states. The concept of social welfare, as studied
in welfare economics, is an attempt to characterise the well-being of a society in rela-
tion to the welfare enjoyed by its individual members [1, 2, 18, 23]. The best known
examples (both relying on quantitative measures of individual welfare) are the utilitarian
programme, according to which social welfare should be interpreted as the sum of indi-
vidual utilities, and the egalitarian programme, which identifies the welfare of society
with the welfare of its “poorest” member.

For instance, in an electronic commerce application where users pay a fee to the
provider of the infrastructure depending on the personal benefits incurred by using the
system, the increase in utilitarian social welfare correctly reflects the profit generated by
the provider. The application discussed by Lemaı̂tre et al. [17], on the other hand, where
agents representing different stake-holders repeatedly negotiate over the access to an earth
observation satellite (which has been jointly funded by the stake-holders), requires a fair
treatment of all agents. Here, the respective values of different access schedules may be
better modelled by an egalitarian social welfare ordering.

We are particularly interested in applications where negotiation between autonomous
agents serves as a means of addressing a resource allocation problem. Recent results
in this framework concern the feasibility of reaching an allocation of resources that is
optimal from a social point of view [8, 21], as well as (certain aspects of) the complex-
ity of doing so, in terms of both computational costs and the amount of communication
required [5, 6, 7].

Multiagent resource allocation is just one of several recent examples for the success-
ful exploitation of ideas from microeconomics in the context of computer science. Other
applications include automatic contracting [21], selfish routing in shared networks [11],
distributed reinforcement learning [24], and data mining [16]. This area of activity, which
we may term computational microeconomics, brings together theoretical computer sci-
ence and microeconomics in new and fruitful ways, benefiting not only these disciplines
themselves but also “hot” research topics such as multiagent systems and electronic com-
merce.

In previous work, we have put forward the framework of welfare engineering [8],
which addresses the design of suitable rationality criteria for autonomous software agents
participating in negotiations over resources in view of different notions of social welfare,
as well as the development of such notions of social welfare themselves. In Section 2,
we briefly review the underlying multiagent resource allocation system and recall two
previous results on the feasibility of reaching a socially optimal allocation of resources
from a utilitarian point of view. As we shall see, in cases where the utility functions used
by agents to model their preferences over alternative bundles of resources are additive, it
is sufficient to use very simple negotiation protocols that only cater for deals involving a
single resource at a time.
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This result suggests to investigate generalisations of the notion of additivity, and hence
we consider the case of k-additive functions, as studied, for instance, in the context of
fuzzy measure theory [14]. The notion of k-additivity suggests an alternative represen-
tation of utility functions, which we introduce in Section 3. We show that this represen-
tation is as expressive as the “standard” representation (which involves listing the utility
values for all possible bundles) and that it often allows for a more succinct representation
of utility functions. Nevertheless, it turns out that the positive result on the complexity
of deals obtained for additive functions cannot be generalised in the expected manner.
Counterexamples are given in Section 4.

In Section 5, we discuss connections between our multiagent resource alloca-
tion framework and some well-known combinatorial optimisation problems (namely,
weighted set packing and the independent set problem). These can be used to prove
NP-hardness results for the decision problem associated with the task of finding a so-
cially optimal resource allocation. We prove complexity results with respect to both the
standard representation of utility functions and the representation based on k-additivity.
In this context, we also discuss connections of our optimisation problem to the winner
determination problem in combinatorial auctions. We are going to point out connections
between different ways of representing utility functions and different bidding languages
for such auctions along the way. Our conclusions are presented in Section 6.

2 Resource Allocation by Negotiation

An instance of our negotiation framework consists of a finite set of (at least two) agents
A and a finite set of non-divisible resources R. A resource allocation A is a partitioning
of the set R amongst the agents in A. For instance, given an allocation A with A(i) =
{r3, r7}, agent i would own resources r3 and r7. Given a particular allocation of resources,
agents may agree on a (multilateral) deal to exchange some of the resources they currently
hold. In general, a single deal may involve any number of resources and any number of
agents. It transforms an allocation of resources A into a new allocation A′; that is, we can
define a deal as a pair δ = (A,A′) of allocations (with A �= A′).

Each agent i ∈ A is equipped with a utility function ui mapping bundles of resources
(subsets of R) to rational numbers. We abbreviate ui(A) = ui(A(i)) for the utility value
assigned by agent i to the set of resources it holds for allocation A. While individual
agents may have their own interests, as a system designer, we are interested in the social
welfare associated with a given allocation. According to the aforementioned utilitarian
programme, the social welfare of an allocation A is given by the sum of utilities exhibited
by all the agents in the system:

sw(A) =
∑
i∈A

ui(A)

85



Multiagent Resource Allocation with k-additive Utility Functions

That is, any deal that results in a higher sum of utilities (or equivalently, in higher aver-
age utility) would be considered socially beneficial. One of the main questions we are
interested in in the welfare engineering framework is under what circumstances negotia-
tion between agents will result in an improvement, and eventually an optimisation, with
respect to such a notion of social welfare.

A deal may be coupled with a number of monetary side payments to compensate some
of the agents involved for an otherwise disadvantageous deal. We call a deal rational iff it
results in a gain in utility (or money) that strictly outweighs a possible loss in money (or
utility) for each of the agent involved in that deal.

As shown in previous work [9], a deal is rational iff it results in an increase in utili-
tarian social welfare. Given this connection between the “local” notion of rationality and
the “global” notion of social welfare, we can prove the following result on the sufficiency
of rational deals to negotiate socially optimal allocations [9, 21]:

Theorem 1 (Maximal social welfare) Any sequence of rational deals with side pay-
ments will eventually result in an allocation of resources with maximal utilitarian social
welfare.

This means that (i) there can be no infinite sequence of deals all of which are rational,
and (ii) once no more rational deals are possible the agent society must have reached an
allocation that has maximal social welfare. The crucial aspect of this result is that any
sequence of deals satisfying the rationality condition will cause the system to converge
to an optimal allocation. That is, whatever deals are agreed on in the early stages of the
negotiation, the system will never get stuck in a local optimum and finding an optimal
allocation remains an option throughout.

A drawback of the general framework is that the above result only holds if deals
involving any number of resources and agents are admissible [9, 21]. In some cases this
problem can be alleviated by putting suitable restrictions on the utility functions agents
may use to model their preferences. Interesting special classes of utility functions to
consider include, for instance, non-negative functions (where an agent may not assign
a negative utility to any bundle) and monotonic functions (where the utility of a set of
resources cannot be lower than the utility assigned to any of its subsets).

A particularly simple class is the class of additive functions. A utility function is
called additive iff the value ascribed to a set of resources is always the sum of the values
of its members. As has been shown in an earlier paper [9], in scenarios where utility
functions may be assumed to be additive, it is possible to guarantee optimal outcomes
even when agents only negotiate deals involving a single resource and a pair of agents at
a time (so-called one-resource-at-a-time deals):
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Theorem 2 (Additive scenarios) If all utility functions are additive, then any sequence
of rational one-resource-at-a-time deals with side payments will eventually result in an
allocation of resources with maximal utilitarian social welfare.

This result is of great practical relevance, because it shows that it is sufficient to design
negotiation protocols for pairs of agents (rather than larger groups) and single resources
(rather than sets) for applications in which preferences can be modelled in terms of ad-
ditive utility functions. In the next section, we are going to introduce a generalisation of
this notion of additivity.

3 Representations of Utility Functions

An agent’s utility function may be represented in different ways. This situation is similar,
for instance, to the case of combinatorial auctions, where one can use different bidding
languages to express the preferences of the participating agents [19, 22]. Maybe the most
intuitive representation of a utility function is the bundle form, which amounts to listing all
bundles of resources to which the agent assigns a non-zero value. Clearly, this approach
can soon become problematic, as there may be up to 2n such bundles in the worst case.

An alternative representation is based on the notion of k-additive functions, which
have been studied in the context of fuzzy measure theory [14]. Given a natural number
k, a utility function is called k-additive iff the utility assigned to a bundle of resources R
can be represented as the sum of basic utilities ascribed to subsets of R with cardinality
≤ k. More formally, a k-additive utility function can be written as follows:

ui(R) =
∑

T⊆R, |T |≤k

αT
i × IR(T ) with IR(T ) =

{
1 if T ⊆ R
0 otherwise

That is, the utility function of agent i is characterised by the coefficients αT
i for bundles

of resources T ⊆ R with at most k elements. Agent i enjoys an increase in utility of αT
i

when it owns all the items in T together, i.e. αi
T represents the synergetic value of this

bundle. An example for a 2-additive utility function would be ui(R) = 3 × IR({r1}) −
2 × IR({r2, r3}). For the sake of simplicity, we are going to omit the indicator function
IR as well as the explicit mentioning of the bundle variable R when defining concrete
k-additive utility functions. Using this simplified notation, the above function becomes
ui = 3.r1 − 2.r2.r3.

While the bundle form corresponds to the so-called XOR-language for expressing bids
in combinatorial auctions [19, 22], there appears to be no counterpart to the k-additive
form in the literature on bidding languages. The connections between our framework and
combinatorial auctions will be explored further in Section 5.
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Utility functions that are k-additive with k = 1 are like the additive functions dis-
cussed in the previous section (except that they also allow for a non-zero utility value
to be assigned to the empty set). Hence, the notion of k-additivity is a generalisation of
the familiar notion of additivity. In fact, as we are going to show next, k-additive utility
functions cover a whole range of utility function, from the very simple additive functions
to the most general utility functions without any restrictions.

Proposition 1 (Expressive power of k-additive utility functions) Any utility function
can be represented as a k-additive function with k = |R|.

Proof. Let ui be any utility function mapping subsets of R to rational numbers. We
recursively define coefficients αT

i for T ⊆ R as follows:

α
{ }
i = ui({ })

αR
i = ui(R) −

∑
T⊂R

αT
i for all R ⊆ R with R �= { }

Hence, ui(R) =
∑

T⊆R αT
i =

∑
T⊆R αT

i × IR(T ). This is a k-additive utility function for
k = |R|. �

Clearly, the bundle form is also fully expressive, i.e. our two ways of representing utility
functions are equivalent in the sense that they can both express any utility function over the
set of resources R. Besides expressive power, another important consideration concerns
the succinctness of a representation. It turns out that neither of the two representations
is more succinct in all cases. In fact, as we are going to see next, there are cases where
translating a utility function given in k-additive form into the bundle form results in an
exponential blow-up of the representation, and vice versa.1

Proposition 2 (Efficiency of the k-additive form) The bundle form cannot polynomi-
ally simulate the k-additive form of representing utility functions.

Proof. We prove the claim by giving an example for a utility function with a representation
that is linear in the size of R for the k-additive form, but exponential for the bundle form.
Consider a utility function that maps a bundle of resources to the number of elements
in that bundle. This is a 1-additive function, which requires the specification of exactly
|R| coefficients in the k-additive form (namely αT

1 = 1 for all T with |T | = 1). For
the bundle form, however, the specification of a utility value for each of the 2|R| − 1
non-empty bundles is required. �

1Nisan [19] proves a number of similar separation results for different types of bidding languages for
combinatorial auctions.
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Proposition 3 (Efficiency of the bundle form) The k-additive form cannot polynomi-
ally simulate the bundle form of representing utility functions.

Proof. We give an example for a utility function with a representation that is linear in the
size of R for the bundle form, but exponential for the k-additive form. Consider a utility
function ui that assigns 1 to any bundle consisting of a single resource and 0 to any other
bundle. In the bundle form, ui requires the specification of a utility value for exactly |R|
bundles (namely those with just a single element). In the k-additive form, on the other
hand, it requires the specification of 2|R| − 1 coefficients: We certainly have αT

i = 1 for
any bundle T with |T | = 1. To ensure that ui(R) = 0 for any R with |R| = 2 we require
αT

i = −2 for any T with two elements. For a bundle with three elements, the sum of
the coefficients for all its subsets is 3 × 1 + 3 × (−2) = −3, i.e. we have to set αT

i = 3
whenever |T | = 3, and so on. In general, we have to choose αT

i = |T |× (−1)|T |+1 (which
is different from 0 for any of the 2|R| − 1 subsets T of R with T �= { }) to be able to
represent ui as a k-additive function. �

The examples given in the proofs of Propositions 2 and 3 are extreme cases, where one
form of representation is exponentially more succinct than the other. While the difference
is not always going to be this strong, choosing the right representation for a given problem
domain is still important. Broadly speaking, the k-additive form will typically be more
succinct in cases where there are only limited synergies between different items. This is
likely to be the case for many application domains, which makes this a useful language
for expressing utilities in practice.

4 Complexity of Deals with k-additive Utilities

Recall that Theorem 2 has shown that it is always possible to negotiate a socially optimal
allocation of resources by means of rational deals involving only a single resource at a
time whenever the utilities of all the agents involved are additive (i.e. 1-additive). Intu-
itively, we could have expected a similar result for k-additive utilities with k ≥ 2 (i.e. a
result that states that rational deals involving at most k resources at a time are sufficient
to reach optimal allocations whenever all utility functions are k-additive). However, as
we are going to show next, this turns out not to be the case. The deals required to reach
allocations with maximal social welfare in the k-additive case are much more complex.

Proposition 4 (Necessity of complete deals) Even if all utility functions are k-additive
for some k ≥ 2, a deal involving the complete set of resources may be necessary to reach
an allocation with maximal utilitarian social welfare by means of a sequence of rational
deals with side payments.
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Proof. To prove the claim, we construct an example with 2-additive utility functions
in which a deal involving all resources in R is needed. Consider two agents sharing n
resources R = {r1, r2, . . . , rn}, with the following 2-additive utility functions:

u1 = 0

u2 = r1 − r1.r2 − r1.r3 − r1.r4 − . . . − r1.rn

Let Ainit be the initial allocation of resources describing which agent owns which resource
before negotiation commences, and let Aopt be the allocation maximising utilitarian social
welfare:

Ainit Aopt

Agent 1 {r1} {r2, r3, . . . , rn}
Agent 2 {r2, r3, . . . , rn} {r1}

Here, sw(Ainit) = 0 and sw(Aopt) = 1. In fact, the only allocation which has a social
welfare greater than sw(Ainit) is Aopt. Recall that a deal increases social welfare iff it is
rational with side payments (the proof may be found in [9]). Thus, the only rational deal
here is δ = (Ainit, Aopt), which is a bilateral deal involving all n resources at the same
time. �

A possible objection to the example used in our proof may be that it is rather artificial.
Utility functions that also have some additional properties, such as being monotonic, be-
sides being k-additive may be more relevant in practice. To show that the problem of
requiring complex deals persists even when we make such additional assumptions, we
give a further, similarly simple, example that demonstrates that also for k-additive func-
tions that are monotonic, rational deals involving no more than k resources do not always
suffice to negotiate socially optimal allocations. Consider the case of three agents and
four resources with the following utility functions:

u1 = 4.r1.r3

u2 = 3.r1.r2

u3 = 2.r3.r4

Let Ainit be the initial allocation and let Aopt be the optimal allocation with maximal
utilitarian social welfare:

Ainit Aopt

Agent 1 {r1, r3} { }
Agent 2 {r2, r4} {r1, r2}
Agent 3 { } {r3, r4}

We have sw(Ainit) = 4 and sw(Aopt) = 5. Clearly, the only rational deal with side
payments (i.e. the only deal increasing social welfare) is δ = (Ainit, Aopt), which is a deal
involving 3 (rather than just 2) resources at the same time.
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In summary, our results show, differently from what one might have expected, that the
restriction to utility functions that are k-additive for a given value of k does not, in general,
reduce the complexity of deals required to reach a socially optimal allocation of resources
in an agent society whose members follow a simple rational negotiation strategy.

5 Connections to Combinatorial Optimisation

In Section 3, we have already mentioned the connection between different representations
of utility functions (in our case the bundle form and the k-additive form) in our negotiation
framework and different bidding languages in combinatorial auctions. In what follows,
we explore a further connection between the two areas.

If we view the problem of finding an allocation with maximal social welfare as an
algorithmic problem faced by a central authority (rather than as a problem of design-
ing suitable negotiation mechanisms), then we can observe an immediate relation to the
so-called winner determination problem in combinatorial auctions [19, 20, 22]. In a com-
binatorial auction, bidders can put in bids for different bundles of items (rather than just
single items). After all bids have been received, the auctioneer has to find an allocation
for the items on auction amongst the bidders in a way that maximises his revenue. If
we interpret the price offered for a particular bundle of items as the utility the agent in
question assigns to that set, then maximising revenue (i.e. the sum of prices associated
with winning bids) is equivalent to finding an allocation with maximal utilitarian social
welfare. This equivalence holds, at least, in cases where the optimal allocation of items
in an auction is such that all of the items on auction are in fact being sold (so-called free
disposal).

Winner determination in combinatorial auctions is known to be NP-complete [20].2

The quoted result applies to the case of the “standard” bidding language, which allows
bidders to specify prices for particular bundles and makes the implicit assumption that
they are prepared to obtain any number of disjoint bundles for which they have submitted
a bid (Nisan [19] calls this the “OR language”). Our languages for expressing utilities
are more general than this. Hence, the correspondence to combinatorial auctions suggests
that the problem of finding an allocation with maximal utilitarian social welfare is at
least NP-hard. We can make this observation more precise by showing how our problem
relates to well-known NP-complete “reference problems” [3, 13, 15]. One such problem
is MAXIMUM WEIGHTED SET PACKING. We use the schema of Ausiello et al. [3] to

2More precisely, the decision problem underlying the winner determination problem, i.e. the problem
of checking whether it is possible to find an allocation that achieves at least a given minimal revenue K
is NP-complete. The concept of NP-completeness applies to decision problems rather than optimisation
problems [3]. The winner determination problem is still NP-hard in the sense that solving it is at least as
hard as solving any NP-complete decision problem.
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define combinatorial optimisation problems:

MAXIMUM WEIGHTED SET PACKING

Instance: Collection C of finite sets, each associated with a positive weight.
Solution: Collection of disjoint sets C′ ⊆ C.
Measure: Sum of the weights associated with the sets in C′.

The optimisation problem known as MAXIMUM WEIGHTED SET PACKING is the prob-
lem of finding a solution C′ for which the sum of the weights associated with the sets in
C′ is maximal. The underlying decision problem is the problem of answering the question
whether there exists a solution C′ for which the sum of weights exceeds a given threshold
K. This decision problem is known to be NP-complete (in the size of the instance, i.e.
with respect to the number of sets in C) [3].

Intuitively, we are going to interpret the sets in C as bundles of resources and the
weights associated with them as utility values. To make the correspondence complete,
however, we require the following generalisation of MAXIMUM WEIGHTED SET PACK-
ING:

MAXIMUM COLOURED WEIGHTED SET PACKING WITH FULL COVERAGE

Instance: Collection C of coloured finite sets, each associated with a weight.
Solution: Collection of disjoint sets C′ ⊆ C, including exactly one set of

each colour, such that {x ∈ S |S ∈ C′} = {x ∈ S |S ∈ C}.
Measure: Sum of the weights associated with the sets in C′.

There are three differences between the original weighted set packing problem and our
extended problem: (i) we have dropped the restriction to positive weights; (ii) every set
is associated with a colour and every colour is required to be represented exactly once
in any valid solution; and (iii) all the items occurring in any of the set in C need to be
covered by the set packing C′.

Lemma 1 (Complexity of extended WSP) The decision problem underlying MAXI-
MUM COLOURED WEIGHTED SET PACKING WITH FULL COVERAGE is NP-complete.

Proof. NP-membership of our problem follows from the fact that all the conditions
imposed on valid solutions can be checked in polynomial time.3 NP-hardness follows
from the known NP-hardness result for the decision problem underlying MAXIMUM

WEIGHTED SET PACKING. To see that our extended problem is indeed at least as hard

3Recall that a decision problem is in NP iff any proposed proof for a positive answer can be checked
(although not necessarily found) in polynomial time.

92



Annales du LAMSADE n◦3

as the original problem, we need to show how the original problem can be reduced to
the extended one. Consider the following mapping: Given an instance C of MAXIMUM

WEIGHTED SET PACKING, first add the set {x} (with weight 0) for every x ∈ S for
every S ∈ C to the collection (unless that set is already present). Then assign a different
colour to each set in the extended collection. Finally, also introduce an empty set (with
weight 0) for each of the colours. The additional sets ensure that for any solution of the
original problem there is a solution of the extended problem such that all elements as well
as colours are covered. �

The following theorem has first been proved by Dunne et al. [6] by means of a non-trivial
reduction from a variant of 3-SAT where the number of clauses in the input formula
is equal to the number of propositional variables occurring in that formula.4 Having
established the complexity of our extended set packing problem, we are in a position to
give a much simpler proof.

Theorem 3 (Complexity wrt. bundle form) The decision problem underlying the prob-
lem of finding an allocation with maximal utilitarian social welfare with utilities repre-
sented in bundle form is NP-complete.

Proof. The problem of finding an allocation with maximal utilitarian social welfare is
equivalent to MAXIMUM COLOURED WEIGHTED SET PACKING WITH FULL COVER-
AGE: sets in the collection correspond to bundles, colours correspond to agents, and the
weight associated with a coloured set corresponds to the utility assigned to the respective
bundle by the respective agent. NP-completeness then follows from Lemma 1. �

Note that we could have proved the same result using a direct reduction from MAXI-
MUM WEIGHTED SET PACKING, even from the version without weights, but having a
combinatorial optimisation problem that is exactly equivalent to our problem of finding
a socially optimal allocation of resources in the language familiar from the literature on
combinatorial optimisation is interesting in its own right.

Our next aim is to establish the complexity of the same decision problem, but this
time with respect to the k-additive form rather than the bundle form of representing utility
functions. As the k-additive form may be exponentially more succinct than the bundle
form, NP-hardness with respect to the later does not necessarily imply NP-hardness with
respect to the former. Nevertheless, as we are going to see, deciding whether there exists
an allocation of resources with a utilitarian social welfare that exceeds a given threshold

4Fargier et al. [10] also prove a very similar result. In their resource allocation framework agents can,
by default, share individual resources, but if a particular resource can only be owned by one agent at a time
this can be specified by giving additional constraints.
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is also NP-complete. This time, we are going use a reduction from another well-known
combinatorial optimisation problem:

MAXIMUM INDEPENDENT SET

Instance: Graph G = (V,E).
Solution: Set V ′ ⊆ V s.t. no two vertices in V ′ are joined by and edge in E.
Measure: Cardinality |V ′|.

The problem of finding an independent set whose cardinality exceeds a given threshold is
known to be NP-complete [13] (although some special cases, e,g. when all vertices have
a degree of at most 2, are solvable in polynomial time).

Theorem 4 (Complexity wrt. k-additive form) The decision problem underlying the
problem of finding an allocation with maximal utilitarian social welfare with utilities
represented in k-additive form is NP-complete.

Proof. Firstly, the problem is certainly in NP, because checking whether the social welfare
of a given allocation exceeds a given threshold K can be checked in polynomial time. We
show NP-hardness by reducing the decision problem underlying MAXIMUM INDEPEN-
DENT SET to our problem. Given a graph G = (V,E) and a rational number K, we want
to establish whether the graph has got an independent set V ′ with cardinality |V ′| > K.
Without loss of generality, we may assume that no vertex in V is joined with itself by and
edge in E, because no solution V ′ would contain such a vertex. We can map this indepen-
dent set problem to an instance of our decision problem by introducing an agent for every
vertex in V and a resource for every edge in E. We define the utility coefficients in the
k-additive form for every agent i as follows: Let T be the set of resources corresponding
to edges in E that are adjacent to the vertex corresponding to i. We define αT

i = 1 and
there are no other utility coefficients for agent i. Now every allocation A corresponds to
an independent set V ′ and the utilitarian social welfare of A equals the cardinality of V ′.
Hence, there exists an independent set V ′ with |V ′| > K iff there exists an allocation A
with sw(A) > K. �

Of course, as with MAXIMUM INDEPENDENT SET, there will be special cases where the
above problem is not NP-hard anymore. A very simple example would be the case of
k = 1: It is easy to devise a polynomial algorithm for finding an allocation with maximal
utilitarian social welfare in cases where all agents use 1-additive utility functions (simply
assign each resource to the agent that values it the highest).

What about k = 2 though? In our proof, k directly corresponds to the maximal
degree of vertices in the graph used for the reduction. As pointed out already, the decision
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problem underlying MAXIMUM INDEPENDENT SET is not NP-hard anymore if no vertex
has got a degree exceeding 2. Hence, our proof of Theorem 4 would not allow us to
conclude that our problem remains NP-hard for k = 2. This is the objective of our next
theorem. It shows that the problem of finding a socially optimal allocation is still NP-
hard for k = 2. In this sense, our problem is harder than MAXIMUM INDEPENDENT SET

(where the transition to NP-hardness only occurs when we move from 2 to 3).

Theorem 5 (Complexity for k = 2) The decision problem underlying the problem of
finding an allocation with maximal utilitarian social welfare with utilities represented
in k-additive form remains NP-complete for k = 2.

Proof. NP-membership follows from Theorem 4. To prove NP-hardness for k = 2,
we show how any problem instance with k-additive utility functions for k ≥ 3 can be
transformed into a problem with 2-additive functions in polynomial time. NP-hardness
then follows, again, from Theorem 4.

We will show that a 3-additive resource allocation problem can be reformulated as a
2-additive one. This is an adaptation of an idea by Boros and Hammer [4] to our case.
Consider n agents having 3-additive utility functions. We will show here that each 3-
additive term appearing in the utility functions can be replaced by a set of five 2-additive
ones, in a way that leaves the optimal resource allocation unchanged. Let us suppose ui

contains a 3-additive term α.r1.r2.r3 which we want to get rid of. To make it 2-additive,
we will have to create a new “pseudo-resource” r12 which represents the bundle {r1, r2}.
Clearly, the integrity constraint r12 = r1.r2 (with both r12 and r1.r2 being equal to either
0 or 1) has to be fulfilled in order to have α.r1.r2.r3 = α.r12.r3.

For this purpose, let us define the following function with M being a big constant
(M = 1 + 2

∑
i,T |αT

i | is sufficient):

integrity(r1, r2, r12) = −M.r1.r2 + 2M.r1.r12 + 2M.r2.r12 − 3M.r12

This integrity function, which is 2-additive, will be added to the term α.r12.r3 to penalise
it in case the constraint is violated:

integrity(r1, r2, r12) = 0 if r12 = r1.r2

integrity(r1, r2, r12) ≤ −M otherwise

Let us now consider the new utility function equal to ui in which the term α.r1.r2.r3

has been replaced by the 2-additive formula α.r12.r3 + integrity(r1, r2, r12). This change
does not affect social welfare in case the integrity constraint is fulfilled. If not, then
the social welfare will have a very low value (far from optimal). Up to now, a single
3-additive term was reduced to five 2-additive terms. By iterating this reduction, a set
of 3-additive utilities can be reformulated in 2-additive utilities, without changing the
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optimal allocation. In addition, note that this can be applied k − 2 times to transform any
k-additive utility function into one that is 2-additive.

It follows that finding a socially optimal resource allocation with 2-additive utility
functions is as hard as finding it for k-additive functions with k > 2 (modula the polyno-
mial reduction described). Hence, the problem remains NP-hard for k = 2. �

As a final complexity result, we are going to show that the problem of verifying that a
given allocation is socially optimal is co-NP-complete. This holds for both the bundle
form and the k-additive form of representing utility functions and is a simple corollary to
Theorems 3 and 4.

Corollary 1 (Complexity of verifying optimality) The problem of verifying that a given
allocation has got maximal utilitarian social welfare is co-NP-complete (for both repre-
sentations of utility functions).

Proof. Checking that an allocation A is not optimal involves firstly computing sw(A),
which can be done in polynomial time, and then solving the decision problem “is there an
allocation A′ with sw(A′) > sw(A)?”. The latter is NP-complete according to Theorem 3
(Theorem 4) for the bundle (k-additive) form. Hence, the complementary problem must
be co-NP-complete. �

Related to this result, Dunne et al. [6] have shown that the problem of checking whether
a given allocation of resources is Pareto optimal is also co-NP-complete.5

What is the practical relevance of the connections between our negotiation framework
and the combinatorial optimisation problems discussed in this section? In the proof of
Theorem 4, for instance, we have reduced MAXIMUM INDEPENDENT SET to a very spe-
cific class of instances of the problem of finding a socially optimal allocation of resources,
namely those where the utility functions of all agents can be represented as k-additive
functions with only a single non-zero coefficient. While this reduction has been useful to
establish our NP-hardness result, it does not provide us with much useful information on
how to find an optimal allocation in practice. Here, the opposite direction, i.e. reductions
from resource allocation problems to standard combinatorial optimisation problems may
be more attractive. Such a reduction would allow us to exploit existing algorithms, in-
cluding highly optimised approximation algorithms [3], to find optimal (or near-optimal)
allocations of resources.

5An allocation of resources is called Pareto optimal iff there is no other allocation that would be better
for at least one of the agents without being worse for any of the others. For further results on negotiating
Pareto optimal allocations we refer to [9].
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In the case of utility functions in k-additive form, the resource allocation problem can
be reduced to the weighted variant of MAXIMUM INDEPENDENT SET [3], provided all
utility coefficients are positive and all agents value the empty bundle at 0. The mapping
firstly involves introducing a vertex for each coefficient (and using the coefficient itself
as the weight associated with that vertex). Then we introduce an edge for every possible
“conflict”: any two vertices αT

i and αT ′
j with i �= j and T ∩ T ′ �= { } are joined together

by an edge. The independent set yielding the highest overall weight then corresponds to
the optimal allocation.

In the case of the bundle form, we already have established a on-to-one correspon-
dence to MAXIMUM COLOURED WEIGHTED SET PACKING WITH FULL COVERAGE.
However, to exploit existing algorithms, we require a reduction to the standard problem of
MAXIMUM WEIGHTED SET PACKING. This is possible whenever a resource allocation
problem meets the following conditions: (i) all utility functions are non-negative; (ii) all
agents value the empty bundle at 0; and (iii) we can assume free disposal, i.e. for every
incomplete allocation (not covering all resources) there is always a complete one that is
not worse.6 The proposed mapping would involve creating a set for every pair of an agent
i and a bundle R with ui(R) �= 0. Here, we consider both the resources and the agent as
elements of that set. The weight associated with the set would be ui(R). It is then not
difficult to see that allocations with maximal social welfare correspond to set packings
with maximal overall weight. Hence, we can reuse existing algorithms for MAXIMUM

WEIGHTED SET PACKING to find optimal allocations of resources.

Finally, we should stress that this would be a methodology for a centralised approach
to finding optimal resource allocations. It is not immediately applicable to negotiation,
which is a distributed process. Nevertheless, the techniques used to design optimisa-
tion and approximation algorithms may still inspire useful mechanisms for distributed
resource allocation. We hope to address this issue in our furture work.

6 Conclusion

In this paper, we have given a brief overview of recent work on multiagent resource allo-
cation in the context of the welfare engineering framework, and we have further analysed
the properties of this framework for the case of k-additive utility functions. Our results
presented in Section 4 show that, despite the positive expectations raised by the previous
result on negotiation in additive domains (Theorem 2), the complexity of the negotiation
protocol required to agree on a socially optimal allocation does not necessarily decrease
for problems with k-additive utility functions when k gets smaller (as long as k > 1).

6This may be achieved, for instance, by adding an agent i to the system with ui(R) = 0 for all R ⊆ R,
or by having at least one agent with a monotonic utility function.
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On the other hand, as we have seen in Section 3, representing utility functions in the k-
additive form rather than the bundle form can be significantly more succinct, particularly
in cases where a representation with a small value for k is possible.

We have also explored connections to well-known combinatorial optimisation prob-
lems, which allowed us to establish complexity results for the problem of finding a so-
cially optimal allocation with respect to different representations of utility functions (Sec-
tion 5). In this context, we have also briefly discussed the relation of our negotiation
framework to combinatorial auctions for different kinds of bidding languages. While our
negotiation framework is clearly not and auction (it is, for instance, not concerned with
the aspect of agreeing on the price for a set of items), the abstract “centralised” problem
of finding a socially optimal allocation (which is not itself a problem faced by the agents
participating in a negotiation process) directly corresponds to the winner determination
problem in combinatorial auctions. Under this view, the languages used to represent util-
ity functions correspond to bidding languages for such auctions. However, it appears that
the bidding language corresponding to our k-additive form has not yet been exploited by
auction designers.

Finally, we would like to stress that the high complexity of of our negotiation frame-
work does not, at least not necessarily, mean that it cannot be usefully applied in practice.
This view is supported by the fact that, in recent years, several algorithms for winner deter-
mination in combinatorial auctions (a problem of comparable complexity to the problems
arising in the context of welfare engineering) have been proposed and applied success-
fully [12, 20, 22].

We see the work presented in this paper as part of a wider research trend, which brings
together ideas from different areas including microeconomics, game theory, complexity
theory, and algorithm design. Some further examples of this kind of interdisciplinary
research are cited in the introductory section.
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What can we learn from the transitivity parts
of a relation?

Jean-Paul Doignon∗, Jean-Claude Falmagne†

Abstract

A transitivity part of a relation on a set X is any subset of X on which the restric-
tion of the relation is transitive. What can be recovered of a relation from the sole
knowledge of its transitivity parts? In general, the relation itself cannot be recov-
ered, because it has the same transitivity parts as its converse. In certain situations,
the unordered pair formed by the relation and its converse can be recovered. This
is the case for relations known to be indecomposable tournaments. The result first
appeared in Boussaı̈ri, Ille, Lopez, and Thomassé [2004]. Our proof is simpler, and
at the same time conveys some interesting insight into the structure of tournaments.

Key words : tournament, transitivity, transitively determined

In the applications of combinatorics, the problem of efficiently storing relations in the
memory of a computer often arises. In the classic case of a partial order, such a storage
can evidently be carried out via its Hasse diagram. The topic of this paper stems from
similar concerns and uses related ideas. For instance, consider the transitivity parts of a
relation, that is, those subsets on which the restriction of the relation is transitive. As is
easily checked, all the transitivity parts of a relation can be recovered from the transitivity
parts having two or three elements. Are there situations in which more can be deduced
from such small transitivity parts? In the case of symmetric and reflexive relations, the
question can be recast as a problem about simple graphs investigated by Hayward [1996].
We will come back on this case at the end of our paper.

We are mostly concerned here with tournaments, and our main result—in Theorem
21— characterizes the tournaments which can be fully recovered (up to their converse)

∗Université Libre de Bruxelles, c.p. 216, Bd du Triomphe, B–1050 Bruxelles. doignon@ulb.ac.be
†University of California, Irvine. jcf@aris.ss.uci.edu
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from their transitivity parts. Unbeknownst to us, the same result had been established
independently by Boussaı̈ri, Ille, Lopez, and Thomassé [2004]. While the latter authors
proceed, in several instances, by induction on the number of vertices, our method of proof
is different and has the interest of providing some new insights on the general structure of
tournaments.

1 Statement of the problem

Definition 1 Let R be a relation defined on a finite set X . We use the abbreviation xy
to denote the (ordered) pair (x, y), and we write, as usual, xR y to mean xy ∈ R and
R−1 = {xy y R x} to denote the converse of R. We also sometimes use abbreviations
such as xR y R z to mean (xR y and y R z). All the relations mentioned in this paper are
implicitly assumed to be on the same finite vertex set X (if not mentioned otherwise). We
often refer to the digraph (X,R), and use the corresponding terminology.

A subset Y of X is called a transitivity part of a relation R on X if the restriction
of R to Y is transitive. The collection of all the transitivity parts of R is denoted by
T (R). We write T3(R) for the subcollection of T (R) containing all the transitivity parts
of size 3. Note in passing that T3(R) is considerably smaller than T (R) in some cases.
We denote by T 3(R) the collection of all the 3-subsets of X which do not belong to
T3(R). Occasionally, when no ambiguity can arise regarding the relation R, we may use
abbreviations such as T3 or T 3 to mean T3(R) or T 3(R), respectively.

Definition 2 A tricycle of a relation R is a cycle of length 3. A trio is a 3-subset of X
consisting of the vertices of some tricycle.

Definition 3 A relation R is a tournament on X if R is complete and asymmetric on X;
thus, either xR y or y R x for all distinct x, y ∈ X , and ¬(xR x) for all x ∈ X . It is clear
that when R is a tournament, T (R) can be obtained from T3(R); in fact, Y ∈ T (R) if and
only if each 3-subset of Y is in T3(R); moreover, Y ∈ T 3(R) if and only if Y is a trio.

Notice that distinct tournaments can have the same transitivity parts. Indeed, a tour-
nament R and its converse R−1 always have the same trios. Accordingly, our aim in the
sequel is the recovery of the unordered pair {R,R−1}, rather than R itself. As a first
step of such a recovery, we can thus arbitrarily fix aR b for some initial vertices a and b.
(Fixing bR a rather than aR b amounts to exchanging R for R−1.) For other examples of
tournaments with exactly the same transivity parts, take any two strict linear orders on X .
Many other examples are easily manufactured.

Definition 4 A tournament R on X is (transitivity) determined whenever, for any tourna-
ment S on X , the equality T (R) = T (S) implies R = S or R = S−1.
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Figure 1: In the tournament represented by the graph of Figure 1A, the pair da can be
reversed without altering T3, so this tournament is not determined. Neither is the tour-
nament of Figure 1B, but the argument is sligthly more involved: this case fails the test
derived from Theorem 21.

It is easy to find tournaments which are not determined. Two examples are given in
Figure 1. In Figure 1A, which defines a tournament on the vertex set {a, b, c, d}, we can
check that the pair da can be transposed without altering T3 = {{a, c, d}, {a, b, d}} or
T 3 = {{a, b, c}, {b, c, d}}. The tournament displayed in Figure 1B is not determined
either. (It fails the test derived from Theorem 21.)

There are, however, some tournaments which are determined, such as those repre-
sented in Figures 2A and 2B. Indeed, the tournament of Figure 2A (up to its converse) is
defined by fixing one initial pair, and then using the information conveyed by

T3 = {{a, b, c}, {a, b, e}, {a, c, d}, {b, d, e}, {c, d, e}},

or equivalently by

T 3 = {{a, e, d}, {a, b, d}, {a, e, c}, {b, d, c}, {b, e, c}}.

Say we fix the pair ae marked 1 in Figure 2A. The other pairs are then automatically
obtained by completing the tricycles, for example in the order 2, 3, . . . , 10. The tourna-
ment of Figure 2B is also determined, but the verification is more complicated. Indeed,
two types of inferences can be drawn from T3(R) or T 3(R) in the recovery of the pair
{R,R−1}:
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Figure 2: The tournament represented by the graph of Figure 2A is determined by the set
of its trios, by applying only Type 1 inferences. By contrast, both types of inferences are
required to show that the tournament in Figure 2B is determined (see text).

TYPE 1. If {x, y, z} ∈ T 3, then xR y entails y R z and z R x.

TYPE 2. If {x, y, z} ∈ T3, then xR y and y R z entails xR z.

In the tournament of Figure 2A, only Type 1 inferences were used to reconstruct the
pair {R,R−1}, while both types of inferences are required in the case of the tournament of
Figure 2B. (The numbers 8, 9 and 10 in italics in Figure 2B refer to inferences of Type 2.)
These considerations suggest the following problem:

Problem 5 Characterize the tournaments which are determined.

Notice an important feature of Definition 4. The quantification “for any tournament S
on X” means that we suppose that the unordered pair {R,R−1} to be uncovered comes
from a tournament R. Thus, the context of tournaments is assumed from the outset. A
similar qualification applies to our generalization of Problem 5 in the last section, in which
we assume that a family of relations is given (see Problems 23, 24, 25). In the case of
Hayward [1996], for instance, the family of reflexive and symmetric relations on X forms
the context.

2 Tournament concepts

Definition 6 A tournament R on X is strongly connected or strong if for any two vertices
x and y in X , there is a directed path from x to y.
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According to Moon Theorem, a tournament is strong if and only if it is Hamilto-
nian (cf. Bang-Jensen and Gutin [2001, Theorem 1.5.1], Gross and Yellen [2004], Laslier
[1997]). The next characterization is easily checked.

Proposition 7 A tournament R on X is strong if and only if for any proper subset Y of
X , there exist x, y ∈ Y and u, v ∈ X \ Y such that xR u and v R y (we may have x = y
or v = w, but not both).

Definition 8 A tournament R on X is decomposable if there exists some nontrivial par-
tition {C1, C2, . . . , Ck} of X such that, for all distinct indices i, j ∈ {1, . . . , k},

∀x, y ∈ Ci, ∀u, v ∈ Cj, xR u ⇒ y R v.

Any indecomposable tournament on at least three vertices is strong, but the converse is
false. An example of a strong, decomposable tournament is given in Figure 3.

a

b

c

d

Figure 3: An example of a strong decomposable tournament. The nontrivial partition of
the vertex set {a, b, c, d} is {{a, b}, {c}, {d}}.

The partition of Definition 8 being nontrivial, it contains a class that is a proper subset
of X with more than one vertex. Thus the following holds:

Proposition 9 A tournament R on X is indecomposable if and only if for any proper
subset Y of X with more than one vertex, there exist x, y ∈ Y and z ∈ X \ Y such that
xR z and z R y.

The concepts of a strong and of a decomposable tournament have become classical
ones (see e.g. Bang-Jensen and Gutin [2001], Gross and Yellen [2004], Laslier [1997]).
We now turn to some further tools and facts that will be instrumental in the proof of our
main result.
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Definition 10 If V and W are two relations, we write as usual V W = {xy ∃z, with
xV z W y} for their products. Let R be a tournament on X , and let Q be the set of pairs
belonging to some tricycle of R; thus,

Q = R ∩ R−1R−1. (1)

We call Q the tricyclic relation of the tournament R. The pairs of R which do not belong
to any tricycle of R form the relation

P = R \ Q = R \ (R−1R−1). (2)

Notice that P is an irreflexive linear order if and only if R = P , that is, Q = ∅. In
general, we refer to P as the order of the tournament R, a terminology justified by the
next lemma.

Lemma 11 Suppose that R is a tournament on X . Then the relation P = R \ (R−1R−1)
is an irreflexive partial order on X .

PROOF. Because R is irreflexive, so is P by definition. To prove the transitivity
suppose that xP y and y P z with x �= z for three vertices x, y and z in X . Since
xy /∈ R−1R−1, we cannot have z R x; as R is a tournament, we must have xR z. In fact,
xP z is true because xR−1R−1 z cannot hold. Suppose indeed that xR−1R−1 z. There
must exists w ∈ X such that z R w and w R x. By the completeness of R, we must have
either y R w or w R y. The first case leads to xR−1R−1 y (via y R w and w R x), and the
second one to y R−1R−1 z (via z R w and w R y), contradicting our hypothesis that xP y
and y P z.

We now construct a partition of the tricyclic relation Q based on the fact that two pairs
in Q can belong to the same tricycle.

Definition 12 Let Q be the tricyclic relation of a tournament R on X (cf. Definition 10).
Let then S ⊆ Q × Q be a relation defined on Q by

xy S zw ⇐⇒




y = z and xQy Qw Qx,

or

w = x and xQy Qz Qx.

Because S is symmetric, the reflexive and transitive closure Ŝ of S is an equivalence
relation on Q. The partition of Q induced by Ŝ is the tricyclic coloring of Q (or of R); its
classes will be called the tricyclic colors of Q or of R. Intuitively, pairs xy and zw of Q
are in the same tricyclic color C when there is a sequence of pairs in Q, starting from xy
and ending in zw, such that two successive pairs belong to some common tricycle. Such
a sequence, which lies entirely in C, will be refered to as a color sequence. Notice that
each tricylic color is a subset of Q, and thus a relation on X .
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For an example of tricyclic coloring, take the tournament of Figure 1A; there is only
one tricyclic color, namely {ab, bc, ca, cd, db}. In the tournament of Figure 1B, there are
two tricyclic colors, namely {ae, eb, ba} and {ad, dc, ca, cb, bd, ce, ed}.

Definition 13 Given a relation S on X , a vertex x is covered by S when there is xS y or
y S x for some y ∈ X .

Lemma 14 Let C be a tricyclic color of the tournament R on X , and let Y be the set of
vertices covered by C. Then for all x, y ∈ Y and z ∈ X \ Y :

xR z =⇒ y R z.

Intuitively, all the vertices covered by a tricyclic color C behave the same way with
respect to any vertex not covered by C.

PROOF. Assume first t C uC v C t for some t, u, v ∈ X (thus t, u, v ∈ Y ), and
z ∈ X \ Y . If t R z, then v R z. Indeed, z R v would give the tricycle z R v R t R z, and
by the definition of a color, we would have tz ∈ C, contradicting z /∈ Y . Similarly, we
deduce uR z from v R z.

Now take x, y, z as in the statement of the lemma, with xR z. Because x is in Y ,
there must be some s ∈ Y such that xs ∈ C or sx ∈ C. Similarly, there must be some
t ∈ Y such that yt ∈ C or ty ∈ C. Suppose that xs, ty ∈ C. (The argument is the
same in the other cases.) By the definition of a color, there is a color sequence from xs to
ty. The argument of the previous paragraph, applied to each step of that sequence, yields
ultimately y R z.

Suppose that two tricycles of different colors jointly cover exactly one vertex w. Thus,
their union cover in all five vertices (see Figure 4) and four further pairs of those vertices
lie in the tournament. The crux of Lemma 15 below is that these four pairs necessarily
form two tricycles sharing a pair of one of the original tricycles and so are of the same
color as that tricycle.

Lemma 15 Suppose that two trios of a tournament R on X share a single vertex w.
Suppose moreover that the pairs of the two corresponding tricycles belong to distinct
tricyclic colors C and D, say {wx, xy, yw} ⊆ C and {wu, uv, vw} ⊆ D. Then, we have

either (i) yu, vx, yv, ux ∈ C,
or (ii) yu, vx, vy, xu ∈ D.

PROOF. We must have both y R u and v R x because otherwise the pairs of the two
tricycles w R uR y R w and w R xR v R w would belong to the same tricyclic color. We
now have two cases: (i) y R v, forming the tricycle y R v R xR y in C and entailing uR x
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w

y u

x v

Figure 4: The hypotheses of Lemma 15 and the first step in the proof.

and the tricyle uR xR y R u (because xR u would yield vx ∈ C ∩D); (ii) v R y, forming
the tricycle v R y R uR v in D and entailing xR u and the tricycle xR uR v R x (because
uR x would yield yu ∈ C ∩ D). These are the two cases of the lemma.

Lemma 16 Suppose that R is an indecomposable tournament on X , with Q its tricyclic
relation and Q its tricyclic coloring. Then

(i) Q covers X;

(ii) Q = {Q}, that is: there is only one tricyclic color.

PROOF. Pick arbitrarily some tricyclic color C of Q. Indecomposability of R, as
characterized in Proposition 9, together with Lemma 14 imply that C covers X .

