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Abstract

Comparison meaningful functions acting on some real interval E are completely
described as transformed coordinate projections on minimal invariant subsets. The
case of monotone comparison meaningful functions is further specified. Several
already known results for comparison meaningful functions and invariant functions
are obtained as consequences of our description.
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1 Introduction

Measurement theory (see e.g. [6, 14]) studies, among others, the assignments to each mea-
sured object of a real number so that the ordinal structure of discussed objects is preserved.
When aggregating several observed objects, their aggregation is often also characterized
by a real number, which can be understood as a function of numerical characterizations
of fused objects. A sound approach to such aggregation cannot lead to contradictory re-
sults depending on the actual scale (numerical evaluation of objects) we are dealing with.
This fact was a key motivation for Orlov [11] when introducing comparison meaning-
ful functions. Their strengthening to invariant functions (scale independent functions)
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was proposed by Marichal and Roubens [9]. The general structure of invariant functions
(and of monotone invariant functions) is now completely known from recent works of
Ovchinnikov [12], Ovchinnikov and Dukhovny [13], Marichal [7], Bartlomiejczyk and
Drewniak [2], and Mesiar and Rückschlossová [10]. Moreover, comparison meaningful
functions were already characterized in some special cases, e.g., when they are contin-
uous; see Yanovskaya [16] and Marichal [7]. However, a complete description of all
comparison meaningful functions was still missing. This gap is now filled by the present
paper, which is organized as follows. In the next section, we give some preliminaries and
recall some known results. In Section 3, a complete description of comparison meaningful
functions is given, while in Section 4 we describe all monotone comparison meaningful
functions.

2 Preliminaries

Let E ⊆ R be a nontrivial convex set and set e0 := inf E, e1 := sup E, and E◦ := E \
{e0, e1}. Let n ∈ N be fixed and set [n] := {1, . . . , n}. Denote also by Φ(E) the class of
all automorphisms (nondecreasing bijections) φ : E → E, and for x = (x1, . . . , xn) ∈ En

put φ(x) := (φ(x1), . . . , φ(xn)).

Following the earlier literature, we introduce the next notions and recall a few results.

Definition 2.1 ([9]). A function f : En → E is invariant if, for any φ ∈ Φ(E) and any
x ∈ En, we have f(φ(x)) = φ(f(x)).

Definition 2.2 ([1, 11, 16]). A function f : En → R is comparison meaningful if, for any
φ ∈ Φ(E) and any x, y ∈ En, we have

f(x)
{<

=

}
f(y) ⇒ f(φ(x))

{<
=

}
f(φ(y)). (1)

Definition 2.3 ([1, 5]). A function f : En → R is strongly comparison meaningful if, for
any φ1, . . . , φn ∈ Φ(E) and any x, y ∈ En, we have

f(x)
{<

=

}
f(y) ⇒ f(φ(x))

{<
=

}
f(φ(y)),

where here the notation φ(x) means (φ1(x1), . . . , φn(xn)).

Definition 2.4 ([2]). A nonempty subset B of En is called invariant if φ(B) ⊆ B for any
φ ∈ Φ(E), where φ(B) = {φ(x) | x ∈ B}. Moreover, an invariant subset B of En is
called minimal invariant if it does not contain any proper invariant subset.
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It can be easily proved that B ⊆ En is invariant if and only if its characteristic function
1B : En → R is comparison meaningful (or invariant if E = [0, 1]).

Let B(En) be the class of all minimal invariant subsets of En, and define

Bx(E) := {φ(x) | φ ∈ Φ(E)}

for all x ∈ En. Then, we have

B(En) = {Bx(E) | x ∈ En},

which clearly shows that the elements of B(En) partition En into equivalence classes,
where x, y ∈ En are equivalent if there exists φ ∈ Φ(E) such that y = φ(x). A complete
description of elements of B(En) is given in the following proposition:

Proposition 2.1 ([2, 10]). We have B ∈ B(En) if and only if there exists a permutation π
on [n] and a sequence {¢i}n

i=0 of symbols ¢i ∈ {<, =}, containing at least one symbol
< if e0 ∈ E and e1 ∈ E, such that

B = {x ∈ En | e0 ¢0 xπ(1) ¢1 · · · ¢n−1 xπ(n) ¢n e1},

where ¢0 is < if e0 /∈ E and ¢n is < if e1 /∈ E.

