

Solving Chisini's functional equation

Jean-Luc Marichal

Mathematics Research Unit
University of Luxembourg

Chisini mean (1929)

Let \mathbb{I} be a real interval

An *average* of n numbers $x_1, \dots, x_n \in \mathbb{I}$ with respect to a function $F: \mathbb{I}^n \rightarrow \mathbb{R}$ is a number $M \in \mathbb{I}$ such that

$$F(x_1, \dots, x_n) = F(M, \dots, M)$$

An average is also called a *Chisini mean*

Chisini mean (1929)

Example: $\mathbb{I} = [0, \infty[$

$$F(x_1, \dots, x_n) = \sum_{i=1}^n x_i^2$$

We have

$$\begin{aligned} F(x_1, \dots, x_n) = F(M, \dots, M) &\iff \sum_{i=1}^n x_i^2 = n M^2 \\ &\iff M = \left(\frac{1}{n} \sum_{i=1}^n x_i^2 \right)^{1/2} \end{aligned}$$

(the solution is unique)

Chisini mean (1929)

Example: $\mathbb{I} = [0, 1]$

$$F(x_1, x_2) = \max(0, x_1 + x_2 - 1)$$

We have

$$\begin{aligned} F(x_1, x_2) &= F(M, M) \\ &\Updownarrow \\ \max(0, x_1 + x_2 - 1) &= \max(0, 2M - 1) \end{aligned}$$

- If $x_1 + x_2 - 1 \leq 0$ then RHS must be 0 and hence $M \leq \frac{1}{2}$
- If $x_1 + x_2 - 1 > 0$ then RHS must be $2M - 1 > 0$ and hence $M = \frac{x_1 + x_2}{2}$

(the solution is not unique)

Chisini's functional equation

Observation:

Chisini's definition is too general. We need conditions on F to ensure the existence and uniqueness of the average M

→ Let us investigate

$$F(x_1, \dots, x_n) = F(M(x_1, \dots, x_n), \dots, M(x_1, \dots, x_n))$$

(Chisini's functional equation)

Given: $F: \mathbb{I}^n \rightarrow \mathbb{R}$

Unknown: $M: \mathbb{I}^n \rightarrow \mathbb{I}$

Chisini's functional equation

Alternative formulation of

$$F(x_1, \dots, x_n) = F(M(x_1, \dots, x_n), \dots, M(x_1, \dots, x_n))$$

Diagonal section of F

$$\delta_F: \mathbb{I} \rightarrow \mathbb{R} \quad \delta_F(x) = F(x, \dots, x)$$

Chisini's equation (reformulation)

$$F(x_1, \dots, x_n) = \delta_F(M(x_1, \dots, x_n))$$

$$F = \delta_F \circ M$$

Existence of solutions

Proposition

$F = \delta_F \circ M$ is solvable

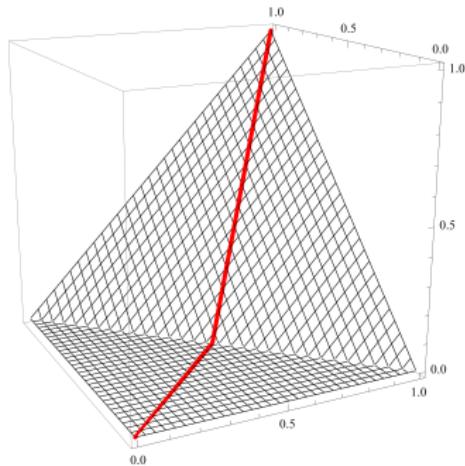
\Updownarrow

$\text{ran}(\delta_F) = \text{ran}(F)$

Existence of solutions

Example. $\mathbb{I} = [0, 1]$

$$F(x_1, x_2) = \max(0, x_1 + x_2 - 1)$$

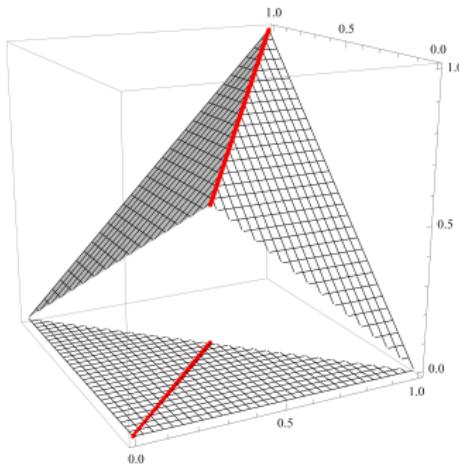


$$\text{ran}(\delta_F) = \text{ran}(F)$$

Existence of solutions

Example. $\mathbb{I} = [0, 1]$

$$F(x_1, x_2) = \begin{cases} 0, & \text{if } x_1 + x_2 \leq 1, \\ \min(x_1, x_2), & \text{otherwise.} \end{cases}$$



