
Measuring the Interactions among Variables of
Functions over the Unit Hypercube

Jean-Luc Marichal and Pierre Mathonet

Mathematics Research Unit, FSTC, University of Luxembourg,
6, rue Coudenhove-Kalergi, L-1359 Luxembourg,

Grand Duchy of Luxembourg.
jean-luc.marichal[at]uni.lu, pierre.mathonet[at]uni.lu

Abstract. By considering a least squares approximation of a given
square integrable function f : [0, 1]n → IR by a multilinear polynomial
of a specified degree, we define an index which measures the overall in-
teraction among variables of f . This definition extends the concept of
Banzhaf interaction index introduced in cooperative game theory. Our
approach is partly inspired from multilinear regression analysis, where
interactions among the independent variables are taken into considera-
tion. We show that this interaction index has appealing properties which
naturally generalize the properties of the Banzhaf interaction index. In
particular, we interpret this index as an expected value of the difference
quotients of f or, under certain natural conditions on f , as an expected
value of the derivatives of f . These interpretations show a strong anal-
ogy between the introduced interaction index and the overall importance
index defined by Grabisch and Labreuche [7]. Finally, we discuss a few
applications of the interaction index.

1 Introduction

Sophisticated mathematical models are extensively used in a variety of areas of
mathematics and physics, and especially in applied fields such as engineering,
life sciences, economics, finance, and many others. Here we consider the simple
situation where the model aims at explaining a single dependent variable, call
it y, in terms of n independent variables x1, . . . , xn. Such a model is usually
described through an equation of the form

y = f(x1, . . . , xn),

where f is a real function of n variables.
Now, suppose that the function f describing the model is given and that we

want to investigate its behavior through simple terms. For instance, suppose we
want to measure the overall contribution (importance or influence) of each inde-
pendent variable to the model. A natural approach to this problem consists in
defining the overall importance of each variable as the coefficient of this variable
in the least squares linear approximation of f . This approach was considered by



Hammer and Holzman [11] for pseudo-Boolean functions and cooperative games
f : {0, 1}n → IR. Interestingly enough, they observed that the coefficient of each
variable in the linear approximation is exactly the Banzhaf power index [2, 5] of
the corresponding player in the game f .

In many practical situations, the information provided by the overall im-
portance degree of each variable may be far insufficient due to the possible
interactions among the variables. Then, a more flexible approach to investigate
the behavior of f consists in measuring an overall importance degree for each
combination (subset) of variables. Such a concept was first introduced in [13] for
Boolean functions f : {0, 1}n → {0, 1} (see also [3, 4]), then in [14] for pseudo-
Boolean functions and games f : {0, 1}n → IR (see also [15]), and in [7] for square
integrable functions f : [0, 1]n → IR.

In addition to these importance indexes, we can also measure directly the
interaction degree among the variables by defining an overall interaction index
for each combination of variables. This concept was introduced axiomatically
in [10] (see also [6]) for games f : {0, 1}n → IR. However, it has not yet been
extended to real functions defined on [0, 1]n. In this paper we intend to fill this
gap by defining and investigating an appropriate index to measure the interaction
degree among variables of a given square integrable function f : [0, 1]n → IR. Our
sources of inspiration to define such an index are actually threefold:

In cooperative game theory Interaction indexes were introduced axiomati-
cally a decade ago [10] for games f : {0, 1}n → IR (see also [6]). The best
known interaction indexes are the Banzhaf and Shapley interaction indexes,
which extend the Banzhaf and Shapley power indexes. Following Hammer
and Holzman’s approach [11], it was shown in [9] that the Banzhaf interac-
tion index can be obtained from least squares approximations of the game
under consideration by games whose multilinear representations are of lower
degrees.

In analysis Considering a sufficiently differentiable real function f of several
variables, the local interaction among certain variables at a given point a can
be obtained through the coefficients of the Taylor expansion of f at a, that
is, through the coefficients of the local polynomial approximation of f at a.
By contrast, if we want to define an overall interaction index, we naturally
have to consider a global approximation of f by a polynomial function.

In statistics Multilinear statistical models have been proposed to take into ac-
count the interaction among the independent variables (see for instance [1]):
two-way interactions appear as the coefficients of leading terms in quadratic
models, three-way interactions appear as the coefficients of leading terms in
cubic models, and so forth.