It remains to show C = Q, that is C = D for any tricyclic color D. Proceeding by
contradiction, we suppose C �= D. Take any vertex w ∈ X . Because as just shown both
C and D cover X , there must exist a tricycle {wx, xy, yw} ⊆ C and another tricycle
{wu, uv, vw} ⊆ D. This is the situation described by the hypotheses of Lemma 15. (A
glance at Figure 4 may be helpful.) Thus, either Case (i) or Case (ii) of the Lemma must
be true. There is no loss of generality in assuming that Case (i) holds, that is yu, vx, yv,
ux ∈ C. Because D covers X , we must have xk ∈ D or kx ∈ D for some k ∈ X \ {x}.
Thus according to Definition 12, there is some color sequence starting at wu and ending
at xk or kx. Applying Lemma 15 repeatedly, we derive x� ∈ C or �x ∈ C for each �
covered by the pairs in the sequence. Then we have xk ∈ C ∩ D or kx ∈ C ∩ D, giving
C = D, a contradiction of our hypothesis C �= D. Thus C = D and therefore C = Q.

Remark 17 The converse of Lemma 16 does not hold, as shown by the decomposable
tournament R in Figure 3 (for which Q = R \ {ab}).

We now strengthen the necessary condition in Lemma 16 for a tournament to be inde-
composable in order to get a necessary and sufficient condition. In view of later use in the
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proof of Theorem 21, we formulate the additional requirement in terms of the covering
relation or Hasse diagram H of the order P = R \ R−1 R−1 of R. Notice however that
reformulating the quantification in Condition (iii) as “for any pair xy in P ” would give an
equally correct result (as seen from the next proof).

Proposition 18 A tournament R on X , with |X| ≥ 3, is indecomposable if and only if
the order P and the tricyclic relation Q of R satisfy the following three conditions:

(i) Q covers X;

(ii) Q = {Q};

(iii) for any pair xy in the Hasse diagram H of P , there exists z in X \ {x, y} satisfying
xR z R y.

PROOF. If R is indecomposable, Conditions (i) and (ii) hold by Lemma 16. For
Condition (iii), the definition of indecomposability implies the existence of z in X\{x, y}
such that either xR z R y or y R z R x. The second formula cannot be true, because the
pair xy, which lies in P , does not belong to any tricycle of R.

If R is decomposable, let us assume that Conditions (i) and (ii) hold, and derive that
Condition (iii) fails. By assumption, there exists a proper subset Y of X with more than
one element, and such that for x, y ∈ Y and z ∈ X\Y we have xR z implies y R z. Notice
that Y cannot contain both vertices of any pair st from Q (otherwise Conditions (i) and
(ii) could no be together true: some color sequence must start at st and lead to some pair
covering a given vertex outside Y . At some step of the sequence, there appears a tricycle
with two vertices in Y and one outside Y , contradicting the choice of Y ). Thus all pairs
of R formed by two vertices from Y are in P , in other words: P induces on Y a linear
order. Let x be the minimum vertex for this order on Y , and let y be the next vertex in Y .
Then the pair xy invalidates Condition (iii). Indeed, xy lies in the Hasse diagram H of P ,
otherwise there would exist t ∈ X \ {x, y} satisfying xP t P y. By the choice of Y , we
then have t ∈ Y , and this contradicts the choice of y. Finally, xR z R y cannot hold for
any z ∈ X \ Y because of the choice of Y .

Remark 19 The three conditions in Proposition 18 are independent. Three (necessarily
decomposable) tournaments failing in turn exactly one of these three conditions are easily
built. For instance, Figure 5 gives a counterexample for Condition (i), Figure 1B for
Condition (ii) and Figure 3 for Condition (iii).

Corollary 20 The problem of deciding whether a given tournament R on X is indecom-
posable is polynomial in the size of X .
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a

bc

d

Figure 5: An example showing the independence of Condition (i) in Proposition 18.

PROOF. An algorithm directly based on Proposition 18 is outlined below. (We do not
claim that this algorithm is the most efficient one.) Assume R is a tournament given on
X , with |X| ≥ 3.

MAIN STEP 1. Search for a pair uv belonging to some tricycle. If no such pair exists,
output that R is decomposable and exit.

MAIN STEP 2. Build the tricyled color C of uv. If C does not cover X or does not
contain all pairs belonging to some tricycle, ouptut that R is decomposable and exit.

MAIN STEP 3. Build P = R \ C. For each pair xy in the Hasse diagram of P , check
that Condition (iii) from Proposition 18 holds. If it is the case, output that R is indecom-
posable, otherwise that R is decomposable.

Each of the three Main Steps above can be performed in time polynomial in |X|.

3 The main result

Theorem 21 A tournament is determined if and only if it is indecomposable.

PROOF. Let R be a tournament on X and suppose that R is decomposable. Consider
a subset Y invalidating the condition in Proposition 9 (thus |Y | ≥ 2). Let T be the
restriction of R to Y . Then R and (R \ T ) ∪ T−1 are tournaments on X which have
exactly the same trios. However, (R \ T ) ∪ T−1 differs from both R and R−1. Thus a
decomposable tournament is not determined.

Conversely, assume R is an indecomposable tournament on X , with |X| ≥ 3 (for
|X| = 2, the Theorem holds trivially). By Lemma 16 the tricyclic relation Q of R covers
X , and consequently T 3(R) �= ∅. Select two vertices a, b in some trio. We may fix
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aR b. The goal then is to show that for any other unordered pair {x, y} of vertices, we
can decide which of xR y and y R x holds, that is, we can recover xy ∈ R or yx ∈ R.
Applying inferences of Type 1 starting from aQ b, we are able to recover all pairs xy
which belong to Q: this is true because of Lemma 16, which tells us that there is a color
sequence from the pair ab to any other pair in Q, and at each step of the sequence we can
apply a Type 1 inference. There remains to show that if neither xy nor yx is in Q, it is
nevertheless possible to decide for xy ∈ R or yx ∈ R solely on the basis of Q and T 3(R).
(This is the situation in Figure 2B.) Suppose that xy ∈ P , with P the order of R. (The
argument in the case yx ∈ P is similar). Denote by P̃ the subset of P consisting of the
pairs xy of P for which it has been proved that recovering of xy ∈ R is possible. Thus,
at the start, P̃ is empty, and we need to show that after all possible, repeated inferences
have been made, P̃ = P . We consider three cases for a pair xy ∈ P .

Case (i). There exists some vertex w such that xP w and y, w are incomparable in P .
Then either y Qw or w Qy, and moreover we have been able to decide which one holds,
see paragraph above. Assuming y Qw, we show that we can derive xy, xw ∈ P̃ by using
inferences of Types 1 and 2; the other case, that is w Qy, is similar.

Because R is indecomposable and |X| ≥ 3, there exists some vertex s with s R x. By
Lemma 16, s is covered by the tricyclic color of yw, and this color is equal to the whole
of Q. So, there is a color sequence from yw to some pair covering s. The first time a
vertex c outside {t ∈ X xP t} appears in a pair of the sequence, we find vertices a, b,
c such that ab is a pair of the sequence and xP a, xP b and aQ bQ cQa hold but not
xP c. As cR x cannot hold (because of xP b and bR c), we have xR c and thus xQ c.
Using {x, a, c} ∈ T3 together with xQ c and cQa, we obtain xR a by an inference of
Type 2, and then xR b also by such an inference on xR a and aQ b. Now, following the
color sequence backwards from ab to yw and repeatedly applying inferences of Type 2,
we deduce xy, yw ∈ R, thus xy, yw ∈ P̃ .

Case (ii). There exists some vertex w such that w P y and x,w are incomparable in P .
This case can be settled in the same way as Case (i) was (in fact, replacing R with R−1

transforms Case (ii) into Case (i)).

Case (iii). We still need to establish xy ∈ P̃ in all situations not covered by Cases (i)
or (ii). Let us first assume that xy is moreover in the Hasse diagram H of the order P .
Because the tournament R is indecomposable and |X| ≥ 3, Proposition 18 implies the
existence of some vertex z such that xz, zy ∈ R. By the definition of the Hasse diagram
H of R, we have xz /∈ P or zy /∈ P . If both of these formulas hold, that is xz, zy ∈ Q,
we deduce xy ∈ P̃ by an inference of Type 2 based on {x, z, y} ∈ T3. If xP z and z Q y,
we are in Case (i) and so we have x P̃ y. In the last possibility, that is xQz and z P y, we
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are in Case (ii) and x P̃ y holds then also.

Now if xy ∈ P \ H , there exists a sequence v1 = x, v2, . . . , vk = y of vertices such
that vi H vi+1 for i = 1, 2, . . . , k − 1. By the preceding paragraph, vivi+1 ∈ P̃ . For i = 1,
2, . . . , k − 2, we deduce vivi+2 ∈ P̃ from {vi, vi+1, vi+2} ∈ T3 by a Type 2 inference.
Applying the same argument as many times as required, we will conclude xy ∈ P̃ , which
completes the proof.

4 A generalization

Definition 4 can be generalized to other families of relations than tournaments (we mainly
think here of a family of relations defined by first order axioms on a single relation, as for
instance reflexiveness). The identity relation I on the set X consists of all loops xx. As
in many cases adding or suppressing loops do not alter transitivity, we do not require that
the loops of a relation be determined by its transitivity parts.

Definition 22 Let C be a family of relations on the set X . A relation R from C is (tran-
sitivity) determined when for any relation S from C the following holds: T (R) = T (S)
only if R∆S ⊆ I or R∆S−1 ⊆ I (here, ∆ denotes symmetric difference). The whole
family itself is determined if any of its relations is determined. In general, let C∗ denote
the subfamily of C consisting of the relations in C which are determined.

Notice that a relation is determined (or not) only with respect to some given family
(changing the family may change the status of the relation determinateness). We now
formulate a whole scheme of problems (one problem for each family of relations chosen).

Problem 23 For a given family C of relations, find the subfamily C∗ of determined rela-
tions, in the sense of Definition 22. Is the problem of deciding whether a relation from C
is determined polynomial in the size of X?

Particular cases of Problem 23 have been solved already. For instance, Theorem 21
settles the questions for the family C of tournaments (see also Boussaı̈ri et al. [2004]);
it states that C∗ then consists of the indecomposable tournaments. Besides, Corollary 20
asserts that the corresponding decision problem is polynomial.

Next, consider the family C of all reflexive and symmetric relations on X . Remark that
for any R ∈ C, the subcollection T3(R) conveys exactly the same information as T (R)
because the restriction of R to a subset Y of X is transitive if and only if the restriction
of R to any 3-element subset of Y is transitive. Moreover, any R in C corresponds ex-
actly to one (simple) graph G = (X,E), where {x, y} ∈ E if and only if xRy. Under
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this recasting, finding all the relations R in C which are determined becomes a question
discussed by Hayward [1996] under the following form. Recall that the P3 structure of
a graph G consists of the subsets of 3 vertices on which G induces a P3 path. Thus, in
this case, Problem 23 becomes: Which graphs G are recoverable from their P3 structure?
This question was partially (but elegantly) solved by Hayward [1996, Theorem 4.3 and
Corollary 4.4], which in particular builds a polynomial algorithm for recognition.

For the family C of all relations on X , we are intrigued by the difficulty of the resulting
instance of Problem 23. An example of determined relation is the full relation R with no
loop (notice {a, b} /∈ T (R), for any distinct vertices a, b, which in turn implies ab, ba ∈
R).

Much more ambitious problems are the following general ones.

Problem 24 Find all families of relations which are determined in the sense of Defini-
tion 22.

Problem 25 Characterize those families C for which deciding whether a relation from C
is determined is a polynomial problem.
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Differential approximation of MIN SAT,
MAX SAT and related problems

Bruno Escoffier∗, Vangelis Th. Paschos∗

Abstract

We present differential approximation results (both positive and negative) for
optimal satisfiability, optimal constraint satisfaction, and some of the most popular
restrictive versions of them. As an important corollary, we exhibit an interesting
structural difference between the landscapes of approximability classes in standard
and differential paradigms.

Key words : Satisfiability, Polynomial Approximation, Differential Ratio

1 Introduction and preliminaries

In this paper we deal with the approximation of some of the most famous and classical
problems in the domain of the polynomial time approximation theory, the MIN and MAX

SAT as well as the MIN and MAX DNF and some of their restricted versions, namely MAX

and MIN k and EkSAT and MAX and MIN k and EkDNF. We study their approximability
using the so-called differential approximation ratio which, informally, for an instance x
of a combinatorial optimization problem Π, measures the relative position of the value of
an approximated solution in the interval between the worst-value of x, i.e., the value of a
worst feasible solution of x, and optimal-value of x, i.e., the value of a best solution of x.

Given a set of clauses (i.e., disjunctions) C1, . . . , Cm on n variables x1, . . . , xn, MAX

SAT (resp., MIN SAT) consists of determining a truth assignment to the variables that
maximizes (minimizes) the number of clauses satisfied. On the other hand, given a set
of cubes (i.e., conjunctions) C1, . . . , Cm on n variables x1, . . . , xn, MAX DNF (resp., MIN
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16, France. {escoffier,paschos}@lamsade.dauphine.fr
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DNF) consists of determining a truth assignment to the variables that maximizes (min-
imizes) the number of conjunctions satisfied. For an integer k � 2, MAX kSAT, MAX

kDNF, MIN kSAT, MIN kDNF (resp., MAX EkSAT, MAX EkDNF, MIN EkSAT, MIN EkDNF)
are the versions of MAX SAT, MAX DNF, MIN SAT, MIN DNF where each clause or con-
junction has size at most (resp., exactly) k. Finally, let us quote two particular weighted
satisfiability versions, namely, MAX WSAT and MIN WSAT. In the former, given a set of
clauses C1, . . . , Cm on n variables x1, . . . , xn, with non-negative integer weights w(x) on
any variable x, we wish to compute a truth assignment to the variables that both satisfies
all the clauses and maximizes the sum of the weights of the variables set to 1. We consider
that the assignment setting all the variables to 0 (even if it does not satisfy all the clauses)
is feasible and represents the worst-value solution for the problem. The latter problem is
similar to the former one, up to the fact that we wish to minimize the sum of the weights
of the variables set to 1 and that feasible is now considered the assignment setting all the
variables to 1.

A problem Π in NPO is a quadruple (IΠ, SolΠ,mΠ, opt(Π)) where:

• IΠ is the set of instances (and can be recognized in polynomial time);

• given x ∈ IΠ, SolΠ(x) is the set of feasible solutions of x; the size of a feasible so-
lution of x is polynomial in the size |x| of the instance; moreover, one can determine
in polynomial time if a solution is feasible or not;

• given x ∈ IΠ and y ∈ SolΠ(x), mΠ(x, y) denotes the value of the solution y of the
instance x; mΠ is called the objective function, and is computable in polynomial
time; we suppose here that mΠ(x, y) ∈ N;

• opt(Π) ∈ {min, max}.

Given an instance x of an optimization problem Π and a feasible solution y ∈ SolΠ(x),
we denote by optΠ(x) the value of an optimal solution of x, and by ωΠ(x) the value
of a worst solution of x. The standard approximation ratio of y is defined as rΠ(x, y) =
mΠ(x, y)/ optΠ(x), while the differential approximation ratio of y is defined as δΠ(x, y) =
|mΠ(x, y) − ωΠ(x)|/| optΠ(x) − ωΠ(x)|.

For a function f of |x|, an algorithm is a standard f -approximation algorithm (resp.,
differential f -approximation algorithm) for a problem Π if, for any instance x of Π, it
returns a solution y such that r(x, y) � f(|x|), if opt(Π) = min, or r(x, y) � f(|x|), if
opt(Π) = max (resp., δ(x, y) � f(|x|)).

With respect to the best approximation ratios known for them, NPO problems can be
classified into approximability classes. The most notorious among them are the following:
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APX or DAPX: the class of problems for which there exists a polynomial algorithm
achieving standard or differential approximation ratio f(|x|) where function f is
constant (it does not depend on any parameter of the instance);

PTAS or DPTAS: the class of problems admitting a polynomial time approximation
schema; such a schema is a family of polynomial algorithms Aε, ε ∈]0, 1], any of
them guaranteeing approximation ratio 1 − ε (under the differential approximation
paradigm and under the standard one in the case where opt(Π) = max), or 1 + ε
(under the standard approximation paradigm in the case where opt(Π) = min);

FPTAS and DFPTAS: the class of problems admitting a fully polynomial time ap-
proximation schema; such a schema is a polynomial time approximation schema
(Aε)ε∈]0,1], where the complexity of any Aε is polynomial in both the size of the
instance and in 1/ε.

We now define a kind of reduction, called affine reduction and denoted by AF, which, as
we will see, is very natural in the differential approximation paradigm.

Definition 1. Let Π and Π′ be two NPO problems. Then, Π AF-reduces to Π′ (Π ≤AF Π′),
if there exist two functions f and g such that:

1. for any x ∈ IΠ, f(x) ∈ IΠ′ ;

2. for any y ∈ SolΠ′(x), g(x, y) ∈ SolΠ(x); moreover, SolΠ(x) = g(x, SolΠ′(f(x)));

3. for any x ∈ IΠ, there exist K ∈ R and k ∈ R
� (k > 0 if opt(Π) = opt(Π′), k < 0,

otherwise) such that, for any y ∈ SolΠ′(f(x)), mΠ′(f(x), y) = kmΠ(x, g(x, y)) +
K.

If Π ≤AF Π′ and Π′ ≤AF Π, then Π and Π′ are called affine equivalent. This equivalence
will be denoted by Π ≡AF Π′.

It is easy to see that differential approximation ratio is stable under affine reduction. For-
mally, if, for Π, Π′ ∈ NPO, R = (f, g) is an AF-reduction from Π to Π′, then for any
x ∈ IΠ and for any y ∈ SolΠ′(f(x)), δΠ(x, g(x, y)) = δΠ′(f(x), y). Indeed, by Condi-
tion 2 of Definition 1, worst and optimal solutions in x and f(x) coincide. Since the value
of any feasible solution of Π′ is an affine transformation of the same solution seen as a
solution of Π, the differential ratios for y and g(x, y) coincide also. Hence, the following
holds.

Proposition 1. If Π ≡AF Π′, then, for any constant r, any r-differential approximation
algorithm for one of them is an r-differential approximation algorithm for the other one.
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Optimization satisfiability problems as MIN SAT and MAX SAT are of great interest from
both theoretical and practical points of view. On the one hand, the satisfiability prob-
lem (SAT) is the first complete problem for NP and MAX SAT, MIN SAT have gener-
alizations or restrictions that are the first problems proved complete for numerous ap-
proximation classes under various approximability preserving reductions ([4, 19]). For
instance, MAX 3SAT is APX-complete under the AP-reduction and Max-SNP-complete
under the L-reduction ([17]), MAX WSAT and MIN WSAT are NPO-complete under the
AP-reduction ([8]), etc. In general, many optimal satisfiability problems have for the
polynomial approximation theory the same status as SAT for NP-completeness theory.
On the other hand, many problems in mathematical logic and in artificial intelligence can
be expressed in terms of versions of SAT; constraints satisfaction is one such version. Also
problems in database integrity constraints, query optimization, or in knowledge bases can
be seen as optimization satisfiability problems. Finally, some approaches to inductive
inference can be modeled as MAX SAT problems ([13, 14]). The interested reader can
be referred to [5] for a survey on standard approximability of optimization satisfiability
problems.

Let us note that differential approximability of the problems dealt here, has already
been studied in [6]. There, among other results, it was shown that MAX SAT and MIN

DNF, as well as MIN SAT and MAX DNF are equivalent for the differential approximation,
that all these problems are not solvable by polynomial time differential approximation
schemata, unless P = NP, and, finally, that MIN SAT cannot be approximately solved
within differential approximation ratio 1/m1−ε, for any ε > 0 (where m is the number
of the clauses in its instance), unless NP = co-RP. Finally, let us mention here that
both MAX WSAT and MIN WSAT belong to 0-DAPX, the class of the problems for which
no algorithm can guarantee differential approximation ratio strictly greater than 0, unless
P = NP ([16]). This class has been also introduced in [6].

Approximation ratios Inapproximability bounds

MAX SAT 4.34/(m + 4.34) /∈ DAPX
MAX E2SAT 17.9/(m + 19.3) 11/12
MAX 3SAT 4.57/(m + 5.73) 1/2
MAX E3SAT 8/(m + 8) 1/2
MAX EkSAT 2k/(m + 2k) 1/p, p the largest prime s.t. 3(p − 1) � k
MIN SAT 2/(m + 2)
MIN (E)kSAT 2k/((2k−1 − 1)m + 2k) 1/p, p the largest prime s.t. 3(p − 1) � k
MIN 2SAT 4/(m + 4) 11/12

Table 1: Summary of the main results of the paper.
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In this paper, we further study differential approximability of MAX SAT, MIN SAT,
MIN DNF and MAX DNF, and give approximation results and inapproximability bounds
for several versions of these problems. A summary of the main results obtained is pre-
sented in Table 1. As one can see from the second column of the first line of this table,
MAX SAT is not approximable within a constant approximation ratio, unless P = NP. This
result is very interesting since it indicates that Max-NP ([17]) is not included in DAPX.
This is an important difference with the standard approximability classes landscape where
Max-NP ⊂ APX. Another assessment with respect to our results is that the gap between
lower and upper approximation bounds for the problems dealt is still large. However, this
paper undertakes a systematic study of satisfiability problems in the differential paradigm,
it extends the results of [6] and shows that none of the most classical satisfiability prob-
lems is in 0-DAPX. This approximability class has been introduced in [6] and represents
the worst possible configuration for differential approximation since it includes the prob-
lems for which no polynomial time approximation algorithm can guarantee differential
ratio greater than 0. Inclusion of the problems dealt here in 0-DAPX or not, was a major
question we handled since [6].

2 Affine reductions between optimal satisfiability prob-
lems

Let us first note that there does not exist general technique in order to transfer approxi-
mation results from differential (resp., standard) paradigm to standard (resp., differential)
one, except for the case of maximization problems and for transfers between differential
and standard paradigms. Proposition 2 just below deals with this last case.

Proposition 2. If a maximization problem Π can be solved within differential approxima-
tion ratio δ, then it can be solved within standard approximation ratio δ, also.

Proof. Consider any differential polynomial time approximation algorithm A guarantee-
ing differential-approximation ratio δ for any instance x of a maximization problem Π.
Denote by A(x), a solution computed by A when running on x. Then,

m(x, A(x)) − ω(x)

opt(x) − ω(x)
� δ =⇒ m(x, A(x)) � δ opt(x)+(1−δ)ω(x)

δ�1

ω(x)�0
=⇒ m(x, A(x))

opt(x)
� δ

and the claim of the proposition is proved.

Corollary 1. Any standard inapproximability bound for a maximization problem Π is also
a differential inapproximability bound for Π.
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Differential approximation of MIN SAT, MAX SAT and related problems

We give in this section some affine reductions and equivalences between the problems
dealt in the paper. These results will allow us to focus ourselves only in the study of MAX

SAT, MIN SAT and their restrictions without studying explicitly MAX and MIN DNF. We
first recall a result already proved in [6].

Proposition 3. ([6]) MAX SAT ≡AF MIN DNF and MIN SAT ≡AF MAX DNF.

The following proposition shows that one can affinely pass from MAX EkSAT to MAX

E(k + 1)SAT. This, allows us to transfer inapproximability bounds from MAX E3SAT to
MAX EkSAT, for any k � 4.

Proposition 4. MAX EkSAT ≤AF MAX E(k + 1)SAT.

Proof. Consider an instance ϕ of MAX EkSAT on n variables x1, . . . , xn and m clauses
C1, . . . , Cm. Consider also a new variable y and build formula ϕ′, instance of MAX E(k +
1)SAT as follows: for any clause Ci = (�i1 , . . . , �ik) of ϕ, where, for j = 1, . . . , k, �ij is a
literal associated with xij , ϕ′ contains two new clauses (�i1 , . . . , �ik , y) and (�i1 , . . . , �ik , ȳ).
Hence, ϕ′ is the conjunction of 2m clauses of size k + 1 on n + 1 variables. Assume
any truth assignment T on the variables of ϕ and denote by (T, 1) (resp., (T, 0)) the
extension of T on ϕ′ by setting y = 1 (resp., y = 0). Then, it is easy to see that
m(ϕ′, (T, 1)) = m(ϕ′, (T, 0)) = m + m(ϕ, T ).

In other words, reduction just described, associating to any assignment T ′ of ϕ′ its
restriction T on variables x1, . . . , xn as assignment for ϕ, is affine and the proof of the
proposition is complete.

We now show that, for k fixed, problems kSAT and kDNF are affine equivalent.

Proposition 5. For any fixed k, MAX kSAT, MIN kSAT, MAX kDNF, MIN kDNF, MAX

EkSAT, MIN EkSAT, MAX EkDNF and MIN EkDNF are all affine equivalent.

Proof. We first prove affine equivalence between MAX kSAT and MIN kSAT. Given n
variables x1, . . . , xn, denote by Ck the set of clauses of size k and by C�k the set of clauses
of size at most k on the set {x1, . . . , xn}. Let us remark that any truth assignment verifies
the same number vk of clauses on Ck and the same number v�k of clauses on C�k. Note
also that, since k is assumed fixed, sets Ck and C�k are of polynomial size.

Let ϕ be an instance of MAX EkSAT on variable-set {x1, . . . , xn} and on a set C =
{C1, . . . , Cm} of m clauses. Consider instance ϕ′ on the clause-set C′ = Ck \ C. Then,
for any truth assignment T on {x1, . . . , xn}: m(ϕ, S) + m(ϕ′, S) = vk; in other words,
reduction just described is an affine reduction from MAX EkSAT to MIN EkSAT. Consid-
ering ϕ as instance of MIN EkSAT this time, the above describe an affine reduction from
MIN EkSAT to MAX EkSAT.
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Furthermore, if C is an instance of MAX kSAT, then we can see the clause-set C�k \ C
as an instance of MIN kSAT and the same arguments conclude an affine reduction from
the former to the latter problem.

We now prove equivalence between versions of SAT and the corresponding versions
of DNF. Given a clause C = (�i1 ∨ . . .∨ �ik) on k literals, we build the cube (conjunction)
D = (�̄i1 ∧ . . . ∧ �̄ik). Any truth assignment T on �ij verifies C, if and only if it does
not verify D, i.e., m(C, T ) = m − m(D,T ). This specifies an affine reduction between
MAX EkSAT and MIN EkDNF, MIN EkSAT and MAX EkDNF, MAX kSAT and MIN kDNF

and between MIN kSAT and MAX kDNF.

We finally show equivalence between MAX kSAT and MAX EkSAT. We first notice
that the latter problem being a sub-problem of the former one, direction MAX EkSAT ≤AF

MAX kSAT is immediate. On the other hand, as in Proposition 4, given an instance of
MAX kSAT, one can construct, for any clause of size at most k, a set of clauses of size
exactly k, in such a way that this reduction is affine.

Combination of equivalences shown above completes the proof of the proposition.

It is shown in [12] (see also [4]), that MAX E3SAT is inapproximable within standard
approximation ratio (7/8) + ε, for any ε > 0, and MAX E2SAT is inapproximable within
standard approximation ratio (21/22) + ε, for any ε > 0 (in what follows for such results
we will use, for simplicity, expression “within better than”). Discussion above, together
with these bounds leads to the following result.

Proposition 6. MAX 2SAT, MAX E2SAT, MIN 2SAT, MIN E2SAT, MAX 2DNF, MAX

E2DNF, MIN 2DNF and MIN E2DNF are inapproximable within differential approxima-
tion ratio better than 21/22. Furthermore, for any k � 3, MAX kSAT, MAX EkSAT,
MIN kSAT and MIN EkSAT, MAX kDNF, MAX EkDNF, MIN kDNF and MIN EkDNF, are
inapproximable within differential approximation ratio better than 7/8.

Proof. Concerning MAX 2SAT and associates, Corollary 1 extends the result of [12] to
the differential paradigm. Then, Proposition 5 suffices to conclude the proof.

For MAX kSAT and associates, Corollary 1 extends the result of [15] to the differential
paradigm, for MAX 3SAT and Proposition 5 transfers it to MAX E3SAT. Then, Proposi-
tion 4 extends it for any k � 4. Finally, Proposition 5 suffices to conclude the proof.

Since the satisfiability problems stated in Proposition 6 are particular cases either
of MAX SAT, or of MIN SAT, or of MAX DNF, or, finally, of MIN DNF, application of
Proposition 6 and of Proposition 3 concludes the following corollary.

Corollary 2. MAX SAT, MIN SAT, MAX DNF and MIN DNF are inapproximable within
differential approximation 7/8.
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Results of Corollary 2 are not the best ones. In Section 4, we strengthen the one for
MAX SAT. On the other hand, as it is proved in [6], MIN SAT is inapproximable within
differential ratio better than mε−1, for any ε > 0. Proposition 5 has to be used with
some precautions in order to yield positive or negative approximation results. Indeed, if
one of the problem stated in it is approximable within constant differential approximation
ratio (i.e., within ratio that does not depend on an instance parameter), then this ratio
is naturally transferred to all the other problems. A contrario, one can see in the proof
of Proposition 5 that in many cases the number of the clauses for the derived instance
can be much larger that the one for the initial instance. In such cases, if we deal with
ratios functions of m the form of these ratios is certainly preserved but not their value.
For instance, assume that some problem Π among the ones stated in Proposition 5 is
approximable within ratio f(|ϕ|), where |ϕ| denotes the number of clauses, or cubes,
in ϕ, and f decreases with |ϕ|. Assume also that there exists another problem Π′ (among
the ones stated in Proposition 5) such that Π′ ≤AF Π and, furthermore, that this affine
reduction transforms a formula ϕ′ of Π′ into a formula ϕ for Π. Then, it transforms an
approximation ratio f(|ϕ|) for the latter into an approximation ratio f(|ϕ|) for the former
but, if the values |ϕ| and |ϕ′| are very different the one from the other, then f(|ϕ|) 	=
f(|ϕ′|).

In fact, one can easily observe that affine reductions of Proposition 5 perform the
following differential ratio transformations:

• reduction from MAX EkSAT to MIN EkSAT transforms ratios f(m,n) into f((2n)k−
m,n);

• reduction from MAX kSAT to MIN kSAT transforms ratios f(m,n) into f((2n +
1)k − m,n);

• reductions between SAT and DNF are invariant for approximation ratios;

• reduction from MAX kSAT to MAX EkSAT transforms ratios f(m,n) into f(2k−1m,
n + k − 1).

In other words, dealing with common approximability of the problems stated in Proposi-
tion 5, the following remarks hold:

• if one of these problems is in DAPX, then all the other ones are so;

• problems MAX kSAT,MAX EkSAT, MIN k DNF and MIN EkDNF are approximable
within differential ratios of O(f(m)) for a function f strictly decreasing with m
if and only if one of them is O(f(m)) differentially approximable for f(m) =
O(mα), for some α > 0, or f(m) = O(log m); the same holds for the quadruple
MIN kSAT,MIN EkSAT, MAX k DNF and MAX EkDNF;
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• all problems are in Log-DAPX (the class of problems differentially approximable
within ratios of O(1/ log |x|)) if and only if one of them is so (observe that reduc-
tions dealt transform differential ratios of O(log m) into ratios of the form O(log m)
or of O(log n), and ratios of O(log n) into ratios of the same form).

Finally, reduction of Proposition 4 transforms ratios f(m,n) into f(2m,n + 1).

3 Positive results

3.1 Maximum satisfiability

Consider an instance ϕ of an optimal satisfiability problem, defined on n boolean vari-
ables x1, . . . , xn and m clauses C1, . . . , Cm; consider also the very classical algorithm
RSAT assigning at any variable value 1 with probability 1/2 and, obviously, value 0 with
probability 1/2.Then, denoting by Sol(ϕ), the set of the 2n possible truth assignments
for ϕ, and by E(RSAT(ϕ)) the expectation of a solution computed by RSAT when running
on ϕ, the following holds: E(RSAT(ϕ)) =

∑
T∈Sol(ϕ) m(ϕ, T )/2n.

Algorithm RSAT can be derandomized by the following technique denoted by DSAT.
For i = 1, . . . , n:

• compute E ′
i = E(m(ϕ, T )|xi = 1) and E ′′

i = E(m(ϕ, T )|xi = 0), where T is
a random assignment and the values of the i − 1 first variables have already been
fixed in iterations 1, . . . i − 1;

• set xi = 1, if E ′
i � E ′′

i ; otherwise, set xi = 0.

Lemma 1. m(ϕ, DSAT(ϕ)) � E(RSAT(ϕ)).

Proof. It is easy to see that E(RSAT(ϕ)) = (E ′
1/2) + (E ′′

1/2); hence max{E ′
1, E

′′
1} �

E(RSAT(ϕ)). Furthermore, at any of the n steps of DSAT, max{E′
i, E

′′
i } = (E ′

i+1/2) +
(E ′′

i+1/2) � max{E ′
i+1, E

′′
i+1}. Consequently, we have E(RSAT(ϕ)) � max{E ′

1, E
′′
1} �

max{E ′
n, E ′′

n} = DSAT(ϕ), that concludes the proof of the lemma.

Note finally, that DSAT is polynomial since, for any i = 1, . . . , n, computation of E′
i

and E ′′
i is performed in polynomial time. Indeed, for any such computation it suffices to

determine with what probability any clause of ϕ is satisfied and to sum these probabilities
over all the clauses of ϕ.

We are ready now to state and prove positive differential approximation results for the
problems dealt here.
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Proposition 7. Algorithm DSAT achieves for MAX EkSAT differential approximation ratio
2k/(opt(ϕ) + 2k). This ratio is bounded below by 2k/(m + 2k).

Proof. Note first that we can assume that opt(ϕ) > ω(ϕ) (otherwise, MAX EkSAT would
be polynomial on ϕ). Then,

ω(ϕ) < E(RSAT(ϕ)) � m(ϕ, DSAT(ϕ)) (1)

From (1) and given that feasible values of MAX EkSAT are integer, we get:

m(ϕ, DSAT(ϕ)) − ω(ϕ) � 1 (2)

Since clauses in ϕ are of size k, the expectation that any of them is satisfied equals 1−2−k.
Hence,

m(ϕ, DSAT(ϕ)) � E(RSAT(ϕ)) = m

(
1 − 1

2k

)
� opt(ϕ)

(
1 − 1

2k

)
(3)

Using (2) and (3), we get:

δ(ϕ, DSAT(ϕ)) � max

{
1

opt(ϕ) − ω(ϕ)
,
opt(ϕ)

(
1 − 1

2k

) − ω(ϕ)

opt(ϕ) − ω(ϕ)

}
(4)

The first term in (4) is increasing with ω(ϕ), while the second one is decreasing. Equality
holds when ω(ϕ) = (opt(ϕ)(1 − 2−k)) − 1. In this case, (4) gives

δ(ϕ, DSAT(ϕ)) � 2k

opt(ϕ) + 2k
� 2k

m + 2k
(5)

Last inequality in (5) holding thanks to the fact that opt(ϕ) � m, qed.

Notice that the ratio claimed by Proposition 7 increases with k. This is quite natural
since for k > log m, MAX kSAT is polynomial. Indeed, using (3) with such a k, we get
m(ϕ,DSAT(ϕ)) � m − (m/2k) > m − 1, i.e., m(ϕ,DSAT(ϕ)) = m, since the feasible
values of MAX kSAT are integer.

We now propose a reduction transferring approximation results for MAX SAT problems
from standard to differential paradigm. It will be used in order to achieve differential
approximation results for MAX SAT, MAX 3SAT and MAX 2SAT.

Proposition 8. If a maximum satisfiability problem is approximable on an instance ϕ,
within standard approximation ratio ρ, then it is approximable in ϕ within differential
approximation ratio ρ/((1 − ρ)ω(ϕ) + 1).
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Proof. Fix any maximum satisfiability problem Π, sharing the ones dealt until now, and
assume that there exists a polynomial time algorithm achieving standard approximation
ratio ρ for Π. Consider an instance ϕ of Π, run both A and DSAT on ϕ and retain assign-
ment T satisfying the maximum number of clauses between A(ϕ) and DSAT(ϕ). Obvi-
ously, m(ϕ, T ) � ρ opt(ϕ). Hence, the differential approximation ratio of T is

δ(ϕ, T ) � m(ϕ, T ) − ω(ϕ)
m(ϕ,T )

ρ
− ω(ϕ)

(6)

Since, as we have seen in the proof of Proposition 7, m(ϕ, T ) � ω(ϕ) + 1, (6) becomes

δ(ϕ, T ) � 1
ω(ϕ)+1

ρ
− ω(ϕ)

=
ρ

(1 − ρ)ω(ϕ) + 1
(7)

The proof of the proposition is now complete.

From the result of Proposition 8, we can deduce several corollaries by specifying
values for ω(ϕ) and ρ. The main such corollaries are stated in the propositions that follow.
Before stating and proving them, let us remark that, in the case of MAX kSAT

E(RSAT(ϕ)) � m

(
1 − 1

2k

)
(8)

Then (1) and (8) yield:

ω(ϕ) � m

(
1 − 1

2k

)
(9)

Proposition 9. MAX SAT is approximable within differential approximation ratio 4.34/(m+
4.34).

Proof. We can assume ω(ϕ) � m − 1, otherwise (ω(ϕ) = m) all feasible solutions of ϕ
have the same value. Since 1 − ρ � 0, the differential ratio of (7) decreases with ω(I).
So, it suffices to substitute m − 1 for ω(ϕ), to use the fact that MAX SAT is approximable
within standard ratio 1/1.2987 ([3]), and the proof of the proposition is complete.

Proposition 10. MAX 2SAT is approximable within differential approximation ratio
17.9/(m + 19.3), and MAX 3SAT within 4.57/(m + 5.73).

Proof. For MAX 2SAT, remark first that, using (3), the expectation of the solution com-
puted by the random algorithm RSAT is, using (9), less than, or equal to, 3m/4. Con-
sequently, ω(ϕ) � 3m/4. Next, the fact that MAX SAT is approximable within standard
ratio 1/1.0741 ([10]) suffices to conclude the proof.

For MAX 3SAT, ω(ϕ) � 7m/8 and ρ = 1/1.249 ([18]).
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3.2 Minimum satisfiability

We finish this section by studying MIN SAT and some of its versions. Before stating our
results, we note that algorithm RSAT can be derandomized in an exactly symmetric way,
in order to provide a solution for MIN kSAT with value smaller than expectation’s value.

Proposition 11. If a minimum satisfiability problem is approximable on an instance ϕ,
within standard approximation ratio ρ, then it is approximable in ϕ within differential
approximation ratio

ρ

(ρ − 1)
(
1 − 1

2k

)
m + ρ

Proof. As in the proof of Proposition 7, since we deal with a minimization problem, (1)
becomes:

opt(ϕ) � m(ϕ, DSAT(ϕ)) � E(RSAT(ϕ)) < ω(ϕ) (10)

Consequently, (2) becomes:

ω(ϕ) − m(ϕ, DSAT(ϕ)) � 1 (11)

Considering the best among the solutions computed by DSAT and A (the ρ-standard ap-
proximation algorithm assumed for MIN kSAT in the statement of the theorem), denoting
it by T and using (10) and (11), we get:

δ(ϕ, T ) � max

{
1

ω(ϕ) − opt(ϕ)
,
ω(ϕ) − ρ opt(ϕ)

ω(ϕ) − opt(ϕ)
,
ω(ϕ) − m

(
1 − 1

2k

)
ω(ϕ) − opt(ϕ)

}
(12)

where the third term in (12) is due to the fact that T has a better value than the value of
algorithm RSAT.

The first term in (12) is decreasing with ω(ϕ), while the second and third ones are
increasing. We distinguish two cases depending on the relation between these terms.

If the second term is greater than the third one, i.e., if ρ opt(ϕ) � m(1 − 2−k), then
equality of the first two terms of (12) is achieved when ω(ϕ) = 1 + ρ opt(ϕ). In this
case, (12) gives:

δ(ϕ, T ) � ρ

(ρ − 1)m
(
1 − 1

2k

)
+ ρ

(13)

If, on the other hand, second term is smaller than the third one, i.e., if ρ opt(ϕ) � m(1 −
2−k), then equality of the first and the third term in (12) is achieved when ω(ϕ) = m(1−
2−k) + 1. In this case also, δ(ϕ, T ) verifies (13). The proof of the proposition is now
complete.

The best standard approximation ratios known for MIN kSAT and MIN SAT are 2(1 −
2−k) and 2, respectively ([7]). With the ratio just mentioned for MIN kSAT, the result of
Proposition 11 can be simplified as indicated in the following corollary.
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Corollary 3. MIN kSAT is approximable within differential ratio 2k/((2k−1 − 1)m + 2k).

Proposition 12. MIN SAT is approximable within differential ratio 2/(m + 2).

Proof. Use Proposition 11 with ρ = 2 ([7]).

Also, using Corollary 3 with k = 2 and k = 3, the following corollary holds and
concludes the section.

Corollary 4. MIN 2SAT and MIN 3SAT are approximable within differential ratios 4/(m+
4) and 8/(3m + 8), respectively.

4 Inapproximability

We first recall some basics about MAX E3LINp that will be used for deriving our results.
In this problem, we are given a positive prime p, n variables x1, . . . , xn in Z/pZ, m linear
equations of type αi�xi� + αj�

xj�
+ αk�

xk�
= β� and our objective is to determine an

assignment on x1, . . . , xn, in such a way that a maximum number among the m equations
is satisfied.

As it is proved in [12] (see also [9] for the case where all the coefficients equal 1),
for any p � 2 and for any ε > 0, MAX E3LINp cannot be approximated within standard
approximation ratio (1/p) + ε, even if coefficients in the left-hand sides of the equations
are all equal to 1. Note that, due to Corollary 1, this bound is immediately transferred to
the differential paradigm.

Finally, let us quote the following GAP-reduction (see [2] for more about this kind of
reductions), proved in [12], that will be used in order to yield our results.

Proposition 13. ([12]) Given a problem Π ∈ NP and a real δ > 0, there exists a poly-
nomial transformation g from any instance I of Π into an instance of MAX E3LIN2 such
that:

• if I is a yes-instance of Π (we use here classical terminology from [11]), then
opt(g(I)) � (1 − δ)m;

• if I is a no-instance of Π, then opt(g(I)) � (1 + δ)m/2.

Proposition 13 shows, in fact, that MAX E3LIN2 is not approximable within standard ratio
1/2 + ε, for any ε > 0, because an algorithm achieving it would allow us to distinguish
in polynomial time the yes-instances of any problem Π ∈ NP from the no-ones. Devising
of such reductions is one of the most common strategies for proving inapproximability
results in standard approximation.
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4.1 Bounds for MAX E3SAT

We first prove a GAP-reduction analogous to the one of Proposition 13 from any problem
Π ∈ NP to MAX E3SAT. Note that this is the first time that a GAP-reduction is used in
the differential approximation paradigm.

Proposition 14. Given a problem Π ∈ NP and a real δ > 0, there exists a polynomial
transformation f from any instance I of Π into an instance of MAX E3SAT such that:

• if I is a yes-instance of Π, then opt(f(I)) − ω(f(I)) � (1 − 2δ)m/4;

• if I is a no-instance of Π, then opt(f(I)) − ω(f(I)) � δm/4.

Proof. We first prove that the reduction of Proposition 13 can be translated into the
differential paradigm also. Consider an instance I ′ = g(I) of MAX E3LIN2 and a feasible
solution 
x = (x1, x2, . . . , xn) for I (we will use the same notation for both variables
and their assignment) verifying k among the m equations of I ′. Then, vector 
̄x = (1 −
x1, . . . , 1 − xn), verifies the m − k equations not verified by 
x. In other words, opt(I) +
ω(I) = m; hence, function g claimed by Proposition 13 is such that:

• if I is a yes-instance of Π, then opt(I ′) − ω(I ′) � (1 − 2δ)m;

• if I is a no-instance of Π, then opt(I ′) − ω(I ′) � δm.

We are ready now to continue the proof of the proposition. Consider an instance I of
MAX E3LIN2 on n variables xi, i = 1, . . . , n and m equations of type xi + xj + xk = β
in Z/2Z, i.e., where variables and second members equal 0, or 1. In the same spirit as
in [12], we transform I into an instance ϕ = h(I) of MAX E3SAT in the following way:

• for any equation xi + xj + xk = 0, we add in h(I) the following four clauses:
(x̄i ∨ xj ∨ xk), (xi ∨ x̄j ∨ xk), (xi ∨ xj ∨ x̄k) and (x̄i ∨ x̄j ∨ x̄k);

• for any equation xi + xj + xk = 1, we add in h(I) the following four clauses:
(xi ∨ xj ∨ xk), (x̄i ∨ x̄j ∨ xk), (x̄i ∨ xj ∨ x̄k) and (xi ∨ x̄j ∨ x̄k).

It can immediately be seen that h(I) has n variables and 4m (distinct) clauses.

Given a solution y for MAX E3SAT on h(I), we construct a solution y′ for I by setting
xi = 1 if xi = 1 in h(I) also; otherwise, we set xi = 0.

For instance, consider equation xi + xj + xk = 0 in I . It is verified if either 0 or 2 of
the variables are equal to 1. The several satisfaction possibilities for the clauses derived
in h(I) for this equation are the following:
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• if zero, or two variables are set to 1 (true), then all the four clauses are satisfied;

• if one, or three variables are set to 1, then 3 clauses are satisfied.

As a consequence, iterating this argument for any clause set built from an equation, we
conclude that solution y for MAX E3SAT on h(I) verifies m(h(I), y) = 3m + m(I, y′).
Since transformation between y′ and y is bijective, we get ω(h(I)) = 3m + ω(I) and
opt(h(I)) = 3m + opt(I). In other words, the reduction just described is an affine
reduction from MAX E3LIN2 to MAX E3SAT.

It suffices now to remark that the composition f = h ◦ g verifies the statement of the
proposition and its proof is concluded.

Proposition 14 has a very interesting corollary, expressed in the Proposition 15 just
below, that exhibits another point of dissymmetry between standard and differential para-
digms.

Proposition 15. Unless P = NP, no polynomial algorithm can compute, on an instance ϕ
of MAX E3SAT a value that is a constant approximation of the quantity opt(ϕ) − ω(ϕ).

In view of Proposition 15, what is different between standard and differential paradigms
with respect to the GAP-reduction is that in the former such a reduction immediately
concludes the impossibility for a problem (assume that it is a maximization one) to be
approximable within some ratio, by showing the impossibility for the optimal value to be
approximated within this ratio. For that, it suffices that one reads the value of the solution
returned by the approximation algorithm. In the latter paradigm such a conclusion is not
always immediate. In fact, a reasoning similar to the one of the standard approximation is
possible when computation of the worst solution can be done in polynomial time (this is,
for instance, the case of maximum independent set and of many other NP-hard problems).
In this case a simple reading of the value of the approximate solution is sufficient to give
an approximation of opt(x)−ω(x). A contrario, when it is NP-hard to compute ω(x) (this
is the case of the problems dealt here –simply think that the worst solution for MAX SAT is
the optimal one for MIN SAT and that both of them are NP-hard –, of traveling salesman,
etc.), then reading the value m(x, y) of the approximate solution does not provide us with
knowledge about m(x, y) − ω(x) and, consequently no approximation of opt(x) − ω(x)
can be immediately estimated. So, use of GAP-reduction for achieving inapproximability
results is different from the one paradigm to the other.

