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Abstract. We give the cumulative distribution functions, the expected values, and the moments of weighted
lattice polynomials when regarded as real functions. Since weighted lattice polynomial functions include
Sugeno integrals, lattice polynomial functions, and order statistics, our results encompass the corresponding
formulas for these particular functions.

1 Introduction

The cumulative distribution functions (c.d.f.’s) and the moments of order statistics have been discov-
ered and studied for many years (see e.g. [4]). Their generalizations to lattice polynomial functions,
which are nonsymmetric extensions of order statistics, were investigated very recently by Marichal
[7] for independent variables and then by Dukhovny [5] for dependent variables.

Roughly speaking, an n-ary lattice polynomial is any well-formed expression involving n real
variables x,...,x, linked by the lattice operations A = min and V = max in an arbitrary combination
of parentheses. In turn, such an expression naturally defines an n-ary lattice polynomial function. For
instance,

P(lexz,)@) = (x1 /\xz) VX3

is a 3-ary lattice polynomial function.
Lattice polynomial functions can be generalized by regarding certain variables as parameters, like
in the 2-ary polynomial
p(x1,x2) = (¢ Axp) Vxy,

where c is a real constant. Such “parameterized” lattice polynomial functions, called weighted lattice
polynomial functions [8, 11], are very often considered in the area of nonlinear aggregation functions
as they include the whole class of discrete Sugeno integrals [12, 13].

In this paper we give a closed-form formula for the c.d.f. of any weighted lattice polynomial
function in terms of the c.d.f.’s of its input variables. More precisely, considering an n-ary weighted
lattice polynomial function p and n independent random variables Xj,...,X,, X; (i =1,...,n) having
c.d.f. F(x), we give a formula for the c.d.f. of ¥, := p(Xj,...,X,). We also yield a formula for the
expected value E[g(Y,)], where g is any measurable function. The special cases g(x) = x, x", [x —
E(Yp)]’, and e'* give, respectively, the expected value, the raw moments, the central moments, and the
moment-generating function of ¥),.

This paper is organized as follows. In Section 2 we recall the basic material related to lattice
polynomial functions and their weighted versions. In Section 3 we provide the announced results. In
Section 4 we investigate the particular case where the input random variables are uniformly distributed
over the unit interval. Finally, in Section 5 we provide an application of our results to the reliability
analysis of coherent systems.
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Weighted lattice polynomial functions play an important role in the areas of nonlinear aggregation
and integration. Indeed, as we mentioned above, they include all the discrete Sugeno integrals, which
are very useful aggregation functions in many areas. More details about the Sugeno integrals and their
applications can be found in the remarkable edited book [6].

2 Weighted lattice polynomials

In this section we give some definitions and properties related to weighted lattice polynomial func-
tions. More details and proofs can be found in [8].

As we are concerned with weighted lattice polynomial functions of random variables, we do not
consider weighted lattice polynomial functions on a general lattice, but simply on an interval L := [a, b]
of the extended real number system R := R U {—o0, +oo0}. Clearly, such an interval is a bounded
distributive lattice, with a and » as bottom and top elements. The lattice operations A and V then
represent the minimum and maximum operations, respectively. To simplify the notation, we also set
[n] :=={1,...,n} for any integer n > 1.

Let us first recall the definition of a lattice polynomial (with real variables); see e.g. Birkhoff [2,
6IL5].

Definition 1. Given a finite collection of variables x,, . .. ,x, € L, a lattice polynomial in the variables
X1,...,Xp is defined as follows:
1. the variables xy, ... ,x, are lattice polynomials in x, ... ,X,;
2. if p and q are lattice polynomials in xi,...,x,, then p \q and pV q are lattice polynomials in
XlyennsXny

3. every lattice polynomial is formed by finitely many applications of the rules 1 and 2.

When two different lattice polynomials p and ¢ in the variables xi,...,x, represent the same
function from L" to L, we say that p and g are equivalent and we write p = g. For instance, x1 V (x; Ax2)
and x; are equivalent.

The weighted lattice polynomial functions are defined as follows.

Definition 2. A function p: L" — L is an n-ary weighted lattice polynomial function if there exists an
integer m > 0, parameters cy,...,cym € L, and a lattice polynomial function q : L"™™ — L such that

p(x1, oy xn) = q(X1,y .o X0, CLy ooy o) (x1,...,x, €L).

Because L is a distributive lattice, any weighted lattice polynomial function can be written in
disjunctive and conjunctive forms as follows.

Proposition 1. Let p : L" — L be any weighted lattice polynomial function. Then there are set func-
tions o 20" — L and B : 20" — L such that

p(x) =\ |a(s)A \xi] = /}][mswvx,-].

SCln] ies ics

Proposition 1 naturally includes the classical lattice polynomial functions. To see it, it suffices to
consider nonconstant set functions o : 2"/ — {a, b} and B : 2" — {a, b}, with (@) = a and p(2) = b.

The set functions o and [ that disjunctively and conjunctively generate the polynomial function p
in Proposition 1 are not unique. For example, as we have already observed above, we have

x1V (x1 /\JCQ) =x1=x1 N\ ()C1 \/XQ).
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However, it can be shown that, from among all the possible set functions that disjunctively generate a
given weighted lattice polynomial function, only one is nondecreasing. Similarly, from among all the
possible set functions that conjunctively generate a given weighted lattice polynomial function, only
one is nonincreasing. These particular set functions are given by

o(S) = p(es) and B(S) = p(ep)s),

where, for any S C [n], eg denotes the characteristic vector of S in {a,b}", i.e., the n-dimensional
vector whose ith component is a, if i € S, and b, otherwise. Thus, an n-ary weighted lattice polynomial
function can always be written as

p(x)="\/ [p(es)/\/\x,} = A [p(e[n]\g)\/\/xi].
SCln] ics SCln] ics

The best known instances of weighted lattice polynomial functions are given by the discrete
Sugeno integrals, which consist of a nonlinear discrete integration with respect to a fuzzy measure.

