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Part I : Weighted lattice polynomials
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Lattice polynomials

Let L be a lattice with lattice operations ∧ and ∨

We assume that L is

bounded (with bottom 0 and top 1)

distributive

Definition (Birkhoff 1967)

An n-ary lattice polynomial is a well-formed expression involving n
variables x1, . . . , xn ∈ L linked by the lattice operations ∧ and ∨ in
an arbitrary combination of parentheses

Example.
p(x1, x2, x3) = (x1 ∧ x2) ∨ x3
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Lattice polynomial functions

Any lattice polynomial naturally defines a lattice polynomial
function (l.p.f.) p : Ln → L.

Example.
p(x1, x2, x3) = (x1 ∧ x2) ∨ x3

If p and q represent the same function, we say that p and q are
equivalent and we write p = q

Example.
x1 ∨ (x1 ∧ x2) = x1
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Disjunctive and conjunctive forms of l.p.f.’s

Notation. [n] := {1, . . . , n}.

Proposition (Birkhoff 1967)

Let p : Ln → L be any l.p.f.
Then there are nonconstant set functions v ,w : 2[n] → {0, 1}, with
v(∅) = 0 and w(∅) = 1, such that

p(x) =
∨

S⊆[n]
v(S)=1

∧
i∈S

xi =
∧

S⊆[n]
w(S)=0

∨
i∈S

xi .

Example.
(x1 ∧ x2) ∨ x3 = (x1 ∨ x3) ∧ (x2 ∨ x3)

v({3}) = v({1, 2}) = 1

w({1, 3}) = w({2, 3}) = 0
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The set functions v and w , which generate p, are not unique :

x1 ∨ (x1 ∧ x2) = x1 = x1 ∧ (x1 ∨ x2)

Notation. 1S := characteristic vector of S ⊆ [n] in {0, 1}n.

Proposition (Marichal 2002)

From among all the set functions v that disjunctively generate the
l.p.f. p, only one is isotone :

v(S) = p(1S)

From among all the set functions w that conjunctively generate the
l.p.f. p, only one is antitone :

w(S) = p(1[n]\S)
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Consequently, any n-ary l.p.f. can always be written as

p(x) =
∨

S⊆[n]
p(1S )=1

∧
i∈S

xi =
∧

S⊆[n]
p(1[n]\S )=0

∨
i∈S

xi

Example. p(x) = (x1 ∧ x2) ∨ x3

S p(1S ) p(1[n]\S )

∅ 0 1
{1} 0 1
{2} 0 1
{3} 1 1
{1, 2} 1 1
{1, 3} 1 0
{2, 3} 1 0
{1, 2, 3} 1 0

p(x) = x3 ∨ (x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3)

p(x) = (x1 ∨ x3) ∧ (x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)
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Particular cases : order statistics

Denote by x(1), . . . , x(n) the order statistics resulting from
reordering x1, . . . , xn in the nondecreasing order : x(1) 6 · · · 6 x(n).

Proposition (Ovchinnikov 1996, Marichal 2002)

p is a symmetric l.p.f. ⇐⇒ p is an order statistic

Notation. Denote by osk : Ln → L the kth order statistic function.

osk(x) := x(k)

Then we have

osk(1S) = 1 ⇐⇒ |S | > n − k + 1

osk(1[n]\S) = 0 ⇐⇒ |S | > k
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Weighted lattice polynomials

We can generalize the concept of l.p.f. by regarding some variables
as parameters.

Example. For c ∈ L, we consider

p(x1, x2) = (c ∨ x1) ∧ x2

Definition

p : Ln → L is an n-ary weighted lattice polynomial function (w.l.p.f.)
if there exist parameters c1, . . . , cm ∈ L and a l.p.f. q : Ln+m → L
such that

p(x1, . . . , xn) = q(x1, . . . , xn, c1, . . . , cm)
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Disjunctive and conjunctive forms of w.l.p.f.’s

Proposition (Lausch & Nöbauer 1973)

Let p : Ln → L be any w.l.p.f.
Then there are set functions v ,w : 2[n] → L such that

p(x) =
∨

S⊆[n]

[
v(S) ∧

∧
i∈S

xi

]
=

∧
S⊆[n]

[
w(S) ∨

∨
i∈S

xi

]
.

Remarks.

p is a l.p.f. if v and w range in {0, 1}, with v(∅) = 0 and
w(∅) = 1.