However, for the case we deal with, we will take advantage of a combination of Propo-
sitions 5 and 15 in order to achieve the inapproximability bound for MAX E3SAT given in
Proposition 16 that follows.

Proposition 16. Unless P = NP, MAX E3SAT is inapproximable within differential ap-
proximation ratio greater than 1/2.
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Proof. Assume that an approximation achieves differential ratio δ > 1/2, for MAX E3SAT.
Then, by Proposition 5, there exists an algorithm achieving the same differential ratio
for MIN E3SAT. Denote by T1 and T2, respectively, the solutions computed by these
algorithms on an instance ϕ of these problems. We have:

m (ϕ, T1) − ω(ϕ) � δ(opt(ϕ) − ω(ϕ)) (14)

where opt(·) and ω(·) are referred to MAX E3SAT. By the relations between all these
parameters for the two problems specified in the proof of Proposition 5, we get:

opt(ϕ) − m (ϕ, T2) � δ(opt(ϕ) − ω(ϕ)) (15)

Adding (14) and (15) member-by-member, we get m(ϕ, T1)−m(ϕ, T2) � (2δ−1)(opt(ϕ)−
ω(ϕ)). So, simple reading of the values of T1 and T2, can provide us a constant approxi-
mation (since δ has been assumed to be a fixed constant greater than 1/2) of the quantity
opt(ϕ) − ω(ϕ), impossible by Proposition 15.

Proposition 16 together with Proposition 5 conclude the following corollary.

Corollary 5. For any k � 3, MAX EkSAT, MIN EkSAT, MAX kSAT and MIN kSAT are
differentially inapproximable within ratios better than 1/2.

4.2 MAX EkSAT, k � 3

In this section, we will generalize the GAP-reduction of Proposition 14 in order to further
strengthen inapproximability results of Corollary 5.

Proposition 17. For any prime p > 0, MAX E3LINp ≤AF MAS E3(p − 1)SAT.

Proof. Consider a positive prime p and an instance I of MAX E3LINp on n variables
and m equations. Consider an equation x1 + x2 + x3 = β (in Z/pZ) of I and, for any
i = 1, 2, 3, p − 1 new variables x1

i , . . . , x
p−1
i ∈ {0, 1}. Consider, finally, equation

p−1∑
j=1

xj
1 +

p−1∑
j=1

xj
2 +

p−1∑
j=1

xj
3 = β (16)

It is easy to see that (16) is verified if and only if the number of variables set to 1 is either β
or β + p, or, finally, β + 2p.

Consider now the set of all the possible clauses on 3(p − 1) literals issued from vari-
ables x1

i , . . . , x
p−1
i , i = 1, 2, 3. Any truth assignment will satisfy all but one clause. For

example, if any variable is assigned with 1, the only unsatisfied clause is the one where
all variables appear negative.
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What is of interest for us is to specify when the number of variables set to 1 is either β
or β + p, or, β + 2p. For this, denote by Ck the set of clauses on 3(p − 1) literals issued
from variables x1

i , . . . , x
p−1
i , i = 1, 2, 3 with exactly k negative literals. Then, a truth

assignment setting k variables to 1, verifies |Ck| − 1 clauses of Ck, while any other truth
assignment on the variables of Ck verifies all the |Ck| clauses. So, for an equation x1 +
x2 + x3 = β, we will add in the instance of MAX E3(p − 1)SAT the set Ck, for k ∈
{0, . . . , 3(p − 1)} and k /∈ {β, β + p, β + 2p}. Hence, if a truth assignment for these
clauses has β, or β+p, or β+2p variables set to 1, it will verify all the clauses constructed,
otherwise it will verify all but one of these clauses.

In all, for any of the variables x1
i , . . . , x

p−1
i we will build one new variable and we will

transform any of the m equations of I into an equation as in (16). Then, for any of these
new equations we add in the instance of MAX E3(p− 1)SAT the set of clauses as built just
above. The instance ϕ of MAS E3(p − 1)SAT so constructed has n(p − 1) variables and,
since the number of clauses issued from any equation is no more than 23(p−1), ϕ will have
at most mϕ � m23(p−1) clauses.

Given a truth assignment T on the variables of ϕ, we set xi = |{xk
i : xk

i = 1 in T}|.
Discussion above leads to m(ϕ, T ) = mϕ − m + m(I, S). On the other hand, it is
easy to see that our reduction implies that any solution S of I is transformed into a truth
assignment T on the variables of ϕ such that the relation between the values of S and T
given just above is always satisfied. This relation confirms that the reduction specified is
an affine one from MAX E3LINp to MAX E3(p − 1)SAT.

Finally, let us remark that it is possible that formula ϕ contains many times the same
clause. This, for instance, is the case if I simultaneously contains equations say x1 +
x2 + x3 = β1 and x1 + x2 + x3 = β2, for β1 	= β2. In this case, we can modify
the construction described, by building the subset of Ck or k ∈ {0, . . . , 3(p − 1)} and
k /∈ {β1, β1+p, β1+2p, β2, β2+p, β2+2p}. This concludes the proof of the proposition.

The result of Proposition 17 together with the result of [12] stated in the beginning of
the section and Proposition 1, lead to the following corollary.

Corollary 6. For any prime p, MAX E3(p − 1)SAT is inapproximable within differential
ratio greater than 1/p.

Furthermore, Propositions 4 and 5 allow us to rewrite Proposition 17 as follows.

Proposition 18. For any k � 3, neither MAX EkSAT, nor MIN EkSAT can be approx-
imately solved within differential ratio greater than 1/p, where p is the largest positive
prime such that 3(p − 1) � k.

Easy consequences of Proposition 18 are the following differential inapproximability
bounds for several instantiations of maximum and minimum k-satisfiability:
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• MAX and MIN 3SAT 4SAT and 5SAT are differentially inapproximable within ratio
better than 1/2;

• MAX and MIN 6SAT, . . . , 11SAT are differentially inapproximable within ratio bet-
ter than 1/3;

• MAX and MIN 12SAT, . . . , 17SAT are differentially inapproximable within ratio
than 1/5, . . .

Finally, MAX SAT being harder to approximate than any MAX kSAT problem, the follow-
ing result holds and concludes the section.

Proposition 19. MAX SAT /∈ DAPX.

In [17] is defined a logical class of NPO maximization problems called MAX-NP. A
maximization problem Π ∈ NPO belongs to Max-NP if and only if there exist two finite
structures (U, I) and (U,S), a quantifier-free first order formula ϕ and two constants k
and � such that, the optima of Π can be logically expressed as:

max
S∈S

∣∣{x ∈ Uk : ∃y ∈ U �, ϕ(I, S, x, y)
}∣∣ (17)

The predicate-set I draws the set of instances of Π, set S the solutions on I and ϕ the
feasibility conditions for the solutions of Π. In the same article is proved that MAX SAT ∈
Max-NP and that MAX-NP ⊂ APX.

It is easy to see that (17) can be identically used in both standard and differential
paradigms. So, Proposition 19 draws an important structural difference in the landscape of
approximation classes in the two paradigms, since an immediate corollary of this propo-
sition is that MAX-NP 	⊂ DAPX. We conjecture that the same holds for the other one
of the celebrated logical classes of [17], the class MAX-SNP, i.e., we conjecture that
MAX-SNP 	⊂ DAPX

4.3 MAX E2SAT

We have already seen in Proposition 6 that MAX E2SAT is differentially inapproximable
within ratio 21/22. In this section, we improve this result by operating an affine reduction
from MAX E2LIN2 to MAX E2SAT.

Indeed, consider an instance I of the former problem (on n variables and m equations)
and an equation x1 + x2 = 0 in I . Add in ϕ (the instance of MAX E2SAT under construc-
tion) clauses x̄1 ∨ x2 and x1 ∨ x̄2. On the other hand, for an equation x1 + x2 = 1, add
in ϕ clauses x1 ∨ x2 and x̄1 ∨ x̄2. Performing this transformation for any equation in I ,
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we finally build a formula ϕ of MAX E2SAT on n variables and 2m clauses. Moreover,
for any truth assignment T on the variables of ϕ, one gets a solution S for I such that
m(ϕ, T ) = m + m(I, S), qed.

It is shown in [12] that MAX E2LIN2 is inapproximable within standard approximation
ratio better than 11/12. By Proposition 2, this bound is transferred to the differential
paradigm. Then, the affine reduction just described concludes the following result.

Proposition 20. MAX E2LIN2 ≤AF MAX E2SAT. Consequently, MAX E2SAT is differen-
tially inapproximable within ratio greater than 11/12.

5 Ideas for further research

We give in this concluding section a few ideas about possible ways for further improving
results of the paper or for yielding new ones.

Consider a graph G(V,E) of order n and with maximum degree ∆. We construct an
instance ϕ of MAX DNF on n variable x1, . . . , xn and n cubes C1, . . . , Cn as follows: for
any vertex vi ∈ V , with neighbors vi1 , . . . , viδi

, we add in ϕ clause xi ∧ x̄i1 ∧ . . . ∧ x̄iδi
.

Let T be a truth assignment satisfying k cubes, say Cj1 , . . . , Cjk
. Then, obviously, the

vertex-set V ′ = {vj1 , . . . , vjk
} is an independent set for G (of size k). Conversely, given

an independent set of G of size k consisting of vertices vj1 , . . . , vjk
, the truth assignment

setting variables xj1 , . . . , xjk
to 1 and any other variable of ϕ in 0 satisfies k cubes. Ob-

serve finally that the size of the cubes built for ϕ is bounded by ∆ + 1. In all we have just
exhibited an affine reduction from MAX INDEPENDENT SET-∆ (i.e., MAX INDEPENDENT

SET on graphs with maximum degree bounded by ∆) to MAX ∆ + 1DNF.

On the other hand, there exists an ε > 0 such that, for any ∆ � 3, MAX INDEPEN-
DENT SET-∆ is not approximable within approximation ratio 1/∆ε ([1]). Since standard
and differential approximation ratios coincide for MAX INDEPENDENT SET (the worst
independent set in a graph is the empty set), the result of [1] holds immediately for dif-
ferential paradigm and can be used in order to conclude that there exists an ε > 0 such
that, for any k � 4, MAX kDNF is not differentially approximable within ratio greater
than 1/kε. This recovers the result of Proposition 19, namely, that MAX SAT /∈ DAPX.

If one wishes to improve this result, a possible issue is the following. Recall that trans-
formation of MAX kDNF to MAX kSAT of Proposition 5, consists of substituting any cube
of size � by 2�−1 clauses of size �. We so can affinely (but not polynomially) reduce MAX

INDEPENDENT SET to MAX SAT by building an instance ϕ of the latter on n variables and
at most n2∆+1 clauses. But, if ∆ is bounded by log n, then this reduction is polynomial.
In other words, if one obtains an inapproximability bound for MAX INDEPENDENT SET-
log n (for example a bound of the type 1/ logε n, for some positive ε), then one can extend
it immediately to MAX SAT improving so the bound of the paper.
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Conciliation and Consensus in Iterated Belief
Merging

Olivier Gauwin∗, Sébastien Konieczny∗, and Pierre Marquis∗

Abstract

Two conciliation processes for intelligent agents based on an iterated merge-
then-revise change function for belief profiles are introduced and studied. The first
approach is skeptical in the sense that at any revision step, each agent considers that
her current beliefs are more important than the current beliefs of the group, while
the other case is considered in the second, credulous approach. Some key features of
such conciliation processes are pointed out for several merging operators; especially,
the “convergence” issue, the existence of consensus and the properties of the induced
iterated merging operators are investigated.

Key words : Belief Merging

1 Introduction

Belief merging is about the following question: given a set of agents associated to belief
bases which are (typically) mutually inconsistent, how to define a belief base reflecting
the beliefs of the group of agents?

The belief merging issue is central in many applications. For example, when a dis-
tributed database is to be queried, conflicting answers coming from different bases must
be handled. The same difficulty occurs when one wants to define the beliefs of a group of
experts, or the global beliefs within a multi-agent system.

There are many different ways to address the belief merging issue in a propositional
setting (see e.g.[11, 19, 17, 16, 2, 3, 13, 14]). The variety of approaches just reflects the
various ways to deal with inconsistent beliefs.

∗CRIL-CNRS, Universit́e d’Artois, Facult́e des Sciences, 62307 Lens Cedex, France.
{gauwin,konieczny,marquis}@cril.univ-artois.fr
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The belief merging issue is not concerned with the way the beliefs of the group are ex-
ploited. One possibility is to suppose that all the belief bases are replaced by the (agreed)
merged base. This scenario is sensible with low-level agents that are used for distributed
computation, or for applications with distributed information sources (like distributed
databases). Once the merged base has been computed, all the agents participating to
the merging process are equivalent in the sense that they share the same belief base. Such
a drastic approach, when repeated, clearly leads to impoverish the beliefs of the system.
Contrastingly, when high-level intelligent agents are considered, the previous scenario
looks rather unlikely: it is not reasonable to assume that the agents are ready to com-
pletely discard their current beliefs and inconditionnally accept the merged base as a new
belief base. It seems more adequate for them to incorporate the result of the merging into
their current belief base. Such an incorporation of new beliefs calls for what is known as
belief revision [1, 7, 8], which can be considered as a specific case of IC belief merging.

In this perspective, two revision strategies can be considered. The first one consists
in giving more priority to the previous beliefs; this is the strategy at work for skeptical
agents. The second one, used by credulous agents, views the current beliefs of the group
as more important than their own, current beliefs. Thus, given a revision strategy, every
IC merging operator∆ induces what we called a conciliation operator which maps every
belief profileE (i.e., the beliefs associated to each agent at start) to a new belief profile
where the new beliefs of an agent are obtained by revising its previous beliefs with the
merged base given byE and∆, or vice-versa.

Obviously enough, it makes sense to iterate such a merge-then-revise process when
the objective of agents is to reach an agreement (if possible): after a first merge-then-
revise round, each agent has possibly new beliefs, defined from her previous ones and the
beliefs of the group; this may easily give rise to new beliefs for the group, which must be
incorporated into the previous beliefs of agents, and so on. The objective of this paper is to
study the two conciliation processes induced by the two revision strategies for various IC
merging operators under two simplifying assumptions: homogeneity (the same strategy
and the same revision operators are used by all the agents) and compatibility (the revision
operator used is the one induced by the IC merging operator under consideration). Some
key issues are considered, including the “convergence” of the processes, i.e., the existence
of a round from which no further evolution is possible, the existence of consensus (i.e.,
the joint consistency of all belief bases at some stage), and the logical properties of the
iterated merging operator defined by the last merged base once a fixed point has been
reached.

The rest of the paper is organized as follows. In the next section, some formal prelim-
inaries are provided. Section 3 presents the main results of the paper: in Section 3.1 the
conciliation processes are defined, in Section 3.2 the focus is laid on the skeptical ones
and in Section 3.3 on the credulous ones. In Section 4 we investigate the connections
between the conciliation processes and the merging operators they induce. Especially,
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we give some properties of the corresponding iterative merging operators. Section 5 is
devoted to related work. Finally, Section 6 gives some conclusions and perspectives of
this work.

2 Preliminaries

We consider a propositional languageL over a finite alphabetP of propositional symbols.
An interpretation is a function fromP to {0, 1}. The set of all the interpretations is
denotedW. An interpretationω is a model of a formulaK, notedω |= K, if and only if
it makes it true in the usual classical truth functional way. LetK be a formula,mod(K)
denotes the set of models ofK, i.e.,mod(K) = {ω ∈ W | ω |= K}.

A belief baseK is a consistent propositional formula (or, equivalently, a finite consis-
tent set of propositional formulas considered conjunctively). Let us noteK the set of all
belief bases.

Let K1, . . . , Kn be n belief bases (not necessarily pairwise different). We callbe-
lief profile the vectorE consisting of thosen belief bases in a specific order,E =
(K1, . . . , Kn), so that thenth base gathers the beliefs of agentn. When belief merging is
considered only, every belief profile can typically be viewed as the multi-set composed of
its coordinates; this just comes from the fact that usual belief merging frameworks make
an anonymity assumption about agents (roughly, no agent is considered more important
than another one): the merged base associated to a given belief profile is invariant under
any permutation of the agents. In the following, we need nevertheless to keep track of
the origins of beliefs, so as to be able to associate to each agent the right beliefs after
each evolution step. This is why belief profiles are represented as vectors of belief bases,
and not just multi-sets of belief bases; clearly enough, this is without any loss of gener-
ality since more information is preserved by the vector representation. We note

∧
E the

conjunction of the belief bases ofE, i.e.,
∧

E = K1 ∧ · · · ∧ Kn. We say that a belief
profile is consistent if

∧
E is consistent. The union of belief profiles (actually, of the

associated multi-sets) will be noted�. The cardinal of a (multi-)set or vectorE is noted
#(E) (the cardinal of a finite multi-set is the sum of the numbers of occurrences of each
of its elements).

Let E be the set of all finite non-empty belief profiles. Two belief profilesE1 and
E2 from E are said to be equivalent (notedE1 ≡ E2) if and only if there is a bijection
between the multi-set associated toE1 and the multi-set associated toE2 s.t. each belief
base ofE1 is logically equivalent to its image inE2.

For every belief revision operator∗, every profileE = (K1, . . . , Kn) and every belief
baseK, we define the revision ofE by K (resp. the revision ofK by E) as the belief
profile given by(K1, . . . , Kn) ∗ K = (K1 ∗ K, . . . ,Kn ∗ K) (resp.K ∗ (K1, . . . , Kn) =
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(K ∗ K1, . . . , K ∗ Kn)). Since sequences of belief profiles will be considered, we use
superscripts to denote belief profiles obtained at some stage, while subscripts are used (as
before) to denote belief bases within a profile. For instance,Ei denotes the belief profile
obtained afteri elementary evolution steps (in our framework,i merge-then-revise steps),
andKi

j the belief base associated the thejth coordinate of vectorEi.

2.1 IC merging operators

Some basic work in belief merging aims at determining sets of axiomatic properties valu-
able operators should exhibit [18, 19, 16, 12, 13, 15]. We focus here on the characteriza-
tion of Integrity Constraints (IC) merging operators [13, 14].

Definition 1 (IC merging operators) � is an IC merging operatorif and only if it satis-
fies the following properties:

(IC0) �µ(E) |= µ

(IC1) If µ is consistent, then �µ(E) is consistent

(IC2) If
∧

E is consistent with µ, then �µ(E) ≡ ∧
E ∧ µ

(IC3) If E1 ≡ E2 and µ1 ≡ µ2, then �µ1(E1) ≡ �µ2(E2)

(IC4) If K1 |= µ and K2 |= µ, then �µ({K1, K2}) ∧ K1 is consistent if and only if
�µ({K1, K2}) ∧ K2 is consistent

(IC5) �µ(E1) ∧�µ(E2) |= �µ(E1 � E2)

(IC6) If �µ(E1) ∧�µ(E2) is consistent, then �µ(E1 � E2) |= �µ(E1) ∧�µ(E2)

(IC7) �µ1(E) ∧ µ2 |= �µ1∧µ2(E)

(IC8) If �µ1(E) ∧ µ2 is consistent, then �µ1∧µ2(E) |= �µ1(E)

The intuitive meaning of the properties is the following:(IC0) ensures that the result
of merging satisfies the integrity constraints.(IC1) states that, if the integrity constraints
are consistent, then the result of merging will be consistent.(IC2) states that if possi-
ble, the result of merging is simply the conjunction of the belief bases with the integrity
constraints.(IC3) is the principle of irrelevance of syntax: the result of merging has to
depend only on the expressed opinions and not on their syntactical presentation.(IC4)
is a fairness postulate meaning that the result of merging oftwo belief bases should not
give preference to one of them (in the sense that if it is consistent with one of them, it has
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to be consistent with the other one.) It is a symmetry condition, that aims at ruling out
operators which give priority to one of the bases.(IC5) expresses the following idea: if
belief profiles are viewed as expressing the beliefs of the members of a group, then ifE1

(corresponding to a first group) compromises on a set of alternativesA belongs to, and
E2 (corresponding to a second group) compromises on another set of alternatives which
containsA too, thenA has to be in the chosen alternatives if we join the two groups.(IC5)
and(IC6) together state that if one could find two subgroups which agree on at least one
alternative, then the result of the global merging has to be exactly those alternatives the
two groups agree on.(IC7) and(IC8) state that the notion of closeness is well-behaved,
i.e., that an alternative that is preferred among the possible alternatives (µ1), remains pre-
ferred if one restricts the possible choices (µ1 ∧ µ2). For more explanations on those
properties see [14].

Two sub-classes of IC merging operators have been defined.IC Majority operators
aim at resolving conflicts by adhering to the majority wishes, whileIC arbitration opera-
torsexhibit a more consensual behaviour:

Definition 2 (majority and arbitration) An IC majority operatoris an IC merging op-
erator which satisfies the following majority postulate:

(Maj) ∃n �µ (E1 � E2
n) |= �µ(E2).

An IC arbitration operatoris an IC merging operator which satisfies the following
arbitration postulate:

(Arb)

�µ1(K1) ≡ �µ2(K2)
�µ1⇔¬µ2({K1,K2}) ≡ (µ1 ⇔ ¬µ2)
µ1 	|= µ2

µ2 	|= µ1




⇒ �µ1∨µ2({K1,K2}) ≡ �µ1(K1).

See [13, 15] for explanations about those two postulates and the behaviour of the two
corresponding classes of merging operators.

Let us now give some examples of IC merging operators.

Definition 3 A pseudo-distancebetween interpretations is a total function d : W ×W �→
IR+ such that for any ω, ω′, ω′′ ∈ W: • d(ω, ω′) = d(ω′, ω), and

• d(ω, ω′) = 0 if and only if ω = ω′.

Two widely used distances between interpretations are Dalal distance [6], denoteddH ,
which is the Hamming distance between interpretations (i.e., the number of propositional
variables on which the two interpretations differ); and the drastic distance, denoteddD,
which is the simplest pseudo-distance one can define: it gives 0 if the two interpretations
are the same one, and 1 otherwise.
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Definition 4 An aggregation functionf is a total function associating a nonnegative real
number to every finite tuple of nonnegative real numbers and s.t. for any x1, . . . , xn, x, y ∈
IR+:

• if x ≤ y, then f(x1, . . . , x, . . . , xn) ≤ f(x1, . . . , y, . . . , xn). (non-decreasingness)

• f(x1, . . . , xn) = 0 if and only if x1 = . . . = xn = 0. (minimality)

• f(x) = x. (identity)

Widely used functions are themax [19, 15], the sumΣ [19, 17, 13], or the leximax
GMax [13, 15].

The chosen distance between interpretations induces a “distance” between an inter-
pretation and a base, which in turn gives a “distance” between an interpretation and a
profile, using the aggregation function. This latter distance gives the needed notion of
closeness≤E (a pre-order induced byE):

Definition 5 Let d be a pseudo-distance between interpretations and f be an aggrega-
tion function. The result �d,f

µ (E) of the (model-based) merging of E given the integrity
constraints µ is defined by:

• d(ω,K) = minω′|=Kd(ω, ω′).

• d(ω,E) = f{Ki∈E}(d(ω,Ki)).

• ω ≤E ω′ if and only if d(ω,E) ≤ d(ω′, E).

• [�d,f
µ (E)] = min([µ],≤E).

Let us illustrate now the behaviour of merging operators on an example. This example
shows the result of a merging for the IC arbitration operator�dH ,GMax, using the Hamming
distance and the leximax aggregation function, the IC majority operator�dH ,Σ, and the
operator�dH ,Max which is not an IC merging operator, but satisfies all IC properties (and
(Arb)), except (IC6).

Example 1 Let us consider a belief profile E = (K1, K2, K3, K4) and an integrity con-
straint µ defined on a propositional language built over four symbols, as follows:

mod(µ) = W \ { (0, 1, 1, 0), (1, 0, 1, 0), (1, 1, 0, 0),
(1, 1, 1, 0)}

mod(K1) = {(1, 1, 1, 1), (1, 1, 1, 0)}
mod(K2) = {(1, 1, 1, 1), (1, 1, 1, 0)}
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K1 K2 K3 K4 ddH,Max ddH,Σ ddH,GMax

(0, 0, 0, 0) 3 3 0 2 3 8 (3,3,2,0)
(0, 0, 0, 1) 3 3 1 3 3 10 (3,3,3,1)
(0, 0, 1, 0) 2 2 1 1 2 6 (2,2,1,1)
(0, 0, 1, 1) 2 2 2 2 2 8 (2,2,2,2)
(0, 1, 0, 0) 2 2 1 1 2 6 (2,2,1,1)
(0, 1, 0, 1) 2 2 2 2 2 8 (2,2,2,2)
(0, 1, 1, 0) 1 1 2 0 2 4 (2,1,1,0)
(0, 1, 1, 1) 1 1 3 1 3 6 (3,1,1,1)
(1, 0, 0, 0) 2 2 1 2 2 7 (2,2,2,1)
(1, 0, 0, 1) 2 2 2 3 3 9 (3,2,2,2)
(1, 0, 1, 0) 1 1 2 1 2 5 (2,1,1,1)
(1, 0, 1, 1) 1 1 3 2 3 7 (3,2,1,1)
(1, 1, 0, 0) 1 1 2 1 2 5 (2,1,1,1)
(1, 1, 0, 1) 1 1 3 2 3 7 (3,2,1,1)
(1, 1, 1, 0) 0 0 3 0 3 3 (3,0,0,0)
(1, 1, 1, 1) 0 0 4 1 4 5 (4,1,0,0)

Table 1: Distances

mod(K3) = {(0, 0, 0, 0)}
mod(K4) = {(1, 1, 1, 0), (0, 1, 1, 0)}

The computations are reported in Table 1. The shadowed lines correspond to the in-
terpretations rejected by the integrity constraints. Thus the result has to be taken among
the interpretations that are not shadowed. The first four columns show the Hamming dis-
tance between each interpretation and the corresponding source. The last three columns
show the distance between each interpretation and the profile according to the different
aggregation functions. So the selected interpretations for the corresponding operators
are the ones with minimal aggregated distance.

With the �dH ,Max operator, the minimum distance is 2 and the chosen interpretations
are mod(�dH ,Max

µ (E)) = {(0, 0, 1, 0), (0, 0, 1, 1), (0, 1, 0, 0), (0, 1, 0, 1), (1, 0, 0, 0)}.

We can see on that example why �d,Max operators are not IC merging operators. For
example, the two interpretations (0, 0, 1, 0) and (0, 0, 1, 1) are chosen by �dH ,Max, al-
though (0, 0, 1, 0) is better for K3 and K4 than (0, 0, 1, 1), whereas these two interpre-
tations are equally preferred by K1 and K2. It seems then natural to globally prefer
(0, 0, 1, 0) to (0, 0, 1, 1). It is in fact what (IC6) requires.

The �d,GMax family has been built with the purpose of being more selective than the
�d,Max family. With the �dH ,GMax operator, the result is mod(�dH ,GMax

µ (E)) = {(0, 0, 1, 0),
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(0, 1, 0, 0)}.

Finally, if one chooses �dH ,Σ for solving the conflict according to majority wishes,
the result is mod(�dH ,Σ

µ (E)) = {(1, 1, 1, 1)}.

2.2 Merging vs. revision

Belief revision operators can be viewed as special cases of belief merging operators when
applied to singleton profiles, as stated below.

Proposition 1 If � is an IC merging operator (it satisfies (IC0-IC8)), then the operator
∗, defined as K ∗ µ = �µ(K), is an AGM revision operator (it satisfies (R1-R6)).

So to each belief merging operator�, one can associate a corresponding revision
operator∗�, which is called the revision operatorassociated tothe merging operator�.

3 Conciliation Operators

3.1 Definitions

Conciliation operators aim at reflecting the evolution of belief profiles, typically towards
the achievement of some agreements between agents. It can be viewed as a simple form
of negotiation, where the way beliefs may evolve is uniform.

Let us first give the following, very general, definition of conciliation operators:

Definition 6 A conciliation operator is a function from the set of belief profiles to the set
of belief profiles.

This definition does not impose any strong constraints on the result, except that each
resulting belief profile is solely defined from the previous one (i.e., no additional informa-
tion, like a further observation, are taken into account). Clearly, pointing out the desirable
properties for such conciliation operators is an interesting issue. We let this for future
work, but one can note that thesocial contraction functions introduced by Booth [5] are
very close to this idea.

In this paper we focus on a particular familly of conciliation operators: conciliation
operators induced by an iterated merge-then-revise process. The idea is to compute the
belief merging from the profile, to revise the beliefs of each source by the result of the
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merging, and to repeat this process until a fixed point is reached. When such a fixed point
exists, the conciliation operator is defined and the resulting profile is the image of the
original profile by this operator.

When a fixed point has been reached, incorporating the beliefs of the group has no
further impact on the own beliefs of each agent; in some sense, each agent did its best
w.r.t. the group, given its revision function. Then there are two possibilities: either a
consensus has been obtained, or no consensus can be obtained that way:

Definition 7 There is a consensus for a belief profile E if and only if E is consistent (with
the integrity constraints).

The existence of a consensus for a belief profile just means that the associated agents
agree on at least one possible world. When this is the case, the models of the correspond-
ing merged base w.r.t. any IC merging operator reduce to such possible worlds ((IC2)
ensures it). Interestingly, it can be shown that the existence of a consensus at some stage
of the merge-then-revise process is sufficient to ensure the existence of a fixed point,
hence the termination of the process.

Let us now consider two additional properties on conciliation operators in order to
keep the framework simple enough: homogeneity and compatibility.

Definition 8 An iterated merging conciliation operator is a function from the set of belief
profiles to the set of belief profiles, where the evolution of a profile is characterized by a
merge-then-revise approach. It is:

• homogeneousif all the agents use the same revision operator,

• compatibleif the revision operator is associated to the merging operator.

In this work, we focus on compatible homogeneous iterated merging conciliation op-
erators (CHIMC in short). Under the compatibility and homogeneity assumptions, defin-
ing a CHIMC operator just requires to make precise the belief merging operator under use
and the revision strategy (skeptical or credulous):

Definition 9 (skeptical CHIMC operators) Let � be an IC merging operator, and ∗ its
associated revision operator (i.e., ϕ ∗ µ = �µ({ϕ})). Let E be any belief profile. We
define the sequence (Ei

s)i (depending on both � and E) by:

• E0
s = E,

• Ei+1
s = ∆µ(Ei

s) ∗ Ei
s
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The skeptical CHIMC operator induced by � is defined by �∗
µ(E) = Ek

s , where k is the
lowest rank i such that Ei

s = Ei+1
s , and �∗

µ(E) is undefined otherwise. We note E∗
s = Ek

s

the “resulting” profile.

Definition 10 (credulous CHIMC operators) Let � be an IC merging operator, and ∗
its associated revision operator Let E be any belief profile. We define the sequence (Ei

c)i

(depending on both � and E) by:

• E0
c = E,

• Ei+1
c = Ei

c ∗ ∆µ(Ei
c)

The credulous CHIMC operator induced by � is defined by ∗ �µ (E) = Ek
c , where k is

the lowest rank i such that Ei
c = Ei+1

c , and ∗ �µ (E) is undefined otherwise. We note
E∗

c = Ek
c the “resulting” profile.

Clearly enough, each sequence induces a corresponding merged base when a fixed
point is reached: the merged base of the “last” profile in the sequence (i.e., at the rank
from which the sequence is stationary). Formally:

Definition 11 (CHIM operators) Let � be an IC merging operator, and ∗ its associated
revision operator.

• The skeptical CHIM operator induced by � is the function that maps every profile
E to �µ(�∗

µ(E)) whenever �∗
µ(E) exists and is undefined otherwise.

• The credulous CHIM operator induced by � is the function that maps every profile
E to �µ(∗ �µ (E)) whenever ∗ �µ (E) exists and is undefined otherwise.

Let us now study the key features of the two sequences(Ei
s)i and(Ei

c)i and the prop-
erties of the corresponding iterated merging operators, based on various IC merging op-
erators.

3.2 Skeptical operators

We start with skeptical CHIMC operators. Let us first give an important monotony prop-
erty, which states that the conciliation process given by any IC merging operator� may
only lead to strengthen the beliefs of each agent:
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Proposition 2 Let Ki
j denote the belief base corresponding to agent j in the belief profile

Ei
s characterized by the initial belief profile E and the IC merging operator �. For every

i, j, we have Ki+1
j |= Ki

j .

On this ground, it is easy to prove that the sequence(Ei
s)i is stationary at some stage1,

for every profileE and every IC merging operator�. Accordingly, the induced skeptical
conciliation operator and the induced skeptical iterated merging operator are defined for
everyE:

Proposition 3 For every belief profile E and every IC merging operator �, the station-
arity of (Ei

s)i is reached at a rank bounded by (
∑

K∈E #(mod(K)))−#(E). Therefore,
the CHIMC operator �∗ and the CHIM operator �(�∗) are total functions.

The bound on the number of iterations is easily obtained from the monotony property.

Another interesting property is that the sequence of profiles and the corresponding
sequence of merged bases are equivalent with respect to stationarity:

Proposition 4 Let E be a belief profile and � be an IC merging operator. Let µ be any
integrity constraint. The sequence (Ei

s)i is stationary from some stage if and only if the
sequence (�µ(Ei

s))i is stationary from some stage.

The number of iterations needed to reach the fixed point of(Ei
s)i is one for the IC

merging operators defined from the drastic distance. More precisely, the skeptical CHIM
operator induced by any IC merging operator� defined from the drastic distance coin-
cides with�.

Proposition 5 Let E = (K1, . . . , Kn) be a profile. If the IC merging operator � is
among �dD,Max,�dD,Σ,�dD,GMax, then for every j, the base K∗

j from the resulting profile
E∗ = �∗

µ(E) can be characterized by:

K∗
j =

{
µ ∧�µ(E) if consistent, else
�µ(E) otherwise.

Furthermore, the resulting profile is obtained after at most one iteration (i.e., for every
i > 0, Ei = Ei+1).

We have no direct (i.e., non-iterative) definition for any skeptical CHIM operator
based on an IC merging operator defined from the Hamming distance. Let us see an
example of such an operator:

1Abusing words, we sometimes say that the sequence is “convergent” to express that there exists a rank
k s.t. the sequence is stationary fromk.
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Example 2 Let us consider the profile E = (K1, K2, K3) with mod(K1) = {(0, 0, 0),
(0, 0, 1), (0, 1, 0)}, mod(K2) = {(0, 1, 1), (1, 1, 0), (1, 1, 1)}, mod(K3) = {(0, 0, 0), (1, 0,
0), (1, 0, 1), (1, 1, 1)}, no integrity constraints (µ ≡ �), and the skeptical CHIMC oper-
ator defined from the �dH ,GMax operator. The complete process is represented in Table 2.
The columns have the same meanings than in table 1, but here, as there are several (three
in that case) iterations, we sum up the three tables (corresponding to the three merging
steps) in the same one. So, for example in column d(ω,Ki

1), the first number denotes the
distance of the interpretation with respect to K1

1 , the second one the distance with respect
to K2

1 , etc.

Let us explain the full process in details. The first profile is E0 = E. The first merg-
ing iteration gives as result mod(�dH ,GMax(E0)) = {(0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0),
(1, 0, 1), (1, 1, 0)}. Then, every source revises the result of the merging with its old beliefs,
i.e., K1

1 = �dH ,GMax(E0) ∗ K0
1 , so mod(K1

1) = {(0, 0, 1), (0, 1, 0}. Similarly mod(K1
2) =

{(0, 1, 1), (1, 1, 0} and mod(K1
3) = {(1, 0, 0), (1, 0, 1}. Since each of the three bases is

consistent with the merged base, the new base of each agent is just the conjunction of her
previous base with the merged base (in accordance to revision postulates). Then, the sec-
ond merging iteration gives mod(�dH ,GMax(E1)) = {(0, 0, 1), (1, 1, 0)}, and the revision
of each base gives mod(K2

1) = {(0, 0, 1)}, mod(K2
2) = {(1, 1, 0)}, and mod(K2

3) =
{(1, 0, 0), (1, 0, 1)}. Then the third iteration step gives mod(�dH ,GMax(E2)) = {(1, 0, 0),
(1, 0, 1)}, and the revision step does not change any belief base, i.e., E2 ≡ E3, so the
stationary point is reached and the process stops on this profile.

ω d(ω,Ki
1) d(ω,Ki

2) d(ω,Ki
3) dGMax(ω,Ei)d(ω,∆µ(Ei))

(0,0,0) 0,1,1 2,2,2 0,1,1 (2, 0, 0)1,(2, 1, 1)1,(2, 1, 1)1

(0,0,1) 0,0,0 1,1,3 1,1,1 (1, 1, 0)0,(1, 1, 0)0,(3, 1, 0)1

(0,1,0) 0,0,2 1,1,1 1,2,2 (1, 1, 0)0,(2, 1, 0)1,(2, 2, 1)2

(0,1,1) 1,1,1 0,0,2 1,2,2 (1, 1, 0)0,(2, 1, 0)1,(2, 2, 1)2

(1,0,0) 1,2,2 1,1,1 0,0,0 (1, 1, 0)0,(2, 1, 0)1,(2, 1, 0)0

(1,0,1) 1,1,1 1,2,2 0,0,0 (1, 1, 0)0,(2, 1, 0)1,(2, 1, 0)0

(1,1,0) 1,1,3 0,0,0 1,1,1 (1, 1, 0)0,(1, 1, 0)0,(3, 1, 0)1

(1,1,1) 2,2,2 0,1,1 0,1,1 (2, 0, 0)1,(2, 1, 1)1,(2, 1, 1)1

Table 2:∆∗ dH ,GMax
µ

We have also proven that a skeptical conciliation process cannot lead to a consensus,
unless a consensus already exists at start:

Proposition 6 Let E be a belief profile and � be an IC merging operator. There exists a
rank i s.t. a consensus exists for Ei

s if and only if i = 0 and there is a consensus for E.
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3.3 Credulous operators

Let us now turn to credulous CHIMC operators. Let us first give some general properties
about credulous operators.

Proposition 7 Let Ki
j now denote the belief base corresponding to agent j in the belief

profile Ei
c characterized by the initial belief profile E and the IC merging operator �.

• ∀i, j Ki+1
j |= �µ(Ei

c),

• ∀i > 0∀j Ki
j |= µ,

• ∀i, j, if Ki
j ∧�µ(Ei

c) is consistent, then Ki+1
j ≡ Ki

j ∧�µ(Ei
c).

The first item states that, during the evolution process, each base implies the previous
merged base. The second item states that from the first iteration, all the bases implies the
integrity constraints. The last one is simply a consequence of a revision property: if, at
a given step, a base is consistent with the result of the merging, then the base at the next
step will be that conjunction.

Unfortunately, no monotony property can be derived from this proposition. At that
point, we can just conjecture that our credulous CHIMC operators (and the corresponding
iterated merging operators) are defined for every profile:

Conjecture 1 For every belief profile E and every merging operator � using the aggre-
gation function Max, GMax or Σ, the sequence (Ei

c)i is stationary from some rank.

This claim is supported by some empirical evidence. We have conducted exhaustive
tests for profiles containing up to three bases, when the set of propositional symbols con-
tains up to three variables. The following IC merging operators have been considered:
�dH ,Max, �dH ,GMax and�dH ,Σ. We have also conducted non-exhaustive tests when four
propositional symbols are considered in the language (this leads to billions of tests). All
the tested instances support the claim (stationarity is reached in less than five iterations
when up to three symbols are considered, and less than ten iterations when four symbols
are used).

We can nevertheless prove the stationarity of(Ei
c)i for every belief profileE when

some specific IC merging operators� are considered. In particular, for each IC merging
operator defined from the drastic distance, it is possible to find out a non-iterative def-
inition of the corresponding CHIMC operator, and to prove that it is defined for every
profile.

149



Conciliation and Consensus in Iterated Belief Merging

Proposition 8 Let E = (K1, . . . , Kn) be a profile. If the IC merging operator is �dD,Max,
then for every j, the base K∗

j from the resulting profile E∗ =∗ �dD,Max
µ (E) can be charac-

terized by:

K∗
j =




µ ∧
∧

Ki:Ki∧µ�⊥
Ki if consistent, else

µ ∧ Kj if consistent, else
µ otherwise.

Furthermore, the resulting profile is obtained after at most two iterations (i.e., for
every i > 1, Ei = Ei+1).

Proposition 9 Let E = (K1, . . . , Kn) be a profile. If the IC merging operator is �dD,GMax

of �dD,Σ, then for every j, the base K∗
j from the resulting profile E∗ =∗ �dD,GMax

µ (E) =
∗ �dD,Σ

µ (E) can be characterized by:

K∗
j =

{
Kj ∧�dD,GMax

µ (E) if consistent, else
�dD,GMax

µ (E) otherwise.

Furthermore, the resulting profile is obtained after at most one iteration (i.e., for every
i > 0, Ei = Ei+1).

Finally, we have proven that, like for the skeptical case, the sequence of profiles and
the corresponding sequence of merged bases are equivalent w.r.t. stationarity in the cred-
ulous case:

Definition 12 Let E be a belief profile and � be an IC merging operator. Let µ be any
integrity constraint. The sequence (Ei

s)i is stationary from some stage if and only if the
sequence (�µ(Ei

s))i is stationary from some stage.

Let us see an example of credulous operator at work.

Example 3 Consider the profile E = (K1, K2, K3, K4), with mod(K1) = {(0, 0, 0),
(0, 0, 1), (0, 1, 0)}, mod(K2) = {(1, 0, 0), (1, 0, 1), (1, 1, 1)}, mod(K3) = {(0, 0, 1), (0, 1,
0), (0, 1, 1), (1, 1, 0)} and mod(K4) = {(0, 1, 1), (1, 0, 0), (1, 1, 0), (1, 1, 1)}. There is
no integrity constraint µ ≡ �, and let us consider the credulous CHIMC operator de-
fined from the merging operator �dH ,Σ. The computations are summed up in table 3.
The resulting profile is mod(K2

1) = {(0, 0, 1)}, mod(K2
2) = {(1, 0, 0)}, mod(K2

3) =
{(0, 0, 1)} and mod(K2

4) = {(1, 0, 0)}. And the corresponding CHIM operator gives
as result a base whose models are {(0, 0, 0), (0, 0, 1), (1, 0, 0), (1, 0, 1)}, that is differ-
ent from the result of the merging of E by the IC merging operator mod(�dH ,Σ(E)) =
{(0, 0, 1), (0, 1, 1), (1, 0, 0), (1, 1, 0)}.
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ω d(ω,Ki
1) d(ω,Ki

2) d(ω,Ki
3) d(ω,Ki

4) dΣ(ω,Ei)
(0,0,0) 0,1,1 1,1,1 1,1,1 1,1,1 3,4,4
(0,0,1) 0,0,0 1,2,2 0,0,0 1,1,2 2,3,4
(0,1,0) 0,2,2 2,2,2 0,1,2 1,1,2 3,6,8
(0,1,1) 1,1,1 1,3,3 0,0,1 0,0,3 2,4,8
(1,0,0) 1,2,2 0,0,0 1,1,2 0,0,0 2,3,4
(1,0,1) 1,1,1 0,1,1 1,1,1 1,1,1 3,4,4
(1,1,0) 1,3,3 1,1,1 0,0,3 0,0,1 2,4,8
(1,1,1) 2,2,2 0,2,2 1,1,2 0,1,2 3,6,8

Table 3:∗∆dH ,Σ
µ

4 Iterated Merging Operators

We have also investigated the properties of the iterated merging operators induced by the
conciliation processes.

A first important question is whether such operators are IC merging operators. The
answer is negative in general: only six basic postulates over the nine characterizing IC
merging operators are guaranteed to hold:

Proposition 10 Credulous and Skeptical CHIM operators satisfy (IC0)-(IC3), (IC7) and
(IC8).

Thus, some important properties of IC merging operators are usually lost through the
merge-then-revise process. We claim that this is not so dramatic since the main purpose
of conciliation processes is not exactly the one of belief merging. Furthermore, specific
iterated merging operators (i.e., those induced by some specific merging operators�)
may easily satisfy additional postulates:

Proposition 11 The credulous iterated merging operator associated to ∗�dD,Max
µ satis-

fies (IC0)-(IC5), (IC7)-(IC8) and (Arb). It satisfies neither (IC6) nor (Maj).

In fact, the CHIM operator defined from∗�dD,Max
µ can be defined as follows (this is

a straightforward consequence of proposition 8):

�dD,Max
µ (∗�dD,Max

µ (E)) =




µ ∧
∧

Ki:Ki∧µ�⊥
Ki if consistent, else

µ otherwise.
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Proposition 12 The credulous iterated operator associated to ∗�dD,GMax
µ =∗ �dD,Σ

µ sat-
isfies (IC0)-(IC8), (Arb) and (Maj).

This result easily comes from the fact that this credulous CHIM operator actually
coincides with the IC merging operator�dD,GMax

µ = �dD,Σ
µ it is based on.

Thus, as for skeptical operators (see Proposition 5), each CHIM operator based on the
Drastic distance coincides with the underlying IC merging operator, so it satisfies exactly
the same properties (see [14]).

As to the operators based on the Hamming distance, things are less easy. Up to now,
we did not find an equivalent, non-iterative, definition for any of them. Furthermore, since
stationarity is only conjectured for credulous operators (cf. Conjecture 1), we do not have
a proof that the corresponding CHIM operators are total functions. So the two following
results operators are guaranteed under the conjecture of stationarity, only.

Proposition 13 The credulous CHIM operator associated to ∗�dH ,Σ
µ satisfies (IC0)-(IC3),

(IC7)-(IC8) and (Maj), but does not satisfy (IC5)-(IC6) and (Arb). The satisfaction of
(IC4) is an open issue.

Proposition 14 The credulous CHIM operators associated to ∗�dH ,Max
µ and ∗�dH ,GMax

µ

satisfy (IC0)-(IC3), (IC7)-(IC8), but satisfy none of (IC5)-(IC6), (Maj) and (Arb). The
satisfaction of (IC4) is an open issue.

We have similar results for skeptical operators, though the proofs are different:

Proposition 15 The skeptical CHIM operator associated to �∗ dH ,Σ
µ satisfies (IC0)-(IC3),

(IC7)-(IC8) and (Maj), but does not satisfy (IC5)-(IC6) and (Arb). The satisfaction of
(IC4) is an open issue.

Proposition 16 The skeptical CHIM operators associated to �∗ dH ,Max
µ and �∗ dH ,GMax

µ

satisfy (IC0)-(IC3), (IC7)-(IC8), but satisfy none of (IC5)-(IC6), (Maj) and (Arb). The
satisfaction of (IC4) is an open issue.

