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Abstract. We give the cumulative distribution functions, the expected values,
and the moments of weighted lattice polynomials when regarded as real func-
tions. Since weighted lattice polynomial functions include Sugeno integrals, lat-
tice polynomial functions, and order statistics, our results encompass the corre-
sponding formulas for these particular functions.
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1 Introduction

The cumulative distribution functions (c.d.f.’s) and the moments of order statistics have
been discovered and studied for many years (see e.g. [4]). Their generalizations to
lattice polynomial functions, which are nonsymmetric extensions of order statistics,
were investigated very recently by Marichal [7] for independent variables and then by
Dukhovny [5] for dependent variables.

Roughly speaking, an n-ary lattice polynomial is any well-formed expression in-
volving n real variables x1, . . . , xn linked by the lattice operations ∧ = min and
∨ = max in an arbitrary combination of parentheses. In turn, such an expression natu-
rally defines an n-ary lattice polynomial function. For instance,

p(x1, x2, x3) = (x1 ∧ x2) ∨ x3

is a 3-ary lattice polynomial function.
Lattice polynomial functions can be generalized by regarding certain variables as

parameters, like in the 2-ary polynomial

p(x1, x2) = (c ∧ x1) ∨ x2,

where c is a real constant. Such “parameterized” lattice polynomial functions, called
weighted lattice polynomial functions [8, 11], are very often considered in the area
of nonlinear aggregation functions as they include the whole class of discrete Sugeno
integrals [12, 13].



In this paper we give a closed-form formula for the c.d.f. of any weighted lattice
polynomial function in terms of the c.d.f.’s of its input variables. More precisely, con-
sidering an n-ary weighted lattice polynomial function p and n independent random
variables X1, . . . , Xn, Xi (i = 1, . . . , n) having c.d.f. Fi(x), we give a formula for the
c.d.f. of Yp := p(X1, . . . , Xn). We also yield a formula for the expected valueE[g(Yp)],
where g is any measurable function. The special cases g(x) = x, xr, [x−E(Yp)]r, and
etx give, respectively, the expected value, the raw moments, the central moments, and
the moment-generating function of Yp.

This paper is organized as follows. In Section 2 we recall the basic material related
to lattice polynomial functions and their weighted versions. In Section 3 we provide
the announced results. In Section 4 we investigate the particular case where the input
random variables are uniformly distributed over the unit interval. Finally, in Section 5
we provide an application of our results to the reliability analysis of coherent systems.

Weighted lattice polynomial functions play an important role in the areas of non-
linear aggregation and integration. Indeed, as we mentioned above, they include all the
discrete Sugeno integrals, which are very useful aggregation functions in many areas.
More details about the Sugeno integrals and their applications can be found in the re-
markable edited book [6].

2 Weighted lattice polynomials

In this section we give some definitions and properties related to weighted lattice poly-
nomial functions. More details and proofs can be found in [8].

As we are concerned with weighted lattice polynomial functions of random vari-
ables, we do not consider weighted lattice polynomial functions on a general lattice,
but simply on an interval L := [a, b] of the extended real number system R := R ∪
{−∞, +∞}. Clearly, such an interval is a bounded distributive lattice, with a and b
as bottom and top elements. The lattice operations ∧ and ∨ then represent the min-
imum and maximum operations, respectively. To simplify the notation, we also set
[n] := {1, . . . , n} for any integer n > 1.

Let us first recall the definition of a lattice polynomial (with real variables); see e.g.
Birkhoff [2, §II.5].

Definition 1. Given a finite collection of variables x1, . . . , xn ∈ L, a lattice polyno-
mial in the variables x1, . . . , xn is defined as follows:

1. the variables x1, . . . , xn are lattice polynomials in x1, . . . , xn;
2. if p and q are lattice polynomials in x1, . . . , xn, then p ∧ q and p ∨ q are lattice

polynomials in x1, . . . , xn;
3. every lattice polynomial is formed by finitely many applications of the rules 1 and

2.

When two different lattice polynomials p and q in the variables x1, . . . , xn represent
the same function from Ln to L, we say that p and q are equivalent and we write p = q.
For instance, x1 ∨ (x1 ∧ x2) and x1 are equivalent.

The weighted lattice polynomial functions are defined as follows.



