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Abstract

We present a sorting procedure for the assignment of alternativesto graded classes. The avail-
able information is given by partial evaluations of the alternatives on ordinal scales representing
interacting points of view and a subset of prototypic alternatives whose assignment is imposed
beforehand. The partial evaluations of each aternative are embedded in a common interval scale
by means of commensurateness mappings, which in turn are aggregated by the discrete Choquet
integral. The behavioral properties of this Choquet integral are then measured through importance
and interaction indices.

Keywords: multi-attribute decision-making, ordinal data, interacting points of view, Choquet in-
tegral.

10 Introduction

In this paper we use the discrete Choquet integral as a discriminant function in ordinal multiattribute
sorting problems in the presence of interacting (dependent) points of view. The technique we present
is due to Roubens [14] and proceeds in two steps: a pre-scoring phase determines for each point of
view and for each alternative a net score (the number of times a given alternative beats all the other
alternatives minus the number of times that this alternative is beaten by the others) and is followed
by an aggregation phase that produces a global net score associated to each alternative. These global
scores are then used to assign the alternatives to graded classes.

The fuzzy measure linked to the Choquet integral can be learnt from a subset of alternatives (called
prototypes) that are assigned beforehand to the classes by the decision maker. This leads to solving
a linear constraint satisfaction problem whose unknown variables are the coefficients of the fuzzy
measure.

Once a fuzzy measure (compatible with the available information on prototypes) is found, it is
useful to interpret it through some behavioral parameters. We present the following two types of
parameters:

1. The importance indices, which make it possible to appraise the overall importance of each point
of view and each combination of points of view,

2. The interaction indices, which measure the extent to which the points of view interact (positively
or negatively).
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11 An ordinal sorting procedure

Let A be a set of g potential alternatives, which are to be assigned to disjoint classes, and let N =
{1,...,n} be a label set of points of view to satisfy. For each point of view i € N, the alternatives are
evaluated according to a sj-point ordinal performance scale; that is, a totally ordered set

Xii={g} <igh<i - <i 9;}-
We assume that each alternative x € A can be identified with its corresponding profile

n
(X1,--- ,Xn) € _><1Xi =:X,
i

where, for any i € N, x; represents the partial evaluation of x related to point of view i. In other words,
each alternative is completely determined from its partial evaluations.

Through this identification, we clearly have

n

ACX and qgrlsi.

I=
Forany x; € Xjand any y_j € X_j = X jen\ it Xj, we set
Xiy—i = (yla <o Yi—n X Yitas - 7yn) € X.

Now, consider a partition of X into m nonempty classes {Cl; }{",, which are increasingly ordered,;
that is, forany r,s € {1,... ,m}, with r > s, the elements of Cl, have a better comprehensive evaluation
than the elements of Cls.

We also set 0
clz=Jck (r=1,...,m).

t=r

The sorting problem we actually face consists in partitioning the elements of A into the classes
{Ck}{",. Since A is given, the problem amounts to identifying the classes themselves as a partition of
X.

Greco et al. [5, Theorem 2.1] proved a nice representation theorem stating the equivalence be-
tween a very simple cancellation property and a general discriminant function. As we have assumed
beforehand that each set X; is endowed with a total order »=;, we present here a slightly modified
version of their result.

Theorem 1. The following two assertions are equivalent:
1. ForallieN,te{1,...,m}, xi,xi € Xj, y_i € X_j, we have

=i and xjy_i €Clk = xly_jeCI?.

!
X

2. There exist
e functions g; : X; — R (i € N), increasing, called criteria,
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e afunction f : R" — R, increasing in each argument, called discriminant function,
e m— 1 ordered thresholds {z }{" , satisfying

<3< < 1In
such that, for any x € X and any t € {2,...,m}, we have
flga(xa),92(X2), ... ,Gn(Xn)] 22t & X €CIE.

Theorem 1 states that, under a simple condition of monotonicity, it is possible to find a discrimi-
nant function that strictly separates the classes Cly, ... ,Cly, by thresholds. This result is very general
and imposes no particular forms to criteria and discriminant functions.

For a practical use of this result and in order to produce a meaningful result, Roubens [14] re-
stricted the family of possible discriminant functions to the class of n-place Choquet integrals and the
criteria functions to normalized scores. We now present the sorting procedure in this particular case.