5 Related Work

In [5, 4] Richard Booth presents what he callsBelief Negociation Models. Such negocia-
tion models can be formalized as games between sources: until a coherent set of sources
is reached, at each round a contest is organized to find out the weakest sources, then those
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sources have to be logically weakened. This idea leads to numerous new interesting oper-
ators (depending of the exact meaning of“weakest”and“weaken”, which correspond to
the two parameters for this family). Booth is interested at the same time in the evolution
of the profile (in connection to what he calls “Social Contraction”), and to the resulting
merged base (the result of the Belief Negociation Model).

In [10, 9] a systematic study of a sub-class of those operators, calledBelief Game
Models, is achieved. This sub-class contains operators closer to merging ones than the
general class which also allows negotiation-like operators.

All those operators are close in spirit to the CHIMC/CHIM operators defined in this
work. A main difference is that in the work presented in this paper, the evolution of a
profile does not always lead to a consensus. Scenarios where agents disagree at a final
stage are allowed. Whereas in the former work, the evolution process leads to consensus
(in fact consensus is the halting condition of the iterative definition). So CHIMC operators
seem more adequate to formalize interaction between agents’ beliefs. Thus, they are
closer to negotiation processes, since the agents’ beliefs change due to the interaction with
other agents’ beliefs, but this interaction can be stopped when the agents have achieve the
best possible compromise.

6 Conclusion

In this paper, we have introduced two conciliation processes based on an iterated merge-
the-revise change function for the beliefs of agents. On this ground, a family of concili-
ation operators and an associated family of iterated merging operators have been defined
and studied.

This work calls for several perspectives. One of them concerns the stationarity con-
jecture related to credulous CHIMC operators (it would clearly be nice to have a formal
proof of it, or to disprove it). A second perspective is about rationality postulates for con-
ciliation operators; such postulates should reflect the fact that at the end of the conciliation
process, the disagreement between the agents participating to the conciliation process is
expected not to be more important than before; a difficulty is that it does not necessarily
mean that this must be the case at each step of a conciliation process. A last perspective
is to enrich our framework in several directions; one of them consists in relaxing the ho-
mogeneity assumption; in some situations, it can prove sensible to consider that an agent
is free to reject a negociation step, would it lead her to a belief state “too far” from its
original one; it would be interesting to incorporate as well such features in our approach.
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Graphical Models for Utility Elicitation
under Risk1

Christophe Gonzales†, Patrice Perny†

Abstract

This paper deals with preference representation and elicitation in the context of
multiattribute utility theory under risk. Assuming the decision maker behaves ac-
cording to the EU model, we investigate the elicitation of generalized additively
decomposable utility functions on a product set (GAI-decomposable utilities). We
propose a general elicitation procedure based on a new graphical model called a
GAI-network. The latter is used to represent and manage independences between
attributes, as junction graphs model independences between random variables in
Bayesian networks. It is used to design an elicitation questionnaire based on sim-
ple lotteries involving completely specified outcomes. Our elicitation procedure is
convenient for any GAI-decomposable utility function, thus enhancing the possibil-
ities offered by UCP-networks.

Key words : Decision theory, graphical representations, preference elicitation, mul-
tiattribute expected utility, GAI-decomposable utilities

1 Introduction

Over the last few years the growing interest in decision systems has stressed the need for
compact representations of individual’s beliefs and preferences, both for user-friendliness
of elicitation and reduction of memory consumption. In Decision under Uncertainty, the

†LIP6 – pôle IA – University Paris 6, Paris, France.
{Christophe.Gonzales,Patrice.Perny}@lip6.fr

1This paper is a short version of “GAI Networks for Utility Elicitation”, a paper already published in
the proceedings of KR’04.
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diversity of individuals behaviors and application contexts have led to different mathe-
matical models including Expected Utility (EU) [27, 23], Choquet EU [24], Qualitative
EU [10], Generalized EU [12, 13]. The concern in compact numerical representations of
preferences being rather recent, studies have mainly focused on EU and emphasized the
potential of graphical models such as UCP-nets [3] or influence diagrams [15, 25].

Using EU requires both a numerical representation of the Decision Maker’s (DM)
preferences over all the possible outcomes (a utility function) and a family of probability
distributions over these outcomes. In this paper we focus on the assessment of utility,
which is usually performed through an interactive process. The DM is asked to answer
“simple” questions such as “do you prefer a to b?” and a numerical representation follows.

Theoretically, the assessment of preferences over every pair of outcomes may be
needed to elicit completely the DM’s utility, but in practice the large size of the outcome
set prevents such a procedure to be feasible. Fortunately, preferences often have an under-
lying structure that can be exploited to drastically reduce the elicitation burden. Several
structures described in terms of different independence concepts have emerged from the
multiattribute utility theory community [18, 11, 20] and led to different forms of utilities,
the most popular of which being the additive and the multilinear decompositions. The
particular independences both of these decompositions assume significantly simplify the
elicitation procedures, yet as they compel the DM’s preferences to satisfy very stringent
constraints they are inadequate in many practical situations.

A “good” trade-off between easiness of elicitation and generality of the model can
certainly be achieved by Generalized Additive Independence(GAI) [11]. This “weak”
form of independence is sufficiently flexible to apply to most situations and as such de-
serves the elaboration of elicitation procedures. Although introduced in the sixties, GAI
has not received many contributions yet. In particular, elicitation procedures suggested
in the literature for GAI-decomposable utilities are not general purpose. They assume
either that the utilities satisfy constraints imposed by CP-net structure (see UCP-nets [3])
or that utilities are random variables (the prior distribution of which is known) and that
the elicitation consists in finding an a posterioriutility distribution [6, 7]. We feel that
these additional assumptions might not be suitable in a significant number of practical
decision problems. For instance, as we shall see later in this paper, there exist “simple”
GAI-decomposable preferences that cannot be compacted by UCP-nets. Similarly, the
existence of prior utility distributions is not always natural, for instance there is not much
chance that a company manager facing a given decision problem may have a prior distri-
bution of other managers utilities at hand. Hence an elicitation procedure applicable to
any GAI decomposition should prove useful. The purpose of this paper is to propose such
a procedure in the context of Decision Making under Risk. More precisely, we assume
uncertainties are handled through probabilities and DM’s preferences are consistent with
EU.

The key idea in our elicitation procedure is to take advantage of a new graphical
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representation of GAI decompositions we call a GAI network. It is essentially similar to
the junction graphs used for Bayesian networks [26, 16, 16, 8]. As such, it keep tracks of
all the dependences between the different components of the utilities and the sequence of
questions to be asked to the DM can be retrieved directly from this graph.

The paper is organized as follows: the first section provides necessary background in
multiattribute utility theory. Then, a typical example showing how a GAI-decomposable
utility can be elicited is presented. The third section introduces GAI networks, a graphical
tool for representing GAI-decompositions. It also describes a general elicitation proce-
dure relying on this network which applies to any GAI-decomposable utility, as well as a
generic scheme for constructing the GAI network. We finally conclude by emphasizing
some significant advantages of our elicitation procedure.

2 Utility Decompositions

In this paper, we address problems of decision making under risk [27] (or under un-
certainty [23]), that is the DM has a preference relation �d over a set of decisions D,
“d1 �d d2” meaning the DM either prefers decision d1 to d2 or feels indifferent between
both decisions. The consequence or outcomeresulting from making a particular decision
is uncertain and only known through a probability distribution over the set of all possible
outcomes. Decisions can thus be described in terms of these distributions, i.e., to each
decision is attached a lottery, that is a finite tuple of pairs (outcome, probability of the
outcome), and to �d is associated a preference relation � over the set of lotteries such
that d1 �d d2 ⇔ lottery(d1) � lottery(d2). Taking advantage of this equivalence, we will
use lotteries instead of decisions in the remainder of the paper.

Let X be the finite set of outcomes and let L be the set of lotteries. 〈p1, x1; p2, x2; . . . ;
pq, xq〉 denotes the lottery such that each outcome xi ∈ X obtains with a probability
pi > 0 and

∑q
i=1 pq = 1. Moreover, for convenience of notation, when unambiguous,

we will note x instead of lottery 〈1, x〉. Under some axioms expressing the “rational”
behavior of the DM, [23] and [27] have shown that there exist some functions U : L �→ R

and u : X �→ R, unique up to strictly positive affine transforms, such that L1 � L2 ⇔
U(L1) � U(L2) for all L1, L2 ∈ L and U(〈p1, x1; . . . ; pq, xq〉) =

∑q
i=1 piu(xi). Such

functions assigning higher numbers to the preferred outcomes are called utility functions.
As U(·) is the expected value of u(·), we say that the DM is an expected utility maximizer.

Eliciting U(·) consists in both assessing the probability distribution over the outcomes
for each decision and eliciting function u(·). The former has been extensively addressed
in the UAI community [5, 14]. Now eliciting u(·) is in general a complex task as the
size of X is usually very large. The first step to circumvent this problem is to remark
that usually the set of outcomes can be described as a Cartesian product of attributes
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X =
∏n

i=1 Xi, where each Xi is a finite set. For instance, a mayor facing the Decision
Making problem of selecting one policy for the industrial development of his city can
assimilate each policy to a lottery over outcomes defined as tuples of type (investment
cost supported by the city, environmental consequence, impact on employment, etc). This
particular structure can be exploited by observing that some independences hold between
attributes. For instance, preferences over environment consequences should not depend
on preferences over employment. Several types of independence have been suggested in
the literature, taking into account different preference structures and leading to different
functional forms of the utilities. The most usual is the following:

Definition 1 (Additive Independence) Let L1 andL2 be any pair of lotteries and letp
andq be their respective probability distributions over the outcome set. ThenX1, . . . , Xn

are additively independent for� if p andq having the same marginals on everyXi implies
that both lotteries are indifferent, i.e.L1 � L2 andL2 � L1 (or L1 ∼ L2 for short).

[1] illustrates additive independence on the following example: let X = X1 × X2

where X1 = {a1, b1} and X2 = {a2, b2}. Let L1 and L2 be lotteries whose respective
probability distributions on X are p and q. Assume p(a1, a2) = p(a1, b2) = p(b1, a2) =
p(b1, b2) = 1/4, q(a1, a2) = q(b1, b2) = 1/2 and q(a1, b2) = q(b1, a2) = 0. Then p and q
have the same marginals on X1 and X2 since p(a1) = q(a1) = 1/2, p(b1) = q(b1) = 1/2,
p(a2) = q(a2) = 1/2 and p(b2) = q(b2) = 1/2. So under additive independence, lotteries
L1 and L2 should be indifferent.

As additive independence captures the fact that preferences only depend on the marginal
probabilities on each attribute, it rules out interactions between attributes and thus results
in the following simple form of utility [1]:

Proposition 1 X1, . . . , Xn are additively independent for� iff there exist some functions
ui : Xi �→ R such thatu(x) =

∑n
i=1 ui(xi) for anyx = (x1, . . . , xn).

Additive decomposition allows all ui’s to be elicited independently, thus considerably
reducing the amount of questions required to determine u(·). However, as no interaction
is possible among attributes, such functional form cannot be applied in many practical
situations. Hence other types of independence have been introduced that capture more or
less dependences. For instance utility independenceof every attribute [1] leads to a more
general form of utility called multilinear utility:

u(x1, . . . , xn) =
∑

∅�=Y ⊆{1,...,n}
kY

∏

i∈Y

ui(xi),

where the ui’s are scaled from 0 to 1. Multilinear utilities are more general than additive
utilities but many interactions between attributes still cannot be taken into account by such
functionals. Consider for instance the following example:
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Example 1 Let X = X1 × X2, where X1 = {lamb, vegetable, beef} and X2 = {red
wine, white wine}. Assume a DM has the following preferences over meals:

(lamb, red wine) � (vegetable, red wine)
∼ (lamb, white wine) ∼ (vegetable, white wine)

� (beef, red wine) � (beef, white wine),

that is the DM has some kind of lexicographic preference over food, and then some prefer-
ence over wine. Then, if a multilinear utility u(food, wine) = k1u1(food)+k2u2(wine)+
k3u1(food)u2(wine) existed, since utilities are scaled from 0 to 1, the above preference
relations would imply that u1(lamb) = 1 ≥ u1(vegetable) = x ≥ u1(beef) = 0 and that
u2(red wine) = 1 and u2(white wine) = 0. But then the preference relations could be
translated into a system of inequalities k1+k2+k3 > k1x+k2+k3x = k1 = k1x > k2 > 0
having no solution, a contradiction. Consequently no multilinear utility can represent
these DM preferences, although they are not irrational. �

Within multilinear utilities, interactions between attributes are taken into account us-
ing the products of subutilities on every attribute. The advantage is that the elicitation
task remains reasonably tractable since only the assessments of the ui’s and of constants
kY ’s are needed. But the price to pay is that many preference relations cannot be repre-
sented by such functions. One way out would be to keep the types of interactions between
attributes unspecified, that is, separating the utility function into a sum of subutilities on
sets of interacting attributes: this leads to the GAI decompositions. Those result from a
generalization of additive utilities:

Definition 2 (Generalized Additive Independence) LetL1 andL2 be any pair of lotter-
ies and letp andq be their probability distributions over the outcome set. LetZ1, . . . , Zk

be some subsets ofN = {1, . . . , n} such thatN = ∪k
i=1Zi and letXZi

= {Xj : j ∈ Zi}.
ThenXZ1 , . . . , XZk

are generalized additively independent for� if the equality of the
marginals ofp andq on all XZi

’s implies thatL1 ∼ L2.

As proved in [1, 11] the following functional form of the utility called a GAI decom-
position can be derived from generalized additive independence:

Proposition 2 LetZ1, . . . , Zk be some subsets ofN = {1, . . . , n} such thatN = ∪k
i=1Zi.

XZ1 , . . . , XZk
are generalized additively independent (GAI) for� iff there exist some real

functionsui :
∏

j∈Zi
Xj �→ R such that

u(x) =
k∑

i=1

ui(xZi
), for all x = (x1, . . . , xn) ∈ X ,

wherexZi
denotes the tuple of components ofx having their index inZi.
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Example 1 (continued) GAI decompositions allow great flexibility because they do not
make any assumption on the kind of relations between attributes. Thus, if besides main
course and wine, the DM wants to eat a dessert and a starter, her choice for the starter will
certainly be dependent on that of the main course, but her preferences for desserts may
not depend on the rest of the meal. This naturally leads to decomposing the utility over
meals as u1(starter, main course) + u2(main course, wine) + u3(dessert) and this utility
corresponds precisely to a GAI decomposition. �

Note that the undecomposed utility u(·) and the additively decomposed utility
∑n

i=1 ui(·)
are special cases of GAI-decomposable utilities. The amount of questions required by
the elicitation is thus closely related to the GAI decomposition itself. In practice, it is
unreasonable to consider eliciting subutilities with more than 3 parameters. But GAI de-
compositions involving “small” XZi

’s can be exploited to keep the number of questions
to a reasonable amount as shown in the next two sections.

3 Elicitation of a GAI-decomposable Utility

In this section, we will first present the general type of questions to be asked to the DM
during the elicitation process and, then, we will specialize them to the GAI-decomposable
model case.

Let � be a preference relation on the set L of all possible lotteries over an outcome
set X . Let x, y and z be three arbitrary outcomes such that the DM prefers making any
decision the result of which is always outcome y (resp. x) to any decision resulting in x
(resp. z), i.e., y � x � z. In terms of utilities, u(y) ≥ u(x) ≥ u(z). Consequently, there
exists a real number p ∈ [0, 1] such that u(x) = pu(y)+(1−p)u(z), or equivalently, there
exists a probability p such that x ∼ 〈p, y; 1− p, z〉. This gamble is illustrated on Figure 1.
Knowing the values of p, u(y) and u(z) thus completely determines that of u(x). This is

z

yp

1 − p

x ∼

Figure 1: Gamble x ∼ 〈p, y; 1 − p, z〉.
the very principle of utility elicitation under risk. In the remainder, to avoid testing which
of the outcomes x, y or z are preferred to the others, for any three outcomes x1, x2, x3,
we will denote by G(x1, x2, x3) the gamble xσ(2) ∼ 〈p, xσ(1); 1 − p, xσ(3)〉 where σ is a
permutation of {1, 2, 3} such that xσ(1) � xσ(2) � xσ(3).

Assume that y and z correspond to the most and least preferred outcomes in X re-
spectively, then all the x’s in X are such that y � x � z, and the utility assigned to every
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outcome in X can be determined from the knowledge of p, u(y) and u(z). Moreover,
as under von Neumann-Morgenstern’s axioms utilities are unique up to strictly positive
affine transforms, we can assume that u(y) = 1 and u(z) = 0. Hence there just remains
to assess probabilities p. Different interactive procedures exist but they all share the same
key idea: the DM is asked which of the following options she prefers: x or 〈p, y; 1− p, z〉
for a given value of p. If she prefers the first option, another similar question is asked with
an increased value of p, else the value of p is decreased. When the DM feels indifferent
between both options, p has been assessed.

Of course, as in practice X is a Cartesian product, X ’s size tends to increase exponen-
tially with the number of attributes so that, as such, the above procedure cannot be com-
pleted using a reasonable number of questions. Fortunately, GAI decomposition helps
reducing drastically the number of questions to be asked. The key idea can be illustrated
with the following example:

Example 2 Consider an outcome set X = X1×X2×X3 and assume that u(x1, x2, x3) =
u1(x1) + u2(x2, x3). Then it is easily seen that gamble

(x1, a2, a3) ∼ 〈p, (y1, a2, a3); 1 − p, (z1, a2, a3)〉
is equivalent to gamble

(x1, b2, b3) ∼ 〈p, (y1, b2, b3); 1 − p, (z1, b2, b3)〉
as they both assert that u1(x1) = pu1(y1) + (1 − p)u1(z1). Hence, assuming preferences
are stable over time, there is no need to ask the DM questions to determine the value of p
in the second gamble: it is equal to that of p in the first one. Thus many questions can be
avoided during the elicitation process. Note that in essence this property is closely related
to a Ceteris Paribus statement [4]. �

Now let us introduce our elicitation procedure with the following example:

Example 3 Let X =
∏4

i=1 Xi and assume that utility u : X �→ R over the outcomes is
decomposable as u(x1, . . . , x4) = u1(x1, x2) + u2(x2, x3) + u3(x3, x4). The elicitation
algorithm consists in asking questions to determine successively the value of u1(·), then
that of u2(·) and finally that of u3(·).

Let (a1, a2, a3, a4) be an arbitrary outcome that will be used as a reference point. In
the sequel, for notational convenience, instead of writing x{1,2} for (x1, x2) we shall write
x12. Let us show that we may assume without loss of generality that:

u1(b1, a2) = 1, u1(a1, x2) = 0 for all x2 ∈ X2,
u3(a3, a4) = 0, u2(a2, x3) = 0 for all x3 ∈ X3.

(1)
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Assume the DM’s preferences are representable by a utility

v(x1, . . . , x4) = v1(x1, x2) + v2(x2, x3) + v3(x3, x4)

on the outcome set such that v(·) does not necessarily satisfy Eq. (1). Let

u1(x1, x2) = v1(x1, x2) − v1(a1, x2).

Then v(x1, . . . , x4) = u1(x1, x2) + [v2(x2, x3) + v1(a1, x2)] + v3(x3, x4) and v2(x2, x3) +
v1(a1, x2) is a function on X2 × X3 and u1(a1, x2) = 0 for all x2’s. It can thus be said
that v2(·) has “absorbed” a part of v1(·). Similarly, some part of v2(·) may be absorbed by
v3(·) in such a way that the resulting u2(a2, x3) = 0 for all x3’s: it is sufficient to define

u2(x2, x3) = v2(x2, x3) + v1(a1, x2)
−v2(a2, x3) − v1(a1, a2).

v(x1, . . . , x4) thus equals to u1(x1, x2)+u2(x2, x3)+v3(x3, x4)+v2(a2, x3)+v1(a1, a2).
Note that u3(x3, x4) = v3(x3, x4) + v2(a2, x3) + v1(a1, a2) is a function over X3 ×X4 as
v1(a1, a2) is a constant.

Von Neumann-Morgenstern’s utilities being unique up to positive affine transforms, it
can be assumed without loss of generality that u(a1, a2, a3, a4) = 0 and that u(b1, a2, a3, a4)
= 1 for some arbitrary b1 ∈ X1 such that outcome (b1, a234) � (a1, a234), hence resluting
in u3(a3, a4) = 0 and u1(b1, a2) = 1. Consequently, hypotheses (1) may be assumed
without loss of generality.

Thus, the assessment of u1(x1, a2) for all x1’s can be derived directly from gambles
such as:

(x1, a234) ∼ 〈p, (b1, a234); 1 − p, (a1, a234)〉
also denoted as G((b1, a234), (x1, a234), (a1, a234)),

(2)

as they are equivalent to u1(x1, a2) = p. Note that in the above gambles lotteries only
differ by the first attribute value, hence the questions asked to the DM should not be
cognitively too complicated and the DM should not have difficulties answering them.
Then

G((b1, a2, a34), (a1, x2, a34), (a1, a2, a34)) (3)

determines the value of u2(x2, a3). For instance, if (b1, a2, a34) � (a1, x2, a34), then the
above gamble is equivalent to:

(a1, x2, a34) ∼ 〈q, (b1, a2, a34); 1 − q, (a1, a2, a34)〉,

which implies that u2(x2, a3) = q. Combining Eq. (3) with

G((b1, a2, a34), (x
′
1, x2, a34), (a1, a2, a34)), (4)
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where x′
1 is an arbitrary value of X1, the determination of u1(x

′
1, x2) follows. Note that

until now all calls to function G(·), and especially in equations (3) and (4), shared the
same first and third outcomes, i.e., (b1, a2, a34) and (a1, a2, a34). Note also that the gam-
bles remain cognitively “simple” as most of the attributes are the same for all outcomes.
Now, the value of u1(x

′
1, x2) is sufficient to induce from G((x′

1, x2), (x1, x2), (a1, x2)) the
values of all the u1(x1, x2)’s and the determination of u1(·) is completed.

The same process applies to assess u2(·). First, using gambles similar to that of
Eq. (3), i.e., G((b1, a2, a34), (a1, b2, a34), (a1, a2, a34)), u2(b2, a3) can be assessed for ar-
bitrary values b2 of X2. Then G((a1, b2, a34), (a1, x2, a34), (a1, a2, a34)) will enable the
determination of the u2(x2, a3)’s for all x2’s (in fact, they will involve terms in u1(·)
and u2(·) but as u1(·) has been elicited, only the u2(·)’s remain unknown). Once the
u2(x2, a3)’s are known, gambles similar to those of Eq. (3) and Eq. (4) but applied to
X2, X3 instead of X1, X2 lead to the complete determination of u2(·).

Finally as function u3(·) is the only remaining unknown, u3(x3, x4) can be elicited
directly using any gamble involving two “elicited” outcomes. For instance G((b1, a23, a4),
(a1, a23, x4), (a1, a23, a4)) will determine the u3(a3, x4)’s for all values of x4 and, then,
G((a12, a3, b4), (a12, x3, x4), (a12, a3, a4)) will complete the assessment of u3(·). �

Note that only a few attributes differed in the outcomes of each of the above gambles,
hence resulting in cognitively simple questions. At first sight, this elicitation scheme
seems to be a ad hocprocedure but, as we shall see in the next section, it proves to be in
fact quite general.

4 GAI Networks

To derive a general scheme from the above example, we introduce a graphical structure
we call a GAI network, which is essentially similar to the junction graphs used in Bayesian
networks [17, 8]:

Definition 3 (GAI network) Let Z1, . . . , Zk be some subsets ofN = {1, . . . , n} such
that

⋃k
i=1 Zi = N . Assume that� is representable by a GAI-decomposable utilityu(x) =∑k

i=1 ui(xZi
) for all x ∈ X . Then a GAI network representingu(·) is an undirected graph

G = (V,E), satisfying the following properties:
1. V = {XZ1 , . . . , XZk

};
2. For every(XZi

, XZj
) ∈ E, Zi∩Zj �= ∅. Moreover, for every pair of nodesXZi

, XZj

such thatZi ∩Zj = Tij �= ∅, there exists a path inG linking XZi
andXZj

such that
all of its nodes contain all the indices ofTij (Running intersection property).

Nodes ofV are calledcliques. Moreover, every edge(XZi
, XZj

) ∈ E is labeled by
XTij

= XZi∩Zj
, which is called aseparator.
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Throughout this paper, cliques will be drawn as ellipses and separators as rectangles.
The rest of this section will be devoted to the construction of GAI networks, and especially
GAI trees, from GAI decompositions of utilities, and an elicitation procedure applicable
to any GAI tree will be inferred from the example of the preceding section.

4.1 From GAI Decompositions to GAI Networks

For any GAI decomposition, Definition 3 is explicit as to which cliques should be created:
these are simply the sets of variables of each subutility. For instance, if u(x1, . . . , x5) =
u1(x1, x2, x3)+u2(x3, x4)+u3(x4, x5) then, as shown in Figure 2.a, cliques are {X1, X2, X3},
{X3, X4} and {X4, X5}.

X3X4

X4X5X3X4X1X2X3

X4X3X1X2X3 X4X5

a) cliques of the GAI network

b) edges of the GAI network

Figure 2: The construction of a GAI network.

Property 2 of Definition 3 gives us a clue for determining the set of edges of a GAI net-
work: the algorithm constructing this set should always preserve the running intersection
property. A simple — although not always efficient — way to construct the edges thus
simply consists in linking cliques that have some nodes in common. Hence the following
algorithm:

Algorithm 1 (Construction of a GAI network)
construct setV = {XZ1 , . . . , XZk

};
for i ∈ {1 . . . , k − 1} do

for j ∈ {i + 1 . . . , k} do
if Zi ∩ Zj �= ∅ then

add edge(XZi
, XZj

) to E
fi

done
done

Applying this algorithm on set V = {{X1, X2, X3}, {X3, X4}, {X4, X5}}, sets {X1, X2, X3}
and {X3, X4} having a nonempty intersection, an edge should be created between these
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two cliques. Similarly, edge ({X3, X4}, {X4, X5}) should also be added as X4 belongs
to both cliques. Consequently the network of Figure 2.b is a GAI network representing
u(x1, . . . , x5) = u1(x1, x2, x3) + u2(x3, x4) + u3(x4, x5).

As we shall see in the next subsection, GAI trees are more suitable than multiply-
connected networks for conducting the elicitation process. Unfortunately, GAI networks
representing utility decompositions often contain cycles. For instance, consider the fol-
lowing decomposition: u(x1, x2, x3, x4) = u1(x1, x2)+u2(x2, x3)+u3(x3, x4)+u4(x4, x1).
Then the only possible GAI network is that of Figure 3.

X3X1

X4 X3X4

X2 X2X3X1X2

X1X4

Figure 3: A GAI network containing a cycle.

Unlike GAI trees where a sequence of questions revealing the DM’s utility function
naturally arises, GAI multiply-connected networks do not seem to be appropriate to easily
infer the sequence of questions to ask to the DM. Fortunately, they can be converted into
GAI trees using the same triangulation techniques as in Bayesian networks [19, 9]:

Algorithm 2 (Construction of a GAI tree)
1/ create a graphG′ = (V ′, E ′) such that

a/ V ′ = {X1, . . . , Xn};
b/ edge(Xi, Xj) belongs toE ′ iff there exists a

subutility containing bothXi andXj

2/ triangulateG′

3/ derive from the triangulated graph a junction tree:
the GAI tree

For instance, consider again the GAI network of Figure 3 representing utility u(x1, x2,
x3, x4) = u1(x1, x2) + u2(x2, x3) + u3(x3, x4) + u4(x4, x1). Graph G′ constructed on
step 1 of the above algorithm is depicted on Figure 4.a: the nodes of this graph are
X1, X2, X3, X4, i.e., they correspond to the attributes of the utility. As function u1(·)
is defined over X1 ×X2, G′ contains edge (X1, X2). Similarly, functions u2(·), u3(·) and
u4(·) imply that E′ contains edges (X2, X3), (X3, X4) and (X4, X1), hence resulting in
the solid edges in Figure 4.a. Note that graph G′ corresponds to a CA-independence map
of [1].

On step 2, G′ is triangulated using any triangulation algorithm [2, 19, 21], for instance
using the following one:
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a. attribute dependences

X2X1

X4 X3

b. final GAI tree

X1X3X4

X1X2X3

X1X3

Figure 4: From a GAI network to a GAI tree.

Algorithm 3 (triangulation) Let G′ = (V ′, E ′) be an undirected graph, whereV ′ =
{X1, . . . , Xn}. Letadj(Xi) denote the set of nodes adjacent toXi in G′. A nodeXi ∈ V ′

is said to be eliminated from graphG′ when

i) the edges(adj(Xi)× adj(Xi))\E ′ are added toE ′ so thatadj(Xi) ∪ {Xi} becomes a
clique;

ii) the edges betweenXi and its neighbors are removed fromE ′, as well asXi fromV ′.

Letσ be any permutation of{1, . . . , n}. Let us eliminateXσ(1), Xσ(2), . . . , Xσ(n) suc-
cessively and callE ′

T the set of edges added to graphG′ by these eliminations. Then
graphG′

T = (V ′, E ′ ∪ E ′
T ) is triangulated.

This triangulation algorithm, when applied with elimination sequence X2, X3, X1, X4,
precisely produces the graph of Figure 4.a, in which edges in E′

T are drawn with dashed
lines.

Step 3 consists in constructing a new graph the nodes of which are the cliques of
G′ (i.e., maximal complete subgraphs of G′): here, {X1, X2, X3} and {X1, X3, X4} (see
Figure 4.a). The edges between these cliques derive from the triangulation [8, 19, 22]:
each time a node Xi is eliminated, it will either create a new clique Ci or a subclique of
an already existing clique Ci. In both cases, associate Ci to each Xi. Once a node Xi

is eliminated, it cannot appear in the cliques created afterward. However, just after Xi’s
elimination, all the nodes in Ci\{Xi} still form a clique, hence the clique associated to
the first eliminated node in Ci\{Xi} contains Ci\{Xi}. Thus linking Ci to this clique
ensures the running intersection property. In our example, clique {X1, X2, X3} is associ-
ated to node X2 while clique {X1, X3, X4} is associated to the other nodes. As X2 is the
first eliminated node, we shall examine clique {X1, X2, X3}. Ci\{Xi} is thus equal to
{X1, X3}. Among these nodes, X3 is the first to be eliminated and clique {X1, X3, X4} is
associated to this node. Hence, there should exist an edge between cliques {X1, X2, X3}
and {X1, X3, X4}. As each clique is linked to at most one other clique, the process en-
sures that the resulting graph is actually a tree (see Figure 4.b).

Note that the GAI tree simply corresponds to a coarser GAI decomposition of the
DM’s utility function, i.e., it simply occults some known local independences, but this is
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the price to pay to make the elicitation process easy to perform.

4.2 Utility Elicitation in GAI Trees

This subsection first translates into a GAI tree-conducted algorithm the elicitation process
of the preceding section and, then, a general algorithm is derived.

Example 3 (continued) The GAI network related to Example 3 is shown on Figure 5:
ellipses represent the attributes of each subutility and rectangles the intersections between
pairs of ellipses. Separators are essential for elicitation because they capture all the de-
pendencies between sets of attributes. For instance separator X2 reveals that clique X1X2

is independent of the rest of the graph for any fixed value of X2. Hence answers to ques-
tions involving gambles on outcomes of type (·, a2, a3, a4) do not depend on a3, a4, thus
simplifying the elicitation of u1(·, a2).

X2X3 X3 X3X4X2X1X2

Figure 5: The GAI tree of Example 3.

The elicitation process described in Example 3 can be reformulated using the GAI
tree as follows: we started with an outer clique, i.e., a clique connected to at most one
separator. The clique we chose was X1X2. Function u1(·) was assessed for every value
of the attributes in the clique except those in the separator (here X2) that were kept to the
reference point a2. This led to assessing u1(x1, a2) for all x1’s using Eq. (2)’s gamble:

G((b1, a234), (x1, a234), (a1, a234)).

Then the values of the attributes in the separator were changed to, say x2, and u1(·) was
elicited for every value of the attributes in clique X1X2 except those in the separator that
were kept to x2. This was performed using the gambles of Eq. (3) and (4), as well as
gambles similar to the one above, i.e.,

G((b1, a2, a34), (a1, x2, a34), (a1, a2, a34)),
G((b1, a2, a34), (x

′
1, x2, a34), (a1, a2, a34)),

G((x′
1, x2, a34), (x1, x2, a34), (a1, x2, a34)).

After u1(·) was completely determined, clique X1X2 and its adjacent separator were
removed from the network and we applied the same process with another outer clique,
namely clique X2X3: using gamble G((b1, a2, a34), (a1, b2, a34), (a1, a2, a34)), u2(b2, a3)
could be determined. Then gamble

G((a1, b2, a3, a4), (a1, x2, a3, a4), (a1, a2, a3, a4))
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was used to assess the value of u2(x2, a3) for any x2 in X2. In other words, we assessed the
value of u2(·) for every value of the attributes in the clique except those in the separator
(X3) that were kept to the reference point a3. Once the u2(x2, a3)’s were known, u2(·)
was determined for different values of x3 using gambles

G((b1, a2, a3, a4), (a1, a2, x3, a4), (a1, a2, a3, a4)),
G((b1, a2, a3, a4), (a1, b2, x3, a4), (a1, a2, a3, a4)),
G((a1, b2, x3, a4), (a1, x2, x3, a4), (a1, a2, x3, a4)),

i.e., the values of the attributes in the separator were changed to x3 and u2(·) was elicited
for every value of the attributes in clique X2X3 except those in the separator that were
kept to x3, and so on.

All cliques can thus be removed by induction until there remains only one clique.
This one deserves a special treatment as the hypotheses of Eq. (1) specifying that, when
we elicit a subutility ui(·), ui(·) = 0 whenever the value of the attributes not in the
separator equal those of the reference point, apply to every clique except the last one.
When determining the value of the utility of the last clique, all the other subutilities are
known and a direct elicitation can thus be applied. �

The above example suggests the following general elicitation procedure, which is
applicable to any GAI tree: let � be a preference relation on lotteries over the outcome
set X . Let Z1, . . . , Zk be some subsets of N = {1, . . . , n} such that N = ∪k

i=1Zi and
such that u(x) =

∑k
i=1 ui(xZi

) is a GAI-decomposable utility. Assume that the XZi
’s are

such that they form a GAI tree G = (V,E) and that for every i, once all XZj
’s, j < i,

have been removed from G as well as their adjacent edges and separators, XZi
has only

one adjacent separator left we will denote by XSi
. In other words, the XZi

’s are ordered
giving priorities to outer nodes. Call Ci = Zi\Si, and let Ck = Zk\Sk−1. Let (a1, . . . , an)
and (b1, . . . , bn) be arbitrary outcomes of X such that (bCi

, aN\Ci
) � (aCi

, aN\Ci
) for all

i’s. Then algorithm 4 completely determines the value of each subutility which can then
be stored in cliques, thus turning the GAI network into a compact representation of u(·).
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Algorithm 4
u1(bC1 , aN\C1) ← 1; u1(aN) ← 0
for all i in {1, . . . , k} and all xSi

do
ui(aCi

, xN\Ci
) ← 0

done
for all i in {1, . . . , k − 1} do

if i �= 1 then
computeui(bCi

, aN\Ci
) using

G((bC1 , aN\C1), (bCi
, aN\Ci

), (aN))
endif
for all xSi

do
if xSi

�= aSi
then

computeui(bCi
, xSi

, aN\Zi
) using

G((bC1 , aN\C1), (xSi
, aN\Si

), (aN))
andG((bC1 , aN\C1), (bCi

, xSi
, aN\Zi

), (aN))
endif
for all xZi

do
computeui(xZi

) usingG((bCi
, xSi

, aN\Zi
),

(xZi
, aN\Zi

), (aCi
, xSi

, aN\Zi
))

done
done

done
/* computation of the final clique */
computeuk(bCk

, aSk−1
) using

G((bC1 , aN\C1), (bCk
, aN\Ck

), (aN))
for all xZk

do
computeuk(xZk

) using
G((bCk

, aN\Ck
), (xZk

, aN\Zk
), (aN))

done

Of course, algorithm 4 can be applied whichever way the GAI tree is obtained. In
particular, it can be applied on GAI trees resulting from triangulations. For the latter,
the algorithm may be improved taking into account the knowledge of the GAI decom-
position before triangulation. Consider for instance the following GAI decomposition:
u(x1, x2, x3, x4) = u1(x1, x2)+u2(x2, x3)+u3(x3, x4)+u4(x4, x1), representable by the
GAI network of Figure 6.a and inducing the GAI tree of Figure 6.b, or equivalently the
GAI decomposition u(x1, . . . , x4) = v1(x1, x2, x3)+v2(x1, x3, x4). Applying directly the
elicitation process in the graph of Figure 6.b would be quite inefficient as many questions
would be asked to the DM although their answers could be computed from the answers
given to previous questions. For instance, assume that X1 (resp. X2; X3) can take values
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X3X1

X4 X3X4

X2 X2X3X1X2

X1X4 X1X3X4

X1X2X3

X1X3

a. original GAI network b. final GAI tree

Figure 6: A GAI tree resulting from a triangulation.

X1X2X3 X1X3 X1X3X4

u3(x3, x4) + u4(x4, x1)u1(x1, x2) + u2(x2, x3)

Figure 7: Subutilities in a GAI tree.

a1, b1 (resp. a2, b2; a3, b3). Then, as obviously v1(x1, x2, x3) = u1(x1, x2) + u2(x2, x3),
the above elicitation algorithm ensures that

v1(a1, a2, a3) = u1(a1, a2) + u2(a2, a3) = 0.

But, then,
v1(b1, a2, b3) = u1(b1, a2) + u2(a2, b3)

= u1(b1, a2) + u2(a2, a3)+
u1(a1, a2) + u2(a2, b3)

= v1(b1, a2, a3) + v1(a1, a2, b3).

Hence, after the elicitation of both v1(b1, a2, a3) and v1(a1, a2, b3), that of v1(b1, a2, b3)
can be dispensed with. Intuitively, such questions can be found simply by setting down
the system of equations linking the vi’s to the ui’s and identifying colinear vectors.

5 Conclusion

In this paper, we provided a general algorithm for eliciting GAI-decomposable utilities.
Unlike UCP-nets, GAI networks do not assume some CP-net structure and thus extend the
range of application of GAI-decomposable utilities. For instance, consider a DM having
some preferences over some meals constituted by a main course (either a stew or some
fish), some wine (red or white) and a dessert (pudding or an ice cream), in particular

(stew,red wine,dessert) � (fish,white wine,dessert)
� (stew,white wine,dessert) � (fish,red wine,dessert)

for any dessert. Moreover, assume that the DM would like to suit the wine to the main
course and she prefers having ice cream when she eats a stew. Then such preferences
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can be represented efficiently by u(meal) = u1(course, wine) + u2(course, dessert) and
thus be compacted by the associated GAI network. Nevertheless, since preferences over
courses depend on wine and conversely, and since there exists some dependence between
courses and desserts, UCP-nets do not help in compacting utility function u(·) despite its
GAI decomposability.

Another specificity of our procedure is that we always consider gambles over com-
pletely specified outcomes, i.e., including all the attributes. This is an advantage because
answers to questions involving only a subset of attributes are not easily interpretable.
Consider for instance a multi-attribute decision problem where the multi-attribute space
is X = X1×X2×X3×X4, with X1 = {a1, c1, b1}, X2 = {a2, c2, b2}, X3 = {a3, c3}, and
X4 = {a4, c4}. Assume the preferences of the DM can be represented by the following
utility function:

u(x) = u1(x1) + u2(x1, x2) + u3(x2, x3) + u4(x3, x4),

where the ui’s are given by the tables below:

x1 a1 c1 b1

u1(x1) 0 500 1000

u2(x1, x2) a2 c2 b1

a1 0 10 70
c1 50 10 90
b1 60 80 100

u3(x2, x3) a3 c3

a2 0 7
c2 5 2
b2 9 10

u4(x3, x4) a4 c4

a3 0 0.6
c3 0.4 1

Note that the big-stepped structure of utilities in the above tables is consistent with the Ce-
teris Paribus assumption about preferences, hence u(·) can be characterized by the UCP-
net of Figure 8. Asking the DM to provide probability p such that c1 ∼ 〈p, b1; 1 − p, a1〉
would, at first sight, be meaningful and, assuming u1(a1) = 0 and u1(b1) = 1000, it
would certainly imply that u1(c1) = 1000p. However, a careful examination highlights
that it is not so obvious. Indeed, such gamble, involving only attribute X1 would be mean-
ingful only if the DM had a preference relation �1 over X1 that could be exploited to ex-
tract informations about �, the DM’s preference relation over X . In the classical frame-
work of additive conjoint measurement [11, 20, 28], this property holds because c1 ∼
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X2 X3X1 X4

Figure 8: A simple UCP-net.

〈p, b1; 1−p, a1〉 is equivalent to (c1, x2, x3, x4) ∼ 〈p, (b1, x2, x3, x4); 1−p, (a1, x2, x3, x4)〉
for any (x2, x3, x4) ∈ X2 × X3 × X4, but this does not hold for GAI decompositions in-
volving intersecting factors. For instance, using the above tables, it is easily seen that,
whatever values for X3 and X4:

(a1, b2, x3, x4)

(b1, b2, x3, x4)0.505

0.495

(c1, b2, x3, x4) ∼

(a1, c2, x3, x4)

(b1, c2, x3, x4)0.467

0.533

(c1, c2, x3, x4) ∼

(a1, a2, x3, x4)

(b1, a2, x3, x4)0.519

0.481

(c1, a2, x3, x4) ∼

The explanation of this unfortunate property lies in the misleading interpretation we may
have of Ceteris Paribus statements: in the above UCP-net, Ceteris Paribus implies that
preferences over X1 do not depend on the values of the other attributes. The observation
of the subutility tables confirm this fact: b1 is preferred to c1, that is also preferred to a1.
However, the CP property does not take into account the strength of these preferences
while the probabilities involved in the lotteries do: whatever the value of X2, (b1, x2) is
always preferred to (c1, x2), but the DM prefers more (b1, c2) to (c1, c2) than (b1, a2) to
(c1, a2) and this results in different values of p in gambles. This explains the discrepancy
between c1 ∼ 〈p, b1; 1 − p, a1〉 and the same gamble taking into account the other at-
tributes. This discrepancy is not restricted to UCP-net root nodes, it is easily seen that it
also occurs for other nodes such as X2 or X3.

To conclude, the GAI networks introduced in this paper allow taking advantage of
any GAI decomposition of a multiattribute utility function to construct a compact repre-
sentation of preferences. The efficiency of the proposed elicitation procedure lies both in
the relative simplicity of the questions posed and in the careful exploitation of indepen-
dences between attributes to reduce the number of questions. This approach of preference
elicitation is a good compromise between two conflicting aspects: the need for suffi-
ciently flexible models to capture sophisticated decision behaviors under uncertainty and
the practical necessity of keeping the elicitation effort at an admissible level. A similar
approach might be worth investigating for the elicitation of multiattribute utility functions
under certainty. Resorting to GAI networks in this context might also be efficient to elicit
subutility functions under some solvability assumptions on the product set.
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Computation of median orders:  
complexity results 

 

Olivier Hudry* 

 

Abstract 

Given a set of individual preferences defined on a same finite set of candidates, 
we consider the problem of aggregating them into a collective preference 
minimizing the number of disagreements with respect to the given set and verifying 
some structural properties like transitivity. We study the complexity of this 
problem when the individual preferences as well as the collective one must verify 
different properties, and we show that the aggregation problem is NP-hard for 
different types of collective preferences, even when the individual preferences are 
linear orders. 

  

Key words: Complexity, partially ordered relations, median relations, aggregation 
of preferences. 

 
 

1 Introduction 
The problem that we deal with in this paper can be stated as follows: given a set 

(called a profile) Π = (R1, R2, …, Rm) of m binary relations Ri (1 ≤ i ≤ m) defined on the 
same finite set X, find a binary relation R* defined on X verifying certain properties like 
transitivity and summarizing Π as accurately as possible. This problem occurs in 
different fields, for instance in the social sciences, in electrical engineering, in 
agronomy or in mathematics (see for example L. Hubert (1976), J.-P. Barthélemy et alii 
(1981, 1986, 1988, 1989, 1995), M. Jünger (1985), G. Reinelt (1985), A. Guénoche et 
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alii (1994)). For example, in voting theory, X can be considered as a set of candidates, 
Π as a profile of individual preferences expressed by voters and R* as the collective 
preference that we look for. Though the problem occurs in different fields, as said 
above, we shall keep this illustration from voting theory in the following. 

The aim of this paper is to study the complexity of finding R* (for the theory of 
complexity, see for instance M.R. Garey and D.S. Johnson (1979) or J.-P. Barthélemy et 
alii (1996)). We consider different types of ordered relations for the individual 
preferences of Π as well as for R* and we show that for most cases, the computation of 
R* is an NP-hard problem. This problem has been already studied in some special cases, 
namely for the aggregation of a profile of linear orders into a linear order by J.B. Orlin 
(1988) and by J.J. Bartholdi III, C.A. Tovey and M.A. Trick (1989), and for the 
aggregation of a profile of binary relations into a linear order, a partial order, a complete 
preorder or a preorder (see below for the definitions of these structures) by 
Y. Wakabashi (1986 and 1998). The results displayed in this paper generalize the 
previous ones by extending them to other cases. They slightly strengthen and sometimes 
generalize the ones presented in O. Hudry (1989).  

In the following, the relations to aggregate are assumed to represent preferences, and 
thus will not be symmetric. Anyway, the aggregation of symmetric relations has also 
been studied: M. Krivanek and J. Moravek (1986) showed that the approximation of a 
symmetric relation by an equivalence relation (a reflexive, symmetric, and transitive 
relation) is NP-hard. This case corresponds with the aggregation of a profile reduced to 
only one symmetric relation while R* is assumed to be an equivalence relation. From 
this, we may derive that the aggregation of several symmetric relations or of 
equivalence relations into one equivalence relation is also NP-hard (see  
J.-P. Barthélemy and B. Leclerc (1995)). On contrary, the aggregation of symmetric 
relations or of equivalence relations into a symmetric relations is trivially polynomial. 

The paper is organized as follows. Section 2 recalls the definitions of the ordered 
relations that we take into account. In Section 3, we show how the aggregation problems 
can be formulated in graph theoretical terms. Then we prove our complexity results 
upon these aggregation problems in Section 4. The conclusions take place in Section 5 
and summarize the main results got in Section 4. 

2 The ordered relations 
Given a finite set X, a binary relation R defined on X is a subset of 

X × X = ( x, y): x ∈ X and y ∈ X{ }. We note n the number of elements of X and we 
suppose that n is great enough (typically, at least equal to 4). We note xRy  instead of 
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(x, y) ∈ R and xR y  instead of (x, y) ∉ R. The following properties that a binary relation 
R can satisfy are basic: 

• reflexive: ∀ x ∈ X, xRx; 

• irreflexive: ∀ x ∈ X, xR x ; 

• antisymmetric: ∀ (x, y) ∈ X2, (xRy and x≠y) ⇒ yR x ; 

• asymmetric: ∀ (x, y) ∈ X2, xRy ⇒ yR x ; 

• transitive: ∀ (x, y, z) ∈ X3,  (xRy and yRz) ⇒ xRz; 

• complete: ∀ (x, y) ∈ X2 with x≠y, xRy or (inclusively) yRx. 