$$\text{ran}(\delta_F) \neq \text{ran}(F)$$

Resolution of Chisini's equation

Assume that Chisini's equation $F = \delta_F \circ M$ is solvable

Solutions:

$$M(\mathbf{x}) \in \delta_F^{-1}\{F(\mathbf{x})\} \quad \forall \mathbf{x} \in \mathbb{I}^n$$

i.e.

$$M(\mathbf{x}) \in \{z \in \mathbb{I} : \delta_F(z) = F(\mathbf{x})\} \quad \forall \mathbf{x} \in \mathbb{I}^n$$

Resolution of Chisini's equation

Example: $\mathbb{I} = [0, 1]$

$$F(x_1, x_2) = \text{median}(x_1 + x_2, 1/2, x_1 + x_2 - 1)$$

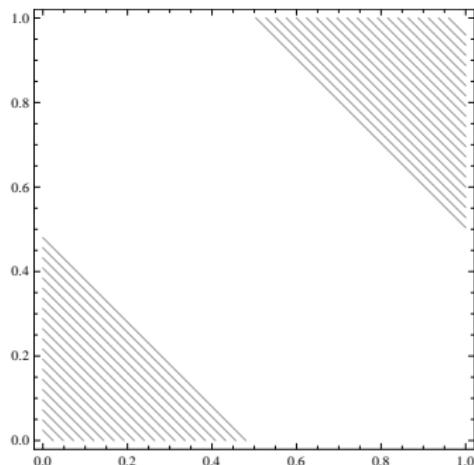
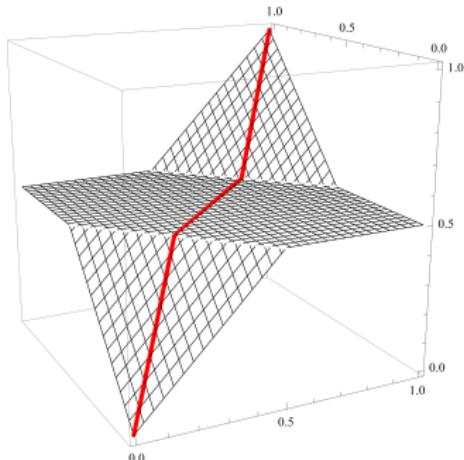
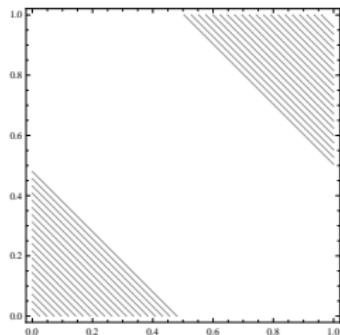


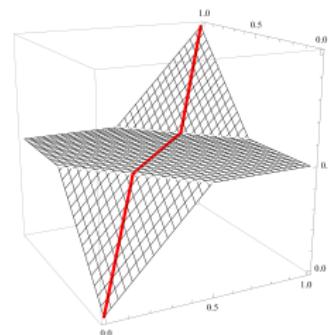
Figure: Function F (contour plot and 3D plot)

Solutions:

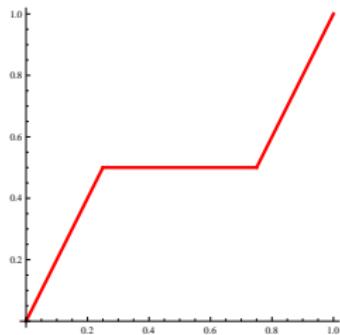
$$M(\mathbf{x}) \in \delta_F^{-1}\{F(\mathbf{x})\}$$