Any w.l.p.f. is entirely determined by 2n parameters, even if
more parameters have been considered to construct it.
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Disjunctive and conjunctive forms of w.l.p.f.’s

Proposition (Marichal 2006)

From among all the set functions v that disjunctively generate the
w.l.p.f. p, only one is isotone :

v(S) = p(1S)

From among all the set functions w that conjunctively generate the
w.l.p.f. p, only one is antitone :

w(S) = p(1[n]\S)
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Disjunctive and conjunctive forms of w.l.p.f.’s

Consequently, any n-ary w.l.p.f. can always be written as

p(x) =
∨

S⊆[n]

[
p(1S) ∧

∧
i∈S

xi

]
=

∧
S⊆[n]

[
p(1[n]\S) ∨

∨
i∈S

xi

]

Example. p(x) = (c ∨ x1) ∧ x2

S p(1S ) p(1[n]\S )

∅ 0 1
{1} 0 c
{2} c 0
{1, 2} 1 0

p(x) = (0 ∧ 1) ∨ (0 ∧ x1) ∨ (c ∧ x2) ∨ (1 ∧ x1 ∧ x2)

= (c ∧ x2) ∨ (x1 ∧ x2)

p(x) = (1 ∨ 0) ∧ (c ∨ x1) ∧ (0 ∨ x2) ∧ (0 ∨ x1 ∨ x2)

= (c ∨ x1) ∧ x2
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Particular case : the Sugeno integral

Let us generalize the concept of discrete Sugeno integral in the
framework of bounded distributive lattices.

Definition (Sugeno 1974)

An L-valued fuzzy measure on [n] is an isotone set function
µ : 2[n] → L such that µ(∅) = 0 and µ([n]) = 1.

The Sugeno integral of a function x : [n] → L with respect to µ is
defined by

Sµ(x) :=
∨

S⊆[n]

[
µ(S) ∧

∧
i∈S

xi

]

Remark. A function f : Ln → L is an n-ary Sugeno integral if and
only if f is a w.l.p.f. fulfilling f (1∅) = 0 and f (1[n]) = 1.
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Particular case : the Sugeno integral

Notation. The median function is the function os2 : L3 → L.

Proposition (Marichal 2006)

For any w.l.p.f. p : Ln → L, there is a fuzzy measure µ : 2[n] → L
such that

p(x) = median
[
p(1∅),Sµ(x), p(1[n])

]
Corollary (Marichal 2006)

Consider a function f : Ln → L.
The following assertions are equivalent :

f is a Sugeno integral

f is an idempotent w.l.p.f., that is such that f (x , . . . , x) = x

f is a w.l.p.f. fulfilling f (1∅) = 0 and f (1[n]) = 1.
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Inclusion properties

Sugeno integrals

Lattice polynomials

Order statistics

Weighted lattice polynomials
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The median based decomposition formula

Let f : Ln → L and k ∈ [n] and define f 0
k , f 1

k : Ln → L as

f 0
k (x) := f (x1, . . . , xk−1, 0, xk+1, . . . , xn)

f 1
k (x) := f (x1, . . . , xk−1, 1, xk+1, . . . , xn)

Remark. If f is a w.l.p.f., so are f 0
k and f 1

k

Consider the following system of n functional equations, called the
median based decomposition formula

f (x) = median
[
f 0
k (x), xk , f 1

k (x)
]

(k = 1, . . . , n)
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The median based decomposition formula

Any solution of the median based decomposition formula

f (x) = median
[
f 0
k (x), xk , f 1

k (x)
]

(k = 1, . . . , n)

is an n-ary w.l.p.f.

Example. For n = 2 we have

f (x1, x2) = median
[
f (x1, 0), x2, f (x1, 1)

]
with

f (x1, 0) = median
[
f (0, 0), x1, f (1, 0)

]
(w.l.p.f.)

f (x1, 1) = median
[
f (0, 1), x1, f (1, 1)

]
(w.l.p.f.)
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The median based decomposition formula

The median based decomposition formula characterizes the
w.l.p.f.’s

Theorem (Marichal 2006)

The solutions of the median based decomposition formula are exactly
the n-ary w.l.p.f.’s
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Part II : Cumulative distribution functions of
aggregation operators
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Cumulative distribution functions of aggregation operators

Consider

an aggregation operator A : Rn → R
n independent random variables X1, . . . ,Xn, with cumulative
distribution functions F1(x), . . . ,Fn(x)

X1
...