From a binary relation R, we may define an asymmetric relation Ra (called the 
asymmetric part of R) by: xRay ⇔ (xRy and yR x ).  

By combining the above properties, we may define different types of binary relations 
(see for instance J.-P. Barthélemy and B. Monjardet (1981) or P.C. Fishburn (1985)). As 
a binary relation R defined on X is the same as the oriented graph G = (X, R) (i.e. (x, y) 
is an arc of G if and only if we have xRy), we illustrate these types with graph theoretic 
examples: 

• a partial order is an asymmetric and transitive binary relation; O will denote the set 
of the partial orders defined on X; 

a

b c

d e

f

 
Figure 1. A partial order. 

 

• a linear order is a complete partial order; L will denote the set of the linear orders 
defined on X; 

 
Figure 2. A linear order. The partial order of Figure 1 is not a linear order, for 

instance because the vertices a and d are not compared. 
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• a tournament is a complete and asymmetric binary relation; T will denote the set of 
the tournaments defined on X; notice that a transitive tournament is a linear order and 
conversely; 

 
Figure 3. A tournament. 

 

• a preorder is a reflexive and transitive binary relation; P will denote the set of the 
preorders defined on X; 

 
Figure 4. A preorder. 

 

• a complete preorder is a reflexive, transitive and complete binary relation; C will 
denote the set of the complete preorders defined on X; 

 
Figure 5. A complete  preorder. 
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• a weak order is the asymmetric part of a complete preorder; W will denote the set 
of the weak orders defined on X; 

 
Figure 6. A weak order (namely, the asymmetric part of the complete preorder of 

Figure 5). 

 

• an interval order is a partial order R satisfying: ∀ (x, y, z, t) ∈ X4,  
(xRy and zRt) ⇒ {xRt or (inclusively) zRy}; I will denote the set of interval orders 
defined on X (the name interval order comes from the fact that we may represent such 
an order by intervals spread on the real axis and associated with each element x of X: 
then xRy means that the interval associated with x is completely on the left of the one 
associated with y, while yRx  and yR x  mean that the intervals associated with x and y 
overlap; the above condition means that if x is on the left of y and z on the left of t, then 
the intervals associated with x and t on one hand and the ones associated with z and y on 
the other hand cannot overlap simultaneously). 

a

b

c

d
e

o

 
Figure 7. An interval order .The partial order of Figure 1 is not an interval order for 

instance because of the vertices b, c, d, e: bRc and dRe but we have not bRe nor dRc. 
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• a semiorder is an interval order R satisfying: ∀ (x, y, z, t) ∈ X4,  
(xRy and yRz) ⇒ {xRt or (inclusive) tRz}; S will denote the set of interval orders defined 
on X (with respect to the representation as intervals, an interval orders is a semiorder if 
we may associate intervals with the same length to all the elements of X). 

 
Figure 8. A semiorder .The interval order of Figure 7 is not a semiorder for instance 

because of the vertices b, c, d, e: cRe and eRd but we have not cRb nor bRd. 

 

• a quasi-order is a reflexive and complete relation of which the asymmetric part is a 
semiorder; Q will denote the set of the quasi-orders defined on X; 

o

o

o
o

o

 
Figure 9. A quasi-order. Its asymmetric part  is the semiorder of Figure 8. 

 

• an acyclic relation is a relation R without directed cycle (circuit), i.e. verifying: 
∀ 1 ≤ k ≤ n, (xiRxi+1 for 1 ≤ i ≤ k – 1) ⇒ xk Rx1 ; A will denote the set of acyclic 
relations defined on X. 
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Figure 9. An acyclic relation. Its transitive closure is the partial order of Figure 1. 

 

Checking that a given relation (or a given graph) fulfils the requirements of these 
structures can be done in polynomial time with respect to n. From this remark, it will 
follow that the problems considered below all belong to NP. 

It is possible to get other structures by adding or by removing reflexivity or 
irreflexivity from the above definition (and by changing asymmetry by antisymmetry 
when necessary). In fact, the distinction between reflexive and irreflexive relations is 
not relevant for our study, as we shall see below: the complexity results will remain the 
same. Thus, in the following, we do not take reflexivity or irreflexivity into account (for 
instance, we will consider that a linear order is also a preorder). 

These types include the most studied and used partially ordered relations. We will 
also consider generic binary relations, without any particular property. The set of the 
binary relations will be noted R. We may notice several inclusions between these sets, 
especially the following one: ∀ Z ∈ {A, C, I, L, O, P, Q, R, S, T, W}, L ⊆ Z; in other 
words, a linear order can be considered as a special case of any one of the other types. 

3 Formulations of the aggregation problem 
In order to get an optimization problem to deal with, it is necessary to explicit what 

we mean when we say that R* must summarize Π “as accurately as possible”. To do so, 
we consider the symmetric difference distance δ: given two binary relations R and S 
defined on the same set X, we have  

δ (R, S) = x, y( ) ∈ X2 : xRy and xS y[ ] or xR y and xSy[ ]{ } 

This quantity δ (R, S)  measures the number of disagreements between R and S. 
Though some authors consider sometimes another distance, δ is used widely and is 
appropriate for many applications. J.-P. Barthélemy (1979) shows that δ satisfies a 
number of naturally desirable properties and J.-P. Barthélemy and B. Monjardet (1981) 
recall that δ (R, S)  is the Hamming distance between the characteristic vectors of R and 
S and point out the links between δ and the L1 metric or the square of the Euclidean 
distance between these vectors (see also K.P. Bogart (1973 and 1975) and B. Monjardet 
(1979 and 1990)). 
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Then, for a profile Π = (R1, R2, …, Rm) of m relations, we can define the remoteness 
∆(Π, R) (J.-P. Barthélemy and B. Monjardet (1981)) between a relation R and the 
profile Π by: 

∆ (Π, R) = δ R, Ri( )
i=1

m
∑ . 

The remoteness ∆(Π, R) measures the total number of disagreements between Π 
and R. 

Our aggregation problem can be seen now as a combinatorial problem: given a 
profile Π, determine a binary relation R* minimizing ∆ over one of the sets A, C, I, L, O, 
P, Q, R, S, T, W. Such a relation R* will be called a median relation of Π  
(J.-P. Barthélemy and B. Monjardet (1981)). According to the number m of relations of 
the profile and to the properties assumed for the relations belonging to Π or required 
from the median relation, we get many combinatorial problems. They are too numerous 
to state them explicitly; so we note them as follows: 

 

Problems Pf(Y, Z). For Y belonging to {A, C, I, L, O, P, Q, R, S, T, W} and Z 
belonging also to {A, C, I, L, O, P, Q, R, S, T, W}, for a function f defined from the set N 
of integers to N, Pf(Y, Z) denotes the following problem: given a finite set X of n 
elements, given a profile Π of m = f(n) binary relations all belonging to Y, find a relation 
R* belonging to Z with: ∆(Π, R*) 

 
= Min

R∈Z
∆ (Π, R) . 

 

An interesting case is the one for which f is a constant m, i.e. the particular case for 
which the number m of relations is fixed outside the instance. We will denote this 
problem by Pm(Y, Z). For instance, P2(R, L) will denote the aggregation of 2 binary 
relations into a linear order. We will see that the parity of m will play a role in the 
following results. Anyway, it will be easy to see from the following computations that, 
if Pf(Y, Z) is NP-hard for some function f and some sets Y and Z, then Pf+2(Y, Z) will 
also be NP-hard: it will be sufficient to add any linear order and its reverse order to the 
considered profile to get this result (since the linear orders are special cases of any one 
of the other types). 

 

We do not explicit the statements of the decision problems associated with the 
problems Pf(Y, Z), because they are obvious. Similarly, it is obvious to show that these 
decision problems belong to NP. Thus, we deal with the NP-hardness of Pf(Y, Z), but 
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we could deal with the NP-completeness of the decision problems associated with 
Pf(Y, Z). 

To study the complexity of Pf(Y, Z), we develop the expression of ∆. For this, 
consider the characteristic vectors r i = rxy

i( )(x , y )∈X2
 of the relations Ri (1 ≤ i ≤ m) 

defined by r  if xRiy and rxy
i = 1 xy

i = 0 otherwise, and similarly the characteristic vector 

r=  of any binary relation R. Then, it is easy to get a linear expression of 

∆(Π, R): 

rxy( )(x ,y )∈X2

δ R, Ri( ) = rxy − rxy
i

(x , y )∈X2
∑ = rxy − rxy

i
2

(x , y )∈X2
∑ = rxy 1 − 2rxy

i( )+ rxy
i[ ]

( x ,y )∈X 2
∑   

hence ∆ Π , R( ) = rxy − rxy
i

( x ,y )∈X 2
∑

i =1

m

∑  

and, after simplifications: ∆ Π , R( ) = C − mxy . rxy
(x , y )∈X2

∑  

with C  and m . = rxy
i

( x ,y )∈X 2
∑

i =1

m

∑ xy = 2rxy
i − 1( )

i =1

m

∑ = 2 rxy
i

i =1

m

∑ − m

Notice that the quantities mxy can be non-positive or non-negative, and that they all 
have the same parity (the one of m). Notice also that, from this expression of ∆(Π, R), it 
is easy to get a 0-1 linear programming formulation of the problems Pf(Y, Z) by adding 
the 0-1 linear constraints associated with each type of median relation (but it will not be 
the way that we are going to follow in the sequel). For example, the transitivity of R can 
be written: ∀ , ( x, y, z) ∈ X3 rxy + ryz − rxz ≤ 1 (see for instance Y. Wakabayashi (1986) 
or O. Hudry (1989) for details). Such a 0-1 linear programming formulation was applied 
as soon as 1960 (A.W. Tucker (1960); see also D.H. Younger (1963), J.S. de Cani 
(1969), D. Arditti (1984), and more generally J.-P. Barthélemy and B. Monjardet (1981) 
for references). 

Before going further, the following lemma shows that reflexivity or irreflexivity of 
the median relation do not change the complexity of the problems Pf(Y, Z). 

 

Lemma 1. For any set Z of median relations, let Zr (resp. Zi) be the set of median 
relations got from the elements of Z by adding the reflexivity (resp. irreflexivity) 
property. Then, for any set Y and any function f, Pf(Y, Z), Pf(Y, Zr), and Pf(Y, Zi) have 
the same complexity. 
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Proof. To show this result, consider any profile Π of m (= f(n)) relations belonging to 
Y and any relation Z belonging to Z. Let Zr (resp. Zi) be the reflexive  (resp. irreflexive) 
relation got from Z by adding the reflexivity (resp. irreflexivity) property. Then it is 
easy to state the following relations: 

∆ Π ,Zr( )= ∆ Π, Z( )+ mxx
x:(x,x)∉Z

∑  and ∆ Π ,Zi( ) = ∆ Π,Z( )− mxx
x:(x, x)∈Z

∑ . 

Hence the result, since the computation of mxx
x:(x,x )∉Z

∑  and of  can trivially 

be done in polynomial time w.r.t. the size of the considered instance. ❑  

mxx
x:(x,x )∈Z

∑

 

 Because of Lemma 1, we shall not pay attention from now on to reflexivity or 
irreflexivity: all the complexity results remain the same if we add or remove reflexivity 
or irreflexivity. 

 

In the following, we will not consider the previous 0-1 linear programming 
formulation to study the complexity of the problems Pf(Y, Z), but a graph theoretic 
representation. Indeed, we may associate a complete, symmetric, weighted, oriented 
graph G = (X, U) to any profile Π: the vertex set of G is X and G owns all the arcs (i.e. 
oriented edges) that a simple graph can own; in other words, we have: 

 (remember that reflexivity does not matter now on). In 
the following, we will write U
U = X × X − (x,x) for x ∈X{ }

X  to denote the set X × X − (x, x) for x ∈X{ } and the 
graph associated with Π is thus G = (X,UX ) . The arcs (x, y) of G (with x ∈X , y ∈X  
and x ≠ y) are weighted by m . Then minimizing xy ∆ Π ,Z( ) for Z belonging to one of the 
sets A, C, I, L, O, P, Q, R, S, T, W is exactly the same as extracting a partial graph 
H = ( X, Z ) from G in order to maximize mxy

Z(x,y)∈
∑  while the kept arcs describe the 

structure that Z must respect (H must belong to A, C, I, L, O, P, Q, R, S, T, W, where 
these sets are seen as sets of graphs).  

 

Then the question arises: which weighted graphs G = (X,UX )  can be associated to a 
profile Π ? By combining results by P. Erdös, L. Moser (1964) and by B. Debord (1987) 
(see also D. McGarvey (1953) and R. Stearns (1959)), we get such characterisations, 
which depend on the nature of the relations of Π. For the statements of the following 
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theorems, let M denote the highest absolute value of the weights of G: 
M = Max

(x,y)∈UX
mxy . 

xy

mxy

 (x, y) ∈UX

mxy

c.n. M
log n

 (x, y) ∈UX

 

Theorem 2. The graph G = (X,UX )  weighted by the (non-positive or non-negative) 
integers m represents a profile Π of m binary relations if the following conditions are 
fulfilled: 

1. all the weights m have the same parity; xy

2. m has the same parity as the weights m ; xy

3. m ≥ M. 

 

Theorem 3. The graph G = (X,UX )  weighted by the (non-positive or non-negative) 
integers represents a profile Π of m tournaments if the following conditions are 
fulfilled: 

1. all the weights m have the same parity; xy

2. m has the same parity as the weights m ; xy

3. m ≥ M; 

4. ∀ ,  mxy = −myx . 

 

Theorem 4. The graph G = (X,UX )  weighted by the (non-positive or non-negative) 
integers represents a profile Π of m linear orders if the following conditions are 
fulfilled: 

1. all the weights m have the same parity; xy

2. m has the same parity as the weights m ; xy

3. m ≥  where c is a constant; 

4. ∀ ,  mxy = −myx . 

 

Notice that, for Theorems 2 and 3, M is the lowest possible value of m. For 
Theorem 4, it is sometimes possible to find a profile of m linear orders associated with 
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G with m less than 
c.n. M
log n

. Anyway, in all these cases, there exists a profile Π with 

m = M binary relations, or m = M tournaments, or m = 
c.n. M
log n

 

 
 
 

 

 
 
  or m = 

c.n. M
log n

 

 
 
 

 

 
 
  + 1 

(depending on the parity of 
c.n. M
log n

 

 
 
 

 

 
 
  and of the weights of G) linear orders. Moreover, 

if we assume that M is upper-bounded by a polynomial in n (as it will be the case 
further), then the construction of Π can be done in polynomial time with respect to the 
size of G. Indeed, as any binary relation R defined on X can be described by O(n2) bits, 
it is possible to code Π = (R1, R2, …, RM) with O M.n2( ) bits, while the size of G is at 
least n2 (at least 1 bit for the weight of each arc of G); hence the result. Notice also that, 
if M is upper-bounded by a constant, it is possible to fix the number m of relations of Π 
in Theorems 2 and 3; in this case, we may associate to G an instance of the problems 
Pm(R, Z) (Theorem 2) or the problems Pm(T, Z) (Theorem 3) for an appropriate set Z.  

From this polynomial link between the problems Pf(Y, Z) and their graph theoretic 
representations, it appears that we may study the complexity of the problems Pf(Y, Z) 
with the help of weighted graphs. It is what we do below. More precisely, we are going 
to study the following decision problems, stated as graph theoretic problems: 

 

Problems Q0(Y, Z) with Y ∈ {L, R, T} and Z ∈ {A, C, I, L, O, P, Q, S, W} 

Instance: a graph G = (X,UX )  weighted by (non-positive or non-negative) even 
integers m  and which represents a profile of relations belonging to Y; an integer K; xy

Question: does there exist a partial graph (X, U) of G belonging to Z with 
 ? mxy

(x,y)∈U
∑ ≥ K

 

Problems Q1(Y, Z) with Y ∈ {L, R, T} and Z ∈ {A, C, I, L, O, P, Q, S, W} 

Instance: a graph G = (X,UX )  weighted by (non-positive or non-negative) odd 
integers m  and which represents a profile of relations belonging to Y; an integer K; xy

Question: does there exist a partial graph (X, U) of G belonging to Z with 
 ? mxy

(x,y)∈U
∑ ≥ K
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4 The complexity results 

As for the problems Pf(Y, Z), the problems Q0(Y, Z) and Q1(Y, Z) obviously belong 
to NP for Y ∈ {L, R, T} and Z ∈ {A, C, I, L, O, P, Q, S, W}. To show that they are  
NP-complete, we use the well-known Feedback Arcset Problem (see M.R. Garey, 
D.S. Johnson (1979)): 

 

Instance: a directed, asymmetric graph H = (X, W); an integer h; 

Question: does there exist W′  W with ⊂ ′ W ≤ h  and such that W′ contains at least 
one arc of each circuit (directed cycle) of H ? 

 

R. Karp (1972) showed that this problem is NP-complete. We may also state it as 
follows: 

 

Problem FAS 

Instance: a directed, asymmetric graph H = (X, W); an integer h; 

Question: does there exist W′  W with ⊂ ′ W ≤ h  and such that removing the 
elements of W′ from H leaves a graph (X, W – W′) without any circuit (such a set W′ is 
called a feedback arc set of H of cardinality at most h) ? 

 

In the following, we use this latter formulation. We use also the following (obvious) 
lemma: 

 

Lemma 5.  

a. Any partial graph of a graph without circuit is itself without circuit. 

b. Any graph without circuit can be completed into a linear order by adding 
appropriate arcs. 

 

We now pay attention to the complexity of Q0(R, Z) and Q1(R, Z) (i.e. when the 
graph represents a profile of any binary relations) for Z ∈ {A, I, L, O, S, W} (i.e. when 
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we look for an acyclic relation, an interval order, a linear order, a partial order, a 
semiorder  or a weak order).  

 

Theorem 6. The problems Q0(R, Z) are NP-complete for Z ∈ {A, I, L, O, S, W}. 

 

Proof. We polynomially transform any instance H = (X, W) and h of FAS into an 
instance G and K of Q0(R, Z). For this, we set the vertex set of G as being X; hence the 
set of arcs of G: UX . We define the weights mxy of the arcs (x, y) of G and K as follows: 

* if (x, y) ∈ W,  = 2 mxy

∗ if (x, y) ∉ W,  = 0. mxy

Then we set K = 2 W − h( ). 

This transformation is obviously polynomial. Let us show that it keeps the answer 
« yes » or « no ». 

Indeed, assume that there exists a subset W′ of W with ′ W ≤ h  and such that 
removing the elements of W′ from H leaves a graph (X, W – W′) without any circuit. If 
we consider it as a partial graph of G, its weight is 2 W − ′ W ( ), which is greater than or 
equal to 2 W − h( ) = K. If Z = A, we are done. Otherwise, thanks to Lemma 5 b, it is 
possible to complete (X, W – W′) into a linear order by adding extra arcs. As all the 
weights are non-negative, we get a linear order (X, L), that we may consider as a partial 
order if Z = O, or as an interval order if Z = I, or as a semiorder if Z = S, or as a weak 
order if Z = W, with  ≥ K. mxy

(x,y)∈L
∑

Conversely, assume that the instance (G, K) of Q0(R, Z) admits the answer « yes »: 
there exists a partial graph (X, U) of G = (X,UX )  which is without circuit if Z = A, or a 
linear order if Z = L, or a partial order if Z = O, or an interval order if Z = I, or a 
semiorder if Z = S, or a weak order if Z = W, with mxy

(x,y)∈U
∑  ≥ K. In every case, (X, U) 

is without circuit. By definition of G, we have mxy
y)∈UX(x,
∑  = 2 W . Let W′ be the subset 

of W defined by W′ = W − W ∩U . Then we have  ′ W = W − W ∩ U . Since the 
elements of U which do not belong to W have a weight equal to 0, and since the other 

arcs have a weight equal to 2, we have then ′ W = W −
1
2

mxy
(x,y)∈U

∑  ≤ W −
1
2

K  = h. 
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Moreover, the graph (X, W – W′) is equal to (X, W ∩ U ), which is without circuit by 
Lemma 5 a and because the graph (X, U) is without circuit. 

In conclusion, the answer is kept by the transformation, and hence the problems  

Q0(R, Z) are NP-complete for Z ∈ {A, I, L, O, S, W}. ❑  

 

Corollary 7. For any even integer m ≥ 2, the problems Pm(R, Z) are NP-hard for 
Z ∈ {A, I, L, O, S, W}. 

 

Proof. It follows from the fact that, in the proof of Theorem 6, it is possible to upper 
bound the weights of the graph by 2. ❑  

 

Theorem 8. The problem Q1(R, L) is NP-complete. 

 

Proof. We apply the same transformation as for Theorem 6 (and thus we keep the 
same notations), but with the following weights: 

* if (x, y) ∈ W,  = 1 and mmxy yx = −1 

* if (x, y) ∉ W and (y, x) ∉ W, m  = 1 and m  = 1 xy yx

(notice that the weights m  are well-defined, because H is assumed to be 
asymmetric),  

xy

and with K = 
n(n −1)

2
− 2h . 

This transformation is obviously polynomial. Let us show that it keeps the answer 
« yes » or « no ». The proof is quite similar as the one of Theorem 6.  

Indeed, consider a minimum-sized subset W′ of W such that removing the elements 
of W′ from H gives a graph (X, W – W′) without any circuit, and assume that we have 

′ W ≤ h . If we consider (X, W – W′) as a partial graph of G, its weight is W − ′ W , 
which is greater than or equal to W − h . Thanks to Lemma 5 b, it is possible to 
complete (X, W – W′) into a linear order (X, L) by adding extra arcs. As we are looking 
for a linear order, it is necessary to add the arcs (x, y) such that (y, x) belongs to W′ 
(because of the completeness of a linear order); there are ′ W  such arcs, and their 
weights are equal to –1. Because of the asymmetry of a linear order, the other extra arcs 
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(x, y) cannot belong to W′ and are such that (y, x) neither belong to W′; there are 
n(n −1)

2
− W  such arcs, and their weights are equal to 1. Thus we get:  

mxy
(x,y)∈L

∑  = mxy
(x,y)∈W − ′ W 

∑  + mxy
(x,y)∈L

( y,x )∈ ′ W 

∑  + mxy
( x,y)∈L−(W − ′ W )

( y, x )∉ ′ W 

∑  

 = W − ′ W  – ′ W  + 
n(n −1)

2
− W   

 = 
n(n −1)

2
− 2 W ′ . 

From ′ W ≤ h , we get  ≥ mxy
(x,y)∈L

∑ n(n −1)
2

− 2h  = K: the answer admitted by the 

instance (G, K) of Q1(R, L) is also « yes ». 

 Conversely, assume that the instance (G, K) of Q1(R, L) admits the answer 
« yes »: there exists a partial graph (X, L) of G = (X,UX )  which represents a linear 
order, with  ≥ K. Notice that (X, L) is without circuit. Let W′ be the subset of 

W defined by W′ = W . If an arc (x, y) belongs to W′ (and thus to W), it does not 
belong to L; then (y, x) belongs to L (completeness of L) but not to W (asymmetry of H), 
and so its weight is equal to –1. Conversely, let (x, y) be an arc of L with a weight equal 
to –1; then it does not belong to W but is such that (y, x) does belong to W and not to L: 
(y, x) belongs to W′. So, the number of arcs of L with a weight equal to –1 is equal to 

mxy
(x,y)∈L

∑

− W ∩ L

′ W . The other elements of L (there are 
n(n −1)

2
− ′W   such arcs) have a weight equal 

to 1. Hence the relation: mxy
(x,y)∈L

∑  = 
n(n −1)

2
− 2 ′ W . From the inequality 

 ≥ K = mxy
(x,y)∈L

∑ n(n −
2

1)
− 2h , we draw ′ W  ≤ h. Moreover, the graph (X, W – W′) is 

equal to (X, W ∩ L ), which is without circuit by Lemma 5 a and because the graph 
(X, L) is without circuit. 

In conclusion, the answer is kept by the transformation, and hence the problem 
Q1(R, L) is NP-complete. ❑  

 

Corollary 9. For any odd integer m ≥ 1, the problems Pm(R, L) are NP-hard. 
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Proof. It follows from the fact that, in the proof of Theorem 8, it is possible to upper 
bound the weights of the graph by 1. ❑  

 

Theorem 10. Q1(R, A) is NP-complete. 

 

Proof. The proof is similar to the one of Theorem 8, and we do not detail it here. The 
construction is the following, with the same notations as above: 

* if (x, y) ∈ W, m  = 1 and m  = –1 xy yx

* if (x, y) ∉ W m  = 1 xy

* K = n (n − 1)
2

− h . 

With respect to the proof of Theorem 8, instead of considering the linear order called 
(X, L) above, we consider the same set of arcs L without the arcs with a weight equal to 
–1. Details are left to the reader. ❑  

 

Corollary 11. For any odd integer m ≥ 1, the problems Pm(R, A) are NP-hard. 

 

Proof. It follows from the fact that, in the proof of Theorem 10, it is possible to 
upper bound the weights of the graph by 1. ❑  

 

Theorem 12. The problems Q1(R, Z) are NP-complete for Z ∈ {I, O, S, W}. 

 

Proof. We apply the same transformation as for Theorem 8 (and thus we keep the 
same notations), but with the following weights: 

* if (x, y) ∈ W,  = 3 mxy

* if (x, y) ∉ W m  = 1 and m  = 1 xy yx

and with K = 
n(n −1)

2
+ 2 W − 2h . 

This transformation is obviously polynomial. Let us show that it keeps the answer 
« yes » or « no ». The proof is quite similar as those of Theorems 6 and 8. 
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Indeed, assume that there exists a subset W′ of W with ′ W ≤ h  and such that 
removing the elements of W′ from H leaves a graph (X, W – W′) without any circuit. If 
we consider it as a partial graph of G, its weight is 3 W − ′ W ( ). Thanks to Lemma 5 b, 
it is possible to complete (X, W – W′) into a linear order (X, L) by adding 
n(n −1)

2
− W − ′W  ( ) extra arcs. As the weights are all greater than or equal to 1, we get 

a linear order (X, L), that we may consider as a partial order if Z = O, or as an interval 
order if Z = I, or as a semiorder if Z = S, or as a weak order if Z = W, with:  

mxy
(x,y)∈L

∑  ≥ 3 W − ′W  ( ) + 
n(n −1)

2
− W − ′W  ( ) = 

n(n −1)
2

 + 2 W  – 2 ′ W  ≥ K, 

which shows that the answer of the instance (G, K) of Q1(R, Z) is « yes ». 

Conversely, assume that the instance (G, K) of Q1(R, Z) admits the answer « yes »: 
there exists a partial graph (X, U) of G = (X,UX )

m
(x,y)∈L

 which represents an element of Z, 
with  ≥ K. Notice that (X, U) is without circuit. It is then possible, by Lemma 5 

b, to complete U into a linear order L by adding extra arcs. As all the weights are 
positive, we get a linear order (X, L) with 

mxy
(x,y)∈U

∑

xy∑  ≥ K. Let W′ be the subset of W 

defined by W′ = W . The graph (X, W – W′) is equal to (X, W ), which is 
without circuit by Lemma 5 a. Let us now compute 

− W ∩ L ∩ L
mxy

y)∈L(x,
∑ :  

mxy
(x,y)∈L

∑  = mxy
(x,y)∈L∩W

∑  + mxy
(x,y)∈L−W

∑  

 = 3 L ∩ W  + L − W   

 = 2 L ∩ W  + L   

 = 2 W − ′ W  + 
n n( −1)

2
 

 = 2 W − 2 ′ W  + 
n n( −1)

2
. 

Hence, from  ≥ K = mxy
(x,y)∈L

∑ n(n −1)
2

+ 2 W − 2h , we get ′ W  ≤ h. The set W′ shows 

that the instance (H, h) of FAS admits the answer « yes ». 

In conclusion, the answer is kept by the transformation, and hence the problems 
Q1(R, Z) is NP-complete for Z ∈ {I, O, S, W}. ❑  
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Corollary 13. For any odd integer m ≥ 3 and for Z ∈ {I, O, S, W}, the problems 
Pm(R, Z) are NP-hard. 

 

Proof. It follows from the fact that, in the proof of Theorem 12, it is possible to 
upper bound the weights of the graph by 3. ❑  

 

Remarks.  

In fact, the above proof can more generally be applied to any set Z with L ⊆Z A, 
what is the case for the above sets.  

⊆

We may notice that the weights of the graph G of Theorem 12 are chosen to be 
positive, so that an optimal solution is in fact a linear order. The « price » of this trick is 
that we need some weights to be greater than 1. Because of this, the complexities of the 
problems P1(R, Z) for Z ∈ {I, O, S, W} remain open. 

 

We now consider a profile Π of linear orders, i.e. the problems Q0(L, Z) and 
Q1(L, Z) for Z ∈ {A, C, I, L, O, P, Q, R, S, T, or W}. The study of the complexity is more 
difficult because the graphs associated with Π are more constrained. Another 
consequence is that we cannot fix the number m of relations of Π any longer (because of 
the reconstruction of Π from the graph; see above) though it will be possible to upper 
bound m by a polynomial of n. To study the complexities of Q0(L, Z) and Q1(L, Z), we 
use the NP-completeness of two more constrained versions of FAS, that we call BFAS 
and BFAS′ because they deal with bipartite graphs. 

 

Problem BFAS 

Instance: a directed, asymmetric, and bipartite graph H = (Y ∪ Z , ) where  
Y = {yi: 1 ≤ i ≤ 

W1 ∪ W2
Y } and Z = {zi: 1 ≤ i ≤ Z  = Y } give the two classes of H and with 

W1 = {(zi, yi) for 1 ≤ i ≤ Y } and W2 ⊆  {(yi, zj) for 1 ≤ i ≤ Y  and 1 ≤ j ≤ Y }; an integer 
h; 

Question: does there exist W′  with ⊂ W1 ∪ W2 ′ W ≤ h  and such that removing the 
elements of W′ from H leaves a graph (Y ∪ Z , (W ) – W′) without any circuit ? 1 ∪ W2
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Problem BFAS′ 

Instance: the same as for BFAS; 

Question: does there exist W′  with ⊂ W1 ′ W ≤ h  and such that removing the 
elements of W′ from H leaves a graph (Y ∪ Z , (W ) – W′) without any circuit ? 1 ∪ W2

 

Figure 10 shows how such a graph looks like. So the only difference between BFAS 
and BFAS′ is that, in BFAS′ and with respect to the drawing of Figure 10, W′ is only 
made of horizontal arcs. 

Y Z

y1
z1

y i z i

y n

z n

 
Figure 10: an instance of BFAS. 

 

Theorem 14. BFAS and BFAS′ are NP-complete. 

 

Proof. It is easy to show that BFAS and BFAS′ belong to NP (details are left to the 
reader). To prove that they are NP-complete, we transform the following problem, 
called Vertex Cover, into BFAS or BFAS′: 
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Problem Vertex Cover (VC) 

Instance: an undirected graph G = (X, U); an integer g; 

Question: does there exist X′  X with ⊂ ′ X ≤ g  and verifying the following property: 
∀  x,  y{ }∈U , x ∈ ′ X  or y ∈ ′ X  (X′ is then a vertex cover of G of cardinality at most g) ? 

 

It is known that VC is NP-complete (see R. Karp [1972]). Let (G, g) be any instance 
of VC. We define an instance (H, h) of BFAS or of BFAS′ as follows: 

* for any vertex xi  ∈ X (1 ≤ i ≤ X  = n), we create two vertices of H:  and  
(1 ≤ i ≤ n) and we set Y = { , 1 ≤ i ≤ n} and Z = { , 1 ≤ i ≤ n}; 

yi zi
yi zi

* for any edge { xi , x j} of H, we create two arcs of H: (yi, zj) and (yj, zi); W2 will 
denote the set of these arcs: W2 = {(yi, zj), (yj, zi), for i and j such that { xi , x j} belongs 
to U}; 

* we complete H by adding all the arcs of the form (zi, yi) for 1 ≤ i ≤ n; they 
constitute the set W1: W1 = {(zi, yi) for 1 ≤ i ≤ n}; 

* we set g = h. 

Then we claim that G admits a vertex cover of cardinality at most g if and only if H 
admits a feedback arc set included into W1 of cardinality at most h.  

Indeed, assume that there exists a vertex cover X′ of G with ′ X ≤ g . Then let W′ be 
defined by: W′ = {(zi, yi) for xi  ∈ X′}. We clearly have ′ W = ′ X ≤ g = h . Moreover, 
assume that there exists a circuit in the graph (Y ∪ Z , (W ) – W′). Then this 
circuit necessarily goes through an arc (zi, yi) for some i such that 

1 ∪ W2
xi  does not belong to 

X′ and then goes through an arc (yi, zj) for an appropriate j (1 ≤ j ≤ n); the only way to 
go on the circuit is to follow the arc (zj, yj) (it is the only arc with zj as its tail),which 
involves that xj does not belong to X′. But, as the arc (yi, zj) exists in H, {xi, xj} must be 
an edge of G, and this edge is not covered by X′, a contradiction. 

Conversely, assume that (H, h) admits a subset W′ of W  which is a feedback 
arc set of cardinality at most h. Then there exists a subset 

1 ∪ W2
′ ′ W  of W1 which is a 

feedback arc set of H of cardinality at most h (for BFAS′, W′ is necessarily such a set; 
so the following is useful only for BFAS). Indeed, for any arc (yi, zj) of W′ ∩  W2, 
remove (yi, zj) from W′ and replace it in ′ ′ W  by the arc (zi, yi). We get thus a subset of 
W1 with at most h elements. To see that ′ ′ W  is a feedback arc set of H, it is enough to 
notice that any circuit of H going through (yi, zj) goes also through (zi, yi), since (zi, yi) 
is the only arc with yi as its head. So define X′ as the set of vertices of G associated with 

 199  



Computation of median orders: complexity results 
 

the elements of ′ ′ W : X′ = { xi  for (zi, yi) ∈ ′ ′ W }. Then obviously: ′ X ≤ g . Moreover, 
assume that X′ is not a VC of G. It means that there exists an edge { xi , x j} of G with 
xi  ∉ X′  and xj ∉ X′ . So, similarly, we have in H: (zi, yi) ∉ ′ ′ W  and (zj, yj) ∉ ′ ′ W . But 
in these conditions, the arcs (zi, yi), (yi, zj), (zj, yj), and (yj, zi) (these four arcs do exist in 
H) define a circuit in the graph (Y ∪ Z , W  – 1 ∪ W2 ′ ′ W ), and ′ ′ W  is not a feedback arc 
set, a contradiction. 

W ∪ W2

∪ Z

∪ W
W2

W2 −

∪ W2
∪ W2

′ 1 ∪ W2 − 2 ′

1 ∪ W2

So the proposed transformation keeps the answer. As it is trivially polynomial with 
respect to the size of the transformed instance (G, g), BFAS and BFAS′ are NP-
complete. ❑  

 

Now we study the complexity of the problem Q0(L, L), and then the one of Q1(L, L): 

 

Theorem 15. Q0(L, L) is NP-complete. 

 

Proof. As noticed above, Q0(L, L) belongs to NP. We transform BFAS into 
Q0(L, L). Let (H = (Y ∪ Z , ), h) be any instance of BFAS, with the same 
notations as above. Let (G, K) be the instance of Q0(L, L) defined by: 

1

- the vertex set of G is X = Y ; 

- the arc set of G is UX; 

- for any arc (x, y) of G, the weight mxy of (x, y) is equal to: 2 if (x, y) ∈ W , –2 
if (y, x) ∈ W , 0 otherwise; 

1 2
1 ∪

- K = 2 W1 ∪ 4h . 

Notice that G is well defined since H is asymmetric. Moreover, the transformation is 
clearly polynomial with respect to the size of the instance (H, h) of BFAS. 

Now, assume that the instance (H, h) of BFAS admits the answer « yes »: there exists 
W′ ⊂  W  with 1 ∪ W2 ′ W  ≤ h and such that the graph (X, (W ) – W′) is without any 
circuit. If we consider (X, (W ) – W′) as a partial graph of G, its weight is 
2

1

1
W1 ∪ W2( −)  W , i.e. 2 W  W . Then, by Lemma 5 b, we may complete 

(X, (W ) – W′) into a linear order (X, L) by adding appropriate arcs. Among these 
extra arcs, there are at most 

1 ∪ W2
′ W  arcs (x, y) such that (y, x) belongs to W , i.e. at 

most ′ W  arcs with a weight equal to –2. More precisely, the weights of the arcs of L 
belonging to W  are equal to 2, and there are at least 1 ∪ W2 W1 ∪ W2( ) − ′W   such arcs; 
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the weights of the arcs (x, y) of L such that (y, x) belongs to W  are equal to –2, 
and there are at most 

1 ∪ W2
′ W  such arcs; the other arcs of L have a weight equal to 0. Hence: 

∪ W2 ′ W1

1 ∪ W2)

′ W1

mxy
(x,y)∈L

∑  ≥ 2 W1 − 2 ′ W  – 2 ′ W  = 2 W1 ∪ W2 − 4  W  ≥ 2 ∪ W2 − 4h  = K. 

So (G, K) admits also the answer « yes ». 

Conversely, assume that (G, K) admits the answer « yes »: there exists L ⊂ UX  with 
 ≥ K and such that (X, L) is a linear order. Thus consider the set 

W′ = (W ) – ( )∩ L. As (X, L) is a linear order, (X, L) is without any 
circuit. Thus, by Lemma 5 a, (W )

mxy
(x,y)∈L

∑

1 ∪ W2 W1 ∪ W2
1 ∪ W2 ∩ L = (W ) – W′ is also without any 

circuit. Let (x, y) be an element of W′ (and thus of W ); then the arc (y, x) belongs 
to L (because L is complete and (x, y) does not belong to L) and its weight is –2. So, 
suppose that we have 

1 ∪ W2
1 ∪ W2

′ W  > h. Then there are at most W( − W ′  arcs which 
belong to W  and to L. So we get: 1 ∪ W2

mxy
(x,y)∈L

∑  ≤ 2 W1 ∪ W2( ) − ′ W  – 2 ′ W  = 2 W1 ∪ W2 − 4  W  < 2 ∪ W2 − 4h  = K, 

a contradiction. It means that W′ satisfies all the conditions and the answer admitted 
by (X, L) is « yes ». 

All these considerations show that Q0(L, L) is NP-complete. ❑  

 

Corollary 16. For f = Ω(n/logn), with f taking even values, Pf(L, L) is NP-hard and, 
for any even integer m ≥ 2, Pm(T, L) is NP-hard. 

 

Theorem 17. Q1(L, L) is NP-complete. 

 

Proof. It is the same proof as for Q0(L, L), but with the weights 1, n, and –n instead 
of 0, 2, and –2 respectively, and with K = n W1 ∪ W2 − 2n.h  instead of 2 W1 ∪ W2 − 4h . 
Details are left to the reader. ❑  

 

Corollary 18. For f = Ω(n2/logn), with f taking odd values, Pf(L, L) is NP-hard and, 
for f = Ω(n) with f taking odd values, Pf(T, L) is NP-hard. 
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Remark. An interesting case is the problem P1(T, L), set by P. Slater (1961) (also 
known under other names; see for instance I. Charon et alii (1997) or O. Hudry et alii 
(2005) for references), i.e. the approximation of a tournament by a linear order. 
Unfortunately, the proof of Corollary 18 does not allow to know the complexity of 
Slater’s problem, which remains an open problem. 

 

Proofs similar to the previous ones (and not given here) lead to the following results: 

 

Theorem 19. Q0(L, A), Q1(L, A), Q0(L, O), and Q1(L, O) are NP-complete. For 
f = Ω(n/logn), with f taking even values, Pf(L, A) and Pf(L, O) are NP-hard. For any 
even integer m ≥ 2, Pm(T, A) and Pm(T, O) are NP-hard. For f = Ω(n2/logn), with f taking 
odd values, Pf(L, A) and Pf(L, O) are NP-hard. For f = Ω(n) with f taking odd values, 
Pf(T, A) and Pf(T, A) are NP-hard. 

 

Now we study the complexity of the problems Q0(L, Z) for Z ∈ {C, I, S}. 

 

Theorem 20. For Z ∈ {C, I, S}, Q0(L, Z) is NP-complete. 

 

Proof. Let Z belong to {C, I, S}. As for the other problems above, Q0(L, Z) 
obviously belongs to NP. We transform BFAS′ into Q0(L, Z). Let 
(H = (Y ∪ Z , W ), h) be any instance of BFAS′, with the same notations as above. 
Let (G, K) be the instance of Q0(L, Z) defined by: 

1 ∪ W2

- the vertex set of G is X = Y ∪ Z ; 

- the arc set of G is UX; 

- for any arc (x, y) of G, the weight mxy of (x, y) is equal to: 2 if (x, y) ∈ , –2 if 
(y, x) ∈ W , 4n – 2 if (x, y) ∈ , –(4n – 2) if (y, x) ∈ W , 0 otherwise;  

W1
1 W2 2

- K = ( )4n − 2 W2 + 2n − 4h . 

Notice that G is well defined since H is asymmetric. Moreover, the transformation is 
clearly polynomial with respect to the size of the instance (H, h) of BFAS′. 

Now, assume that the instance (H, h) of BFAS′ admits the answer « yes »: there 
exists W′ ⊂  W  with 1 ′ W  ≤ h and such that the graph (X, (W ) – W′) is without 
any circuit. We prove that the instance (G, K) admits also the answer « yes » as in 

1 ∪ W2
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Theorem 15. If we consider (X, (W ) – W′) as a partial graph of G, its weight is 1 ∪ W2
2 W1 − ′ W + (4n + 2)W2 . By Lemma 5 b, we may complete (X, ( ) – W′) into a 
linear order (X, L) (that we shall consider as an interval order if Z is I, or as a semiorder 
if Z is S, or as a complete preorder if Z is C) by adding appropriate arcs. Among these 
extra arcs, there are at most 

W1 ∪ W2

′ W  arcs (x, y) such that (y, x) belongs to W , i.e. at most 1
′ W  arcs with a weight equal to –2, while the other extra arcs all belong to 

UX − W1 ∪ W2( ) and have a weight equal to 0. More precisely, the weights of the arcs 
of L belonging to W  are equal to 2; there are at least 1 W1 − ′ W  such arcs. The weights 
of the W2  arcs of L belonging to W  are equal to 4n – 2. The weights of the arcs (x, y) 
of L such that (y, x) belongs to W  are equal to –2; there are at most 

2
1 ′ W  such arcs. The 

other arcs of L have a weight equal to 0. Hence, since W1 = n  and W′ ⊂  W : 1

xy
(

′ + (4n − 2) )W2 −

′ W mxy
L

n
)∈

∑

m
y)∈I
∑

W2

(x,

1

mxy
I

4n − 1)

mxy
I

4n − 2n − 4h

2
z y

m
x,y)∈L
∑  ≥ 2 W1 − W W2 − 2 ′ W  = 2n + 4n − 2( 4 ′ W  

and so, since  ≤ h:   ≥ 2
(x,y

+ 4n − 2( )W2 − 4h  = K. 

So (G, K) admits also the answer « yes ». 

 

Conversely, assume that (G, K) admits the answer « yes ». We consider two main 
subcases: Z ∈ {I, S} or Z = C. 

 

• 1rst subcase: Z ∈ {I, S} 

Since a semiorder is an interval order, there exists I ⊂ UX  with  ≥ K and 

such that (X, I) is an interval order. We want to show that then the instance (H, h) of 
BFAS′ also admits the answer « yes ». Notice that if h is greater than n, the answer of 
(H, h) is trivially « yes »; so, assume that we have h ≤ n – 1. Let us show that I contains 
all the arcs of W . Assume the contrary. The arcs of I with a non-negative weight would 
be at most the n elements of W  (with a weight equal to 2) and at most 

xy

2
 – 1 arcs of 

 (with a weight equal to 4n – 2). So we would get: 
 ≤ 2

W2

(x,y
∑

)∈
n + 2( ) W2 −( . On the other hand, we are supposed to have: 

 ≥ K = 
(x,y
∑

)∈
2( )W2 + , from which we draw 4h ≥ 4n – 2, which is 

incompatible with h ≤ n – 1. Hence: W ⊂ I  and, because of the antisymmetry of I, 
there is no arc in I of the form ( , ) with i ≠ j. We prove now that we may construct a i j
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linear order L with  ≥ K from I. For this, set J = I – {(x, y) ∈ I with mmxy
(x,y)∈L

∑ xy = 0 }, 

and gather the vertices of X into the following three sets: 

zk

zk

zk

2 ⊆ I
i y
2 i yi zj

yj

X2
X2

2
zjj

* X1 = { yk  ∈ Y,  ∈ Z such that ( zk , yk ) ∈ J} 

* X2  = { yk  ∈ Y,  ∈ Z such that ( yk , zk ) ∉ J and ( zk , yk ) ∉ J} 

* X3 = { yk  ∈ Y,  ∈ Z such that ( yk , zk ) ∈ J}. 

The situation is illustrated by Figure 11. We are going to show that the dashed arcs of 
Figure 11 do not exist in fact. Notice that, as a subset of I which contains no circuit, J 
contains no circuit. 

The dashed arcs with their two extremities inside X1 cannot exist, otherwise there 
would exist a circuit in J. Now consider an arc ( , ) with ∈ Y,  ∈ Z (thus i ≠ j) 
and with an extremity inside 

yj zi yj zi
X1 and the other inside X2 . As one extremity belongs to 

X1, the arc ( , ) or the arc ( , ) exists in I, and thus in J since its weight is not 
equal to 0. Also, by construction of G, ( , ) is an arc of G, and thus of I (W

zi yi zj yj
yi zj ). 

Assume that ( , ) belongs to I (and thus to J); then  and  belong to zi y yi zi X1, while  
and  belong to 

j
zj X . In this case, as I is transitive, the arcs ( , ), ( , ), ( , ) 

involve the existence of the arc ( , ), a contradiction with the belonging of  and 
 to 

yj zi zi y
yj zj

zj X2 . Similarly, the dashed arcs with their two extremities inside X2  cannot exist in 
I. Indeed, assume that such a pair of arcs ( , ) and ( , ) exist with  ∈ Yyj zi yi zj yi ∩ , 

 ∈ Y∩yj X2 ,  ∈ Z∩zi , and  ∈ Zzj ∩ X2  (i ≠ j) exist (notice that if one of these two 
arcs exists, the other one must exist too). As , , , and  belong to yi yj zi zj X , the arcs 
( , ) and ( , ) do not belong to I. But then the arcs ( , ) and ( , ) do not 
respect the definition of an interval order. So the look of J is as the one shown by Figure 
11 without the dashed arcs. 

yi zi yj z yj zi yi
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X3

X2

X1

Y Z

 
Figure 11. The graph induced by J for Q0(L, Z) when Z is equal to I or S. 
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Now, set J′ = J∪ {(z, y) ∈  for y ∈ W1 X2  and z ∈ X2 } (with respect to Figure 11, we 
add all the horizontal arcs from right to left with their two extremities in X2 ). As the 
vertices of X2  are linked only with vertices of X3

⊆

, it is easy to see that J′ is still without 
any circuit. As the weights of these arcs are positive, we get:  

 ≥  =  ≥ K. As J′ is without circuit, by Lemma 5 b, we may 

extend J′ into a linear order L. As we had W

mxy
(x,y)∈ ′ J 

∑ mxy
∈J(x,y)

∑ mxy
∈I(x,y)

∑

2 I  and as, for any index k with 1 ≤ k ≤ n, 
 and  are already linked by an arc belonging to J′, all the arcs that we add in order to 

define L from J′ have a weight equal to 0. Hence 
yi zi

m
y)∈L

xy
x,(
∑  = mxy

(x,y)∈ ′ J 
∑  ≥ K. The end of 

the proof is exactly the same as in Theorem 15, and we do not duplicate it here: from L 
we define a subset W′ which shows that the instance (H, h) of BFAS′ admits the answer 
« yes », which completes the proof for the subcase Z ∈ {I, S}. 