Example 2.1. The unit square [0, 1]2 contains exactly eleven minimal invariant subsets,
namely the open triangles {(x1, x2) | 0 < x1 < x2 < 1} and {(x1, x2) | 0 < x2 < x1 <
1}, the open diagonal {(x1, x2) | 0 < x1 = x2 < 1}, the four square vertices, and the four
open line segments joining neighboring vertices.

We also have the following important result:

Proposition 2.2 ([2, 7, 10]). Consider a function f : En → E.

i) If f is idempotent, (i.e., f(x, . . . , x) = x for all x ∈ E) and comparison meaningful
then it is invariant.

ii) If f is invariant, then it is comparison meaningful.

iii) If E is open, then f is idempotent and comparison meaningful if and only if it is
invariant.

iv) f is invariant if and only if, for any B ∈ B(En), either f |B ≡ c is a constant
c ∈ {e0, e1} ∩E (if this constant exists) or there is i ∈ [n] so that f |B = Pi|B is the
projection on the ith coordinate.
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For nondecreasing invariant functions, a crucial role in their characterization is played
by an equivalence relation ∼ acting on B(En), namely B ∼ C if and only if Pi(B) =
Pi(C) for all i ∈ [n]. Note that projections Pi(B) of minimal invariant subsets are neces-
sarily either {e0} ∩ E or {e1} ∩ E or E◦. Further, for any B ∈ B(En), the set

B∗ =
⋃

C∈B(En)
C∼B

C = P1(B)× · · · × Pn(B)

is an invariant subset of En, and

B∗(En) = {B∗ | B ∈ B(En)}
is a partition of En coarsening B(En). We also have card(B∗(En)) = kn, where k =
1 + card(E ∩ {e0, e1}).

Notice that any subset B∗ can also be regarded as a minimal “strongly” invariant
subset of En in the sense that

{(φ1(x1), . . . , φn(xn)) | x ∈ B∗} ⊆ B∗ (φ1, . . . , φn ∈ Φ(E)).

Equivalently, the characteristic function 1B∗ : En → R is strongly comparison meaning-
ful.

From the natural order
{e0} ≺ E◦ ≺ {e1}

we can straightforwardly derive a partial order ¹ on B(En), namely B ¹ C if and only
if Pi(B) ¹ Pi(C) for all i ∈ [n]. A partial order on B∗(En) can be defined similarly.

Denote by Mn the system of all nondecreasing functions µ : {0, 1}n → {0, 1}, and
let

Mn(E) := Mn \ {µj | j ∈ {0, 1}, ej /∈ E},
where µj ∈ Mn is the constant set function µj ≡ j. Clearly Mn(E) is partially ordered
through the order defined as

µ ¹ µ′ ⇔ µ(x) ≤ µ′(x) ∀x ∈ {0, 1}n.

For µ ∈Mn(E), we define a function Lµ : En → E by

Lµ(x1, . . . , xn) =
∨

t∈{0,1}n

µ(t)=1

∧
ti=1

xi

with obvious conventions ∨
∅

= e0 and
∧
∅

= e1.
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Observe that for any µ ∈Mn(E), Lµ is a continuous invariant function which is also
idempotent whenever µ(0, . . . , 0) < µ(1, . . . , 1), that is, whenever µ(0, . . . , 0) = 0 and
µ(1, . . . , 1) = 1.

Remark. Functions µ ∈ Mn(E) with µ(0, . . . , 0) < µ(1, . . . , 1) are called also
{0, 1}-valued fuzzy measures (when an element t ∈ {0, 1}n is taken as the character-
istic vector of a subset of [n]). For any such µ, the corresponding function Lµ is exactly
the Choquet integral with respect to µ [4, 13], but also the Sugeno integral with respect
to µ [15, 13]. These functions are called also lattice polynomials [3] or Boolean max-min
functions [8].

We also have the following result:

Proposition 2.3 ([7, 10]). Consider a function f : En → E. Then we have

i) f is continuous and invariant if and only if f = Lµ for some µ ∈Mn(E).

ii) f is nondecreasing and invariant if and only if there exists a nondecreasing mapping
ξ : B∗(En) →Mn(E) so that

f(x) = Lξ(B∗)(x) (x ∈ B∗ ∈ B∗(En)).