Definition 2. A function p : Ln → L is an n-ary weighted lattice polynomial function
if there exists an integer m > 0, parameters c1, . . . , cm ∈ L, and a lattice polynomial
function q : Ln+m → L such that

p(x1, . . . , xn) = q(x1, . . . , xn, c1, . . . , cm) (x1, . . . , xn ∈ L).

Because L is a distributive lattice, any weighted lattice polynomial function can be
written in disjunctive and conjunctive forms as follows.

Proposition 1. Let p : Ln → L be any weighted lattice polynomial function. Then
there are set functions α : 2[n] → L and β : 2[n] → L such that

p(x) =
∨

S⊆[n]

[
α(S) ∧

∧

i∈S

xi

]
=

∧

S⊆[n]

[
β(S) ∨

∨

i∈S

xi

]
.

Proposition 1 naturally includes the classical lattice polynomial functions. To see it,
it suffices to consider nonconstant set functions α : 2[n] → {a, b} and β : 2[n] → {a, b},
with α(∅) = a and β(∅) = b.

The set functions α and β that disjunctively and conjunctively generate the poly-
nomial function p in Proposition 1 are not unique. For example, as we have already
observed above, we have

x1 ∨ (x1 ∧ x2) = x1 = x1 ∧ (x1 ∨ x2).

However, it can be shown that, from among all the possible set functions that disjunc-
tively generate a given weighted lattice polynomial function, only one is nondecreasing.
Similarly, from among all the possible set functions that conjunctively generate a given
weighted lattice polynomial function, only one is nonincreasing. These particular set
functions are given by

α(S) = p(eS) and β(S) = p(e[n]\S),

where, for any S ⊆ [n], eS denotes the characteristic vector of S in {a, b}n, i.e., the
n-dimensional vector whose ith component is b, if i ∈ S, and a, otherwise. Thus, an
n-ary weighted lattice polynomial function can always be written as

p(x) =
∨

S⊆[n]

[
p(eS) ∧

∧

i∈S

xi

]
=

∧

S⊆[n]

[
p(e[n]\S) ∨

∨

i∈S

xi

]
.

The best known instances of weighted lattice polynomial functions are given by the
discrete Sugeno integrals, which consist of a nonlinear discrete integration with respect
to a fuzzy measure.

Definition 3. An L-valued fuzzy measure on [n] is a nondecreasing set function µ :
2[n] → L such that µ(∅) = a and µ([n]) = b.

The Sugeno integrals can be presented in various equivalent forms. The next defini-
tion introduce them in one of their simplest forms (see [12]).



Definition 4. Let µ be an L-valued fuzzy measure on [n]. The Sugeno integral of a
function x : [n] → L with respect to µ is defined by

Sµ(x) :=
∨

S⊆[n]

[
µ(S) ∧

∧

i∈S

xi

]
.

Thus, any function f : Ln → L is an n-ary Sugeno integral if and only if it is a
weighted lattice polynomial function fulfilling f(e∅) = a and f(e[n]) = b.

3 Cumulative distribution functions and moments

Consider n independent random variables X1, . . . , Xn, Xi (i ∈ [n]) having c.d.f.
Fi(x), and set Yp := p(X1, . . . , Xn), where p : Ln → L is any weighted lattice
polynomial function. Let H : R → {0, 1} be the Heaviside step function defined by
H(x) = 1, if x > 0, and 0, otherwise. For any c ∈ R, we also define the function
Hc(x) = H(x− c).

The c.d.f. of Yp is given in the next theorem.

Theorem 1. Let p : Ln → L be a weighted lattice polynomial function. Then, the c.d.f.
of Yp is given by

Fp(y) = 1−
∑

S⊆[n]

[
1−Hp(eS)(y)

] ∏

i∈[n]\S
Fi(y)

∏

i∈S

[1− Fi(y)].

As a corollary, we retrieve the c.d.f. of any lattice polynomial function; see [7].

Corollary 1. Let p : Ln → L be a lattice polynomial function. Then, the c.d.f. of Yp is
given by

Fp(y) = 1−
∑

S⊆[n]
p(eS)=b

∏

i∈[n]\S
Fi(y)

∏

i∈S

[1− Fi(y)].

Let us now consider the expected value E[g(Yp)], where g : R→ R is any measur-
able function. From its expression we can compute the expected value and the moments
of Yp.

By definition, we simply have

E[g(Yp)] =
∫ ∞

−∞
g(y) dFp(y).