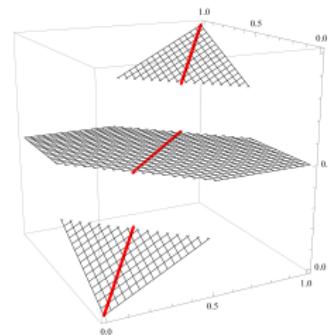
Function F (contour plot)



Function F (3D plot)



Diagonal section δ_F



One possible solution M

Uniqueness of solutions

Proposition

Assume $\text{ran}(\delta_F) = \text{ran}(F)$

$F = \delta_F \circ M$ has a unique solution

\Updownarrow

δ_F is one-to-one

\Rightarrow Unique solution:

$$M = \delta_F^{-1} \circ F$$

Back to Chisini means

Chisini's equation

$$F = \delta_F \circ M$$

- Existence of M : $\text{ran}(\delta_F) = \text{ran}(F)$
- Uniqueness of M : δ_F is one-to-one

$$M = \delta_F^{-1} \circ F$$

- Nondecreasing monotonicity of M : F nondecreasing
 $\Rightarrow \delta_F$ is strictly increasing
- Reflexivity of M : For free ! $\delta_M = \delta_F^{-1} \circ \delta_F = \text{id}_{\mathbb{I}}$

M is a mean

A natural question

Chisini's equation

$$F = \delta_F \circ M$$

Suppose

- $\text{ran}(\delta_F) = \text{ran}(F)$ \Rightarrow a solution M exists
- F nondecreasing \Rightarrow δ_F is nondecreasing

(no further conditions on δ_F)

Question

Is there always a nondecreasing and reflexive solution M ?

Constructing means

Example: $\mathbb{I} = [0, 1]$

$$F(x_1, x_2) = \text{median}(x_1 + x_2, 1/2, x_1 + x_2 - 1)$$

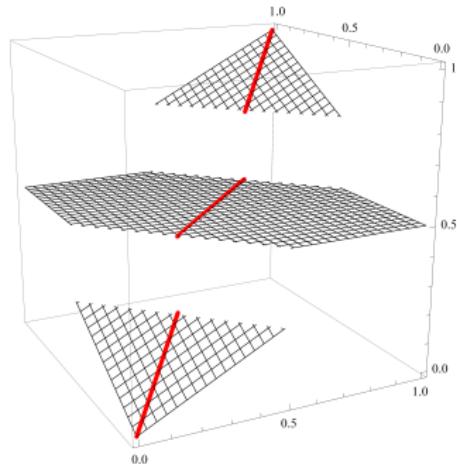
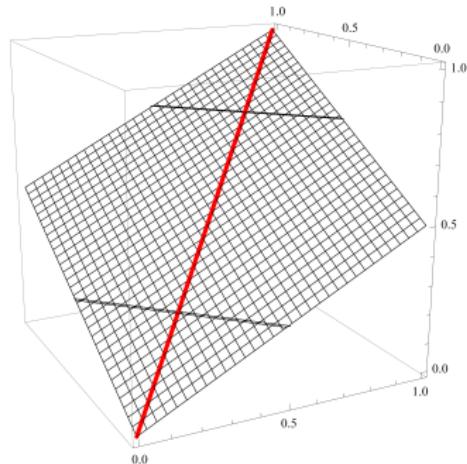


Figure: Two possible solutions M

Constructing means

Idea of the construction:

For every $\mathbf{x} \in \mathbb{I}^n$, we construct $M(\mathbf{x})$ by interpolation

Urysohn's lemma

Let A and B be disjoint closed subsets of \mathbb{R}^n

Let $r, s \in \mathbb{R}$, $r < s$

Then there exists a continuous function $U: \mathbb{R}^n \rightarrow [r, s]$
such that $U|_A = r$ and $U|_B = s$

Urysohn function:

$$U(\mathbf{x}) = r + \frac{d(\mathbf{x}, A)}{d(\mathbf{x}, A) + d(\mathbf{x}, B)} (s - r)$$