On the basis of these observations, we naturally consider the least squares
approximation problem of a given square integrable function f : [0, 1]n → IR
by a polynomial of a given degree. As multiple occurrences in combinations of
variables are not relevant, we will only consider multilinear polynomial functions.
Then, given a subset S ⊆ {1, . . . , n}, an index I(f, S) measuring the interaction
among the variables {xi : i ∈ S} of f is defined as the coefficient of the monomial



∏
i∈S xi in the best approximation of f by a multilinear polynomial of degree at

most |S|. This definition is given and discussed in Section 2.
In Section 3 we show that this new index has many appealing properties, such

as linearity, continuity, and symmetry. In particular, we show that, similarly to
the Banzhaf interaction index introduced for games, the index I(f, S) can be
interpreted in a sense as an expected value of the discrete derivative of f in the
direction of S (Theorem 2) or, equivalently, as an expected value of the difference
quotient of f in the direction of S (Corollary 1). Under certain natural conditions
on f , the index can also be interpreted as an expected value of the derivative of f
in the direction of S (Proposition 4). These latter results reveal a strong analogy
between the interaction index and the overall importance index introduced by
Grabisch and Labreuche [7].

In Section 4 we discuss the computation of explicit expressions of the interac-
tion index for certain classes of functions, namely pseudo-multilinear polynomials
and discrete Choquet integrals.

We employ the following notation throughout the paper. Let In denote the
n-dimensional unit cube [0, 1]n. We denote by F (In) the class of all functions
f : In → IR and by L2(In) the subclass of square integrable functions f : In → IR
modulo equality almost everywhere. For any S ⊆ N = {1, . . . , n}, we denote by
1S the characteristic vector of S in {0, 1}n.

2 Interaction Indexes

In this section we first recall the concepts of power and interaction indexes intro-
duced in cooperative game theory and how the Banzhaf index can be obtained
from the solution of a least squares approximation problem. Then we show how
this approximation problem can be extended to functions in L2(In) and, from
this extension, we introduce an interaction index for such functions.

Recall that a (cooperative) game on a finite set of players N = {1, . . . , n} is
a set function v : 2N → IR which assigns to each coalition S of players a real
number v(S) representing the worth of S.1 Through the usual identification of the
subsets of N with the elements of {0, 1}n, a game v : 2N → IR can be equivalently
described by a pseudo-Boolean function f : {0, 1}n → IR. The correspondence is
given by v(S) = f(1S) and

f(x) =
∑
S⊆N

v(S)
∏
i∈S

xi
∏

i∈N\S

(1− xi). (1)

Equation (1) shows that any pseudo-Boolean function f : {0, 1}n → IR can al-
ways be represented by a multilinear polynomial of degree at most n (see [12]),
which can be further simplified into

f(x) =
∑
S⊆N

a(S)
∏
i∈S

xi , (2)

1 Usually, the condition v(∅) = 0 is required for v to define a game. However, we do
not need this restriction in the present paper.



where the set function a : 2N → IR, called the Möbius transform of v, is defined
by

a(S) =
∑
T⊆S

(−1)|S|−|T | v(T ).

Let GN denote the set of games on N . A power index [17] on N is a function
φ : GN ×N → IR that assigns to every player i ∈ N in a game f ∈ GN his/her
prospect φ(f, i) from playing the game. An interaction index [10] on N is a
function I : GN × 2N → IR that measures in a game f ∈ GN the interaction
degree among the players of a coalition S ⊆ N .

For instance, the Banzhaf interaction index [10] of a coalition S ⊆ N in a
game f ∈ GN is defined by

IB(f, S) =
∑
T⊇S

(1
2

)|T |−|S|
a(T ), (3)

and the Banzhaf power index [5] of a player i ∈ N in a game f ∈ GN is defined
by φB(f, i) = IB(f, {i}).

It is noteworthy that IB(f, S) can be interpreted as an average of the S-
difference (or discrete S-derivative) ∆Sf of f . Indeed, it can be shown (see [9,
§2]) that

IB(f, S) =
1
2n

∑
x∈{0,1}n

(∆Sf)(x), (4)

where ∆Sf is defined inductively by ∆∅f = f and ∆Sf = ∆{i}∆S\{i}f for
i ∈ S, with ∆{i}f(x) = f(x | xi = 1)− f(x | xi = 0).