11.1 Normalized scoresascriteria

In order to locate x; in the scale X; we define a mapping ord; : A — {1....,si} as

ordi(x) =r < x =g

For each point of view i € N, the order <; defined on X; can be characterized by a valuation
Ri: AxA— {0,1} defined as
1, ifxi=ivyi,

Rilxy) = {0, otherwise.

>From each of these valuations we determine a partial net score Sj : A — R as follows:

Si = Ri , —Ri \ A).
() y;[ y)=Ri(y,x)]  (xeA)

In the particular case where
n
A= X X,

i=1

then it is easy to see that
o r2ordi(x) -1 .
S.(x)_q<57i—1) (ieN).

Indeed, there are (ord;(x) — 1) q/s; alternatives y € A such that x; > yi and (s; — ord;(x)) q/si alterna-
tives y € A such that y; =i X;.

The integer Sj(x) represents the number of times that x is preferred to any other alternative minus
the number of times that any other alternative is preferred to x for point of view i.

On can easily show that the partial net scores identify the corresponding partial evaluations. That
is,

XiziYi e Si(x) = Si(y). 1)
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Thus aggregating the partial evaluations of a given alternative amounts to aggregating the corre-
sponding partial scores. This latter aggregation makes sense since, contrary to the partial evaluations,
the partial scores are commensurable, that is, each partial score can be compared with any other partial
score, even along a different point of view.

Clearly, the partial scores are defined according to the same interval scale. As positive linear
transformations are meaningful with respect to such a scale, we can normalize these scores so that
they range in the unit interval. We thus define normalized partial scores S, ..., S} as

Six)+(@—1)

=D

€[0,1] (ieN).
Throughout the paper, we will use the notation SN (x) := (SY(x),...,SN(x)).

11.2 The Choquet integral asa discriminant function

As mentioned in the beginning of this section, the partial scores of a given alternative x can be aggre-
gated by means of a Choquet integral [1], namely

(SN X) = isﬁ) () V(A — V(Ao

where v represents a fuzzy measure on N; that is, a monotone set function v : 2N — [0,1] fulfilling
v(0) = 0 and v(N) = 1. This fuzzy measure merely expresses the importance of each subset of points
of view. The parentheses used for indices represent a permutation on N such that

and A;) represents the subset {(i),...,(n)}.

We note that for additive measures (v(SUT) = v(S) + v(T) whenever SNT = 0) the Choquet
integral coincides with the usual discrete Lebesgue integral and the set function v is simply determined
by the importance of each point of view: v(1),...,v(n). In this particular case

n

G(SN(x) = ZV(i) S'(x) (xeA),
1=

which is the natural extension of the Borda score as defined in voting theory if alternatives play the

role of candidates and points of view represent voters.

If points of view cannot be considered as being independent, importance of combinations S C N,
Vv(S), has to be taken into account.

Some combinations of points of view might present a positive interaction or synergy. Although
the importance of some points of view, members of a combination S, might be low, the importance of
a pair, a triple,..., might be substantially larger and v(S) > SicsV(i).

In other situations, points of view might exhibit negative interaction or redundancy. The union of
some points of view do not have much impact on the decision and for such combinations S, v(S) <
Yies V(). In this perspective, the use of the Choquet integral is recommended.
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The Choquet integral presents standard properties for aggregation (see [3, 8]): it is continuous,
non decreasing, located between min and max.

We will now indicate an axiomatic characterization of the class of all Choquet integrals with n
arguments. This result is due to Marichal [8]. Let es denote the characteristic vector of S in {0,1}",
i.e., the vector of {0,1}" whose ith component is one if and only if i € S.

Theorem 2. The operators M, : R" — R (v being a fuzzy measure on N) are

linear w.r.t. the fuzzy measures, that is, there exist 2" functions fr : R" — R (T C N), such that

MV:TZNV(T) fT,

non decreasing in each argument,

stable for the admissible positive linear transformations, that is,
My(rx1+s,...,rxn+S) =rMy(X1,... ,Xn) +5

forallxeR",r >0,s € R,

properly weighted by v, that is,
My(es) = v(S),

if and only if M, = ¢, for all fuzzy measure v on N.

