

Classification of associative multivariate polynomial functions

Jean-Luc Marichal and Pierre Mathonet

University of Luxembourg

Semigroups

Recall that a function $f: \mathbb{C}^2 \rightarrow \mathbb{C}$ is *associative* if

$$f(f(x_1, x_2), x_3) = f(x_1, f(x_2, x_3)) \quad \forall x_1, x_2, x_3 \in \mathbb{C}.$$

The pair (\mathbb{C}, f) is called a *semigroup*

Examples:

$$f(x_1, x_2) = x_1 x_2$$

$$f(x_1, x_2) = x_1 + x_2$$

Problem: Classify the associative polynomial functions

Semigroups defined by polynomials over \mathbb{C}

The semigroups (\mathbb{C}, p) , where $p: \mathbb{C}^2 \rightarrow \mathbb{C}$ is a polynomial function, are given by

- (i) $p(x_1, x_2) = c$
- (ii) $p(x_1, x_2) = x_1$
- (iii) $p(x_1, x_2) = x_2$
- (iv) $p(x_1, x_2) = c + x_1 + x_2$
- (v) $p(x_1, x_2) = \varphi^{-1}(a \varphi(x_1) \varphi(x_2))$, where $\varphi(x) = x + b$

Ternary semigroups

A function $f: \mathbb{C}^3 \rightarrow \mathbb{C}$ is *associative* if

$$\begin{aligned} f(f(x_1, x_2, x_3), x_4, x_5) &= f(x_1, f(x_2, x_3, x_4), x_5) \\ &= f(x_1, x_2, f(x_3, x_4, x_5)) \end{aligned}$$

The pair (\mathbb{C}, f) is called a *ternary semigroup* (Dörnte, 1928)

Examples:

$$f(x_1, x_2, x_3) = x_1 x_2 x_3$$

$$f(x_1, x_2, x_3) = x_1 + x_2 + x_3$$

$$f(x_1, x_2, x_3) = x_1 - x_2 + x_3$$

Problem: Classify the associative ternary polynomial functions

Ternary semigroups defined by polynomials over \mathbb{C}

The ternary semigroups (\mathbb{C}, p) , where $p: \mathbb{C}^3 \rightarrow \mathbb{C}$ is a polynomial function, are given by

- (i) $p(x_1, x_2, x_3) = c$
- (ii) $p(x_1, x_2, x_3) = x_1$
- (iii) $p(x_1, x_2, x_3) = x_3$
- (iv) $p(x_1, x_2, x_3) = c + x_1 + x_2 + x_3$
- (v) $p(x_1, x_2, x_3) = x_1 - x_2 + x_3$
- (vi) $p(x_1, x_2, x_3) = \varphi^{-1}(a \varphi(x_1) \varphi(x_2) \varphi(x_3))$, where $\varphi(x) = x + b$

Glazek and Gleichgewicht (1985) proved this result for ternary semigroups (R, p) , where R is an infinite commutative integral domain with identity

n-ary semigroups

A function $f: \mathbb{C}^n \rightarrow \mathbb{C}$ is *associative* if

$$\begin{aligned} & f(x_1, \dots, f(x_i, \dots, x_{i+n-1}), x_{i+n}, \dots, x_{2n-1}) \\ &= f(x_1, \dots, x_i, f(x_{i+1}, \dots, x_{i+n}), \dots, x_{2n-1}), \quad i = 1, \dots, n-1 \end{aligned}$$

The pair (\mathbb{C}, f) is called an *n-ary semigroup* (Dörnte, 1928)

Problem: Classify the associative *n*-ary polynomial functions

New results

Theorem. The n -ary semigroups (\mathbb{C}, p) , where $p: \mathbb{C}^n \rightarrow \mathbb{C}$ is a polynomial function, are given by

- (i) $p(\mathbf{x}) = c$
- (ii) $p(\mathbf{x}) = x_1$
- (iii) $p(\mathbf{x}) = x_n$
- (iv) $p(\mathbf{x}) = c + \sum_{i=1}^n x_i$
- (v) $p(\mathbf{x}) = \sum_{i=1}^n \omega^{i-1} x_i$ (if $n \geq 3$), where $\omega^{n-1} = 1$, $\omega \neq 1$
- (vi) $p(\mathbf{x}) = \varphi^{-1}(a \prod_{i=1}^n \varphi(x_i))$, where $\varphi(x) = x + b$

(This classification also holds on an infinite integral domain)

New results

Remark on type (v)

$$p(\mathbf{x}) = \sum_{i=1}^n \omega^{i-1} x_i \quad \omega^{n-1} = 1 \quad \omega \neq 1$$