Xn

 −→ YA = A(X1, . . . ,Xn)

Problem. We are searching for the cumulative distribution
function (c.d.f.) of YA :

FA(y) := Pr[YA 6 y ]
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Cumulative distribution functions of aggregation operators

From the c.d.f. of YA, we can calculate the expectation

E
[
g(YA)

]
=

∫ ∞

−∞
g(y) dFA(y)

for any measurable function g .

Some useful examples :

g(x) E
[
g(YA)

]
x expected value of YA

x r raw moments of YA[
x − E(YA)

]r
central moments of YA

etx moment-generating function of YA
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Cumulative distribution functions of aggregation operators

If FA(y) is absolutely continuous, then YA has a probability density
function (p.d.f.)

fA(y) :=
d

dy
FA(y)

In this case

E
[
g(YA)

]
=

∫ ∞

−∞
g(y) fA(y) dy
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Example : the arithmetic mean

AM(x1, . . . , xn) =
1

n

n∑
i=1

xi

FAM(y) is given by the convolution product of F1, . . . ,Fn

FAM(y) = (F1 ∗ · · · ∗ Fn)(ny)

For uniform random variables X1, . . . ,Xn on [0, 1], we have

FAM(y) =
1

n!

n∑
k=0

(−1)k
(

n

k

)
(ny − k)n+ (y ∈ [0, 1])

(Feller, 1971)
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Example : the arithmetic mean

Case of n = 3 uniform random variables X1,X2,X3 on [0, 1]

Graph of FAM(y) Graph of fAM(y)
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Example :  Lukasiewicz t-norm

TL(x1, . . . , xn) = max
[
0,

n∑
i=1

xi − (n − 1)
]

FTL
(y) = Pr

[
max

[
0,

∑
i Xi − (n − 1)

]
6 y

]
= Pr

[
0 6 y and

∑
i Xi − (n − 1) 6 y

]
= Pr[0 6 y ] Pr

[ ∑
i Xi 6 y + n − 1

]
= H0(y) FAM

( y+n−1
n

)
where Hc(y) is the Heaviside function

Hc(y) = 1[c,+∞[(y)
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Example :  Lukasiewicz t-norm

Case of n = 3 uniform random variables X1,X2,X3 on [0, 1]

Graph of FTL
(y)

Remark.
FTL

(y) is discontinuous
⇒ The p.d.f. does not exist
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Example : order statistics on R

osk(x1, . . . , xn) = x(k)

Fosk (y) =
∑

S⊆[n]
|S |>k

∏
i∈S

Fi (y)
∏

i∈[n]\S

[
1− Fi (y)

]

(see e.g. David & Nagaraja 2003)

Examples.

Fos1(y) = 1−
n∏

i=1

[
1− Fi (y)

]
Fosn(y) =

n∏
i=1

Fi (y)
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Example : order statistics on R

Case of n = 3 uniform random variables X1,X2,X3 on [0, 1]

Graph of Fos1(y) Graph of fos1(y)
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Example : order statistics on R

Case of n = 3 uniform random variables X1,X2,X3 on [0, 1]

Graph of Fos2(y) Graph of fos2(y)
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New results : lattice polynomial functions on R

Let p : Ln → L be a l.p.f. on L = [0, 1]
It can be extended to an aggregation function from Rn to R.

p(x1, . . . , xn) =
∨

S⊆[n]
p(1S )=1

∧
i∈S

xi =
∧

S⊆[n]
p(1[n]\S )=0

∨
i∈S

xi

Note. ∧ = min, ∨ = max

Fp(y) = 1−
∑

S⊆[n]
p(1S )=1

∏
i∈[n]\S

Fi (y)
∏
i∈S

[
1− Fi (y)

]
Fp(y) =

∑
S⊆[n]

p(1[n]\S )=0

∏
i∈S

Fi (y)
∏

i∈[n]\S

[
1− Fi (y)

]
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New results : lattice polynomial functions on R

Example. p(x) = (x1 ∧ x2) ∨ x3

Uniform random variables X1,X2,X3 on [0, 1]

Graph of Fp(y) Graph of fp(y)
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New results : lattice polynomial functions on R

Consider

vp : 2[n] → R, defined by vp(S) := p(1S)

v∗p : 2[n] → R, defined by v∗p (S) = 1− vp([n] \ S)

mv : 2[n] → R, the Möbius transform of v , defined by

mv (S) :=
∑
T⊆S

(−1)|S |−|T | v(T )

Alternate expressions of Fp(y)