This important characterization clearly justifies the way the partial scores have been aggregated.

The first axiom is proposed to keep the aggregation model as simple as possible. The second
axiom says that increasing a partial score cannot decrease the global score. The third axiom only
demands that the aggregated value is stable with respect to any change of scale. Finally, assuming that
the partial score scale is embedded in [0, 1], the fourth axiom suggests that the weight of importance
of any subset S of criteria is defined as the global evaluation of the alternative that completely satisfies
points of view S and totally fails to satisfy the others.

The fourth axiom is fundamental. It gives an appropriate definition of the weights of subsets of
points of view, interpreting them as global evaluation of particular alternatives.

The major advantage linked to the use of the Choquet integral derives from the large number of
parameters (2" — 2) associated with a fuzzy measure but this flexibility can be also considered as a
serious drawback when assessing real values to the importance of all possible combinations. We will
come back to the important question the next section.

Let v be a fuzzy measure on N. The Mébius transform of v is a set function m : 2N — R defined
by
m(s) = TZ (—)FTy(T)  (SCN).
Cs

This transformation is invertible and thus constitutes an equivalent form of a fuzzy measure and v
can be recovered from m using

v(S) :;Sm(T) (SCN).
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This transformation can be used to redefine the Choquet integral without reordering the partial
scores:
G(SN(x) = TEN m(T) A S (x)-
C ieT
A fuzzy measure v is k-additive [3] if its M&bius transform m satisfies m(S) = 0 for S such that
|S| > k and there exists at least one subset S such that |S| = k and m(S) # 0.
Thus, k-additive fuzzy measures can be represented by at most 3 ; () coefficients.
For a k-additive fuzzy measure,
GEN) = Y m(T) AStx).
W)= 3, MO A

- ieT
ITI<k

In order to assure boundary and monotonicity conditions imposed on v, the Mébius transform of
a k-additive fuzzy measure must satisfy:

m(0) =0, m(T) =1

3,m
TI<k

m(T) >0, VSCN,Vie$s

TliETCS
ITI<k

11.3 Assessment of fuzzy measures

Assume that all the alternatives of A C X are already sorted into classes Cl1,...,Cly. In some partic-
ular cases there exist a fuzzy measure v on N and m — 1 ordered thresholds {z;}{" , satisfying

<3< < 1In
such that for any x € A, and any t € {2,...,m}, we have
GSN(X) =z < xeClZ.
Of course, if such a fuzzy measure does exist then the thresholds may be defined by

z:=min G(SNX) (t=2,....m).

xeClZ

Conversely, the knowledge of the fuzzy measure v associated to the sorting problem completely de-
termines the assignment.

In real situations, the assignment of all alternatives is not known but has to be determined. How-
ever, this assignment, or equivalently the fuzzy measure v, can be learnt from a reference set of proto-
types, which have been sorted beforehand by the decision maker.

Practically, the decision maker is asked to provide a set of prototypes P C A and the assignment
of each of these prototypes to a given class; that is, a partition of P into prototypic classes {P¢}{" ;,
where P, := PNCl; forall t € {1,...,m}. Here some prototypic classes may be empty.
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As the Choquet integral is supposed to strictly separate the classes Cl;, we must impose the fol-
lowing necessary condition

G(S" ()~ G(s" (X)) > &, (2)

for each ordered pair (x,x") € P, x P._; and each t € {2,...,m}, where € is a given strictly positive
threshold.

These separation conditions, put together with the boundary and monotonicity constraints on the
fuzzy measure, form a linear constraint satisfaction problem whose unknowns are the coefficients of
the fuzzy measure. Thus the sorting problem consists in finding a feasible solution satisfying all these
constraints. If € has been chosen too big, the problem might have no solution. To avoid this, we can
consider € as a non-negative variable to be maximized. In this case its optimal value must be strictly
positive for the problem to have a solution.

In the resolution of this problem, we use the principle of parsimony: If no solution is found for
k =1, we turn to k = 2. If no solution is still found, we turn to k = 3, and so on, until k = n. Notice
however that an empty solution set for k = n is necessarily due to an incompatibility between the
assignment of the given prototypes and the assumption that the discriminant function is a Choquet
integral.