3 Comparison meaningful functions

Following Definition 2.1, the invariance of a function f : En → E can be reduced to the
invariance of f |B for all minimal invariant subsets B ∈ B(En). This observation is a key
point in the description of invariant functions as given in Proposition 2.2, iv). However,
in the case of comparison meaningful functions, the situation is more complicated. In
fact, we have to examine property (1) for x ∈ B, y ∈ C, with B, C ∈ B(En), to be able
to describe comparison meaningful functions. We start first with the case when B = C,
i.e., when y = φ(x) for some φ ∈ Φ(E).

Proposition 3.1. Let f : En → R be a comparison meaningful function. Then, for any
B ∈ B(En), there is an index iB ∈ [n] and a strictly monotone or constant function
gB : PiB(B) → R such that

f(x) = gB(xiB) (x = (x1, . . . , xn) ∈ B).

As an easy corollary of Proposition 3.1 we obtain the characterization of invariant
functions stated in Proposition 2.2, iv); see also [2]. Indeed, for a fixed B ∈ B(En), we
should have f(x) = g(xi) and hence, for all φ ∈ Φ(E) with fixed point xi, we have

φ(g(xi)) = φ(f(x)) = f(φ(x)) = g(xi),
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which implies that g(xi) is a fixed point of all such φ’s, that is,

g(xi) = xi or e0 or e1.

As we have already observed, the structure of invariant functions on a given minimal
invariant subset is completely independent of their structure on any other minimal invari-
ant subset. This fact is due to the invariance property: φ(x) ∈ B for all x ∈ B, φ ∈ Φ(E)
and B ∈ B(En). However, in the case of comparison meaningful functions we are faced
a quite different situation, in which we should take into account all minimal invariant
subsets.

Observe first that for a given comparison meaningful function f : En → R and a given
B ∈ B(En), the corresponding index iB need not be determined univocally. This happens
for instance when gB is constant or when B is defined with equalities on coordinates (see
Proposition 2.1). On the other hand, given iB, the function gB is necessarily unique.

Now, we are ready to give a complete description of all comparison meaningful func-
tions.

Theorem 3.1. The function f : En → R is comparison meaningful if and only if, for any
B ∈ B(En), there exist an index iB ∈ [n] and a strictly monotone or constant mapping
gB : PiB(B) → R such that

f(x) = gB(xiB) (x ∈ B), (2)

where, for any B,C ∈ B(En), either gB = gC , or Ran(gB) = Ran(gC) is singleton, or
Ran(gB) < Ran(gC), or Ran(gB) > Ran(gC). (Note that Ran(gB) < Ran(gC) means
that for all r ∈ Ran(gB) and all s ∈ Ran(gC), we have r < s.)

Example 3.1. Put E = [0, 1] and n = 2. Then there are eleven minimal invariant subsets
in B([0, 1]2), namely B1 = {(0, 0)}, B2 = {(1, 0)}, B3 = {(1, 1)}, B4 = {(0, 1)},
B5 = ]0, 1[×{0}, B6 = {1}×]0, 1[, B7 = ]0, 1[×{1}, B8 = {0}×]0, 1[, B9 = {(x1, x2) |
0 < x1 = x2 < 1}, B10 = {(x1, x2) | 0 < x1 < x2 < 1}, B11 = {(x1, x2) | 0 < x2 <
x1 < 1}. Let iBj

= 1 and gBj
(x) = 1 − x for j ∈ {1, 2, 3, 5, 6, 9, 11}, and iBj

= 2 and
gBj

(x) = 2x − 3 for j ∈ {4, 7, 8, 10}, where always x ∈ PiBj
(Bj). Then the relevant

comparison meaningful function f : [0, 1]2 → [0, 1] is given by

f(x1, x2) =

{
1− x1, if x1 ≥ x2,

2x2 − 3, if x1 < x2.

Theorem 3.1 enables us to characterize strong comparison meaningful functions, too.
Observe that while in the case of comparison meaningful functions, for any point x ∈ En

the set of all φ(x) = (φ(x1), . . . , φ(xn)), with φ ∈ Φ(E), gives some minimal invariant
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set B, in the case of strong comparison meaningful functions we are faced to the set of
all points (φ1(x1), . . . , φn(xn)), with φ1, . . . , φn ∈ Φ(E), which is exactly the invariant
set B∗ linked to the previous B, which together with Theorem 3.1 results in the next
corollary.

