
49th International Symposium on Functional Equations

Graz-Mariatrost, June 19-26, 2011

Abstract Form

Author:	Jean-Luc MARICHAL
Department:	Mathematics Research Unit
University:	University of Luxembourg
Address:	6, rue Coudenhove-Kalergi, L-1359 Luxembourg, LUX-EMBOURG
Co-author(s):	Pierre MATHONET
Title of talk:	Classification of associative multivariate polynomial functions

Abstract:

Let R be an infinite commutative integral domain with identity and let $n \geq 2$ be an integer. A function $f: R^n \rightarrow R$ is said to be *associative* if it solves the following system of $n-1$ functional equations:

$$\begin{aligned} & f(x_1 \dots, f(x_i, \dots, x_{i+n-1}), \dots, x_{2n-1}) \\ &= f(x_1 \dots, f(x_{i+1}, \dots, x_{i+n}), \dots, x_{2n-1}), \quad i \in \{1, \dots, n-1\}. \end{aligned}$$

In this case, the pair (R, f) is called an *n-ary semigroup*.

We provide a complete classification of all the *n-ary semigroup* structures defined by polynomial functions over R (i.e., the *n-ary semigroup* structures polynomial-derived from R), thus generalizing Głazek and Gleichgewicht's classification of the corresponding ternary semigroups.