Using integration by parts, we can derive an alternative expression of E[g(Yp)]. We
then have the following result.

Theorem 2. Let p : Ln → L by any weighted lattice polynomial function. For any
measurable function g : R→ R such that

lim
y→∞

g(y)[1− Fi(y)] = 0 (i ∈ [n]),

then

E[g(Yp)] = lim
y→−∞

g(y) +
∑

S⊆[n]

∫ p(eS)

−∞

∏

i∈[n]\S
Fi(y)

∏

i∈S

[1− Fi(y)] dg(y).



4 The case of uniformly distributed variables on the unit interval

We now examine the case where the random variables X1, . . . , Xn are uniformly dis-
tributed on [0, 1]. We also assume L = [0, 1].

Recall that the incomplete Beta function is defined, for any u, v > 0, by

Bz(u, v) :=
∫ z

0

tu−1(1− t)v−1 dt (z ∈ R),

and the Beta function is defined, for any u, v > 0, by B(u, v) := B1(u, v).
According to Theorem 2, for any weighted lattice polynomial function p : [0, 1]n →

[0, 1] and any measurable function g : [0, 1] → R, we have

E[g(Yp)] = g(0) +
∑

S⊆[n]

∫ p(eS)

0

yn−|S|(1− y)|S| dg(y).

Let us now examine the case of the Sugeno integrals. As these integrals are usually
considered over the domain [0, 1]n, we naturally calculate their expected values when
their input variables are uniformly distributed over [0, 1]n. Since any Sugeno integral is
a particular weighted lattice polynomial, its expected value then writes

∫

[0,1]n
Sµ(x) dx =

∑

S⊆[n]

Bµ(S)(n− |S|+ 1, |S|+ 1).

Surprisingly, this expression is very close to that of the expected value of the Cho-
quet integral with respect to the same fuzzy measure.

Let us recall the definition of the Choquet integrals (see [3]). Just as for the Sugeno
integrals, the Choquet integrals can be expressed in various equivalent forms. We present
them in one of their simplest forms; see e.g. [9].

Definition 5. Let µ be an [0, 1]-valued fuzzy measure on [n]. The Choquet integral of a
function x : [n] → [0, 1] with respect to µ is defined by

Cµ(x) :=
∑

S⊆[n]

µ(S)
[ ∑

T⊇S

(−1)|T |−|S|
∧

i∈T

xi

]
.

For comparison purposes, the expected value of Cµ is given by (see e.g. [10])
∫

[0,1]n
Cµ(x) dx =

∑

S⊆[n]

µ(S)B(n− |S|+ 1, |S|+ 1).

5 Application to reliability theory

In this final section we show how the results derived here can be applied to the reliability
analysis of certain coherent systems. For a reference on reliability theory, see e.g. [1].



Consider a system made up of n independent components, each component Ci (i ∈
[n]) having a lifetime Xi and a reliability ri(t) := Pr[Xi > t] at time t > 0. Additional
components, with constant lifetimes, may also be considered.

We assume that, when components are connected in series, the lifetime of the sub-
system they form is simply given by the minimum of the component lifetimes. Like-
wise, for a parallel connection, the subsystem lifetime is the maximum of the compo-
nent lifetimes.

It follows immediately that, for a system mixing series and parallel connections, the
system lifetime is given by a weighted lattice polynomial function

Yp = p(X1, . . . , Xn)

of the component lifetimes. We then have explicit formulas for the c.d.f., the expected
value, and the moments of the system lifetime.

For example, the system reliability at time t > 0 is given by

Rp(t) := Pr[Yp > t] =
∑

S⊆[n]

[
1−Hp(eS)(y)

] ∏

i∈S

ri(t)
∏

i∈[n]\S
[1− ri(t)].

Moreover, for any measurable function g : [0,∞] → R such that

lim
t→∞

g(t)ri(t) = 0 (i ∈ [n]),

we have, by Theorem 2,

E[g(Yp)] = g(0) +
∫ ∞

0

Rp(t) dg(t).

Example 1. If ri(t) = e−λit (i ∈ [n]), we can show that

E[Yp] = p(e∅) +
∑

S⊆[n]
S 6=∅

∑

T⊆S

(−1)|S|−|T |
1− e−λ(S) p(eT )

λ(S)
,

where λ(S) :=
∑

i∈S λi.
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