 

• 2nd subcase: Z = C 

As for the previous case, we are going to prove that, if the answer admitted by the 
instance (G, K) is « yes », then we can build a linear order which gives this answer 
« yes ». Then the conclusion will be the same as above. 

So, assume that there exists a subset C of UX  such that (X, C) is a complete preorder 
with  ≥ K. As above, this inequality involves that C contains all the elements 

of  and no arc (x, y) such that (y, x) would belong to W  (details are left to the 
reader). Let D be the set made of the arcs of C with a non-zero weight: D = C –
 {(x, y) ∈ C with m }. Moreover, gather the vertices of X into the following three 
sets:

mxy
(x,y)∈C

∑

2W 2

xy = 0
 

* X1 = { yk  ∈ Y, zk  ∈ Z such that ( zk , yk ) ∈ D and ( yk , zk ) ∉ D} 

* X2  = { yk  ∈ Y, zk  ∈ Z such that ( yk , zk ) ∈ D and ( zk , yk ) ∉ D} 

* X3 = { yk  ∈ Y, zk  ∈ Z such that ( yk , zk ) ∈ D and ( zk , yk ) ∈ D}. 

 The look of the graph induced by D is given by Figure 12. We are going to show that 
the dashed arcs of Figure 12 do not exist in fact.  
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X3

X2

X1

Y Z

 
Figure 12. The graph induced by D for Q0(L, C). 

 

Indeed, let ( , ) be such an arc with  ∈ Z and  ∈ Y. Then its weight is not 
equal to 0, and it is the same for ( , ), which thus belongs to D. If we assume that the 

yj zi zi yj
yi zj
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four vertices , , , and  belong to yi yj zi zj Z1 ∪ Z3
zj yi

mxy
(x,y)∈ ′ D 

, then the arcs ( , ) and ( , ) 
belong to D and, by transitivity, the arcs ( , ) and ( , ) also belong to D, what is 
impossible (see above). So, the look of the graph induced by D is the one depicted by 
Figure 12 without the dashed arcs. 

zi yi zj yj
zi yj

∑

yi zi X3 X3
3

yi

m
∈D(x,y

i
yi

y zi 3
yi X z 3

(

2
yi zi
m

(x,y)∈ ′D 
∑

1 ∪ W2

The next step consists in showing that we may extract a set D′ of arcs from D such 
that D′ is without circuit while its weight  is still greater than or equal to K. 

For this, let D′ be defined by D′ = D – {( , ) for  ∈ yi ,  ∈ zi } (in other words, 
with respect to Figure 12, we remove the – almost – horizontal arcs inside X  and 
oriented from left to right). As the removed arcs have a negative weight, we get: 

 ≥  ≥ K. Moreover, D′ is without circuit. Indeed, consider any circuit 

in D, which is transitive. Such a circuit must contain an arc of the form ( , ) with 
 ∈ Y and  ∈ Z (since it is the only way to go from Z to Y in the graph induced by 

D). Because of the transitivity of D applied to the considered circuit, ( , ) must also 
be an arc of D, and so  and  must belong to 

mxy
(x,y)∈ ′ D 

∑

yi

xy
)

∑

z
zi

zi
i X . So the removal from D of the arcs 

( , ) with  ∈ yi zi 3,  ∈ i X  leaves a graph (induced by D′) without any circuit. 

We may now conclude. As D′ is without any circuit and by Lemma 5 b, we may 
complete it into a linear order L by adding appropriate arcs. As D′ already contains W  
and, for 1 ≤ i ≤ n, exactly one of the two arcs ( , ) or ( , ), the extra arcs have a 
weight equal to 0. So, we get: 

zi yi
mxy

x,y)∈L
∑  ≥ xy

 
 ≥ K. Then it is sufficient to apply 

the same argument as in Theorem 15 to show the existence of a subset W′ of W  
which gives the answer « yes » to the instance (H, h) of BFAS′, which completes the 
proof for the subcase Z = C. ❑  

 

Corollary 21. For Z ∈ {C, I, S} and for f = Ω(n2/logn), with f taking even values, 
Pf(L, Z) is NP-hard. For Z ∈ {C, I, S} and for f = Ω(n) with f taking even values, 
Pf(T, Z) is NP-hard. 

 

Remark. If we transpose the proof of Theorem 20 in terms of preferences, we build 
a profile of linear orders such that there exists an optimal interval order, or an optimal 
semiorder, or a complete order which is in fact a linear order. An interesting question 
would be to know whether it is always the case, for any profile of linear orders. 
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Proofs similar to the previous ones (and not given here) lead to the following results: 

 

Theorem 22. For Z ∈ {C, I, S}, the problems Q1(L, Z) are NP-complete. For 
Z ∈ {C, I, S} and for f = Ω(n3/logn), with f taking odd values, Pf(L, Z) is NP-hard. For 
Z ∈ {C, I, S} and for f = Ω(n2), with f taking odd values,  Pf(T, Z) is NP-hard. 

 

To study the complexity of the problems Pf(Y, Q) and Pf(Y, W), we first prove a 
lemma. In order to state it, we recall a previous notation. For any set Z of binary 
relations defined by some properties, we define Za as the set of preferences which are 
the asymmetric part of a preference belonging to Z. In particular, we have Ca = W, 
Qa = S, and Pa = O. 

 

Lemma 23. For Y ∈ {L, T} and for any set Z and any function f, Pf(Y, Z) and 
Pf(Y, Za) have the same complexity. 

 

Proof. The result comes from the fact that we have ∆(Π, Z) = ∆(Π, Za), for any 
profile Π of linear orders or of tournaments and any element Z of Z.  ❑  

 

Corollary 24.  

• For f = Ω(n/logn), with f taking even values, Pf(L, P) is NP-hard. For 
f = Ω(n2/logn), with f taking even values, Pf(L, Q) and Pf(L, W) are NP-hard.  

• For f = Ω(n2/logn), with f taking odd values, Pf(L, P) is NP-hard. For 
f = Ω(n3/logn), with f taking odd values, Pf(L, Q) and Pf(L, W) are NP-hard.  

• For m ≥ 2 with m even, Pf(T, P) is NP-hard. For f = Ω(n) with f taking even 
values, Pf(T, Q) and Pf(T, W) are NP-hard.  

• For f = Ω(n) with f taking odd values, Pf(T, P) is NP-hard. For f = Ω(n2) with f 
taking odd values, Pf(T, Q) and Pf(T, W) are NP-hard.  

• For any even m ≥ 2, the problems Pm(R, P) and Pm(R, Q) are NP-hard.  

• For f = Ω(n) with f taking odd values, Pf(R, P) is NP-hard. For any odd m ≥ 3, 
Pm(R, Q) is NP-hard.  
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Proof. For Y = L or Y = T, these results come as a consequence of Theorem 19, 
Corollary 21 and Theorem 22 and from the application of Lemma 23 to Z = O, Z = Q 
and to Z = C. For Y = R , this comes from Lemma 23, Corollary 7 and Corollary 13 for 
Z = Q or Z = C, or from the complexity of Pf(T, P) for Z = Q (by considering T as 
included into R). ❑  

 

The last result of this section deals with any set Y containing L. 

 

Theorem 25. For f = Ω(n/logn), with f taking even values, for any set Y with L ⊆  Y, 
for Z ∈ { A, L, O, P}, Pf(Y, Z) is NP-hard. For f = Ω(n2/logn), with f taking odd values, 
for any set Y with L  Y, for any set Z ∈ { A, L, O, P}, Pf(Y, Z) is NP-hard. For 
f = Ω(n2/logn), with f taking even values, for any set Y with L  Y, for any set 
Z ∈ {C, I, Q, S, W}, Pf(Y, Z) is NP-hard. For f = Ω(n3/logn), with f taking odd values, 
for any set Y with L ⊆  Y, for any set Z ∈ {C, I, Q, S, W}, Pf(Y, Z) is NP-hard.  

⊆
⊆

 

Proof. The previous results give the statement of Theorem 25 for Y = L. For L  Y, 
it is sufficient to consider any instance of the NP-hard problem Pf(L, Z) as an instance 
of Pf(Y, Z). This transformation (the identity !) is obviously polynomial and keeps the 
answer. Hence the result. ❑  

⊂

 

In particular, we may apply Theorem 25 when Y is any one of the sets A, C, I, L, O, P, 
Q, R, S, T, or W, but also to « mixed » profiles belonging to any union of two or more 
sets A, C, I, L, O, P, Q, R, S, T, or W, for instance to profiles which may contain 
tournaments, preorders, and interval orders simultaneously... 

5 Conclusion 
The previous section was devoted to NP-hard problems. There are also some 

problems Pf(Y, Z) which are polynomial. It is trivially the case for Pf(Y, R) and for 
Pf(Y, T), for any set Y and any function f. Indeed, if we consider the associated problems 
Q0(Y, R), Q1(Y, R), Q0(Y, T), or Q1(Y, T), it is easy to see that an optimal solution 
consists in keeping all the arcs of G with a positive weight for Z = R, or in keeping, for 
each pair of arcs (x, x′) and (x′, x), the arc with the greatest weight for Z = T. Another 
interesting polynomial case is the one of unimodular orders; in this case, the aggregation 
of unimodular orders into a unimodular order is polynomial (see D. Black (1948)). 
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Anyway, it seems that properties like the lack of circuits or transitivity usually lead 
to NP-hard problems. The previous complexity results illustrate this trend. We may 
summarize them by the tables of Figure 13 (m even) and Figure 14 (m odd). In these 
tables, « NPH » means that the considered problem Pf(Y, Z) is NP-hard. In such a case, 
we indicate the range of a lower bound of the number m of relations inside the profile 
which ensures that Pf(Y, Z) is NP-hard; for instance, m = Ω(n) with m odd for Pf(T, L) 
means that Pf(T, L) is NP-hard if the range of the odd number m of tournaments of the 
profile is at least n. As a general result, remember that the NP-hardness of Pf(Y, Z) 
involves the one of Pf+2(Y, Z). To my knowledge, when not trivial, the complexity for 
lower values of m is not known. The letter « P » means that Pf(Y, Z) is (trivially) 
polynomial. Remember also that all the results displayed in the tables of Figures 13 and 
14 remain the same if we add the reflexivity or the irreflexivity to the considered types 
of relations. 

From this table, it appears that some cases are still unsolved, when m is low. One 
such interesting case is the problem stated by P. Slater (1961), i.e. P1(T, L) for which Π 
is reduced to one tournament while the median relation must be a linear order. In spite 
of repeated efforts, its complexity remains open... 

 

 Median relation (Z) Π ∈ R m   (Y = R) Π ∈ T m   (Y = T) Π ∈ Y m with L ⊆ Y 

binary relation (R) P P P 

tournament (T) P P P 

acyclic relation (A) NPH, m ≥ 2 NPH, m ≥ 2  NPH, m = Ω  n / log n( )

complete preorder (C) NPH, m = Ω n( )  NPH, m = Ω n( )  NPH, m = Ω n2 / logn( )  

interval order (I) NPH, m ≥ 2 NPH, m =   Ω n( )  NPH, m = Ω n2 / logn( )   
linear order (L) NPH, m ≥ 2 NPH, m ≥ 2 NPH, m = Ω  n / log n( )

partial order (O) NPH, m ≥ 2 NPH, m ≥ 2 NPH, m = Ω  n / log n( )

preorder (P) NPH, m ≥ 2 NPH, m ≥ 2 NPH, m = Ω  n / log n( )

quasi-order (Q) NPH, m ≥ 2 NPH, m =   Ω n( )    NPH, m = Ω n2 / logn( ) 

semiorders (S) NPH, m ≥ 2 NPH, m =   Ω n( )     NPH, m = Ω n2 / logn( ) 

weak order (W) NPH, m ≥ 2 NPH, m =   Ω n( )    NPH, m = Ω n2 / logn( ) 

Figure 13. The complexity results for m even. 
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Median relation (Z) Π ∈ R m   (Y = R) Π ∈ T m   (Y = T) Π ∈ Y m with L ⊆ Y 

binary relation (R) P P P 

tournament (T) P P P 

acyclic relation (A) NPH, m ≥ 1 NPH, m = Ω n( ) NPH, m = Ω n2 / logn( ) 

complete preorder (C) NPH, m = Ω n2( ) NPH, m = Ω n2( ) NPH, m = Ω n3 / logn( )   

interval order (I) NPH, m ≥ 3 NPH, m = Ω n2( ) NPH, m = Ω  n3 / logn( )
linear order (L) NPH, m ≥ 1 NPH, m = Ω n( )  NPH, m = Ω n2 / logn( ) 

partial order (O) NPH, m ≥ 3 NPH, m = Ω n( )  NPH, m = Ω n2 / logn( ) 

preorder (P) NPH, m = Ω n( )  NPH, m = Ω n( )  NPH, m = Ω n2 / logn( ) 

quasi-order (Q) NPH, m ≥ 3 NPH, m = Ω n2( )     NPH, m = Ω  n3 / logn( )

semiorders (S) NPH, m ≥ 3 NPH, m = Ω n2( )     NPH, m = Ω  n3 / logn( )

  weak order (W) NPH, m ≥ 3 NPH, m = Ω n2( )     NPH, m = Ω  n3 / logn( )

Figure 14. The complexity results for m odd. 
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Continuous Ordinal Clustering:
A Mystery Story1

Melvin F. Janowitz†

Abstract

Cluster analysis may be considered as an aid to decision theory because of its
ability to group the various alternatives. There are often errors in the data that lead
one to wish to use algorithms that are in some sense continuous or at least robust with
respect to these errors. Known characterizations of continuity are order theoretic in
nature even for data that has numerical significance. Reasons for this are given and
arguments presented for considering an ordinal form of robustness with respect to
errors in the input data. The work is preliminary and some open questions are posed.

1 The Background

In their book “Mathematical Taxonomy” [1], N. Jardine and R. Sibson presented a model
for clustering algorithms that only allowed one feasible algorithm that produced an ultra-
metric output: single-linkage clustering. Among other things they assumed two axioms:

1. Clustering algorithms should be continuous.
2. Clustering algorithms should not be concerned with values of dissimilarities – only

whether one value is larger or smaller than another.

But how can this be? The first condition involves the consideration of what happens when
objects are close together. The second condition tells us to ignore closeness. This is a
puzzle to be unravelled.

1Note: The present work has different goals and was done independently of the paper by O. Gascuel
and A. McKenzie, Performance Analysis of Hierarchical Clustering, Journal of Classification, 11, 2004,
pp. 3-18, though there is some overlap of ideas.

†DIMACS, Rutgers University, Piscataway, NJ 07641.
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2 Definitions

The terminology in the area is not universal, so let’s clarify the terms.

Input Data This is a finite nonempty set P of objects to classify. Each object has
associated with it a set of numerical, binary, or nominal attributes.

Output Data A partition of P or an indexed nested sequence of partitions, the top one
having a single class.

Intermediate step Convert the attribute data into a dissimilarity coefficient (DC). A
DC on P is a mapping d : P × P �→ �+

0 (the non-negative reals) such that

(1) d(a, b) = d(b, a) ≥ 0

(2) d(a, a) = 0 for all a ∈ P .

d is definite if also

(3) d(a, b) = 0 implies a = b in the sense that they are identical.

d is an ultrametric if it satisfies (1), (2) and the ultrametric inequality

(4) d(a, b) ≤ max{d(a, c), d(b, c)} for all c ∈ P .

The DCs are ordered by the rule d1 ≤ d2 ⇐⇒ d1(a, b) ≤ d2(a, b) for all a, b ∈ P . The
smallest DC is then given by 0 which is defined by 0(a, b) = 0 for all a, b ∈ P .

The T–transform For the DC d, define Td by the rule

Td(h) = {(a, b) : d(a, b) ≤ h},

noting that Td(h) is a reflexive symmetric relation. Td(h) is an equivalence relation for all
h if and only if d is an ultrametric. When ordered by set inclusion, the smallest reflexive
symmetric relation is denoted R∅, and is defined by R∅ = {(a, a) : a ∈ P}, and the
largest one is given by RPP = {(a, b) : a, b ∈ P}. It is easy to show that the reflexive
symmetric relations then form a Boolean algebra isomorphic to the power set of the two
element subsets of P .

Relations of the form Td(h) are called threshold relations of d, and the proper thresh-
old relations are those other than R∅.

There is a natural well known bijection between ultrametrics and indexed nested se-
quences of equivalence relations, the top one being RPP .
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A cluster method is then a mapping d �→ F (d) where d and F(d) are DCs. The usual
algorithm takes F (d) to be an ultrametric.

If |P | = p, and k = p(p − 1)/2, then DCs may be viewed as vectors in the positive
cone of a k-dimensional Euclidean vector space, and cluster methods may be viewed as
mappings on the positive cone of this space. Any of the usual metrics for Euclidean spaces
may then be used. In particular, we use ∆0 which is defined by

∆0(d1, d2) = max{d1(a, b) − d2(a, b)| : a, b ∈ P},

and is based on the L∞-norm. Continuity, left continuity, and right continuity of a cluster
method then all have their expected meanings.

It is easy to justify continuity as a desirable condition for a cluster method. The
input data may very well have small errors, and it would be nice if a small error for the
input would translate to a small error for the output. But in their book [1], N. Jardine
and R. Sibson showed that in the presence of continuity and certain other properties,
the only acceptable cluster method is single-linkage clustering. This is defined by taking
[TF (d)](h) = γ ◦Td(h), where γ(R) is the equivalence relation generated by the reflexive
symmetric relation R.

3 Properties of Cluster Methods

We rephrase here some of the axioms that were introduced by Jardine and Sibson [1] for
a cluster method F .

(JS1) Idempotent F = F ◦ F .

(JS3) Scale invariance. F (αd) = αF (d) for all α > 0.

(JS3a) Monotone equivariance F (θd) = θF (d) for every order automorphism θ of the
nonnegative reals.

(JS5) Isotone d1 ≤ d2 implies that F (d1) ≤ F (d2).

(JS5a) 0-isotone If Td1(0) = Td2(0), then d1 ≤ d2 implies that F (d1) ≤ F (d2).

Theorem: For a monotone equivariant cluster method F , the following conditions are
equivalent:
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1. There exists a mapping η on the reflexive symmetric relations such that for every
DC d, TF (d) = η ◦ Td.

2. F is continuous.

3. F is right continuous.

Theorem Let F be monotone equivariant.

• Then F is left continuous if and only if there is a family (ηR)R∈Σ(P ) of mappings
on Σ(P ) such that TF (d) = ηTd(0) ◦ Td.

• F is continuous if and only if there is a mapping η on Σ(P ) such that TF (d) =
η ◦ Td.

F being isotone has unexpected consequences.

Theorem If the image of F contains all ultrametrics, and if F satisfies JS1 and JS5,
then F (d) ≤ d for every DC d.

Lemma: Let F satisfy JS3 and JS5a, and d a DC. There then exist positive constants
δ(d), M(d) such that 0 < ∆0(d, d′) < δ(d) with Td(0) = Td′(0) =⇒ ∆0(F (d), F (d′)) <
M(d)δ(d). If F is isotone, the implication holds with Td(0) = Td′(0) replaced by
Td(0) ⊆ Td′(0).

Theorem: If F satisfies JS3 and JS5a, then F is left continuous. If it also satisfies
JS5, it is in fact continuous at all definite DCs. Question: What does it take to make F
continuous at all DCs?

Here is an example illustrating this Theorem. Take F (d) = 0 if d is not definite,
and F (d) to be single linkage clustering on the definite DCs. But this example is in fact
monotone equivariant. Question: Is there a cluster method satisfying JS3 and JS5 that is
not monotone equivariant?

Theorem Let F be monotone equivariant. Then JS5a is equivalent to left continuity.

Thus continuity plus monotone eqivariance rules out almost all cluster algorithms that are
commonly used by investigators. We will argue that the important property of continuity
may be ordinal in nature rather than metric.
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4 Clustering Data Having Ordinal Significance

A DC d has ordinal significance if the numerical values of d have no meaning, only
whether one of d(a, b) < d(x, y), d(a, b) > d(x, y) or d(a, b) = d(x, y) is true. But
Jardine and Sibson [1] argue that one should use a monotone equivariant cluster method.
Recall that this is a cluster method F having the property that F (θd) = θF (d) for every
DC d, and every order automorphism θ of �+

0 . This is a rather strong assumption, and
in a later paper Sibson [2] argues that it suffices to use a cluster algorithm that preserves
global order equivalence, which is denoted ∼g, and defined by the rule that d1 ∼g d2 if
and only if there is an order automorphism θ of �+

0 such that d1 = θ ◦ d2. Thus one wants
d1 ∼g d2 to imply that F (d1) ∼g F (d2). Two cluster methods F, G are globally order
equivalent if F (d) ∼g G(d) for every DC d defined on P . It turns out that every cluster
method F that

preserves global order equivalence and has the property that
the image of F (d) cannot have more members than the image of d

is globally order equivalent to a monotone equivariant cluster method, so we have not
moved far from monotone equivariance.

But let P = {a, b, c} with d1(a, b) = 0, d1(a, c) = 1 and d1(b, c) = 3. If d2 = d1 + 1,
then d1 and d2 are not globally order equivalent; yet they are equivalent in a way that we
need to preserve. The proper definition is to say that d1 and d2 are weakly order equivalent
(denoted d1 ∼w d2) in case d1(a, b) < d1(x, y) ⇐⇒ d2(a, b) < d2(x, y). But now
things are not so nice. A monotone equivariant cluster method need not preserve weak
order equivalence. One can characterize when a cluster method that preserves weak order
equivalence is weakly order equivalent (obvious definition) to a monotone equivariant
cluster method.

The big question now is this. What in the world does any of this have to do with
continuity in the ∆0 metric? Hang on. A clue is coming.

5 The Connection with Continuity

If continuity is a desirable condition, it would be very nice to find a continuous cluster
method that is not monotone equivariant. Where does one look? Let’s start by seeing if
there is any property that all continuous cluster methods might have in common.

For any DC d, define the mesh width of d by

µ(d) =
1

2
min{|hi − hi−1| : 1 ≤ i ≤ t},
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where the image of d is 0 = h0 < h1 < · · · < ht.

Fundamental Result: If ∆0(d, d′) < µ(d), then d � d′ in the sense that

d(a, b) < d(x, y) =⇒ d′(a, b) < d′(x, y).

Note that d ∼w d′ ⇐⇒ d � d′ and d′ � d. So suddenly there is a connection between
metric properties of ∆0 and ordinal considerations. Indeed, if dn → d, there must exist
a positive integer N such that n ≥ N =⇒ dn � d. There is a weak converse connec-
tion given by the fact that d � d′ implies the existence of d′′ such that d′ ∼w d′′ and
∆0(d, d′′) < µ(d). In fact d � d′ is equivalent to d being arbitrarily close to some d′′ with
d′′ weakly order equivalent to d′.

Theorem: d � d′ if and only if there is a sequence (dn) of DCs all weakly order
equivalent to d′ such that dn → d,

Theorem: d � d′ if and only if every proper threshold relation of d is a threshold
relation of d′.

Definition. A cluster method F is called ordinally continuous if

d � d′ =⇒ F (d) � F (d′).

Theorem: Let F be continuous.

There exists δ > 0 such that ∆0(d, d′) < δ =⇒ d � d′ and F (d) � F (d′).

d � d′ =⇒ ∃ a DC d′′ such that d′ ∼w d′′ and F (d) � F (d′′).

Corollary: If F is continuous and preserves weak order equivalence, then F is ordi-
nally continuous.

It is natural to conjecture that monotone eqivariance together with ordinal continuity
might imply continuity. Here is an example showing this to be false. Let R1, R2, . . . , Rn

denote the proper threshold relations of d. Take as the threshold relations for F (d) those
Ri that happen to be equivalence relations. Assign each such equivalence relation the
level at which it came into being for d. This cluster method is monotone equivariant,
order continuous, but not continuous. We illustrate this concretely.

Let P = {a, b, c}, and define d(a, b) = d(a, c) = 1, with d(b, c) = 2. d′ is defined by
d′(a, b) = 1, d′(a, c) = 1 + ε, d′(b, c) = 2, where 0 < ε < 1/4. Note that µ(d) = 1/2,
and ∆0(d, d′) < 1/4. The reader can verify that RPP is the only proper threshold relation
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of F (d), while F (d′) has RPP , as well as R∅ ∪ {(a, b), (b, a)}. It follows that Fd(a, b) =
Fd(a, c) = Fd(b, c) = 2, while Fd′(a, b) = 1 with Fd′(a, c) = Fd′(b, c) = 2. Thus
∆0(d, d′) = ε, while ∆0(Fd, Fd′) = 2. Letting ε → 0, it follows that F is not continuous.

If we take the view that it is only the partitions that F (d) produces that are of interest,
and not the levels at which they occur, then if we define a cluster method G to be single
linkage clustering with the levels of the output rank ordered, then G is just as good as
single linkage as a cluster algorithm. Thus we want conditions of a cluster method that
tell us when the method is weakly order equivalent to a continuous cluster method. The
only clear fact for such a cluster method is that if it preserves weak order equivalence, it
must be order continuous. Such a cluster method need not be isotone, nor need it preserve
multiplication by a positive scalar α.

Is Continuity the Issue? The motivation usually given for continuous cluster meth-
ods is that small errors in the input should translate to small errors in the output. But small
errors in the input d produce a DC d′ such that d � d′, so this is really an argument for
ordinal continuity.

Fundamental Question: Find necessary and sufficient conditions on a cluster method
F so that F is weakly order equivalent to a continuous cluster method.

Examples are wanted (if there are any) of useful continuous cluster methods that are
not monotone equivariant.

Complete Linkage Clustering Complete linkage clustering is not continuous, but
does have the property that d ∼w d′ =⇒ F (d) ∼w F (d′). Is this the key property that
needs to be preserved? Is there a version of complete linkage clustering that is ordinally
continuous?
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Compact preference representation and
combinatorial vote

Jérôme Lang∗

Abstract

In many real-world social choice problems, the set of alternatives is defined as
the Cartesian product of (finite) domain values for each of a given set of variables,
and these variables cannot be asusmed to be prefentially independent (to take an
example, if X is the main dish of a dinner and Y the wine, preferences over Y depends
on the value taken for X). Such combinatorial domains are much too large to allow
for representing preference relations or utility functions explicitly (that is, by listing
alternatives together with their rank or utility); for this reason, artificial intelligence
researchers have been developing languages for specifying preference relations or
utility functions as compactly as possible. This paper first gives a brief survey of
compact representation languages, and then discusses its role for representing and
solving social choice problems, especially from the point of view of computational
complexity.

1 Introduction

Voting procedures have been extensively studied by researchers in social choice theory
who have studied extensively all properties of various families of voting rules, up to an
important detail: candidates are supposed to be listed explicitly (typically, they are indi-
vidual or lists of individuals, as in political elections), which assumes that they should not
be too numerous. In this paper, we focus on the case where the set of candidates has a
combinatorial structure, i.e., is a Cartesian product of finite value domains for each one
of a set of variables: this problem will be referred to ascombinatorial vote. In this case,
the space of possible alternatives has a size being exponential in the number of variables

∗IRIT - Universit́e Paul Sabatier, Toulouse (France).lang@irit.fr
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and it is therefore not reasonable asking the voters to rank or evaluate on a utility scale all
alternatives.

Consider for example that the voters have to agree on a common menu to be composed
if a first course dish, a main course dish, a dessert and a wine, with a choice of 6 items
for each. This makes64 candidates. This would not be a problem if the four items to
choose were independent from the other ones: in this case, this vote problem over a set of
64 candidates would come down to four independent problems over sets of6 candidates
each, and any standard voting rule could be applied without difficulty. Things become
more complicated if voters express dependencies between items, such as “I would like
to have risotto ai funghi as first course, except if the main course is a vegetable curry, in
which case I would prefer smoked salmon as first course”, “I prefer white wine if one of
the courses is fish and none is meat, red wine if one of the courses is meat and none is
fish, and in the remaining cases I would like equally red or white wine”, etc.

As soon as variables are not preferentially independent, it is generally a bad idea to
decompose a combinatorial vote problem withp variables into a set ofp smaller problems,
each one bearing on a single variable: “multiple election paradoxes” [9] show that such a
decomposition leads to suboptimal choices, and give real-life examples of such paradoxes,
including simultaneous referenda on related issues. They argue that the only way of
avoiding the paradox would consist in “voting for combinations [of values]”, but they
stress its practical difficulty: “To be sure, if there are more than eight or so combinations to
rank, the voter’s task could become burdensome. How to package combinations (e.g., of
different propositions on a referendum, different amendments to a bill) so as not to swamp
the voter with inordinately many choices – some perhaps inconsistent – is a practical
problem that will not be easy to solve.”

In this paper we address this issue. Since the preference structure of each voter cannot
be reasonably expressed explicitly by listing all candidates, what is needed is a compact
preference representation language. Such preference representation languages have been
developed within the KR community; they are often build up on propositional logic, but
not always (see for instance utility networks [1] [14] or valued constraint satisfaction
[18] – however in this paper we restrict the study to logical approaches); they enable
a much more concise representation of the preference structure, while preserving a good
readability (and hence a proximity with the way agents express their preferences in natural
language).Therefore, the first parameter to be fixed, for a combinatorial vote problem, is
the language for representing the preferences of the voters.

Now, two other problems arise:

1. How are these compactly represented preferences pratcically specified by the vot-
ers? Assuming that voters can easily express by themselves (without any kind of
help) their preferences over combination of values using complex logical objects
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is often not reasonable; even if they do, it is highly possible that the preference
relation induced by the specification is incomplete or inconsistent. So as to help
agents expressing their preferences,interactive elicitation procedures work by find-
ing relevant questions to ask, until the agent’s preference relation is consistent and
complete. Preference elicitation in combinatorial domains has been investigated in
several recent works [2, 3, 13] and will not be considered here.

2. Once preference have been elicited, how is the outcome of the voting rule com-
puted? Obviously, the prohibitive number of candidates makes it hard, or even
practically impossible, to apply voting rules in a straightforward way, sicne all but
the simplest voting procedures need a number of operations at least linear (some-
times quadratic, sometimes even exponential) in the number of candidates, which
is not reasonable when the set of candidates has a strong combinatorial structure.
Computational complexity of some voting procedures when applied on combina-
torial domains has been investigated in [16], but this does not really address the
question ofhow these procedures should be applied in practice so as to get their
outcome (or an approximation of it) in a reasonable amount of time.

This article addresses the latter point.

2 Logical languages for compact preference representa-
tion

In this Section we are concerned with the preferences of asingle voter over a finite set of
candidatesX . We assume thatX has a combinatorial nature, namely,X is a set of possi-
ble assignments of each of a certain number of variables to a value of its (finite) domain:
X = D1 × ... × Dn, whereDi is the set of possible values for variablevi; the size ofX
is exponentially large inn. Because specifying a preference structure explicitly in such a
case is unreasonable, the AI community has developed several preference representation
languages that escape this combinatorial blow up. Such languages are said to befactor-
ized, or succinct, because they enable a much more concise representation of preference
structures than explicit representations. For the sake of brevity, following we focus on
logical languages, which means that domains are assumed to be binary. This does not
imply a real loss of generality, since a variable over a finite domain withk possible values
can be expressed using�log k� binary variables.

A preference relation � is a preorder, i.e., a reflexive and transitive binary relation on
A. M � M ′ means that alternativeM is at least as good (to the agent) as alternativeM ′.
Such a relation� is not necessarily complete, that is, it may be that neitherM � M ′ nor
M ′ � M holds for a pair of alternativesM andM ′ in A. We noteM � M ′ for M � M ′
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and not (M � M ′) (strict preference ofM over M ′), andM ∼ M ′ for M � M ′ and
M ′ � M (indifference). It is important to note thatM ∼ M ′ means that the agent
takesM andM ′ to be equally preferred, while the incomparability betweenM andM ′

(M �� M ′ andM ′ �� M ) simply means that no preference between them is expressed.

These definitions are about preferences over an arbitrary set of alternativesA. In
this paper, we consider propositional languages expressing preferences: such languages
express preferences over the set of possible interpretationsW over a given alphabetV AR.
A refinement of this definition is that of assuming that the set of possible alternatives
excludes some interpretations ofW . In this case, we assume that a formulaK is given:
this formula represents “integrity constraints” on the set offeasible alternatives, i.e., the
only interpretations we accept as possible alternatives are those ofMod(K), i.e.,A =
Mod(K). For instance, in a decision making problem consisting of recruiting at least one
and at most two of three candidatesa, b andc, the feasible alternatives are the models of
K = (a ∨ b ∨ c) ∧ (¬a ∨ ¬b ∨ ¬c).

We now briefly recall the propositional languages for preference representation we
study. In the following, the formulasGi are propositional formulas representing elemen-
tarygoals. The input of a logically-represented preference relation is a pair∆ = 〈K,GB〉
whereK is the propositional formula restricting the possible alternatives (the integrity
constraints) andGB (the goal base) is a set of elementary goals, generally associated
with extra data such as weights, priorities, contexts or distances.�K,GB (or simply�GB

when there is no risk of ambiguity) denotes the preference relation induced byGB over
Mod(K).

2.1 A brief overview of languages

2.1.1 Penalties

In this natural and frequently used preference representation language, the agent expresses
her preferences in terms of a set of propositional formulas that she wants to be satisfied.
In order to compare alternatives (models), formulas are associated with weights (usually,
numbers), which tell how important the satisfaction of the formula is considered. For-
mally, the preferences of an agent are expressed as a finite set of goals, where each goal
is a propositional formula with an associated weight. The complete preference is given
by a set of these goals:GB = {〈α1, G1〉, . . . , 〈αn, Gn〉}, where eachαi is an integer
and eachGi is a propositional formula. The degree of preference of a model is measured
as follows: for anyM ∈ Mod(K), we definepGB(M) =

∑{αi|M �|= Gj} to be the
penalty ofM . The preference relation�pen

GB is defined byM �pen
GB M ′ if and only if
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pGB(M) ≤ pGB(M ′) (with the convention
∑

(∅) = 0).1

2.1.2 Distance to goals

The preference relation based on penalties only makes a distinction between models sat-
isfying a formula and models violating it. On the other hand, if an agent prefers a formula
Gi to be satisfied, we could infer that she also prefers models “close” to this formula than
models “far”. Letd be a pseudo-distance between models, that is, a symmetric function
from X 2 → IR such thatd(M,M ′) = 0 if and only of M = M ′. For instance, the
Hamming distancedH(M,M ′) is the number of variables that are assigned different val-
ues inM andM ′.) The “distance” between a modelM and a formulaG is defined by
d(M,G) = minM ′|=G d(M,M ′). A goal base is a finite set of pairs〈αi, Gi〉; the distance
of a model to a goal base is defined byd(M,GB) =

∑
i{αi.d(M,Gi)}. and finally,�H

GB

is defined by

M �H
GB M ′ if and only if d(M,GB) ≤ d(M ′, GB)

2.1.3 Prioritized Goals

The languages defined above allow for compensations among goals (the violation of a
goal may be compensated by the satisfaction of a sufficient number of goals of lower im-
portance). Prioritization is used when such a compensation should not be possible, and
does not need any numerical data. In this case, a goal base is a pairGB = 〈{G1, . . . , Gn}, r〉
where eachGi is a propositional formula andr is a rank function from{1, . . . , n} to IN: if
r(i) = j, thenj is called the rank of the formulaGi. By convention, a lower rank means
a higher priority. The question is now how to extend the priority on goals to a preference
relation on alternatives. The following three choices are the most frequent ones:

best-out ordering Let rGB(M) = min{r(i) |M �|= Gi} ThenM �bo
GB M ′ iff rGB(M) ≥

rGB(M ′)

discrimin ordering Letdiscr+
GB(M,M ′) = {i |M |= Gi andM ′ �|= Gi} anddiscrGB(M,

M ′) = discr+
GB(M,M ′) ∪ discr+

GB(M ′,M) Then:

∣
∣
∣
∣

M �discrimin
GB M ′iff mini∈discr+

GB(M,M ′) r(i) < minj∈discr+
GB(M ′,M) r(j)

M �discrimin
GB M ′iff M �discrimin

GB M ′ or discrGB(M,M ′) = ∅.
1Many other operators can be used, in place of the sum, for aggregating weights of violated (or sym-

metrically, satisfied) formulas (see [15] for a general discussion).
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leximin ordering Let dk(M) be the cardinal of{i | M |= Gi andr(i) = k}.

∣
∣
∣
∣

M �leximin
GB M ′iff ∃k ≤ n s. t.dk(M) > dk(M

′) and∀j < k, dk(M) = dk(M
′);

M �leximin
GB M ′iff M �leximin

GB M ′ or di(M) = di(M
′) for anyi.

Note that�leximin
GB and�bo

GB are complete preference relations while�discrimin
GB is

generally not. We moreover have the following chain of implications:M �bo
GB M ′ ⇒

M �discrimin
GB M ′ ⇒ M �leximin

GB M ′.

More discussion, references and examples can be found in [16, 10].

2.1.4 Ceteris Paribus preferences

In this language, preferences are expressed in terms of statements like: “all other things
being equal, I prefer these alternatives over these other ones.” Formally, letC, G, and
G′ be three propositional formulas andV being a subset ofV AR such thatV ar(G) ∪
V ar(G′) ⊆ V . Theceteris paribus desire C : G > G′[V ] means: “all irrelevant things
being equal, I preferG∧¬G′ to¬G∧G′”, where the “irrelevant things” are the variables
that are not inV . The definitions proposed in various places differ somehow – we take
here the definition of [10]. For natural reasons, and to remain consistent with the original
definitions, we impose thatV ar(G) ∪ V ar(G′) ⊆ V .

Furthermore, we add to the original definition the ability to expressindifference state-
ments – without them,M ∼ M ′ could not be expressed.

Let GB = DP ∪ DI , whereDP andDI are defined as follows.

DP = {C1 : G1 > G′
1[V1], . . . , Cm : Gm > G′

m[Vm]}
DI = {Cn : Gn ∼ G′

n[Vn], . . . , Cp : Gp ∼ G′
p[Vp]}

We call the elements ofDP as “preference desires” while elements ofDI are “in-
difference desires”. For alli, Ci, Gi andG′

i are propositional formulas andV ar(Gi) ∪
V ar(G′

i) ⊆ Vi ⊆ V AR. We define the preference induced by a single desireDi = Ci :
Gi > G′

i[Vi], denoted byM >Di
M ′, by the following three conditions:

1. M |= Ci ∧ Gi ∧ ¬G′
i;

2. M ′ |= Ci ∧ ¬Gi ∧ G′
i;

3. M andM ′ coincide on all variables inV AR\Vi.
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If the above conditions 1-3 are satisfied for an indifference desireDi = Ci : Gi ∼
G′

i[Vi] in DI , then we say thatM and M ′ are indifferent with respect toDi, denoted
by M ∼Di

M ′. Now, the preference order�cp
GB is defined from the above dominance

relations by transitive closure of their union:M �cp
GB M ′ holds if and only if there

exists a finite chainM0 = M,M1, . . . ,Mq−1,Mq = M ′ of alternatives such that for all
j ∈ {0, . . . , q−1} there is aDi ∈ GB such thatMj >Di

Mj+1 or such thatMj ∼Di
Mj+1.

An important sublanguage of CP-preferences is the language of (binary)CP-nets,
which is obtained by imposing the following syntactical restriction:

• goalsG andG′ areliterals, that is, CP-statements express preference of a value over
its opposite for a given single variable, given some context (in other words,G and
G′ are of the form(xi = vi), wherexi ∈ V AR andvi ∈ {T, F}.

• the variables mentioned in the contextC of a preference statement about variable
xi must be contained in a fixed set of variables, called theparents of xi, denoted by
Parents(xi).

• for each variablexi and each possible assignmentπ of the parents ofxi, there is
one and only one CP-preferenceC : xi > ¬xi or C : ¬xi > xi such thatπ |= C.

The more expressive language ofTCP-nets [7] can also be obtained by syntactical
restrictions. See [19] for a discussion about the expressivity of these various languages.

For the sake of brevity, we omitted the family of preference representation languages
based onconditional logics. See [16, 10].

2.2 Issues in preference representation

At least four very important problems must be addressed when investigating the relevance
and complexity of preference representation languages.

Elicitation We already discussed this issue in Introduction and we do not want to come
back on this, since since is left outside the scope of this paper.

Expressive power R being a representation language, a relevant quesiton is whetherR
can express all preorders and/or all utility functions, or only complete preorders, or
only a strict subclass of them, etc. This issue is investigated in [10].

Computational complexity Let R being representation language. What is the computa-
tional complexity of comparing two alternatives given an inputGB of R, of decid-
ing whether a given alternative is optimal, of finding an optimal alternative? This
issue is investigated in [16].
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Comparative succinctness GivenR,R′ two representation languages,R′ is said to be at
least as succinct asR iff is there a functionF from R to R′ such that

a. for eachGB ∈ R, GB andF (GB) induce the same preference relation (or
utility function);

b. F is polysize, i.e., there exists a polynomial functionp such that for allGB ∈
R, size(F (GB)) ≤ p(size(GB)).

This issue is investigated in [10].

3 Combinatorial vote

LetA = {1, ..., N} be a finite set ofvoters; X is afinite set ofalternatives (or candidates);
a individual preference profile P is a complete weak order�i (reflexive and transitive
relation) onX . A preference profile w.r.t. A andX is a collection ofN individual
preference profiles:P = (�1, ...,�N ). Lastly, letPA,X set of all preference profiles.

A voting correspondance C : PA,X → 2X \ {∅} maps each preference profileP of
PA,X into a nonempty subsetC(P ) of X . A voting (deterministic) rule r : P → X maps
each preference profileP of PA,X into a single candidater(P ). A deterministic rule can
be obtained from a correspondance by prioritization over candidates (for more details see
[8]). In the rest of the paper we focus on deterministic rules.

A combinatorial vote problem consists in applying voting rules when the set of al-
ternatives has a combinatorial structure and the voters’ preferences are expressed in a
compact preference representation language. Practically, a combinatorial vote problem is
composed of two steps: first, the agents express their preferences within a fixed (and com-
mon) representation languageR, and second, one or several optimal (i.e., non-dominated)
candidate(s) is (are) determined automatically, using a fixed voting rule.

For any representation languageR, one defines aR-profile for p voters as a collec-
tion B = 〈GB1, ..., GBp〉 of goal bases (one for each of thep voters), expressed in the
languageR, generating a profileP = InduceR(B) = {�GB1 , ...,�GBp}.

3.1 Combinatorial vote: direct approach

The “direct” approach to solving a combinatorial vote consists in applying these tasks in
sequence:

• elicit the preference relation for each voter, using a compact representation lan-
guage;
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• generate the whole preference relations onD1 × . . . × Dn from the input;

• apply the voting ruler.

The good point with this direct approach is that it leads to finding an optimal out-
come, more precisely, it allows for determining the exact winners according to the chosen
voting rule and the true preference of the agents. The (very) bad point is its very high
computational complexity in the general case. Here are examples, in the simplest com-
pact representation language, that is, the basic propositional representation (where each
agent specifies a unique propositional formula as his/her goal):

• computing a winner for the plurality rule needsO(log N) satisfiability tests (N =
number of agents);

• determining whether there exists a Condorcet winner is bothNP-hard andcoNP-
hard, and in inΘp

2 (the exact complexity is an open problem).

Further results, including for instance the complexity of determining whether there
exists a Condorcet winner for a given profile specified in a compact preference represen-
tation language, can be found in [16].

3.2 Combinatorial vote: sequential approach

The principle of the sequential appraoch is to exploit preferential independence of the
preference profiles. It is well-known that preferences relations (or utility functions) over
combinatorial “real-life” domains most often enjoy structural properties such as(condi-
tional) preferential independence between sets of variables. This assumption was central
to the development of several preference representation languages, especiallygraphical
languages such as CP-nets of weighted constraint satisfaction. In these languages, the
input consists of two distinct part: a structural part (an hypergraph in the CSP case, a di-
rected acyclic graph in the CP-net case) over the variables, and a “internal” part consisting
of the local preference relations over the subsets of variables identified by the structural
part.

For instance, letV = {x,y, z, t}, all three being Boolean variables, and assume that
preference of a given agent over2V can be defined by a CP-net whose structural part is
the directed acyclic graphG = {(x, y), (y, z), (y, t), (z, t)}; this means that, for the agent
considered, preference over the values ofx is unconditional, preference over the values of
y is fully defined given the value ofx, and so on.

Now comes the central assumption to the sequential approach to combinatorial vote:
the preferential independence structure is common to all agents. Therefore, for instance,
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if preference obver2V for agent 1 can be described by a CP-net with the structure as
above, then all other agents are assumed to be able to express their preferences within a
CP-net using the same structure. This is a strong assumption; however, in many real-life
domains it can be considered as reasonable.

Let us first consider an example. LetN = 7, V = {x,y} with Dom(x) = {x, x̄}
andDom(y) = {y, ȳ}, and let us consider the following preference relations, where each
agent expresses his preference relation by a CP-net corresponding to the following fixed
preferential structure: preference onx is unconditional (but preference ony may depend
on the value given tox).

3 agents 2 agents 2 agents

x̄ � x
x : ȳ � y
x̄ : y � ȳ

x � x̄
x : y � ȳ
x̄ : ȳ � y

x � x̄
x : ȳ � y
x̄ : y � ȳ

This corresponds to the following preference relations:

3 agents 2 agents 2 agents

x̄y
x̄ȳ
xȳ
xy

xy
xȳ
x̄ȳ
x̄y

xȳ
xy
x̄y
x̄ȳ

Let r be a deterministic ruler. Since for all 7 voters, preference onx is unconditional,
we may consider first the projections of the 7 preference relations onDom(x), namely
〈P x

1 , . . . , P x
n 〉, and start by applyingr to these, which results in a value ofx, denoted

by x∗, called thex-winner2. The value ofx is now fixed tox∗; then, let us consider
the projections of the 7 preference relations onDom(y), givenx = x∗; denote these by
〈P y|x=x∗

1 , . . . , P
y|x=x∗
n 〉; we then applyr to these, which results in a value ofy, denoted by

y∗, called the conditionaly-winner givenx = x∗. Thesequential winner is now obtained
by combining thex-winner and the conditionaly-winner givenx = x∗, namely(x∗, y∗).