Fp(y) = 1−
∑

S⊆[n]

mvp(S)
∏
i∈S

[
1− Fi (y)

]
Fp(y) =

∑
S⊆[n]

mv∗p (S)
∏
i∈S

Fi (y)
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New results : weighted lattice polynomial functions on R

Let p : Rn → R be a w.l.p.f. on R = [−∞,+∞]

Notation. eS := characteristic vector of S in {−∞,+∞}n

p(x) =
∨

S⊆[n]

[
p(eS) ∧

∧
i∈S

xi

]
=

∧
S⊆[n]

[
p(e[n]\S) ∨

∨
i∈S

xi

]

Fp(y) = 1−
∑

S⊆[n]

[
1− Hp(eS )(y)

] ∏
i∈[n]\S

Fi (y)
∏
i∈S

[
1− Fi (y)

]
Fp(y) =

∑
S⊆[n]

Hp(e[n]\S )(y)
∏
i∈S

Fi (y)
∏

i∈[n]\S

[
1− Fi (y)

]

+ alternate expressions (cf. Möbius transform)
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New results : weighted lattice polynomial functions on R

Example. p(x) = (c ∧ x1) ∨ x2

Uniform random variables X1,X2 on [0, 1]
F (y) = median[0, y , 1]

S p(eS)

∅ −∞
{1} c
{2} +∞
{1, 2} +∞

Fp(y) = F (y)
�
F (y)+Hc(y)[1−F (y)]

�
Graph of Fp(y) for c = 1/2
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Application : computation of certain integrals

Example. Given a w.l.p.f. p : [0, 1]n → [0, 1] and a measurable
function g : [0, 1] → R, compute∫

[0,1]n
g
[
p(x)

]
dx

Solution. The integral is given by E
[
g(Yp)

]
, where the variables

X1, . . . ,Xn are uniform on [0, 1]

E
[
g(Yp)

]
= g(0) +

∑
S⊆[n]

∫ p(eS )

0
yn−|S |(1− y)|S | dg(y)
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Application : computation of certain integrals

Sugeno integral∫
[0,1]n

Sµ(x) dx =
∑

S⊆[n]

∫ µ(S)

0
yn−|S |(1− y)|S | dy

Example. ∫
[0,1]2

[
(c ∧ x1) ∨ x2

]
dx =

1

2
+

1

2
c2 − 1

3
c3

Note. Recall the expected value of the Choquet integral∫
[0,1]n

Cµ(x) dx =
∑

S⊆[n]

µ(S)

∫ 1

0
yn−|S |(1− y)|S | dy

(Marichal 2004)
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Application : reliability of systems

Consider a system made up of n indep. components C1, . . . ,Cn

Each component Ci has

a lifetime Xi

a reliability ri (t) at time t > 0

ri (t) := Pr[Xi > t] = 1− Fi (t)

X1 X2 X3

X1

X2

Assumptions :

The lifetime of a series subsystem is the minimum of the
component lifetimes

The lifetime of a parallel subsystem is the maximum of the
component lifetimes
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Application : reliability of systems

Question. What is the lifetime of the following system ?

X1 X2

X3

Solution. Y = (X1 ∧ X2) ∨ X3
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Application : reliability of systems

For a system mixing series and parallel connections :

System lifetime :
Yp = p(X1, . . . ,Xn)

where p is

an n-ary l.p.f.

an n-ary w.l.p.f. if some Xi ’s are constant

We then have explicit formulas for

the c.d.f. of Yp

the expected value E[Yp]

the moments
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Application : reliability of systems

System reliability at time t > 0

Rp(t) := Pr[Yp > t] = 1− Fp(t)

For any measurable function g : [0,∞[→ R such that

g(∞)ri (∞) = 0 (i = 1, . . . , n)

we have

E
[
g(Yp)

]
= g(0) +

∫ ∞

0
Rp(t) dg(t)

Mean time to failure :

E[Yp] =

∫ ∞

0
Rp(t) dt
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Application : reliability of systems

Example. Assume ri (t) = e−λi t (i = 1, . . . , n)

E
[
Yp

]
=

∑
S⊆[n]
S 6=∅

mvp(S)
1∑

i∈S λi

Series system

E
[
Yp

]
=

1∑
i∈[n] λi

Parallel system

E
[
Yp

]
=

∑
S⊆[n]
S 6=∅

(−1)|S |−1 1∑
i∈S λi

(Barlow & Proschan 1981)
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Thanks for your attention !
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