Constructing means

$$F(x_1, x_2) = \text{median}(x_1 + x_2, 1/2, x_1 + x_2 - 1)$$

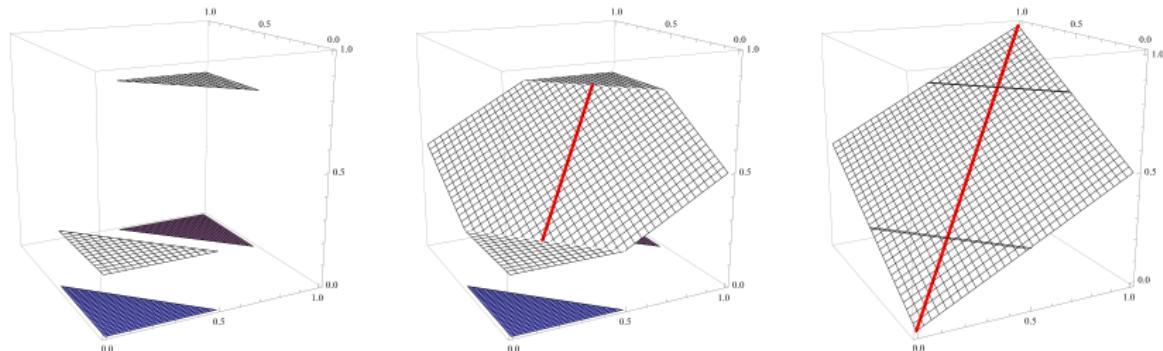


Figure: Function U (with sets A and B) and solution M (interpolation)

Constructing means

Another example: $\mathbb{I} = [0, 1]$

$$F(x_1, x_2) = \min(x_1, x_2, 1/4 + \max(x_1 + x_2 - 1, 0))$$

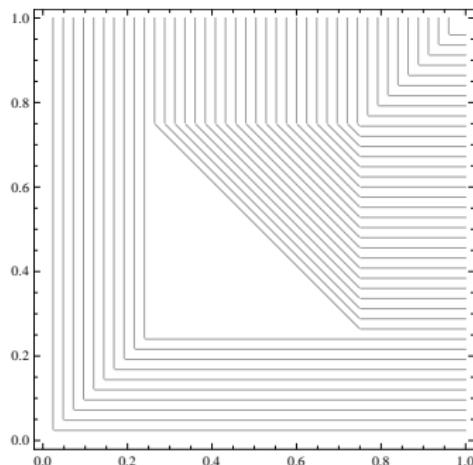
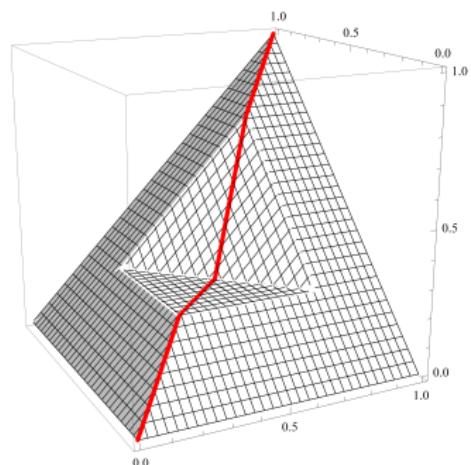


Figure: Function F (contour plot and 3D plot)

Constructing means

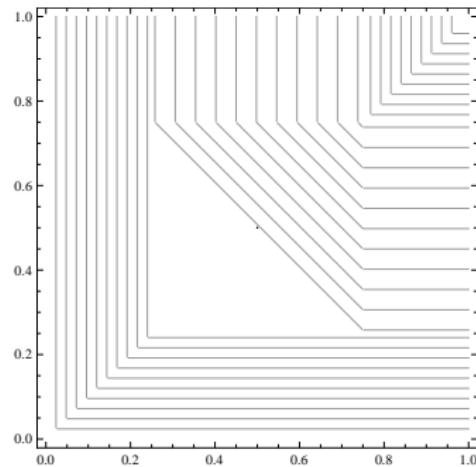
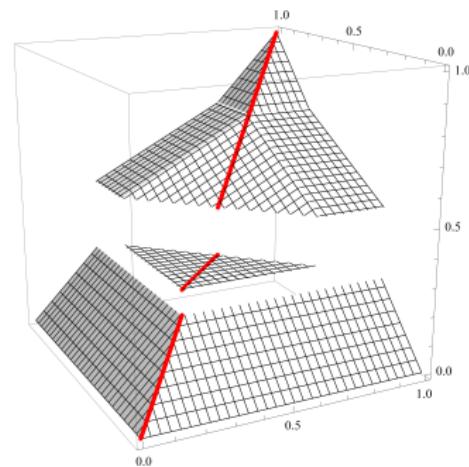