Due to the increasing monotonicity of the Choquet integral, the number of separation constraints
(2) can be reduced significantly. For example, if X" € P,_1 is such that ¢,(SN (X)) > G,(SN(x")) then,
by transitivity, the constraint
G(SN(X) -GN (X)) > ¢
is redundant.

Now, on the basis of orders = (i € N), we can define a dominance relation D on X as follows: For
each x,y € X,
XDy < Xj=iVi VieN.

By (1), this is equivalent to
xDy < SN(x) >SN(y) VieN.

Being an intersection of complete orders, the binary relation D is a partial order, i.e., it is reflexive,
antisymmetric, and transitive. Furthermore we clearly have

XDy = G(S"(x) = G(S"(y)).
It is then useful to define, for each t € {1,... ,m}, the set of non-dominating alternatives of P;,
Ndi ;= {x € P, | #X € P\ {x} : xDX'},
and the set of non-dominated alternatives of P;,
ND; := {x € P | #X € P\ {x} : xX'Dx},

and to consider only the constraint (2) for each ordered pair (x,x’) € Nd; x ND;_; and each t €
{2,...,m}. The total number of separation constraints boils down to

m
;|th||NDt_l|.
t=

Now, suppose that there exists a k-additive fuzzy measure v* that solves the above problem. Then
any alternative x € A will be assigned to
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e the class Cl; if

: N . N . N
min G (8"(9)) < Gr (8" () < max G (8" (¥))

e one of the classes Cl; or Cl;_ if

,nax Gr (S"(y)) < G- (8" (x) < Join Gr (SN(y))-

12 Behavioral analysis of aggregation

Now that we have a sorting model for assigning alternatives to classes, an important question arises:
How can we interpret the behavior of the Choquet integral or that of its associated fuzzy measure?
Of course the meaning of the values v(T) is not always clear for the decision maker. These values do
not give immediately the global importance of the points of view, nor the degree of interaction among
them.

In fact, from a given fuzzy measure, it is possible to derive some indices or parameters that will
enable us to interpret the behavior of the fuzzy measure. These indices constitute a kind of identity
card of the fuzzy measure. In this section, we present two types of indices: importance and interaction.
Other indices, such as tolerance and dispersion, were proposed and studied by Marichal [6, 7].

12.1 Importanceindices

The overall importance of a point of view i € N into a decision problem is not solely determined by
the number v({i}), but also by all v(T) such that i € T. Indeed, we may have v({i}) = 0, suggesting
that element i is unimportant, but it may happen that for many subsets T C N, v(T U {i}) is much
greater than v(T ), suggesting that i is actually an important element in the decision.

Shapley [15] proposed in 1953 a definition of a coefficient of importance, based on a set of rea-
sonable axioms. The importance index or Shapley value of point of view i with respect to v is defined

by:

on(i)= 5 O DITE e o giyy —wem), @
TN} :

The Shapley value is a fundamental concept in game theory expressing a power index. It can be
interpreted as a weighted average value of the marginal contribution v(T U {i}) —v(T) of element i
alone in all combinations. To make this clearer, it is informative to rewrite the index as follows:

n-1
oD =1 3 (o IO U]

[T|=t

Thus, the average value of v(T U{i}) —v(T) is computed first over the subsets of same size t and then
over all the possible sizes. Consequently, the subsets containing about n/2 points of view are the less
important in the average, since they are numerous and a same point of view j is very often involved
into them.
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The use of the Shapley value in multicriteria decision making was proposed in 1992 by Muro-
fushi [10]. It is worth noting that a basic property of the Shapley value is

icp(v,{i}) =1

Note also that, when v is additive, we clearly have v(T U{i}) —v(T) = v({i}) for all i € N and all
T C N\ {i}, and hence

®v {i}) =v({i}), ieN. (4)

If v is non-additive then some points of view are dependent and (4) generally does not hold anymore.
This shows that it is sensible to search for a coefficient of overall importance for each point of view.

In terms of the Mobius representation, the Shapley value takes a very simple form [15]:
. 1
ov.{i}) = Z mm(T)- (5)
T>{i}

Now, the concept of importance index can be easily generalized to subsets of points of view. The
importance index of subset S C N with respect to v is defined by

(n—[T]—[SPHT]!
(n—1S|+1)!