Example: letr be the plurality rule (where the plurailty score of a candidate is the
number of voters ranking this candidate in the highest position, the plurality winners then
being those maximizing the plurality score). Because 4 agents out of 7 unconditionally
preferx over x̄, we getx∗ = x; then, givenx = x, 5 agents out of 7 prefer̄y to y, which
leads toy∗ = x. Therefore, the sequential plurality winner is(x, y). However, the direct
plurality winner is(x̄, y).

2In case of ties, we therefore need a deterministic tiebreaking mechanism, for instance using a preder-
minate order over the possible values ofx).
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The above example shows that whenr is the plurality rule, sequential winners (ob-
tained by sequential applications ofr) and direct winners (obtained by a direct application
of r) do not always coincide, which is an argument against the use of the sequential ap-
proach for such a voting rule. Note that more generally, this failure of sequential winners
to coincide with direct winners holds for any scoring rule.

A more general question is the following: are there deterministic rulesr, does the
sequential winner (obtained by sequential applications ofr) and the direct winner (ob-
tained by a direct application ofr) coincide? We do not know any positive answer to this
question in the general case. We first show a second negative result, and lastly we give
a restriction on preferences under which the answer to the above question turns out to be
positive.

Here comes the second negative result. A Condorcet winner is a candidate preferred
to any other candidate by a majority of voters. The notion of Condorcet winner natu-
rally leads to the determination ofsequential Condorcet winners: let X andY being two
subsets of the set of variables; then

• if preference onX is unconditional, then�x ∈ DX is aX-Condorcet winner if and
only if

(∀�y ∈ DX̄)∀�x′ ∈ DX #{i, �x�y �i �x′�y} >
N

2

• if and preference onY givenX is unconditional, then�y ∈ DY is aY -Condorcet
winner givenX = �x if and only if

(∀�z ∈ D ¯X∪Y )∀�y′ ∈ DX #{i, �x�y�z �i �x�y′�z} >
N

2

The sequential Condorcet winner is then the sequential combination of “local” Con-
dorcet winners. The question is now, is a sequential Condorcet winner a direct Condorcet
winner and vice versa? The following example shows that this fails.

2 voters 1 voter 2 voters

xȳ
x̄ȳ
xy
x̄y

xy
xȳ
x̄y
x̄ȳ

x̄y
x̄ȳ
xy
xȳ

x andy are preferentially independent, therefore the sequential Condorcet winner is
the mere combination of the local Condorcet winner for{x} and the local Condorcet win-
ner for{y}, provided that both exist. Since 3 voters unconditionally preferx to x̄, x is
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the {x}-Condorcet winner; similarly, 3 voters unconditionally prefery to ȳ and is the
{y}-Condorcet winner. Therefore,xy is the sequential Condorcet winner –but xy is not
a direct Condorcet winner, because four voters out of seven preferx̄ȳ to xy.

We now give a condition on the preference relations such that direct and sequen-
tial Condorcet winners coincide. We say that a preference relation onDom(x1 × . . . ×
Dom(xp} is lexicographic if and only if there is a total ordering of the variables, say with-
out loss of generalityx1 � x2 � . . . � xp, andp local preference relations onDom(x1),
. . ., Dom(xp), such thatx = (x1, . . . , xp) is preferred toy = (y1, . . . , yp) iff there is an
index j ≤ p such that (a) for everyk ≤ j, xk ∼ yk and (b)xj � yj. Now, assume
that all agents have lexicographic preference relations (with the same variable ordering).
(v1, . . . , vp) ∈ D1 × . . . Dp is a sequential Condorcet winner iff

• v1 ∈ D1 : {x1}-Condorcet winner;

• v2 ∈ D2 : {x2}-Condorcet winner givenx1 = v1;

• . . .

• vp ∈ Dp : {xp}-CW givenx1 = v1, . . . ,xp−1 = vp−1

Thenwe have the following positive result: if there exists a sequential Condorcet win-
ner(v1, . . . , vp) then(v1, . . . , vp) is also the (direct) Condorcet winner for the given pro-
file, andvice versa.

Now, the restriction on lexicographic preference relation is a strong one. Thie leads
to the following questions and problems:

Question 1 are there voting rule such that sequential winners and direct winners always
coincide?

Problem 2 find reasonable restrictions on the preference relations so that the answer to
Question 1 becomes positive;

Problem 3 find good algorithms (using the preferential structure) for determining win-
ners of a combinatorial vote problem.
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On the consensus of closure systems 

 

Bruno Leclerc *
 

 

Abstract 
The problem of aggregating a profile of closure systems into a consensus system has 

applications in domains such as social choice, data analysis, or clustering. We first briefly 
recall the results obtained by a lattice approach and observe that there is some need for a 
finer approach. Then, we develop some considerations based on implications and related 
notions, and present a uniqueness result. It appears to be a generalization of a previous 
result relevant from cluster analysis.  

 

Key words: Closure, Implication, Lattice, Consensus  

 

1 Introduction 
We consider the problem of aggregating a profile (k-tuple) F* = (F1, F2, …, Fk ) of 

closure systems on a given finite set  S into a consensus closure systems F = c(F*). The 
aim is, for instance, to find a structure on a set S described by variables of different 
types. Structural information (order, tree structure) provided by these variables may be 
totally or partially retained by a derived closure system (see examples in Section 2). 
Moreover, several consensus problems already studied in the literature are particular 
cases of the consensus of closure systems. A basic example is provided by hierarchical 
classification, where many works have followed those of Adams [Ada72] and Margush 
and McMorris [MM81] (see the survey [Lec98]). 

Closure systems and their uses are presented in Section 2.1. Several equivalent 
structures are recalled in Section 2.2. Section 2.3 give elements about the involved 
lattice structures. Section 3 presents results provided by the particularization of general 
results on the consensus problem in lattices. An original approach based on implications 
is initiated in Section 4. 
                                                 
* École des Hautes Études en Sciences Sociales, Centre d'Analyse et de Mathématique Sociales (CNRS 
UMR 8557), 54 bd Raspail, F-75270 Paris cedex 06, France, leclerc@ehess.fr 
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2 Closure systems  

2.1 Definitions and uses 
A closure system (abbreviated as CS) on a finite given set S is a set F ⊆ P(S) of 

subsets of S satisfying the following two conditions: 

(C1) S ∈ F; 

(C2) C, C’ ∈ F  ⇒  C∩C’ ∈ F. 

When considering classical types of preference or classification data describing a 
given set S of objects, one observes that, frequently, they naturally correspond to 
closure systems. A list, of course not limitative, of such situations is given in Table 1. A 
CS F is nested if it is linearly ordered by set inclusion: for all F, F’ ∈ F  ⇒  F∩F’ ∈ {F, 
F'}; it is a tree of subsets if, for all F, F’ ∈ F ⇒  F∩F’ ∈ {∅, F, F'} (and hierarchical if, 
moreover, {s} ∈ F for all s ∈ S); it is distributive if, for all F, F’ ∈ F ⇒  F∩F’ ∈ F and 
F∪F’ ∈ F. 

 

Type of data S endowed with 
a 

Subsets of S Type of closure 
system 

Numerical, 
ordinal variable 

Weak order W Down-sets of W Nested 

Transitive 
preference relation 

Preorder P Down-sets of P Distributive  

Nominal variable Partition Π S, ∅, and classes 
of Π 

Tree of subsets of 
length 2 

Taxonomy 

 

Hierarchy H Classes of H, 
and ∅ 

Hierarchical 

 

Table 1. Types of data and related closure systems 
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2.2 Equivalent structures 

Three notions are defined in this section. Together with CS's, they turn to be 
equivalent to each other. A closure operator ϕ is a mapping onto P(S) satisfying the 
properties of isotony (for all A, B ⊆ S, A ⊆ B implies ϕ(A) ⊆ ϕ(B), extensivity ((for all A 
⊆ S, A ⊆ ϕ(A) and idempotence (for all A ⊆ S, ϕ(ϕ(A)) = ϕ(A). Then, the elements of 
the image Fϕ = ϕ(P(S)) of P(S) by ϕ are the closed (by ϕ) sets, and Fϕ is a closure 
system on S. Conversely, the closure operator ϕF on P(S) is given by ϕF(A) = ∩{F ∈ F: 
A ⊆ F}. 

A full implicational system, denoted hereafter by I, →I or simply →, is a binary 
relation on P(S) satisfying the following conditions: 

(I1) B ⊆ A implies A → B; 

(I2) for any A, B, C ⊆ S, A → B and B → C imply A → B; 

(I3) for any A, B, C, D ⊆ S, A → B and C → D imply A∪C → B∪D. 

An overhanging order on S is also a binary relation Œ on P(S), now satisfying:  

(O1) A Œ B  ⇒  A ⊂ B ; 

(O2) A ⊂ B ⊂ C  ⇒  [A Œ C  ⇐⇒  A Œ B ou B Œ C] ; 

(O3) A Œ A∪B  ⇒  A∩B Œ B. 

It follows from (01) and (02) that the relation Œ is a strict order on P(S) (whereas → 
is a preorder). The sets of, respectively, closure systems, closure operators, full 
implicational systems and overhanging orders on S are denoted, respectively, as M, C, I 
and O. They are related to each other by one-to-one correspondences. The equivalence 
between closure systems and operators has been recalled above. For a closure operator 
ϕ and its associated full implicational system → and overhanging order Œ, the first of 
the equivalences below is due to Armstrong [Arm74], and the second is given in 
[DL04a]: 

A → B  ⇐⇒  B ⊆ ϕ(A) 

A Œ B ⇐⇒ A ⊂ B and ϕ(A) ⊂ ϕ(B) 

There is an important literature, with meaningful results, on implications, due to their 
importance in domains such as logic, lattice theory, relational databases, knowledge 
representation, or latticial data analysis (see the survey [CM03]). Overhanging orders 
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take their origin in Adams ([Ada86]), where, named nestings, they were characterized in 
the particular case of hierarchies. Their generalization to all closure systems [DL04a] 
make them a further tool for the study of closure systems. 

2.3. Lattices 

The results of this section may be found in [CM03] and, for overhangings, in [DL03] 
and [DL04a]. First, each of the sets M, C, I and O is naturally ordered: M, I and O by 
inclusion, and C by the pointwise order: for ϕ, ϕ' ∈ C, ϕ ≤ ϕ' means that ϕ(A) ⊆ ϕ'(A) 
for any A ⊆ S. These orders are isomorphic or dually isomorphic: 

F ⊆ F' ⇐⇒ ϕ' ≤ ϕ ⇐⇒ I' ⊆ I ⇐⇒ Œ ⊆ Œ', 

where ϕ, I and Œ (resp. ϕ', I' and Œ') are the closure operator, full implication system 
and overhanging relation associated to F (resp. to F '). 

The sets M and I preserve set intersection, while O preserves set union and C 
pointwise intersection (ϕ∧ϕ'(A) = ϕ(A)∩ϕ'(A), for any A ⊆ S). The main 
correspondences between elements or operations in M, C, I and O are given in Table 2. 
Here, (A] = {B ⊆ S: B ⊆ A} (prime ideal in P(S))and [A) = {B ⊆ S: A ⊆ B} (prime 
filter). 

From these observations, M and I are closure systems, respectively on P(S) and 
(P(S))2. The closure operator associated to M is denoted as Φ. It is well-known that, 
with the inclusion order, any closure system F on S is a lattice (F, ∨, ∩) with the meet 
F∩F' and the join F∨F' = ϕ(F∪F'). If F ⊆ F', F' covers F (denoted as F p F') if F ⊆ G 
⊆ F' implies G = F or G = F'. 

An element J of F is join irreducible if G ⊆ F and J = ∨G imply J ∈ G; an equivalent 
property is that J covers exactly one element, denoted J-, of F. The set of all the join 
irreducibles is denoted by J. Setting J(F) = {J ∈ J: J ⊆ F} for any F ∈ F, one has F = 
∨J(F) for all F ∈ F. A join irreducible is an atom if it covers the minimum element of 
F, and the lattice F is atomistic if all its join irreducibles are atoms. Similarly, an 
element M of F is meet irreducible if G ⊆ F and M = ∩G imply M ∈ G; equivalently, M 
is covered by exactly one element M+ of F. For any F ∈ F, we have F = ∩M(F), where 
M is the set of all the meet irreducibles of F and M(F) = {M ∈ M: F ⊆ M}. 
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M C I O 

P(S)     (maximum) ϕmin = idP(S) 

(minimum) 

{(X, Y) ∈ P(S)2: Y 
⊆ X}       (minimum) 

{(X, Y) ∈ P(S)2: 

X ⊂ Y}  
(maximum) 

{S}      (minimum) ϕmax(A) = S, all A 
⊆ S 

(maximum) 

P(S)2  (maximum) ∅           
(minimum) 

join M∨M' meet (pointwise 
intersection) 

meet    I∩I' join    Œ∪Œ' 

meet M∩M' join join     I∨I' meet   Œ∧Œ' 

{S, A}, A ⊂ S 

(join irreducible) 

ϕ(X) = A if X ⊆ A; 

ϕ(X) = S otherwise 

(meet irreducible) 

P(A)2∪{(X, Y) ∈ 
P(S)2: A / ⊆  X} 

(meet irreducible) 

{(X, Y) ∈ (A]× 

(P(S)–(A]): X ⊂ Y} 

(join irreducible) 

{X ⊆ S: A ⊆ X ⇒ s 
∈ X}, A ⊂ S, s ∈ S-A 
(meet irreducible) 

ϕ(X) = X+s if A ⊆ X

ϕ(X) = X otherwise 
(join irreducible) 

{(X, Y) ∈ P(S)2: X 
⊆ Y or A ⊆ X, Y = 
X+s}  

(join irreducible) 

{(X, Y) ∈ P(S)2: X 
⊂ Y} - {(X, Y) ∈ P(S)2: 
A ⊆ X, Y = X+s}  

(meet irreducible) 

 

Table 2. Correspondences between M, C, I and O 

 

 

The lattice F is lower semimodular if, for every F, F' ∈ F, F p F∨F' and F' p F∨F' 
imply F∩F' p F and F∩F' p F. The lattice F is ranked if it admits a numerical rank 
function r such that F p F' implies r(F') = r(F) + 1. Lower semimodular lattices are 
ranked. 

The lattice F is a convex geometry if it satisfies one of the following equivalent 
conditions (among many other characterizations [Mon90b]: 

(CG1) For any F ∈ F, there is a unique minimal subset R of J such that F = ∨R; 

(CG2) F is ranked with rank function r(F) = |J(F)|; 
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(CG3) F is lower semimodular with a rank function as in (CG2) above; 

Since it is a closure system on P(S), the ordered set M is itself a lattice. This lattice is 
an atomistic convex geometry. For F ∈ M, we have J(F) = {{A, S}: A ≠ S, A ∈ F} and, 
so, |J(F)| = |F|-1. 

 

3 Lattice consensus for closure systems  
In this section, we consider the main consequences of the lattice structure of M for the 

consensus problem on closure systems, that is the aggregation of a profile F* = (F1, F2, 
…, Fk) (of length k) of closure systems into a closure system F = c(F*). General results 
on the consensus problem in lattices may be found, among others, in [BM90b], [BJ91] 
and [Lec94]. Concerning closure systems, the results obtained in an axiomatic approach 
by Raderanirina [Rad01] (see also [MR04] about the related case of choice functions) 
are described in another contribution and not recalled here. 

3.1. A property of quota rules 

A federation on K is a family K of subsets of K = {1,…, k} satisfying the 
monotonicity property: [L ∈ K, L' ⊇ L] ⇒ [L' ∈ K]. Then, the federation consensus 
function cK on M is associated to K by cK(F*) = ∨L∈K (∩i∈L Fi). Such consensus 
function includes the quota rules, where K = {L ⊆ K: |L| ≥ q}, for a fixed number q, 0 ≤ 
q ≤ k. The quota rule cq is equivalently defined as: 

cq(F*) = Φ(Aq), 

where Aq = {A ⊂ S: |{i ∈ K: A ∈ Fi}| ≥ q}, the set of all proper subsets of S 
appearing in at least q elements of F*, and Φ is the operator mentioned in Section 2.3: 
Φ(Aq) is the smallest closure system including Aq. For q = k/2, cq(F*) = m(F*) is the so-
called (weak) majority rule and, for q = k, it is the unanimity rule u(F*). 

Quota rules have good properties in any lattice structure, for instance: 

• Unanimity : for any F ∈ M, cq(F, F,…, F) = F ; 

• Isotony : for any F* = (F1, F2, …, Fk),F'* = (F'1, F'2, …, F'k), profiles of M, Fi, ⊆ F'i: 
for all i = 1, …, k implies cq(F*) ⊆ cq(F'*). 

The next property of consistency type (see Section 3.2) is not general (for instance it 
is not true in partition lattices [BL95]) but holds in the so-called LLD lattices [Lec03], 
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which include convex geometries; it implies unanimity. In what follows, the profile 
F*F'* is just the concatenation of profiles F* and F'*, which are not required to have the 
same length. 

Proposition 3.1. Let F* and F'* be two profiles of M. If cq(F*) = cq(F'*) = F, then  
cq(F*F'*) = F. 

3.2. Bounds on medians 
For a metric approach of the consensus in M, we first have to define metrics. For that, 

we just follow [BM81] and [Lec94]. A real function v on M such as F ⊆ F' implies v(F) 
< v(F') is a lower valuation if it satisfies one the following two equivalent properties: 

(LV1) For all s, t ∈ L such that s∨t exists, v(s) + v(t) ≤ v(s∨t) + v(s∧t); 

(LV2) The real function dv defined on M2 by the following formula is a metric on M: 

dv(F, F') = v(F) + v(F') - 2v(F∩F'). 

A characteristic property of lower semimodular semilattices is that their rank 
functions are lower valuations. So, taking property (CG2) into account, the rank metric 
is obtained taking v(F) = |F| and, so, dv(F, F') = ∂(F, F') = |F∆F'|, where ∆ is the 
symmetric difference on subsets. The equality between the rank and the symmetric 
difference metric is characteristic of convex geometries or of close structures [Lec03] 
and is a reason to focuse on that metric. 

Given the metric ∂, the median consensus procedure consists of searching for the 
medians of the profile F*, that is the elements Fµ of M minimizing the remoteness ρ(Fµ, 
F*) = ∑1≤i≤k ∂(Fµ, Fi) (see [BM81]). If µ(F*) is the set of all the medians of the 
profile F*, the median procedure has a consistency type property (YL78), described as 
follows. 

Let F* and F'* be two profiles of M. If µ(F*)∩µ(F'*) ≠ ∅, then µ(F*F'*) = 
µ(F*)∩µ(F'*).Set Jm = {{A, S}: A ∈ Ak/2} (the set of majority atoms). From results in 
[Lec94], every median M of F* is the join of some subset of Jm. It then follows that 
every median CS is included into the majority rule one: 

Theorem 3.2. For any profile F* and for any median Fµ of F*, the inclusion Fµ ⊆ 
m(F*) holds.  
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4 The fitting of overhangings  
The results of the previous section (and those of the same type mentioned there) only 

take into account the presence or absence of the same closed set in enough (oligarchies, 
majorities) or all (unanimity) elements of the profile. It was observed in the literature 
that this strong limitation may prevent one to recognize actual common features. This 
criticism, essentially pointed out in the classification context, remains valid for general 
closure systems [DL04b]. Moreover, consensus systems based on closet sets may 
frequently be trivial. For instance, if there does not exist any majority non-trivial closed 
set, then, the majority rule (and unique median) is the trivial closure system reduced to 
{S}. Adams [Ada86] presented a consensus method (for hierarchies) able to retain 
common features even in such cases. It is based on overhanging orders (and, then, on 
implications). Here we initiate the same approach for closure systems of any type. 

We state here a very general uniqueness result. Let Ξ be a binary relation on P(S), 
with the only assumption that (A, B) ∈ Ξ implies A ⊂ B. Consider the following two 
properties for a closure system F, with associated closure operator ϕ and overhanging 
relation Œ: 

(AΞ1) Ξ ⊆ Œ;           (preservation of Ξ) 

(AΞ2) for all M ∈ MF, (M, M+) ∈ Ξ.          (qualified overhangings) 

Note that (AΞ2) is a weakening of the converse of (AΞ1) since, by definition, any 
pair (M, M+) belongs to Œ. Only those special pairs are required to already belong to 
the relation Ξ. 

Theorem 4.1. If both F and F' satisfy Conditions (AΞ1) and (AΞ2), then F = F'. 

 

Proof. Observe first that the maximum set S is in both F and F'. If F ≠ F', The 
symmetric difference F∆F' is not empty. Let F be a maximal element of F∆F'. This 
subset F is not equal to S and it may be assumed without loss of generality that F 
belongs to F (and, so, not to F'). If F was not a meet-irreducible element of F, it would 
be an intersection of meet-irreducibles, all belonging to both F and F' and, so, F would 
belong to F'. 

Thus, F is a meet-irreducible, covered by a unique element F+ of F, with F+ ∈ F'. By 
(AΞ2), (F, F+) ∈ Ξ and, by (AΞ1), F Œ' F+. Set F' = ϕ'(F). We have F ⊂ F', since F ∉ 
F', and F' Œ' F+, since F' = ϕ'(F) = ϕ'(F') ⊂ ϕ'(F+) = F+. But, according to the 
hypotheses, F ⊂ F' implies F' ∈ F, with F ⊂ F' ⊂ F+, a contradiction with the 
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hypothesis that F+ covers F in F.                
❑  

The following question then arises: given a binary relation Ξ on P(S) (implying strict 
inclusion), does it exist an overhanging relation Œ satisfying conditions (AΞ1) and 
(AΞ2). Adams provides a positive answer in the case of a profile of hierarchies, and 
with Ξ = ∩i∈K Œi where Œ1, Œ2, …, Œk are the overhanging orders associated to the 
elements of the profile. In the general case, one can consider any convenient 
combination of Œ1, Œ2, …, Œk. For instances, Ξ = ∩i∈K Œi corresponds to a kind of 
unanimity rule on overhangings, and Ξ = ∪L⊆K, 2|L|>k ∩i∈L Œi to a majority rule. 

5 Conclusion 
 

The last section provides a framework for the consensus of closure systems. One of 
the main questions is to recognize the binary relations Ξ on P(S) for which an 
overhanging order Œ satisfying (AΞ1) and (AΞ2) exists. For instance, setting Ξ = 
∪L⊆K, 2|L|>k ∩i∈L Œi accounts for the fact that a CS appears several times in a profile, 
contrary to intersection rules. Algorithmic issues are very important, since overhanging 
relations are very big objects. 
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A Complete Description of Comparison
Meaningful Functions

Jean-Luc Marichal∗, Radko Mesiar†, Tatiana R̈uckschlossov́a‡

Abstract

Comparison meaningful functions acting on some real intervalE are completely
described as transformed coordinate projections on minimal invariant subsets. The
case of monotone comparison meaningful functions is further specified. Several
already known results for comparison meaningful functions and invariant functions
are obtained as consequences of our description.

Key words : comparison meaningful function, invariant function, ordinal scale.

1 Introduction

Measurement theory (see e.g. [6, 14]) studies, among others, the assignments to each mea-
sured object of a real number so that the ordinal structure of discussed objects is preserved.
When aggregating several observed objects, their aggregation is often also characterized
by a real number, which can be understood as a function of numerical characterizations
of fused objects. A sound approach to such aggregation cannot lead to contradictory re-
sults depending on the actual scale (numerical evaluation of objects) we are dealing with.
This fact was a key motivation for Orlov [11] when introducing comparison meaning-
ful functions. Their strengthening to invariant functions (scale independent functions)
was proposed by Marichal and Roubens [9]. The general structure of invariant functions
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mesiar@vox.svf.stuba.sk

‡Department of Mathematics, Slovak Technical University, Radlinského 11, 81368 Bratislava, Slovakia.
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(and of monotone invariant functions) is now completely known from recent works of
Ovchinnikov [12], Ovchinnikov and Dukhovny [13], Marichal [7], Bartlomiejczyk and
Drewniak [2], and Mesiar and R̈uckschlossov́a [10]. Moreover, comparison meaningful
functions were already characterized in some special cases, e.g., when they are contin-
uous; see Yanovskaya [16] and Marichal [7]. However, a complete description of all
comparison meaningful functions was still missing. This gap is now filled by the present
paper, which is organized as follows. In the next section, we give some preliminaries and
recall some known results. In Section 3, a complete description of comparison meaningful
functions is given, while in Section 4 we describe all monotone comparison meaningful
functions.

2 Preliminaries

Let E ⊆ R be a nontrivial convex set and sete0 := inf E, e1 := sup E, andE◦ := E \
{e0, e1}. Let n ∈ N be fixed and set[n] := {1, . . . , n}. Denote also byΦ(E) the class of
all automorphisms (nondecreasing bijections)φ : E → E, and forx = (x1, . . . , xn) ∈ En

putφ(x) := (φ(x1), . . . , φ(xn)).

Following the earlier literature, we introduce the next notions and recall a few results.

Definition 2.1 ([9]). A function f : En → E is invariant if, for anyφ ∈ Φ(E) and any
x ∈ En, we havef(φ(x)) = φ(f(x)).

Definition 2.2 ([1, 11, 16]). A functionf : En → R is comparison meaningful if, for any
φ ∈ Φ(E) and anyx, y ∈ En, we have

f(x)
{<

=

}
f(y) ⇒ f(φ(x))

{<
=

}
f(φ(y)). (1)

Definition 2.3 ([1, 5]). A functionf : En → R is strongly comparison meaningful if, for
anyφ1, . . . , φn ∈ Φ(E) and anyx, y ∈ En, we have

f(x)
{<

=

}
f(y) ⇒ f(φ(x))

{<
=

}
f(φ(y)),

where here the notationφ(x) means(φ1(x1), . . . , φn(xn)).

Definition 2.4 ([2]). A nonempty subsetB of En is called invariant ifφ(B) ⊆ B for any
φ ∈ Φ(E), whereφ(B) = {φ(x) | x ∈ B}. Moreover, an invariant subsetB of En is
called minimal invariant if it does not contain any proper invariant subset.

It can be easily proved thatB ⊆ En is invariant if and only if its characteristic function
1B : En → R is comparison meaningful (or invariant ifE = [0, 1]).
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LetB(En) be the class of all minimal invariant subsets ofEn, and define

Bx(E) := {φ(x) | φ ∈ Φ(E)}

for all x ∈ En. Then, we have

B(En) = {Bx(E) | x ∈ En},

which clearly shows that the elements ofB(En) partition En into equivalence classes,
wherex, y ∈ En are equivalent if there existsφ ∈ Φ(E) such thaty = φ(x). A complete
description of elements ofB(En) is given in the following proposition:

Proposition 2.1 ([2, 10]). We have B ∈ B(En) if and only if there exists a permutation π
on [n] and a sequence {�i}n

i=0 of symbols �i ∈ {<, =}, containing at least one symbol
< if e0 ∈ E and e1 ∈ E, such that

B = {x ∈ En | e0 �0 xπ(1) �1 · · · �n−1 xπ(n) �n e1},

where �0 is < if e0 /∈ E and �n is < if e1 /∈ E.

Example 2.1. The unit square[0, 1]2 contains exactly eleven minimal invariant subsets,
namely the open triangles{(x1, x2) | 0 < x1 < x2 < 1} and{(x1, x2) | 0 < x2 < x1 <
1}, the open diagonal{(x1, x2) | 0 < x1 = x2 < 1}, the four square vertices, and the four
open line segments joining neighboring vertices.

We also have the following important result:

Proposition 2.2 ([2, 7, 10]). Consider a function f : En → E.

i) If f is idempotent (i.e., f(x, . . . , x) = x for all x ∈ E) and comparison meaningful,
then it is invariant.

ii) If f is invariant, then it is comparison meaningful.

iii) If E is open, then f is idempotent and comparison meaningful if and only if it is
invariant.

iv) f is invariant if and only if, for any B ∈ B(En), either f |B ≡ c is a constant
c ∈ {e0, e1} ∩E (if this constant exists) or there is i ∈ [n] so that f |B = Pi|B is the
projection on the ith coordinate.

For nondecreasing invariant functions, a crucial role in their characterization is played
by an equivalence relation∼ acting onB(En), namelyB ∼ C if and only if Pi(B) =
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Pi(C) for all i ∈ [n]. Note that projectionsPi(B) of minimal invariant subsets are neces-
sarily either{e0} ∩ E or {e1} ∩ E or E◦. Further, for anyB ∈ B(En), the set

B∗ =
⋃

C∈B(En)
C∼B

C = P1(B) × · · · × Pn(B)

is an invariant subset ofEn, and

B∗(En) = {B∗ | B ∈ B(En)}
is a partition ofEn coarseningB(En). We also havecard(B∗(En)) = kn, wherek =
1 + card(E ∩ {e0, e1}).

Notice that any subsetB∗ can also be regarded as a minimal “strongly” invariant
subset ofEn in the sense that

{(φ1(x1), . . . , φn(xn)) | x ∈ B∗} ⊆ B∗ (φ1, . . . , φn ∈ Φ(E)).

Equivalently, the characteristic function1B∗ : En → R is strongly comparison meaning-
ful.

From the natural order
{e0} ≺ E◦ ≺ {e1}

we can straightforwardly derive a partial order
 onB(En), namelyB 
 C if and only
if Pi(B) 
 Pi(C) for all i ∈ [n]. A partial order onB∗(En) can be defined similarly.

Denote byMn the system of all nondecreasing functionsµ : {0, 1}n → {0, 1}, and
let

Mn(E) := Mn \ {µj | j ∈ {0, 1}, ej /∈ E},
whereµj ∈ Mn is the constant set functionµj ≡ j. ClearlyMn(E) is partially ordered
through the order defined as

µ 
 µ′ ⇔ µ(x) ≤ µ′(x) ∀x ∈ {0, 1}n.

Forµ ∈ Mn(E), we define a functionLµ : En → E by

Lµ(x1, . . . , xn) =
∨

t∈{0,1}n

µ(t)=1

∧
ti=1

xi

with obvious conventions ∨
∅

= e0 and
∧
∅

= e1.

Observe that for anyµ ∈ Mn(E), Lµ is a continuous invariant function which is also
idempotent wheneverµ(0, . . . , 0) < µ(1, . . . , 1), that is, wheneverµ(0, . . . , 0) = 0 and
µ(1, . . . , 1) = 1.
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Remark. Functionsµ ∈ Mn(E) with µ(0, . . . , 0) < µ(1, . . . , 1) are called also
{0, 1}-valued fuzzy measures (when an elementt ∈ {0, 1}n is taken as the character-
istic vector of a subset of[n]). For any suchµ, the corresponding functionLµ is exactly
the Choquet integral with respect toµ [4, 13], but also the Sugeno integral with respect
to µ [15, 13]. These functions are called also lattice polynomials [3] or Boolean max-min
functions [8].

We also have the following result:

Proposition 2.3 ([7, 10]). Consider a function f : En → E. Then we have

i) f is continuous and invariant if and only if f = Lµ for some µ ∈ Mn(E).

ii) f is nondecreasing and invariant if and only if there exists a nondecreasing mapping
ξ : B∗(En) → Mn(E) so that

f(x) = Lξ(B∗)(x) (x ∈ B∗ ∈ B∗(En)).

3 Comparison meaningful functions

Following Definition 2.1, the invariance of a functionf : En → E can be reduced to the
invariance off |B for all minimal invariant subsetsB ∈ B(En). This observation is a key
point in the description of invariant functions as given in Proposition 2.2,iv). However,
in the case of comparison meaningful functions, the situation is more complicated. In
fact, we have to examine property (1) forx ∈ B, y ∈ C, with B, C ∈ B(En), to be able
to describe comparison meaningful functions. We start first with the case whenB = C,
i.e., wheny = φ(x) for someφ ∈ Φ(E).

Proposition 3.1. Let f : En → R be a comparison meaningful function. Then, for any
B ∈ B(En), there is an index iB ∈ [n] and a strictly monotone or constant function
gB : PiB(B) → R such that

f(x) = gB(xiB) (x = (x1, . . . , xn) ∈ B).

As an easy corollary of Proposition 3.1 we obtain the characterization of invariant
functions stated in Proposition 2.2,iv); see also [2]. Indeed, for a fixedB ∈ B(En), we
should havef(x) = g(xi) and hence, for allφ ∈ Φ(E) with fixed pointxi, we have

φ(g(xi)) = φ(f(x)) = f(φ(x)) = g(xi),

which implies thatg(xi) is a fixed point of all suchφ’s, that is,

g(xi) = xi or e0 or e1.
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As we have already observed, the structure of invariant functions on a given minimal
invariant subset is completely independent of their structure on any other minimal invari-
ant subset. This fact is due to the invariance property:φ(x) ∈ B for all x ∈ B, φ ∈ Φ(E)
andB ∈ B(En). However, in the case of comparison meaningful functions we are faced
a quite different situation, in which we should take into account all minimal invariant
subsets.

Observe first that for a given comparison meaningful functionf : En → R and a given
B ∈ B(En), the corresponding indexiB need not be determined univocally. This happens
for instance whengB is constant or whenB is defined with equalities on coordinates (see
Proposition 2.1). On the other hand, giveniB, the functiongB is necessarily unique.

Now, we are ready to give a complete description of all comparison meaningful func-
tions.

Theorem 3.1. The function f : En → R is comparison meaningful if and only if, for any
B ∈ B(En), there exist an index iB ∈ [n] and a strictly monotone or constant mapping
gB : PiB(B) → R such that

f(x) = gB(xiB) (x ∈ B), (2)

where, for any B, C ∈ B(En), either gB = gC , or Ran(gB) = Ran(gC) is singleton, or
Ran(gB) < Ran(gC), or Ran(gB) > Ran(gC). (Note that Ran(gB) < Ran(gC) means
that for all r ∈ Ran(gB) and all s ∈ Ran(gC), we have r < s.)

Example 3.1. PutE = [0, 1] andn = 2. Then there are eleven minimal invariant subsets
in B([0, 1]2), namelyB1 = {(0, 0)}, B2 = {(1, 0)}, B3 = {(1, 1)}, B4 = {(0, 1)},
B5 = ]0, 1[×{0}, B6 = {1}×]0, 1[, B7 = ]0, 1[×{1}, B8 = {0}×]0, 1[, B9 = {(x1, x2) |
0 < x1 = x2 < 1}, B10 = {(x1, x2) | 0 < x1 < x2 < 1}, B11 = {(x1, x2) | 0 < x2 <
x1 < 1}. Let iBj

= 1 andgBj
(x) = 1 − x for j ∈ {1, 2, 3, 5, 6, 9, 11}, andiBj

= 2 and
gBj

(x) = 2x − 3 for j ∈ {4, 7, 8, 10}, where alwaysx ∈ PiBj
(Bj). Then the relevant

comparison meaningful functionf : [0, 1]2 → [0, 1] is given by

f(x1, x2) =

{
1 − x1, if x1 ≥ x2,

2x2 − 3, if x1 < x2.

Theorem 3.1 enables us to characterize strong comparison meaningful functions, too.
Observe that while in the case of comparison meaningful functions, for any pointx ∈ En

the set of allφ(x) = (φ(x1), . . . , φ(xn)), with φ ∈ Φ(E), gives some minimal invariant
setB, in the case of strong comparison meaningful functions we are faced to the set of
all points(φ1(x1), . . . , φn(xn)), with φ1, . . . , φn ∈ Φ(E), which is exactly the invariant
setB∗ linked to the previousB, which together with Theorem 3.1 results in the next
corollary.
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Corollary 3.1. The function f : En → R is strongly comparison meaningful if and only
if, for any B∗ ∈ B∗(En), there exist an index iB∗ ∈ [n] and a strictly monotone or constant
mapping gB∗ : PiB∗ (B

∗) → R such that

f(x) = gB∗(xiB∗ ) (x ∈ B∗),

where, for any B∗, C∗ ∈ B∗(En), either gB∗ = gC∗ , or Ran(gB∗) = Ran(gC∗) is single-
ton, or Ran(gB∗) < Ran(gC∗), or Ran(gB∗) > Ran(gC∗).

4 Monotone comparison meaningful functions

In this section we will examine monotone comparison meaningful functions. Note that
the monotonicity of a fusion function is a rather natural property.

Now, for any strictly monotone or constant real functionh : R → R, and any compar-
ison meaningful functionf : En → R, also the compositeh ◦ f : En → R is comparison
meaningful. Consequently, to get a complete description of monotone comparison mean-
ingful functions it is enough to examine nondecreasing comparison meaningful functions
only.

Theorem 4.1. Let f : En → R be a nondecreasing function. Then f is comparison
meaningful if and only if it has the representation

{(iB, gB) | B ∈ B(En)},
as stated in Theorem 3.1, such that any gB is either constant or strictly increasing,
Ran(gB) = Ran(gC) if B ∼ C, and Ran(gB) ≯ Ran(gC) if B � C and B 
 C.

Now, several results mentioned in Section 2 are immediate corollaries of Theorems 3.1
and 4.1. Interesting seems to be also the next result, in whichG(E) means the system of
all strictly increasing or constant real functionsg defined either onE◦ or on singleton
{e0} ∩ E or on{e1} ∩ E (if these singletons exist) and forg1, g2 ∈ G(E) we putg1 
 g2

if eitherg1 = g2, or Ran(g1) = Ran(g2) is a singleton, orRan(g1) < Ran(g2).

Corollary 4.1. A nondecreasing function f : En → R is comparison meaningful if and
only if there are nondecreasing mappings ξ : B∗(En) → Mn(E) and γ : B∗(En) →
G(E) such that

f(x) = γ(B∗)(Lξ(B∗)(x)) (x ∈ B∗ ∈ B∗(En)). (3)

Observe also that wheneverB∗ is not singleton then the relevant functionγ(B∗) from
the representation (3) can be obtained (for allz ∈ E◦) by

γ(B∗)(z) = f(z1, . . . , zn),
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where

zi =




e0, if Pi(B
∗) = {e0},

e1, if Pi(B
∗) = {e1},

z, otherwise.

For example, ifE is open, thenB∗(En) = {En} and then necessarily each monotone
comparison meaningfulf : En → R is given byf = g ◦ Lµ, whereµ ∈ Mn(E) and
g(z) = f(z, . . . , z) is strictly monotone or constant (see also [7]).

Based on Corollaries 3.1 and 4.1, we can characterize nondecreasing strong compari-
son meaningful functions as follows:

Corollary 4.2. A nondecreasing function f : En → R is strongly comparison meaningful
if and only if there is a mapping δ : B∗(En) → [n] and a nondecreasing mapping γ :
B∗(En) → G(E) such that

f(x) = γ(B∗)(xδ(B∗)) (x ∈ B∗ ∈ B∗(En)),

where, if γ(B∗) = γ(C∗), then also δ(B∗) = δ(C∗) (unless γ(B∗) = γ(C∗) is constant).

Continuity of a comparison meaningful function is even more restrictive and it forces
the monotonicity. From Theorem 3.1 we have the next result (see also [7]).

Corollary 4.3. A continuous function f : En → R is comparison meaningful if and only
if there is a continuous, strictly monotone or constant mapping g : E → R and a function
µ ∈ Mn(E) such that

f = g ◦ Lµ. (4)

Note that in trivial cases whenf is constant,f admits also representations different
from (4), however, always in the formf = g ◦f∗, whereg is a constant function onE and
f ∗ : En → E is an arbitrary function. In all other cases the representation (4) is unique.

Corollary 4.4. A continuous function f : En → R is strongly comparison meaningful if
and only if there is a continuous, strictly monotone or constant mapping g : E → R and
an index i ∈ [n] so that

f = g ◦ Pi.

5 Conclusions

We have described the structure of a general comparison meaningful function. As corol-
laries, some results concerning special cases (monotone and/or continuous operators)
were characterized. Moreover, our characterization can be understood also as a hint how
to construct comparison meaningful operators.
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May’s Theorem for Trees
Fred R. McMorris∗, Robert C. Powers†

Abstract

Kenneth May in 1952 proved a classical theorem characterizing simple majority
rule for two alternatives. The present paper generalizes May’s theorem to the case of
three alternatives, but where the voters’ preference relations are required to be trees
with the alternatives at the leaves.

1 Introduction

In 1952, Kenneth May gave an elegant characterization of simple majority decision based
on a set with exactly two alternatives [9]. This work is a model of the classic voting
situation where there is two candidates and the candidate with the most votes is declared
the winner. May’s theorem is a fundamental result in the area of social choice and it has
inspired many extensions. See [2], [3], [4], [5], [8], and [10] for a sample of these results.

The goal of the current paper is to state and prove a version of May’s theorem in the
context of trees. In what follows,tree will mean a rooted tree with labelled leaves and
unlabelled interior vertices, and no vertex except possibly the root can have degree 2. In
the biological literature, such a treeT might represent the evolutionary history of the setS
of species, with interior vertices ofT representing ancestors of the species inS. Clearly
the simplest nontrivial case is when|S| = 3. In this case, there are exactly 4 distinct
trees with leaves labelled by the setS. It is within this context that we define a version of
simple majority decision for trees and characterize it in terms of three conditions. There
is a clear connection between our conditions and those given by May.

This paper is divided into four sections with this introduction being the first section.
Section 2 is background material on May’s work and includes the statement of May’s
Theorem. Section 3 contains the definition of majority decision for trees, and the main
result of this paper is stated and proved in Section 4.

∗Department of Applied Mathematics, Illinois Institute of Technology, Chicago, IL 60616, USA.
†Department of Mathematics, University of Louisville, Louisville, KY 40292, USA.
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2 Background on May’s Work

Let S = {x, y} be a set with two alternatives. The binary relationsR−1 = {(x, x), (y, y),
(y, x)}, R0 = S × S, andR1 = {(x, x), (y, y), (x, y)} are the three weak orders onS.
The relationR−1 represents the situation wherey is strictly preferred tox, R1 represents
the situation wherex is strictly preferred toy, andR0 represents indifference betweenx
andy.

Let K = {1, . . . , k} be a set withk ≥ 2 individuals and letW(S) be the set
{R−1, R0, R1}. A function of the form

f : W(S)k → W(S)

is called agroup decision functionby May.

For anyp = (D1, . . . , Dk) in W(S)k and for anyi ∈ {−1, 0, 1} let

Np(i) = |{Dj : Dj = Ri}|.

That is,Np(i) is the number of times the relationRi appears in thek-tuplep. It follows
thatNp(−1) + Np(0) + Np(1) = k andNp(i) ≥ 0 for eachi ∈ {−1, 0, 1}. The group
decision function

M : W(S)k → W(S)

defined by

M(p) =




R−1 if Np(1) − Np(−1) < 0
R1 if Np(1) − Np(−1) > 0
R0 if Np(1) − Np(−1) = 0

for anyk-tuplep is called, for obvious reasons,simple majority decision. The consensus
weak orderM(p) hasy strictly preferred tox if more individuals ranky strictly overx
thanx strictly overy. There is indifference betweenx andy if the number of individuals
that strictly prefery overx is the same as the number of individuals that strictly preferx
overy. Finally,M(p) hasx strictly preferred toy if the number of individuals that rankx
strictly overy is more than the number of individuals that ranky strictly overx.

May simplified the notation used above as follows. The relationR−1 is identified with
the number−1, the relationR0 is identified with the number0, and the relationR1 is
identified with1. Using this identification we can think of a group decision function as a
function with domain{−1, 0, 1}k and range{−1, 0, 1}.

Let f : {−1, 0, 1}k → {−1, 0, 1} be a group decision function. Then reasonable
properties thatf may or may not satisfy are the following.
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(A) For anyk-tuplep = (D1, . . . , Dk) and for any permutationα of K,

f(Dα(1), . . . , Dα(k)) = f(D1, . . . , Dk).

(N) For anyk-tuplep = (D1, . . . , Dk),

f(−D1, . . . ,−Dk) = −f(D1, . . . , Dk).

(PR) For anyk-tuplesp = (D1, . . . , Dk) andp′ = (D′
1, . . . , D

′
k),

if f(D1, . . . , Dk) ∈ {0, 1}, D′
i = Di for all i �= i0, and D′

i0
> Di0 ,

then
f(D′

1, . . . , D
′
k) = 1.

The conditions (A), (N), and (PR) correspond to conditions II, III, and IV given on
pages 681 and 682 in [9]. Condition (A) states thatf is a symmetric function of its
arguments and thus individual voters are anonymous. Condition (N) is calledneutrality .
This axiom is motivated by the idea that the consensus outcome should not depend upon
any labelling of the alternatives. Condition (PR) is calledpositive responsivenesssince
it reflects the notion that a group decision function should respond in a positive way to
changes in individual preferences. If the consensus outcomef(p) does not ranky strictly
preferred tox and one individuali0 changes their vote in a favorable way towardx, then
the consensus outcomef(p′) should strictly preferx to y.

We now can state May’s result.

Theorem 1 A group decision function is the method of simple majority decision if and
only if it satisfies (A), (N), and (PR).

3 Trees with 3 Leaves

As we have noted, May studied majority decision for two alternatives, which is the sim-
plest non-trivial case for weak orders. Since our goal is to prove a version of May’s result
for trees, we too restrict our attention to the simplest non-trivial case for trees; namely
when |S| = 3. For S = {x, y, z}, and{u, v} ⊂ S, let T{u,v} denote the tree with one
non-root vertex of degree three adjacent to the root,u, andv. Let T∅ be the tree whose
only internal vertex is the root.

Let T (S) be the set{T{x,y}, T{x,z}, T{y,z}, T∅} of all trees with the leaves labelled by
the elements ofS. We will call a function of the form

C : T (S)k → T (S)
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aconsensus functionto conform with current useage [6] . An elementP = (T1, . . . , Tk)
in T (S)k is called aprofile and the outputC(P ) is called aconsensus tree. For any
profileP = (T1, . . . , Tk) and for any two element subset{u, v} of S, let

NP (uv) = |{Ti : Ti = T{u,v}}|.

Also, let
NP (∅) = |{Ti : Ti = T∅}|.

SoNP (xy) + NP (xz) + NP (yz) + NP (∅) = k. The consensus function

Maj : T (S)k → T (S)

defined by

Maj(P ) =

{
T{u,v} if Np(uv) > k

2

T∅ otherwise

is calledmajority rule [7]. This consensus function is well known but it is not the best
analog of simple majority decisionsensu May. We feel that a better candidate is the
consensus function

M : T (S)k → T (S)

defined by

M(P ) =

{
T{u,v} if Np(uv) > max{NP (uw), NP (vw)}
T∅ otherwise

where{u, v, w} = {x, y, z}. It is easy to see that ifMaj(P ) = T{u,v} for some two
element subset{u, v} of S, thenM(P ) = Maj(P ). The converse is not true. For
example, ifP = (T1, . . . , Tk) such thatT1 = T{x,y} andTi = T∅ for all i �= 1 in K, then
M(P ) = T{x,y} andMaj(P ) = T∅. For the remainder of this paper the functionM will
be calledmajority decision.