Figure: One possible solution M

Constructing means

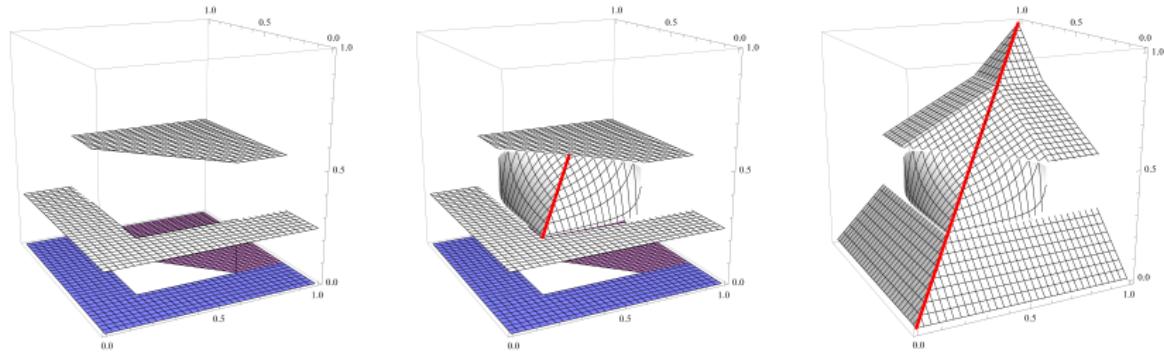


Figure: Function U (with sets A and B) and solution M (interpolation)

Constructing means

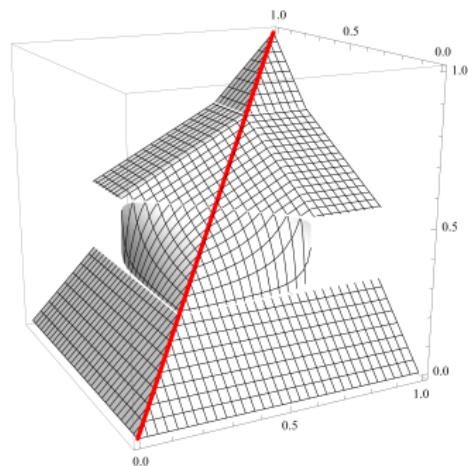


Figure: Solution M obtained by interpolation

Constructing means

Denote by M_F the solution thus constructed (by interpolation)

Theorem

Assume F is nondecreasing and $\text{ran}(\delta_F) = \text{ran}(F)$

Then M_F is nondecreasing, reflexive, and $F = \delta_F \circ M_F$

Further properties:

- F symmetric $\Rightarrow M_F$ symmetric
- $\exists M$ continuous solution $\Rightarrow M_F$ continuous

+ many other properties...

Book on aggregation functions

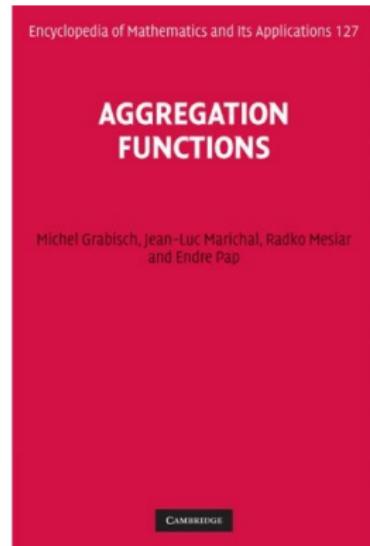
Title: *Aggregation Functions*

Authors: M. Grabisch, J.-L. Marichal, R. Mesiar, E. Pap

Publisher: Cambridge, 2009

Some chapters

- Properties for aggregation
- Conjunctive aggregation functions
- *Means and averages*
- Aggregation functions based on nonadditive integrals
- Aggregation on specific scale type
- ...



The Chisini mean revisited

Definition

A function $M: \mathbb{I}^n \rightarrow \mathbb{I}$ is an *average* (or *Chisini mean*) if it is a nondecreasing and reflexive solution of $F = \delta_F \circ M$ for some non-decreasing function $F: \mathbb{I}^n \rightarrow \mathbb{R}$

If the equation $F = \delta_F \circ M$ is solvable then M_F is a *Chisini mean*