@v,S) =

TEN\S

V(TUS)—v(T)].

This index, introduced by Marichal [9] as the influence index of points of view S, measures the
overall importance of subset S of points of view.

In terms of the Mobius representation, it is given by

s = 2 s

TNS#0

It was shown [9] that this expression is also the average amplitude of the range of (C, that points
of view S may control when assigning partial scores in [0, 1] to the points of view in N\ S at random.
That is,

Xj—
jes

Qv,S) = / / I|m G(x)— IimOC\,(x)} dxi, - - - dxj,,
JeS

= Jpu [ Jim 600~ fim G00] 0

jes jes
where N\ S = {i1,... ,in_s}.
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12.2 Interaction indices

Another interesting concept is that of interaction among points of view. We have seen that when the
fuzzy measure is not additive then some points of view interact. Of course, it would be interesting to
appraise the degree of interaction among any subset of points of view.

Consider first a pair {i, j} C N of points of view. It may happen that v({i}) and v({]j}) are small
and at the same time v({i, j}) is large. Clearly, the number (v, {i}) merely measures the average
contribution that point of view i brings to all possible combinations, but it gives no information on the
phenomena of interaction existing among points of view.

Clearly, if the marginal contribution of j to every combination of points of view that contains i is
greater (resp. less) than the marginal contribution of j to the same combination when i is excluded,
the expression

V(T UL, §3) = v(T ULi1)] = V(T U{j}) —v(T)]
is positive (resp. negative) forany T C N\ {i, j}. We then say that i and j positively (resp. negatively)
interact.

This latter expression is called the marginal interaction between i and j, conditioned to the pres-
ence of elements of the combination T C N\ {i, j}. Now, an interaction index for {i, j} is given by an
average value of this marginal interaction. Murofushi and Soneda [11] proposed in 1993 to calculate
this average value as for the Shapley value. Setting

(Lijv)(T) == v(T U{i, j}) —v(T U{i}) —v(T U{j}) +v(T),
the interaction index of points of view i and j related to v is then defined by

(n—[T|-2)"T|!
— 1)1

i)=Y

rafy O

(B V)(T). (6)

It should be mentioned that, historically, the interaction index (6) was first introduced in 1972 by
Owen (see Eqg. (28) in [13]) in game theory to express a degree of complementarity or competitiveness
between elements i and j.

The interaction index among a combination S of points of view was introduced by Grabisch [3] as
a natural extension of the case |S| = 2. The interaction index of S (|S| > 2) related to v, is defined by
(n—|T[—[SPHT]!

(n—1|S|+1)!

I[(v,S) =
TEN\S

(AS V) (T )7

where we have set
(DsV)(T) = ZS(—I)‘S“MV(LUT).
LC
In terms of the Md&bius representation, this index is written [3]

1
I(V’S):gsmm(-r)’ SCN. (7)

Viewed as a set function, it coincides on singletons with the Shapley value (3).
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In terms of the Choquet integral, we have [4, Proposition 4.1]

1 1
) = [ [ @asadn, o,
= [ @sG)x,
[0.1"
where N\ S = {ij,...,in—s} and

(Bs G))(X) ::LZS(—l)|S|_|L‘ lim lim G/(x).

Xi—1 xj—0
i€l jes\L

It was proved in [4, Proposition 5.1] that the transformation (7) is invertible and its inverse is
written as

m(S) = TZSB|-|-|_|S| |(V,T), SCN, (8)

where B, is the nth Bernoulli number, that is the nth element of the numerical sequence {Bp}nen

defined recursively by
Bo=1,

n

kz ("1Bk =0, neN\{0}.
=0

13 Concluding remarks

We have described a sorting procedure which aggregates interacting points of view measured on qual-
itative scales. The aggregation function that is used is the discrete Choquet integral whose parameters
are learnt form a reference set of alternatives.

The motivation of this approach is based mainly on a very general representation theorem pointing
out the use of a discriminant function, but also on an axiomatic characterization of the class of Choquet
integrals having a fixed number of arguments.

The use of some indices is proposed to appraise the overall importance of points of view as well
as the interaction existing among them.

The next step will be to measure the quality of the sorting procedure with respect to the choice of
the prototypic alternatives and their assignment. A research is now in progress along this line.
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