Corollary 3.1. The function f : En → R is strongly comparison meaningful if and only
if, for any B∗ ∈ B∗(En), there exist an index iB∗ ∈ [n] and a strictly monotone or constant
mapping gB∗ : PiB∗ (B

∗) → R such that

f(x) = gB∗(xiB∗ ) (x ∈ B∗),

where, for any B∗, C∗ ∈ B∗(En), either gB∗ = gC∗ , or Ran(gB∗) = Ran(gC∗) is single-
ton, or Ran(gB∗) < Ran(gC∗), or Ran(gB∗) > Ran(gC∗).

4 Monotone comparison meaningful functions

In this section we will examine monotone comparison meaningful functions. Note that
the monotonicity of a fusion function is a rather natural property.

Now, for any strictly monotone or constant real function h : R→ R, and any compar-
ison meaningful function f : En → R, also the composite h ◦ f : En → R is comparison
meaningful. Consequently, to get a complete description of monotone comparison mean-
ingful functions it is enough to examine nondecreasing comparison meaningful functions
only.

Theorem 4.1. Let f : En → R be a nondecreasing function. Then f is comparison
meaningful if and only if it has the representation

{(iB, gB) | B ∈ B(En)},
as stated in Theorem 3.1, such that any gB is either constant or strictly increasing,
Ran(gB) = Ran(gC) if B ∼ C, and Ran(gB) ≯ Ran(gC) if B � C and B ¹ C.

Now, several results mentioned in Section 2 are immediate corollaries of Theorems 3.1
and 4.1. Interesting seems to be also the next result, in which G(E) means the system of
all strictly increasing or constant real functions g defined either on E◦ or on singleton
{e0} ∩ E or on {e1} ∩ E (if these singletons exist) and for g1, g2 ∈ G(E) we put g1 ¹ g2

if either g1 = g2, or Ran(g1) = Ran(g2) is a singleton, or Ran(g1) < Ran(g2).

Corollary 4.1. A nondecreasing function f : En → R is comparison meaningful if and
only if there are nondecreasing mappings ξ : B∗(En) → Mn(E) and γ : B∗(En) →
G(E) so that

f(x) = γ(B∗)(Lξ(B∗)(x)) (x ∈ B∗ ∈ B∗(En)). (3)
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Observe also that whenever B∗ is not singleton then the relevant function γ(B∗) from
the representation (3) can be obtained (for all z ∈ E◦) by

γ(B∗)(z) = f(z1, . . . , zn),

where

zi =





e0, if Pi(B
∗) = {e0},

e1, if Pi(B
∗) = {e1},

z, otherwise.

For example, if E is open, then B∗(En) = {En} and then necessarily each monotone
comparison meaningful f : En → R is given by f = g ◦ Lµ, where µ ∈ Mn(E) and
g(z) = f(z, . . . , z) is strictly monotone or constant (see also [7]).

Based on Corollaries 3.1 and 4.1, we can characterize nondecreasing strong compari-
son meaningful functions as follows:

Corollary 4.2. A nondecreasing function f : En → R is strongly comparison meaningful
if and only if there is a mapping δ : B∗(En) → [n] and a nondecreasing mapping γ :
B∗(En) → G(E) such that

f(x) = γ(B∗)(xδ(B∗)) (x ∈ B∗ ∈ B∗(En)),

where, if γ(B∗) = γ(C∗), then also δ(B∗) = δ(C∗) (unless γ(B∗) = γ(C∗) is constant).

Continuity of a comparison meaningful function is even more restrictive and it forces
the monotonicity. From Theorem 3.1 we have the next result (see also [7]).

Corollary 4.3. A continuous function f : En → R is comparison meaningful if and only
if there is a continuous, strictly monotone or constant mapping g : E → R and a function
µ ∈Mn(E) such that

f = g ◦ Lµ. (4)

Note that in trivial cases when f is constant, f admits also representations different
from (4), however, always in the form f = g ◦f ∗, where g is a constant function on E and
f ∗ : En → E is an arbitrary function. In all other cases the representation (4) is unique.

Corollary 4.4. A continuous function f : En → R is strongly comparison meaningful if
and only if there is a continuous, strictly monotone or constant mapping g : E → R and
an index i ∈ [n] so that

f = g ◦ Pi.
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5 Conclusions

We have described the structure of a general comparison meaningful function. As corol-
laries, some results concerning special cases (monotone and/or continuous operators)
were characterized. Moreover, our characterization can be understood also as a hint how
to construct comparison meaningful operators.
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