4 Main Result

Following are translations of the conditions (A), (N), and (PR) to the context of trees. Let
C : T (S)k → T (S) be a consensus function, and consider the following conditions.

(A)+ For any profileP = (T1, ..., Tk) and any permutationα of K,

C(Pα) = C(P ).

wherePα = (Tα(1), ..., Tα(k)).
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Letβ : S → S be a permutation. Thenβ induces a map onT (S) as follows:βT∅ = T∅
andβT{u,v} = T{β(u),β(v)} for any two element subset{u, v} of S. If P = (T1, ..., Tk) is a
profile, then setβP = (βT1, ..., βTk).

(N)+ For any profileP = (T1, ..., Tk) and any permutationβ of S,

C(βP ) = βC(P ).

(PR)+ This condition has three parts.
(1) For any profilesP = (T1, ..., Tk) andP ′ = (T ′

1, ..., T
′
k), if T ′

i = Ti for all i �= i0 and
T ′

i0
= T{x,y}, thenC(P ) = T{x,y} impliesC(P ′) = T{x,y}.

(2) For any profilesP = (T1, ..., Tk) andP ′ = (T ′
1, ..., T

′
k), if T ′

i = Ti for all i �= i0,
Ti0 �∈ {T∅, T{x,y}}, andT ′

i0
= T∅, thenC(P ) = T{x,y} impliesC(P ′) = T{x,y}.

(3) Let P = (T1, ..., Tk) be a profile such thatC(P ) = T∅ andTi0 ∈ {T∅, T{x,y}}. Then
there exists a profileP ′ = (T ′

1, ..., T
′
k) such thatT ′

i = Ti for all i �= i0, T ′
i0

�= Ti0 , and
C(P ′) �∈ {T∅, T{x,y}}.

It is easy to make direct comparisons between conditions (A) and (N) for group de-
cision functions and conditions (A)+ and (N)+ for consensus functions. A comparison
between conditions (PR) and (PR)+ requires a bit more thought. The hypotheses of condi-
tion (PR) allow for different possibilities. One possibility, for example, is whenf(p) = 1,
D′

i0
= 1, andDi0 ∈ {−1, 0}. Another possibility isf(p) = 1, D′

i0
= 0, andDi0 = −1.

These two possibilities translate into items (1) and (2) in (PR)+. The treeT{x,y} is identi-
fied with1 and the treeT∅ is identified with0.

The final item (3) in (PR)+ corresponds to the case whenf(p) = 0 in (PR). Now
D′

i0
> Di0 implies thatDi0 ∈ {0,−1}. This in turn is motivation for the hypothesisTi0 ∈

{T∅, T{x,y}}. Notice the change in identification with the treeT{x,y} now corresponding to
−1. The conclusion in (PR) can be written asf(p′) �∈ {−1, 0} which corresponds to the
conclusionC(P ′) �∈ {T∅, T{x,y}} in (PR)+.

We need a lemma before we can state and prove our main result.

Lemma 2 Suppose C : T (S)k → T (S) satisfies (A)+, (N)+, and (PR)+. If P =
(T1, . . . , Tk) is a profile where C(P ) = H{x,y}, then NP (xy) > max{NP (xz), NP (yz)}.

Proof. Assume thatNP (xy) = NP (xz). Then|K1| = |K2| whereK1 = {i ∈ K : Ti =
T{x,y}} andK2 = {i ∈ K : Ti = T{x,z}}. Choose a permutationα of K such thatα maps
K1 ontoK2, K2 ontoK1, andα(i) = i for all i ∈ K \ (K1 ∪ K2). Defineβ : S → S
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by β(x) = x, β(y) = z, andβ(z) = y and note thatP = βPα. It follows from (A)+ and
(N)+ that

C(P ) = C(βPα) = βC(Pα) = βC(P ).

But C(P ) = T{x,y} andT{x,y} �= βT{x,y}. This contradiction implies thatNP (xy) �=
NP (xz).

A similar argument shows thatNP (xy) �= NP (yz).

Let r = NP (xz) − NP (xy) and assumer > 0. Choosei0 ∈ {i ∈ K : Ti = T{x,z}}
and defineP ′ = (T ′

1, . . . , T
′
k) by T ′

i = Ti for all i �= i0 and

T ′
i0

=

{
T∅ if r = 1
T{x,y} if r ≥ 2

It follows from (PR)+ thatC(P ′) = T{x,y}. Note that

NP (xy) ≤ NP ′(xy) ≤ NP ′(xz) < NP (xz).

SinceK is finite this process can be continued (if necessary) until we find a profileP ∗

such thatC(P ∗) = T{x,y} andNP ∗(xy) = NP ∗(xz). This contradicts the first part of the
proof. Therefore,NP (xy) > NP (xz).

A similar argument shows thatNP (xy) > NP (yz) and the proof is complete.�

Theorem 3 The consensus function C : T (S)k → T (S) is the majority decision function
if and only if C satisfies (A)+, (N)+, and (PR)+.

Proof. First, it is straightforward to verify that the consensus functionM satisfies (A)+,
(N)+, and (PR)+.

SupposeC : T (S)K → T (S) satisfies (A)+, (N)+, and (PR)+. Let P = (T1, . . . , Tk)
be an arbitrary profile. The goal is to show thatC(P ) = M(P ).

If C(P ) = T{x,y}, then, by Lemma 2,NP (xy) > max{NP (xz), NP (yz)}. By the
definition ofM , M(P ) = T{x,y} and soC(P ) = M(P ).

If C(P ) = T{x,z}, then defineβ : S → S by β(x) = x, β(y) = z, andβ(z) = y. It
follows from (N)+ that

C(βP ) = βC(P ) = βT{x,z} = T{x,y}.

SinceC(βP ) = T{x,y} it follows from above thatM(βP ) = T{x,y}. A second application
of (N)+ yields

βC(P ) = C(βP ) = T{x,y} = M(βP ) = βM(P ).

Sinceβ induces a bijection onT (S) it follows thatC(P ) = M(P ).
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If C(P ) = T{y,z}, then use a variation of the previous argument to establish that
C(P ) = M(P ).

The final case is whenC(P ) = T∅. Assume thatM(P ) �= T∅. By using condition
(N)+ if necessary we may assumeM(P ) = T{x,y}. By the definition ofM , NP (xy) >
max{NP (xz), NP (yz)}. Let i0 ∈ {i ∈ K : Ti = T{x,y}}. It follows from (PR)+ that
there exists a profileP ′ = (T ′

1, . . . , T
′
k) such thatT ′

i = Ti for all i �= i0, T ′
i0
�= Ti0 , and

C(P ′) �∈ {T∅, T{x,y}}. ThenC(P ′) = T{x,z} or T{y,z}. Assume without loss of generality
thatC(P ′) = T{x,z}. By Lemma 2 and (N)+, NP ′(xz) > max{NP ′(xy), NP ′(yz)}. Thus
T ′

i0
= T{x,z} andTi0 = T{x,y}. In fact,NP ′(xz) = NP ′(xy) + 1. If K1 = {i ∈ K : T ′

i =
T{x,z}} andK2 = {i ∈ K : T ′

i = T{x,y}}, then|K1| = |K2| + 1. Choose a permutation
α of K such thatα mapsK2 onto K1 \ {i0}, K1 \ {i0} onto K2, andα(i) = i for all
i ∈ K \ (K2 ∪ K1 \ {i0}). In particular,α(i0) = i0. Note thatP ′

α = βP . It follows from
(A)+ and (N)+ that

C(P ′) = C(P ′
α) = C(βP ) = βC(P ) = βT∅ = T∅,

contrary toC(P ′) = T{x,z}. This last contradiction completes the proof of our main result.
�

It is not possible to drop any one of (A)+, (N)+, (PR)+ and still uniquely determine
the consensus functionM . The projection functionC1 : T (S)k → T (S) defined by
C1(P ) = T1 for any profileP = (T1, . . . , Tk) satisfies (N)+ and (PR)+ but it does not
satisfy (A)+. The constant functionC2 : T (S)k → T (S) defined byC2(P ) = T{x,y} for
any profileP satisfies (A)+ and (PR)+ but not (N)+. The majority consensus ruleMaj
satisfies (A)+, (N)+, and items (1) and (2) in (PR)+ but does not satisfy item (3) in (PR)+.

It would be interesting to extend the consensus functionM to trees with more than 3
leaves. However, it turns out that there is not a unique extension and in some cases the
consensus outcome is not even a tree. The details of this work will be given in a future
paper.
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An algorithmic solution for an optimal decision
making process within emission trading markets

Stefan Wolfgang Pickl∗

Abstract

We present an algorithmic solution for optimal decision making in emission trad-
ing markets. The economy is modelled as a time discrete system. The trajectories
correspond to possible strategies of the players. In this paper, we treat the strategies
as control parameters and require that they lie in the core of a given cost-game. The
suggested algorithmic solution principle is based on dynamic programming tech-
niques. The uniqueness of the solution which is represented by the core is proved.

Key words : Decision making process, algorithmic solution, knowledge interaction

1 Introduction

The conference of Kyoto 1997 institutionalized a new and important economic instrument
for environmental protection, the Joint-Implementation Program (JI), see Kyoto (1997).
The program intends to strengthen international cooperations between enterprises in order
to reduce greenhouse gas emissions. Specifically, the concept of Joint Implementation
involves a bilateral or multilateral deal in which countries facing high pollution abate-
ment costs invest in abatement in countries with lower costs, and receive credit for the
resulting reduction in greenhouse gas emissions. The reduction in emissions resulting
from technical cooperations are recorded at the Clearing House. The realization of Joint-
Implementation (JI) is subject to technical and financial constraints. The so-called TEM
model was developed to capture these constraints in a empirically practicable way. For
more details, see Pickl (1999), where the TEM model is treated as a time-discrete control
problem, and Pickl (2001), who analyses the feasible control set.

∗Santa Fe Institute, 1399 Hyde Park Road Santa Fe, New Mexico 87501,
U.S.A.{pickl}@cs.unm.edu
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In the following sections, we present a new bargaining approach to international emis-
sions trading markets within the so-called Kyoto game. The Kyoto game is part of the
TEM model. Nash equilibria and Pareto optima are characterized and calculated applying
dynamic programming techniques.

2 Economic Motivation: Multistep Investments

In order to get an intuition of the following allocation problem, let us begin with a very
simple case where we have only two players. The two players have two alternative strate-
gies to invest. The origin of the coordinate system is the starting point of the two players.
Each player tries to reach the black square which stands for the level of reductions of
emissions mentioned in Kyoto Protocol in a given number of time-steps. In the follow-
ing, we assume only 3 time-steps:
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Figure 1: Multistep investments

The different paths are related with independent costs which are recorded at the clear-
ing house. This institution is mentioned explicitly in Kyoto protocol.

2.1 A Non-Cooperative Approach

In the figure 3.1. the players make their choice independently and simultaneously. Each
player can choose between two alternatives strategies (1, 2) or (2, 1), meaning moving
first 1-step then 2-steps or first 2-steps then1-step. One of the grey squares will be attained
after the first time-step. The directions of movement are shown on the figure in the small
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diagram. Player 1 goes to the right. To reduces his CO2 emissions by 1 unit, he has to
invest 3 monetary units. To attain a reduction of 2 units, then he has to invest 5 units. The
strategy (2, 1) leads to a greater reduction at the beginning and a smaller investment at the
end of the period. The costs are lower than in the (1, 2) case, reflecting the fact that early
innovations are favorable. We can transfer this simple model with two players and two
time-steps to a simple matrix game, which we call the Kyoto-game.

Player 1
Pl

ay
er

 2

(1,2)

(2,1)

(1,2) (2,1)1
2

7

7 8

9

9

8

8

8

Figure 2: Nash Equilibria

The combinations of strategies {(1, 2), (1, 2)} and {(2, 1), (2, 1)} are both Nash equi-
libria. Unilateral deviations do not profit any player. Nevertheless, both players prefer the
combination of strategies {(1, 2), (1, 2)}.

If the clearing house wants to support a given combination of strategies, say {(1, 2),
(1, 2)}, then it can induce it by adding taxes to specific payoff combinations. This very
simple example gives an intuition about the situation if many players are involved. Sym-
metry aspects are observable in that example. If the relationships are not symmetric, we
construct a worst-case scenario and consider the minimum of the two parameters. Fur-
thermore, as the necessary data is given to the clearing house, real time monitoring of
the actual developments is possible. We now extend the analysis to a general n-player
situation with an arbitrary number of time-steps.

2.2 A Cooperative Approach

In such a general n-player multistep situation the distribution of the costs along the paths
(strategies) can be interpreted as imputations of an underlying time-discrete dynamical
game. For such a game we consider now the core as suitable solution concept:
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Let us introduce the well known allocation concept of the core:

Definition 2.1 Let vt a cooperative n-person game with y(K) =
∑
i∈K

yi, K ⊆ N , where

y is an imputation of the game. Then we define the Core by:

Corevt := {y ∈ R
n | y(N ) = vt(N ) and y(K) ≥ vt(K) for all K ⊆ N} .

The expression for Corevt indicates that each time-step the core depends on the state
x(t) of an underlying time-discrete system. In the following we assume that the Core
exists at each time-step. Then we get the following problem formulation if we regard the
general multistep Kyoto game (x̃i(t) indicates the state of the i-th player at time-step= t;
this state defines the core):

x̃i(t) ∈ Xi ⊆ R
ni (i = 1, . . . , n , t = 0, . . . , N )

ũi(t) ∈ Core(x̃(t)) ⊆ R
mi (i = 1, . . . , n , t = 0, . . . , N − 1) (1)

x̃i(t + 1) = x̃i(t) + fi(x̃(t), ũ(t)) .

In vector notation, we write (1) as follows:

xt+1 = Tt(xt, ut), Tt : Xt × Ut

(t = 0, . . . , N − 1), where

xt := (x̃1(t), x̃2(t), . . . , x̃n(t)),

ut := (ũ1(t), x̃2(t), . . . , ũn(t)).

We call xt+1 = Tt(xt, ut) a general multistep process with x0 as start vector and where
Tt is a suitable vector transformation. It is a generalization of figure 3.1.

The states of the Kyoto game xi = (x
(1)
i , x

(2)
i , . . . x

(α)
i )T for i = 1, . . . , N are ele-

ments of the nonempty set Xi, xi ∈ R
α . The parameter α describes the dimension of

the state vector. We call the states which can be realized feasible.

The process is restricted to a finite time-period [t0, T ] . Starting point is t0 = 0.
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2.3 Time-Discrete Kyoto Game

We introduce intervals Ip = [tp−1, tp] of length ∆p with tT = T . Each interval Ii

is the i− step of the generalized Kyoto Game with N steps. The intervals indicate the
stages of the intuitive example. The advantage of taking variable intervals lies in the fact
that variable bargaining situations can be described. Now, we introduce the following
objective function

Z(x, u) =
P−1∑
p=0

Vp(xp, up) + VP (xP ), (2)

Vp objective function of the p -th step:it depends on the state xp

the decision parameter up,

VP objective function of the P -th step: it depends upon the input

value xP assuming that the decision value on the last step is zero

We consider Z(x, u) depending on the feasible multistep decision process

PR = (x, u) := (x0, x1, . . . , xP , u0, u1, . . . , uP−1)

where, xt ∈ Xt and ut ∈ Ut(xt) := Core(xt),

andxt+1 = Tt(xt, ut) ∈ Xt+1(t = 0, . . . , P − 1).

We get an algorithmic solution of the problem if we introduce subprocesses PRj just at
the (j + 1) -th step of the whole process 0 ≤ j ≤ P − 1 P − j :

PRj := (x, u)j := (xj, xj+1, . . . , xP , uj, uj+1, . . . , uP ),

where xt ∈ Xt, ut ∈ Ut(Xt) := Core(xt), and

xt+1 = Tt(xt, ut) ∈ Xt+1 (t = j, j + 1, . . . , P − 1)

Based on the sequence PRj we have a sequence of objective functions

Zj(PRj) = Zj((x, u)j)

=
P−1∑
i=j

Vi(xi, ui) + VP (xP ) .

It is obvious that for j = 0 we have again the whole process PR :
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Z(P ) = Z(x, u) =
N−1∑
i=0

Vi(xi, ui) + VP (xP ). (3)

In the next part we present a dynamic programming approach which leads to a solution
of that game.

2.4 Sequencing and Dynamic Programming

We introduce the following decision function which indicates that the players can decide
between several strategies. We assume that this decision function depends on the state of
the system. This leads to the following representation:

sj := [sj(xj), sj+1(xj+1), . . . , sP−1(xP−1)] decision function 0 ≤ j ≤ P − 1.

In the next part we present a solution principle which can be obtained by the well-
known Bellmann Principle of Dynamic Programming.

For the objective function we get the following representation:

Zj =
P−1∑
t=j

Vt(xt, ut) + VP (xP )

= Zj(xj, xj+1, . . . , xP , sj(xj), sj+1(xj+1), . . .)

sP−1(xP−1))

=
P−1∑
t=j

Vt(xt, st(xt)) + VP (xP )

There is only a dependence on the state vector and the decision strategy. We are
independent on the control parameter which was not part of the Kyoto game. Additionally,
in the next section we introduce the concept of optimality related to that strategy sj . First,
we call a decision function feasible, if st(xt) ∈ Ut(xt) for all xt ∈ Xt. Instead of
xt = Tt−1(xt−1, ut−1) we get xt = Tt−1(xt−1, st−1(xt−1)).
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Introducing the following abbreviations

Z∗
P,sP (xP ) = VP (xP ) ,

Z∗
P−1,sP−1(xP−1) = VP−1(xP−1, sP−1(xP−1 =)) +

VP (xP )︸ ︷︷ ︸
Z∗

P,sP (TP−1(xP−1,sP−1(xP−1)))

Z∗
t,st(xt) = Vt(xt, st(xt))

+Z∗
t+1,st+1(Tt(xt, st(xt))),

we obtain the following definition for optimality:

Definition 2.2 A feasible decision strategy

s̃j = [s̃j(xj), = s̃j+1(xj+1), . . . , s̃P−1(xP−1)]

of the process P is called optimal if the following inequality is valid:

Z∗
j,s̃j(xj) ≥ Z∗

j,sj(xj) for all xj ∈ Xj, for each feasible decision strategy sj .

We call the functions which realize an optimal decision strategy, optimal decision
functions. If we take t = 0, we apply the same terminology for the whole process of the
Kyoto game. The paths of the game are now interpreted as several strategies.

This functions depends only on the start vector xj ∈ Xj . Furthermore, they describe
the maximum of the characteristic function Zj for the process j, j + 1, . . . , N . We
assume that the decision strategy sj is feasible. It is obvious, that each optimal strategy
s̃t represents an optimal process P̃Rt .

We call the functions s̃t, t = j, j + 1, . . . , N − 1 , which represent an optimal
decision policy, optimal decision functions. In the same way we call the states of only a
part of a process Pt optimal, too. If t = 0, then we have the same situation for the whole
process. Instead of varying over all possible strategies we may vary over all feasible
processes:

Let us furthermore introduce:

fP−j(xj) = max
ut∈Ut(xt)t=j,...,P−1

Zj((x, u)j)

= max
ut∈Ut(xt)t=j,...,P−1

Z∗
j (xj, uj)

(j = 0, 1, . . . , P − 1),
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where xt+1 = Tt(xt, ut) and f0(xP ) = VP (xP ) . If we use :

Zj((x, u)j) =
P−1∑
t=j

Vt(xt, ut) + VP (xP )

then we get:

fP−j(xj) = max
ut∈Ut(xt)t=j,...,P−1

[
P−1∑
t=j

Vt(xt, ut) + VP (xP )

]

(j = 0, 1, . . . , P − 1).

Applying the following auxiliary lemma (Pickl 1999) we obtain a method for a suc-
cessive and algorithmic solution principle.

Lemma 2.1 Let Y1 ⊂ R and Y2 ⊂ R . The functions g1 : Y1 → R and g2 : Y1×Y2 → R

are assumed to be continuous, the sets Y1 and Y2 are compact. Then, this yields

max
y1∈Y1y2∈Y2

[g1(y1) + g2(y1, y2)] = max
y1∈Y1

[g1(y1) + max
y2∈Y2

g2(y1, y2)] .

This means

fP−j(xj) = max
uj∈Uj(xj)

{Vj(xj, uj)+ max
ut∈Ut(xt)

t=j+1,...,P−1

[
P−1∑

t=j+1

Vt(xt, ut) + VP (xP )

]}

= max
uj∈Uj(xj)

{Vj(xj, uj) + max
ut∈Ut(xt)

t=j+1,...,P−1

Z∗
j+1(xj+1, u

j+1)}

= max
uj∈Uj(xj)

{
Vj(xj, uj) + fP−(j+1)(xj+1)

}
(j = 0, 1, . . . , P − 1).

Replacing xt+1 = Tt(xt, ut) , we get the Bellmann functional equation:

f0(xP ) = VP (xP )

fP−t(xt) = max
ut∈Ut(xt)

{Vt(xt, ut)+ fP−(t+1)(Tt(xt, ut))
}

.

It is obvious that the functional equations are necessary and sufficient conditions for
an optimal decision parameter ũt . Each solution of the Bellmann equation is an optimal
solution of the process and each optimal solution of the process is a solution of (4). Fur-
thermore this representation contains an algorithmic solution principle which results from
the following two theorems:
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Theorem 2.1 Let (4) be the Bellmann functional equation. Then, there exists an optimal
strategy [s̃j(xj), . . . , s̃N−1(xN−1)] of the process PRj , which starts at step j + 1 . The
strategy depends only on the input parameter xj ∈ Xj .

The proof is obvious. More important is the following theorem:

Theorem 2.2 Let the Bellmann functional equation of (4) be given. Let

s̃j(xj) = [s̃j(xj), . . . , s̃N−1(xj)] (j = 0, 1, . . . , N − 1) (4)

be an optimal decision strategy for the process PRj with xj ∈ Xj .
The process

s̃j+1 = [s̃j+1(xj), s̃j(xj), . . . , s̃N−1(xj)] (5)

which results from (3) is an optimal decision policy for the process PRj+1.

Proof 2.1 The proof is done by induction. Let us assume that ũN−1 = s̃N−1(xN−1) is an
optimal strategy and for uN−1 = sN−1(xN−1) it is valid

f1(xN−1) = max
uN−1∈UN−1(xN−1)

[VN−1(xN−1, uN−1) + VN(TN−1(xN−1, uN−1))]

= VN−1(xN−1, s̃N−1(xN−1)) + VN(TN−1(xN−1, s̃N−1(xN−1)))

≥ VN−1(xN−1, sN−1(xN−1)) + VN(TN−1(xN−1, sN−1(xN−1)))︸ ︷︷ ︸
Z∗

N,sN (xN )

= Z∗
N−1,sN−1(xN−1) (6)

f1(xN−1) is per definitionem the maximum over

max
sN−1(xN−1)∈UN−1(xN−1)

Z∗
N−1,sN−1(xN−1) = Z∗

N−1,s̃N−1(xN−1) .

Then we get

Z∗
N−1,s̃N−1(xN−1) ≥ Z∗

N−1,sN−1(xN−1) (7)

Thereby s̃N−1(xN−1) is an optimal strategy. This terminates the first induction step. Let
us assume that for one i we have, N − 1 > i > j . These assumptions are valid for a
certain i. In a next step we have to prove that the induction assumption is valid for i−1 :

fN−i(xi) = Z∗
i,s̃i(xi) ≥ Z∗

i,si(xi) for xi ∈ Xi

and every suitable strategy si . Applying (4) we get

Z∗
i−1,si−1(xi−1) = Vi−1(xi−1, si−1(xi−1)) + Z∗

i,si [Ti−1(xi−1, si−1(xi−1))] (8)
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In the following we consider ui−1 = si−1(xi−1) . The variable xi−1 ∈ Xi−1 is fixed
but variably chosen. Applying the induction hypothesis we get:

Vi−1(xi−1, ui−1) + Z∗
i,s̃i(Ti−1(xi−1, ui−1)) ≥ Vi−1(xi−1, ui−1) + Z∗

i,si(Ti−1(xi−1, ui−1))

This expression is valid for all ui−1 ∈ Ui−1(xi−1) and all feasible si . We search for a
maximum on the left side, ui−1 ∈ Ui−1(xi−1) . An optimal ui is indicated by ũi . Hereby,
we get

Vi−1(xi−1, ũi−1) + Z∗
i,s̃i(Ti−1(xi−1, ũi−1))︸ ︷︷ ︸

Z∗
i−1,s̃i−1 (xi−1)

≥ Vi−1(xi−1, ui−1) + Z∗
i,si(Ti−1(xi−1, ui−1))︸ ︷︷ ︸

Z∗
i−1,si−1(xi−1)

⇒ (9)

Z∗
i−1,s̃i−1(xi−1) = Vi−1(xi−1, ũi−1) + fN−i(Ti−1(xi−1, ũi−1)) =

max
ui−1∈Ui−1(xi−1)

[Vi−1(xi−1, ui−1) + fN−i(Ti−1(xi−1, ui−1))] =

fN−(i−1)(xi−1) = Z∗
i−1,s̃i−1(xi−1) ≥ Z∗

i−1,si−1(xi−1)

If we assume that xi−1 is variable we can determine ũi−1 = s̃i−1(xi−1) and ui−1 =
si−1(xi−1) in such a way that the last condition is valid for all (!) xi−1 ∈ Xi .

This results expresses the fact that an optimal strategy of a sub-process
[s̃j(xj), . . . , s̃N−1(xN−1)] is only dependent on the value xj . This leads to the following
fact which can be seen as a version of the Bellmann Optimization principle:

Theorem 2.3 We consider the Bellmann functional equations (4). If we regard a subpro-
cess Pj , which begins on the stage j + 1 , there exists an optimal strategy [s̃j(xj), . . . ,
s̃N−1(xN−1)] which depends only of the stage xj ∈ Xj .

The whole process before the actual state (j+1) has no effect on the optimal strategy.
Applying this results we can prove:

Theorem 2.4 Let (4) be given as the Bellman functional equations. Let s̃j(xj) =
[s̃j(xj), . . . , s̃N−1(xj)] (j = 0, 1, . . . , N − 1) be an optimal strategy of the subprocess
Pj mit xj ∈ Xj .
If we consider the subprocess s̃j+1 = (s̃j+1, s̃j(xj), . . . , s̃N−1(xj)) constructed by (3)
we get an optimal strategy for the subprocess Pj+1.
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Proof 2.2 We proof this result again by an indirect construction. Let us therefore assume
that s∗j+1 is an optimal policy, which is different from s̃j+1 in at least one k, k =
j + 1, . . . , N − 1 . Then we get:

Z∗
j+1,s∗j+1(xj+1) > Z∗

j+1,s̃j+1(xj+1)

=⇒
Vj(xj, s̃j(xj)) + Z∗

j+1,s∗j+1(xj+1)︸ ︷︷ ︸
Z∗

j,s∗j (xj)

> Vj(xj, s̃j(xj)) + Z∗
j+1,s̃j+1(xj+1)︸ ︷︷ ︸

Z∗
j,s̃j (xj)

This is a contradiction to the fact that s̃j(xj) was assumed to be an optimal strategy.

3 Existence Theorem

In the following, we assume that our problem has at least one feasible solution. The state
regions Xi ∈ R

α, i = 0, . . . , P , are bounded and closed. The regions are described by the
core of the Kyoto interval game: The decision regions Ui(xi) ⊆ R

β with xi ⊆ Xi, i =
0, . . . , P − 1 , will be represented by the Core of the game. Furthermore we assume the
core to be bounded. Applying the well known theorem of Krein-Milman, each general
ε-core (Driessen (1986)) is the convex hull of the extremal points. For each state xi the
region Ui(xi) is a polyhedron and a compact set. Note that in the Kyoto Game we have
ε = 0.

Additionally, we assume that the functions Vi and the state transformations Ti are
continuous and restricted to the following regions:

{(xi, ui) | xi ∈ Xi, ui ∈ Ui(xi)}, i = 0, 1, . . . , P − 1

{xP | xP ∈ XP .}

Now, we formulate the following main theorem:

Theorem 3.1 Let Ui(xi), i = 0, 1, . . . , P − 1 , be continuous set functions. The assump-
tions mentioned above are valid for our process which is described by (2) and (3). The
decision set is presented by the core of the cost-game. Then we state that our problem has
one solution.
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Proof 3.1 Let us take Z(v) = Z(x, u) =
N−1∑
i=0

Vi(xi, ui) + VN(xN) and

xi+1 = Ti(xi, ui) . The variable x0 is fixed. As Vi, VN and Ti for i = 1, . . . , N are
continuous functions, the process Z(x, u) is a continuous mapping. The assumptions
states that the control sets and the sets of the feasible states are compact. Applying the
well-known theorem of Weierstrass we get an existence result.

4 Conclusion

We present an algorithmic solution for a time-discrete investment model occurring in
emission trading markets. The properties of the economic background lead to the de-
scribed mathematical model of a time-discrete dynamical process. Applying dynamic
programming techniques we can prove an existence theorem. It states that a suitable
solution is represented by the core.
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Preferences On Intervals: a general framework
Alexis Tsoukìas∗, Philippe Vincke†

Abstract

The paper presents a general framework for interval comparison for preference
modelling purposes. Two dimensions are considered in order to establish such a
framework: the type of preference structure to be considered and the number of
values associated to each interval. It turns out that is possible to characterise well
known preference structures as special cases of this general framework.

Key words : Intervals, Preferences, Orders

1 Introduction

Preferences are usually considered as binary relations applied on a set of objects, let’s say
A. Preference modelling is concerned by two basic problems (see [31]).

The first can be summarised as follows. Consider a decision maker replying to a set
of preference queries concerning a the elements of the setA: “do you prefera to b?”,
“do you preferb to c?” etc.. Given such replies the problem is to check whether exists
(and under which conditions) one or more real valued functions which, when applied to
A, will return (faithfully) the preference statements of the decision maker. As an example
consider a decision maker claiming that, given three candidatesa, b andc, he is indifferent
betweena andb as well as betweenb andc, although he clearly prefersa to c. There are
several different numerical representations which could account for such preferences. For
instance we could associate toa the interval[5, 10], to b the interval[3, 6] and toc the
interval [1, 4]. Under the rule thatx is preferred toy iff the interval associated tox is
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completely to the right (in the sense of the reals) of the one associated toy and indifferent
otherwise, the above numerical representation faithfully represents the decision makers
preference statements.

The second problem goes the opposite way. We have a numerical representation for
all elements of the setA and we would like to construct preference relations for a given
decision maker. As an example consider three objectsa, b andc whose cost is 10, 12
and 20 respectively. For a certain decision maker we could establish thata is better than
b which is better thanc. For another decision maker the model could be that botha and
b are better thanc, but they are indifferent among them since the difference is too small.
In both cases the adoption of a preference model implies the acceptation of a number of
properties the decision maker should be aware of.

In this paper we focus our attention on both cases, but with particular attention to the
situations where the elements of the setA can or are actually represented by intervals (of
the reals). In other terms we are interested on the one hand to the necessary and sufficient
conditions for which the preference statements of a decision maker can be represented
through the comparison of intervals and on the other hand on general models through
which the comparison of intervals can lead to the establishment of preference relations.

The paper’s subject is not that new. Since the seminal work of Luce ([16]) there have
been several contributions in literature including the classics [10], [26] and [22], as well
as some key papers: [1], [6], [9], [11], [12]. Our main contribution in this paper is to
suggest a general framework enabling to clarify the different preference models that can
be associated to the comparison of intervals including situations of crisp or continuous
hesitation of the decision maker.

The paper is organised as follows. In Section 2 we introduce all basic notation and all
hypotheses that hold in the paper. In section 3 we introduce the structure of the general
framework we suggest, based on two dimensions: the type of preference structure to be
used and the structure of the intervals. In section 4 we introduce some further conditions
enabling to characterise well known preference structures in the literature. We conclude
showing the future research directions of this work.

2 Notation and Hypotheses

In the following we consider a countable set of objects which we denote withA. Variables
ranging withinA will be denoted withx, y, z, w · · · , while specific objects will be denoted
a, b, c · · · . LettersP,Q, I, R, L · · · , possibly subscribed, will denote preference relations
on A, that is binary predicates on the universe of discourseA × A (each binary relation
being a subset ofA × A). Lettersf, g, h, r, l · · · , possibly subscribed, will denote real
valued functions mappingA to the reals. Since we work with intervals we will reserve
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the lettersr andl for the functions representing, respectively, the right and left extreme
of each interval. Lettersα, β, γ · · · will represent constants. The usual logical notation
applies including its equivalent set notation. Therefore we will have:
- P ∩ R equivalent to∀x, y P (x, y)∧R(x, y);
- P ⊆ R equivalent to∀x, y P (x, y)→R(x, y).
We will add the following definitions:
- P.R equivalent to∀x, y∃z P (x, z)∧R(z, y);
- Io = {(x, x) ∈ A × A}, the set of all identities inA × A.

As far as the properties of binary relations are concerned we will adopt the ones intro-
duced in [23]. For specific types of preference structures such as total orders, weak orders
etc. we will equally adopt the definitions within [23].

We introduce the following definition:

Definition 2.1 A preference structure is a collection of binary relationsPj j = 1, · · ·n,
partitioning the universe of discourseA × A:
- ∀x, y, j Pj(x, y) → ¬Pi�=j(x, y);
- ∀x, y∃j Pj(x, y) ∨ Pj(y, x)

Further on we will often use the following proposition:

Proposition 2.1 Any symmetric binary relation can be seen as the union of two asymmet-
ric relations, the one being the inverse of the other, andIo.

Proof. Obvious.

We finally make the following hypotheses:

H1 We consider only intervals of the reals. Therefore there will be no incomparability
in the preference structures considered.

H2 If necessary we associate to each interval a flat uncertainty distribution. Each point
in an interval may equally be the “real value”.

H3 Without loss of generality we can consider only asymmetric relations.

H4 We consider only discrete sets. Therefore we can consider only strict inequalities.

Remark 2.1 Hypothesis 3 is based on proposition 2.1. The reason for eliminating sym-
metric relations from our models will become clear later on in the paper. However, we can
anticipate that the use of asymmetric relations allows to better understand the underlying
structure of intervals comparison.
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Remark 2.2 Hypothesis 4 makes sense only when the purpose is to establish a represen-
tation theorem for a certain type of preference statements. The basis idea is that, since
numerical representations of preferences are not unique,A being countable, is always
possible to choose a numerical representation for which it never occurs that any of the
extreme values of the intervals associated to two elements ofA are the same. However, in
the case the numerical representation is given and the issue is to establish the preference
structure holding, the possibility that two extreme values coincide cannot be excluded.

3 General Framework

In order to analyse the different models used in the literature in order to compare intervals
for preference modelling purposes we are going to consider two separate dimensions.

1. The type of preference structure. We basically consider the following cases.

• Use of two asymmetric preference relationsP1 andP2. Such a preference
structure is equivalent to the classic preference structure (in absence of in-
comparability) considering only strict preference (P2 in our notation) and in-
difference (P1 ∪ P−1

1 ∪ Io in our notation). For more details see [23].

• Use of three asymmetric preference relationsP1, P2 andP3. Such structures
are known under the name ofPQI preference structures (see [30]), allowing
for a strict preference (P3 in our notation), a “weak preference” (P2 in our no-
tation), representing an hesitation between strict preference and indifference
and an indifference (P1 ∪ P−1

1 ∪ Io in our notation).

• Use ofn asymmetric relationsP1, · · ·Pn. UsuallyPn to P2 representn − 1
preference relations of decreasing “strength”, whileP1∪P−1

1 ∪Io is sometimes
considered as indifference. For more details the reader can see [9].

• Use of a continuous valuation of hesitation between strict preference and in-
difference. In this case we consider valued preference structures, that is pref-
erence relations are considered fuzzy subsets ofA × A. The reader cas see
more in [20].

2. The structure of the numerical representation of the interval. We consider the fol-
lowing cases:

• Use of two values. Such two values can be equivalently seen as the left and
the right extreme of each interval associated to each element ofA or as a value
associated to each element ofA and a threshold allowing to discriminate any
two values.
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• Use of three values. Again several different interpretations can be considered.
For instance the three values can be seen as the two extremes of each interval
plus an intermediate value aiming to represent a particular feature of the in-
terval. They can be seen as a value associated to each element ofA and two
thresholds aiming to describe two different states of discrimination. They can
also be seen as representing an extreme value of the interval, while the other
extreme is represented by an interval.

• Use of four or more values. The reader will realise that we are extending the
previous structures. The four values can be seen as the two extremes and two
“special” intermediate values or as two imprecise extremes such that each of
them is represented by an interval. The use ofn values can be seen as a value
associated to each element ofA andn − 1 thresholds representing different
intensities of preference. Possibly we can extend such a structure to the whole
length of any interval associated to each element ofA such that we may obtain
a continuous valuation of the preference intensity.

In table 1 we summarise the possible combinations of preference structures and inter-
val structures.

2 values 3 values > 3 values
2 asymmetric Interval Orders Split Interval Orders Tolerance and
relations and Semi Orders and Semi Orders Bi-tolerance

orders
3 asymmetric PQI Interval Orders Pseudo orders
relations and Semi Orders and double -

threshold orders
n asymmetric Multiple
relations - - Interval Orders

and Semi Orders
valued Valued Preferences
relations Fuzzy Interval Orders and Semi Orders

Continuous PQI Interval Orders

Table 1: A general framework for interval comparison

The reader can see more details in the following references:
- Interval Orders and Semi Orders: [10], [11], [16], [22];
- Split Interval Orders and Semi Orders: [2], [13];
- Tolerance and Bi-tolerance orders: [3], [4], [5], [14], [15];
- PQI Interval Orders and Semi Orders: [17], [18], [28];
- Pseudo Orders and Double Threshold Orders: [24], [25], [27], [30];

283



Preferences On Intervals: a general framework

- Multiple Interval Orders and Semi Orders: [6], [8], [9];
- Valued Preference Structures: [7], [19], [20], [21], [29].

4 Further Conditions

The general framework discussed in the previous section suggests that there exist sev-
eral different ways to compare intervals in order to model preferences. Each of such
preference models could correspond to different interpretations associated to the values
representing each interval. For instance consider the case where only the two extreme
values of each interval are available and only two asymmetric relations are used. We can
establish:
- P2(x, y) ⇔ l(x) > r(y)
- P1(x, y) ⇔ r(y) > l(x) > l(y)
and we obtain a classic Interval Order preference structure
or we can establish:
- P2(x, y) ⇔ l(x) > l(y) ∧ r(x) > r(y)
- P1(x, y) ⇔ r(x) > r(y) > l(y) > l(x)
and we obtain a partial order of dimension 2 (P2).

A first general question is the following:
- given a setA, if it is possible to associate to each elementx of A n functionsfi(x), i =
1, · · ·n, such thatfn(x) > · · · > f1(x), how many preference relations can be estab-
lished?

In order to reply to this question we consider different conditions which may apply to
the values of each interval and their differences. For notation purposes, given an interval
to whichn values are associated, we denote thei-th sub-interval of any elementx ∈ A
(from valuefi(x) to valuefi+1(x)) asxi. When there is no risk of confusionxi will also
represent the “length” of the same sub-interval (the quantityfi+1(x)−fi(x)). We are now
ready to consider the following cases:

1. No conditions. We consider that the functions describing the intervals are free to
take any value.

2. Coherence conditions. We impose that∀i f1(x) > f1(y) → fi(x) > fi(y). This is
equivalent to claim that∀i xi > yi.

3. Weak monotonicity conditions. We now impose that∀i, j, i ≥ j xi ≥ yj. In other
terms we demand that there are no sub-intervals ofx included to any sub-interval
of y. Such a condition implies coherence (but not vice-versa).
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free coherent weak monotone monotone
2 values: 3 2 2 2
3 values: 10 5 4 3
4 values: 35 14 8 4
n values: (2n)!

2(n!)2
1

n+1
(2n
n ) ?(2n−1)? n

Table 2: Number of possible relations comparing intervals

4. Monotonicity conditions. We now impose that∀i xi ≥ yi ≥ xi−1 ≥ yi−1 (sub-
intervals ofx or y are never included and they do not decrease as the indexi in-
creases). Such a condition implies weak monotonicity (but not viceversa). The
reader can easily check that a representation which satisfies such a condition is the
one where all sub-intervals have the same constant length.

In table 2 we summarise the situation for all the above cases.

A second question concerns the existence of a general structure among the possible
relations that the comparison of intervals allow. Consider for instance the ten possible
relations allowed by the use of three values associated to each interval. Is there any
relation among them?

In order to reply to this question we consider any preference relation as a vector of
2n elements. Indeed, sincePj(x, y) compares two vectors (x andy) of n elements each
(〈f1(x), · · · fn(x)〉 and〈f1(y), · · · fn(y)〉), there is a unique sequence of such2n values
which exactly describes each relationPj. Consider the case of three values and the ten
possible relations. These can be described as follows:
P1(x, y) : 〈f1(y), f1(x), f2(x), f3(x), f2(y), f3(y)〉
P2(x, y) : 〈f1(y), f1(x), f2(x), f2(y), f3(x), f3(y)〉
P3(x, y) : 〈f1(y), f1(x), f2(y), f2(x), f3(x), f3(y)〉
P4(x, y) : 〈f1(y), f1(x), f2(x), f2(y), f3(y), f3(x)〉
P5(x, y) : 〈f1(y), f1(x), f2(y), f2(x), f3(y), f3(x)〉
P6(x, y) : 〈f1(y), f2(y), f1(x), f2(x), f3(x), f3(y)〉
P7(x, y) : 〈f1(y), f1(x), f2(y), f3(y), f2(x), f3(x)〉
P8(x, y) : 〈f1(y), f2(y), f1(x), f2(x), f3(y), f3(x)〉
P9(x, y) : 〈f1(y), f2(y), f1(x), f3(y), f2(x), f3(x)〉
P10(x, y) : 〈f1(y), f2(y), f3(y), f1(x), f2(x), f3(x)〉

We now introduce the following definition.

Definition 4.1 For any two relationsPl, Pk, l, k ∈ I we writePl � Pk and we read “re-
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lation Pl is stronger than relationPk” iff relation Pk can be obtained fromPl by a single
shift of values ofx andy or it exists a sequence ofPi such thatPl � · · ·Pi � · · ·Pk.

The reader will easy verify the following proposition.

Proposition 4.1 Relation� is a partial order defining a complete lattice on the set of
possible preference relations.

In figure 1 we show the lattice for the cases wheren = 2 (3 relations) andn = 3 (10
relations).

The casen = 2

P1
� P2

� P3

The casen = 3

P1
� P2

�
�

��

�
�

��

P3

P4

�

� P5

P6
�

� P7

P8�
�

�
�

�
�

�
�

�
��

�
�

��

�
�

��

P9
� P10

�
�

�
�

�
�

�
�

�
�	

Figure 1: Partial Order among Preference Relations

How do well known in the literature preference structures fit the above presentation?
The reader can easily check the following equivalences.

Interval orders:
P = P3, I = P1 ∪ P2 ∪ Io ∪ P−1

1 ∪ P−1
2

Partial Orders of dimension. 2:
P = P3 ∪ P2, I = P1 ∪ Io ∪ P−1

1

Semi Orders:
P = P3, I = P2 ∪ Io ∪ P−1

2 , P1 empty
PQI Interval orders:
P = P3, Q = P2, I = P1 ∪ Io ∪ P−1

1

PQI Semi orders:
P = P3, Q = P2, I = Io, P1 empty
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Split Interval orders:
P = P10 ∪ P9, I the rest
Double Threshold orders:
P = P10 Q = P9 ∪ P8 ∪ P6, I the rest
Pseudo Orders:
P = P10 Q = P9 ∪ P8, I = P5 ∪ P7 ∪ Io ∪ P−1

7 ∪ P−1
5 ,

P1, P2, P3, P4, P6 empty
Constant thresholds:
P = P10 Q = P9, I = P5 ∪ Io ∪ P−1

5 ,
P1, P2, P3, P4, P6, P7, P8 empty

Remark 4.1 The reader should note that in representing an Interval Order under the
equivalenceP = P3 andI = P2∪P1∪ Io ∪P−1

1 ∪P−1
2 we did an implicit hypothesis that

I is separable in the relationsP2, P1 and Io. However, this is not always possible. The
general representation of an Interval Order within our framework requires the existence
of only two asymmetric relationsP2 andP1 such thatP = P2 andI = P1 ∪ Io ∪ P−1

1 .

How well known preference structures are characterised within our framework? We
give here as an example the translation (within our frame) of two well known preference
structures: interval orders andPQI interval orders.

Theorem 4.1 An interval order is a〈P2, P1, Io〉 preference structure such that:
- P2P2 ⊆ P2

- P2P1 ⊆ P2

- P−1
1 P2 ⊆ P2

Proof.
FromP2P2 ⊆ P2 we getP2IoP2 ⊆ P2

FromP2P1 ⊆ P2 we getP2P1P2 ⊆ P2

FromP−1
1 P2 ⊆ P2 we getP2P1−1P2 ⊆ P2

SinceP1 ∪ Io ∪ P1−1 = I andP2 = P we getPIP ⊆ P
this condition characterising interval orders (see [10]).

Theorem 4.2 An interval order is a〈P3, P2, P1, Io〉 preference structure such that:
- P3P3 ⊆ P3

- P2P3 ⊆ P3

- P3P2 ⊆ P3

- P3P1 ⊆ P3

- P−1
1 P3 ⊆ P3
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- P2P2 ⊆ P2 ∪ P3

- P1P2 ⊆ P1 ∪ P2

- P2P
−1
1 ⊆ P−1 ∪ P2

Proof.
FromP3P3 ⊆ P3, P3P2 ⊆ P3, P3P1 ⊆ P3 we getP3(P3 ∪ P2 ∪ P1) ⊆ P3

FromP3P3 ⊆ P3, P2P3 ⊆ P3, P−1
1 P3 ⊆ P3 we get(P3 ∪ P2 ∪ P−1

1 )P3 ⊆ P3

FromP2P3 ⊆ P3, P2P2 ⊆ P2 ∪ P3 P2P
−1
1 ⊆ P−1 ∪ P2 we getP2(P3 ∪ P2 ∪ P−1

1 ) ⊆
P3 ∪ P2 ∪ P−1

1

FromP3P2 ⊆ P3, P2P2 ⊆ P2∪P3, P1P2 ⊆ P1∪P2 we get(P3∪P2∪P1)P2 ⊆ P3∪P2∪P1

the above four conditions characterising aPQI interval order (see [28].

5 Conclusions

In this paper we introduce a general framework for the comparison of intervals under
preference modelling purposes. Two possible extensions of such a framework can be
envisaged. The first concerns the comparison of intervals for other purposes such as
comparing time intervals. The second concerns the possibility to derive a general structure
for representation theorems concerning any preference structure which can be conceived
within the above framework.
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