Definition 3. An L-valued fuzzy measure on [n] is a nondecreasing set function u : 20 — L such that
u(®) = a and u(n]) = b.

The Sugeno integrals can be presented in various equivalent forms. The next definition introduce
them in one of their simplest forms (see [12]).

Definition 4. Let u be an L-valued fuzzy measure on [n]. The Sugeno integral of a function x : [n] — L
with respect to u is defined by

Su(x) := \/ [y(S)/\/\x,}.

SC|n] €S

Thus, any function f : L" — L is an n-ary Sugeno integral if and only if it is a weighted lattice
polynomial function fulfilling f(ex) = a and f(ey,) = b.

3 Cumulative distribution functions and moments

Consider n independent random variables Xi,...,X,, X; (i € [n]) having c.d.f. Fj(x), and set ¥, :=
p(X1,...,X,), where p : L — L is any weighted lattice polynomial function. Let H : R — {0,1} be
the Heaviside step function defined by H(x) = 1, if x > 0, and 0, otherwise. For any ¢ € R, we also
define the function H,(x) = H(x —¢).

The c.d.f. of ¥), is given in the next theorem.

Theorem 1. Let p : L" — L be a weighted lattice polynomial function. Then, the c.d.f. of Y, is given

by
F,(0))=1=Y [1—-Hyey®] [] FEO) [t -FEO)]-
SC[n] ic[n]\S i€S

As a corollary, we retrieve the c.d.f. of any lattice polynomial function; see [7].

Corollary 1. Let p : L" — L be a lattice polynomial function. Then, the c.d.f. of Y, is given by

FEy=1-"Y I 0 []i1-FEO).
pf&ign:]b icln)\s ics
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Let us now consider the expected value E[g(Y,)], where g : R — R is any measurable function.
From its expression we can compute the expected value and the moments of Y),.

By definition, we simply have
= [ 8(y)dFy(y)

Using integration by parts, we can derive an alternative expression of E[g(Y),)]. We then have the
following result.

Theorem 2. Let p: L" — L by any weighted lattice polynomial function. For any measurable function
g : R — R such that

limg(y)[1-F(y)]=0 (i€ [n]),

y—)oc

then
p(es)

Elg(t,) = Jim g0+ ¥ [ TT AO)T]I-FO)dg0y).

SCi’ —  i€n)\s icS

4 The case of uniformly distributed variables on the unit interval

We now examine the case where the random variables Xj, ..., X, are uniformly distributed on [0, 1].
We also assume L = [0, 1].
Recall that the incomplete Beta function is defined, for any u#,v > 0, by

B.(u,v) = /Ozzu*u 0 'd (zeR),

and the Beta function is defined, for any u,v > 0, by B(u,v) := By (u,v).
According to Theorem 2, for any weighted lattice polynomial function p : [0, 1]" — [0, 1] and any
measurable function g : [0,1] — R, we have

Elg(¥Y, 0)+ Z/ Sl —y) Bl dg(y).

SC[n]

Let us now examine the case of the Sugeno integrals. As these integrals are usually considered
over the domain [0, 1), we naturally calculate their expected values when their input variables are uni-
formly distributed over [0, 1]". Since any Sugeno integral is a particular weighted lattice polynomial,
its expected value then writes

/ Su(x)dx =Y Bys)(n—|S|+1,[S]+1).

SC|n]

Surprisingly, this expression is very close to that of the expected value of the Choquet integral
with respect to the same fuzzy measure.

Let us recall the definition of the Choquet integrals (see [3]). Just as for the Sugeno integrals,
the Choquet integrals can be expressed in various equivalent forms. We present them in one of their
simplest forms; see e.g. [9].
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Definition 5. Let u be an [0, 1]-valued fuzzy measure on [n]. The Choquet integral of a function x :
[n] — [0, 1] with respect to u is defined by

- zuu<s>[z<—1>'”' A
SCln

oS ieT

For comparison purposes, the expected value of C, is given by (see e.g. [10])

x)dx= Y u(S)B(n—|S|+1,|S|+1).
[O’H SC[n]

S Application to reliability theory

In this final section we show how the results derived here can be applied to the reliability analysis of
certain coherent systems. For a reference on reliability theory, see e.g. [1].

Consider a system made up of n independent components, each component C; (i € [n]) having a
lifetime X; and a reliability r;(z) := Pr[X; > ¢] at time ¢ > 0. Additional components, with constant
lifetimes, may also be considered.

We assume that, when components are connected in series, the lifetime of the subsystem they
form is simply given by the minimum of the component lifetimes. Likewise, for a parallel connection,
the subsystem lifetime is the maximum of the component lifetimes.

It follows immediately that, for a system mixing series and parallel connections, the system life-
time is given by a weighted lattice polynomial function

Y, =pXi,....X,)

of the component lifetimes. We then have explicit formulas for the c.d.f., the expected value, and the
moments of the system lifetime.
For example, the system reliability at time ¢ > 0 is given by

Ry(t) :=Pr[Y, > 1] = Z [I—Hp(es)(y)] Hri(t) H [1—ri(1)].

SCln] i€S i€[n]\S
Moreover, for any measurable function g : [0,e0] — R such that

limg()ri(t) =0 (i € [n]),

—o0

we have, by Theorem 2,
Elg(1,)] = 8(0)+ [ Ry (1) ds(r)

Example 1. If r;(t) = e (i € [n]), we can show that

1 — e MS)pler)
E[Y,] = ples) + psi-r Lo e o
LR
S£D

where A(S) 1= YicgAi.
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