- Case $n = 3$ reduces to

$$p(x_1, x_2, x_3) = x_1 - x_2 + x_3$$

- On \mathbb{R} :

$$p(\mathbf{x}) = \sum_{i=1}^n (-1)^{i-1} x_i \quad \text{if } n \text{ odd}$$
$$\text{nothing} \quad \text{if } n \text{ even}$$

n-ary groups

The pair (\mathbb{C}, f) is an *n-ary quasigroup* if, for every $a_1, \dots, a_n, b \in \mathbb{C}$ and every $i \in \{1, \dots, n\}$, the equation

$$f(a_1, \dots, a_{i-1}, z, a_{i+1}, \dots, a_n) = b$$

has a unique solution $z \in \mathbb{C}$

The pair (\mathbb{C}, f) is an *n-ary group* if it is an *n*-ary semigroup and an *n*-ary quasigroup

Remark: Any 2-ary group is a group

n-ary groups

Corollary. The *n*-ary groups (\mathbb{C}, p) , where $p: \mathbb{C}^n \rightarrow \mathbb{C}$ is a polynomial function, are given by

(iv) $p(\mathbf{x}) = c + \sum_{i=1}^n x_i$

(v) $p(\mathbf{x}) = \sum_{i=1}^n \omega^{i-1} x_i$ (if $n \geq 3$), where $\omega^{n-1} = 1$, $\omega \neq 1$

(vi) $p(\mathbf{x}) = \varphi^{-1}(a \prod_{i=1}^n \varphi(x_i))$, where $\varphi(x) = x + b$

Reducibility

From a semigroup (\mathbb{C}, g) we can define an n -ary semigroup (\mathbb{C}, f) by

$$f(x_1, \dots, x_n) = g(\dots g(g(g(x_1, x_2), x_3), x_4), \dots, x_n)$$

We then say that the n -ary semigroup (\mathbb{C}, f) is *reducible to* or *derived from* (\mathbb{C}, g)

Examples:

$f(x_1, x_2, x_3) = x_1 x_2 x_3$ is reducible to $g(x_1, x_2) = x_1 x_2$

$f(x_1, x_2, x_3) = x_1 + x_2 + x_3$ is reducible to $g(x_1, x_2) = x_1 + x_2$

Is $f(x_1, x_2, x_3) = x_1 - x_2 + x_3$ reducible ?

Reducibility for polynomial functions over \mathbb{C}

- (i) $p(\mathbf{x}) = c$ is reducible to $g(x_1, x_2) = c$
- (ii) $p(\mathbf{x}) = x_1$ is reducible to $g(x_1, x_2) = x_1$
- (iii) $p(\mathbf{x}) = x_n$ is reducible to $g(x_1, x_2) = x_2$
- (iv) $p(\mathbf{x}) = c + \sum_{i=1}^n x_i$ is reducible to

$$g(x_1, x_2) = \frac{c}{n-1} + x_1 + x_2$$

- (v) $p(\mathbf{x}) = \sum_{i=1}^n \omega^{i-1} x_i$ (if $n \geq 3$) is not reducible !!
- (vi) $p(\mathbf{x}) = \varphi^{-1}(a \prod_{i=1}^n \varphi(x_i))$ is reducible to

$$g(x_1, x_2) = \varphi^{-1}(\alpha \varphi(x_1)\varphi(x_2))$$

where $\alpha \in \mathbb{C}$ is such that $\alpha^{n-1} = a$

We have extended these results to the case of an infinite integral domain

Irreducibility of $p(\mathbf{x}) = \sum_{i=1}^n \omega^{i-1} x_i$

Proof. Suppose p is reducible to g . Then $y = p(y, 0, \dots, 0)$. Therefore

$$\begin{aligned} g(x, y) &= g(x, p(y, 0, \dots, 0)) = g(x, g(\dots g(g(y, 0), 0), \dots, 0)) \\ &= p(x, g(y, 0), 0, \dots, 0) \end{aligned}$$

Then we have

$$g(x, y) = x + \omega g(y, 0) \quad x, y \in \mathbb{C} \quad (1)$$

and hence

$$g(0, 0) = \omega g(0, 0) \quad (\text{implying } g(0, 0) = 0) \quad (2)$$

By (1) and (2), we obtain

$$g(x, 0) = x + \omega g(0, 0) = x \quad (3)$$

Combining (1) with (3) produces

$$g(x, y) = x + \omega y \quad (\omega \neq 1)$$

and this polynomial function is not a semigroup ! \rightarrow Contradiction

□

Medial n -ary semigroup structures

An n -ary semigroup (\mathbb{C}, f) is *medial* if f satisfies the bisymmetry functional equation, i.e., the expression

$$f(f(x_{11}, \dots, x_{1n}), \dots, f(x_{n1}, \dots, x_{nn}))$$

remains invariant when replacing x_{ij} by x_{ji} for all $i, j = 1, \dots, n$

Proposition. (straightforward)

Every n -ary semigroup defined by a polynomial function over \mathbb{C} is medial

A natural question. Describe the class of all n -ary polynomial functions over \mathbb{C} (or an integral domain) satisfying the bisymmetry equation