We now recall how the Banzhaf interaction index can be obtained from a
least squares approximation problem. For k ∈ {0, . . . , n}, denote by Vk the set
of all multilinear polynomials g : {0, 1}n → IR of degree at most k, that is of the
form

g(x) =
∑
S⊆N
|S|6k

c(S)
∏
i∈S

xi , (5)

where the coefficients c(S) are real numbers. For a given pseudo-Boolean function
f : {0, 1}n → IR, the best kth approximation of f is the unique multilinear
polynomial fk ∈ Vk that minimizes the distance

∑
x∈{0,1}n(f(x)−g(x))2 among

all g ∈ Vk. A closed-form expression of fk was given in [11] for k = 1 and k = 2
and in [9] for arbitrary k 6 n. In fact, when f is given in its multilinear form
(2) we obtain

fk(x) =
∑
S⊆N
|S|6k

ak(S)
∏
i∈S

xi,

where

ak(S) = a(S) + (−1)k−|S|
∑
T⊇S
|T |>k

(
|T | − |S| − 1
k − |S|

)(1
2

)|T |−|S|
a(T ).



It is then easy to see that
IB(f, S) = a|S|(S). (6)

Thus, IB(f, S) is exactly the coefficient of the monomial
∏
i∈S xi in the best

approximation of f by a multilinear polynomial of degree at most |S|.
Taking into account this approximation problem, we now define an inter-

action index for functions in L2(In) as follows. Denote by Wk the set of all
multilinear polynomials g : In → IR of degree at most k. Clearly, these functions
are also of the form (5). For a given function f ∈ L2(In), we define the best kth
(multilinear) approximation of f as the multilinear polynomial fk ∈ Wk that
minimizes the distance ∫

In

(
f(x)− g(x)

)2
dx (7)

among all g ∈Wk.
It is easy to see that Wk is a linear subspace of L2(In) of dimension

∑k
s=0

(
n
s

)
.

Indeed, Wk is the linear span of the basis Bk = {vS : S ⊆ N, |S| 6 k}, where the
functions vS : In → IR are defined by vS(x) =

∏
i∈S xi. Note that formula (7)

also writes ‖f − g‖2 where ‖ · ‖ is the standard norm of L2(In) associated with
the inner product 〈f, g〉 =

∫
In f(x)g(x) dx. Therefore, using the general theory of

Hilbert spaces, the solution of this approximation problem exists and is uniquely
determined by the orthogonal projection of f onto Wk. This projection can be
easily expressed in any orthonormal basis of Wk. But here it is very easy to see
that the set B′k = {wS : S ⊆ N, |S| 6 k}, where wS : In → IR is given by

wS(x) = 12|S|/2
∏
i∈S

(
xi −

1
2

)
= 12|S|/2

∑
T⊆S

(
− 1

2

)|S|−|T |
vT (x),

forms such an orthonormal basis for Wk.
The following immediate theorem gives the components of the best kth ap-

proximation of a function f ∈ L2(In) in the bases Bk and B′k.

Theorem 1. For every k ∈ {0, . . . , n}, the best kth approximation of f ∈ L2(In)
is the function

fk =
∑
T⊆N
|T |6k

〈f, wT 〉wT =
∑
S⊆N
|S|6k

ak(S) vS , (8)

where

ak(S) =
∑
T⊇S
|T |6k

(
− 1

2

)|T |−|S|
12|T |/2 〈f, wT 〉. (9)

By analogy with (6), to measure the interaction degree among variables of an
arbitrary function f ∈ L2(In), we naturally define an index I : L2(In)×2N → IR
as I(f, S) = a|S|(S), where a|S|(S) is obtained from f by (9). We will see in the
next section that this index indeed measures an importance degree when |S| = 1
and an interaction degree when |S| > 2.



Definition 1. Let I : L2(In) × 2N → IR be defined as I(f, S) = 12|S|/2〈f, wS〉,
that is,

I(f, S) = 12|S|
∫

In

f(x)
∏
i∈S

(
xi −

1
2

)
dx. (10)

Thus we have defined an interaction index from an approximation (projec-
tion) problem. Conversely, this index characterizes this approximation problem.
Indeed, as the following result shows, the best kth approximation of f ∈ L2(In)
is the unique function of Wk that preserves the interaction index for all the s-
subsets such that s 6 k. The discrete analogue of this result was established in
[9] for the Banzhaf interaction index (3).

Proposition 1. A function fk ∈Wk is the best kth approximation of f ∈ L2(In)
if and only if I(f, S) = I(fk, S) for all S ⊆ N such that |S| 6 k.

3 Properties and Interpretations

Most of the interaction indexes defined for games, including the Banzhaf inter-
action index, share a set of fundamental properties such as linearity, symmetry,
and k-monotonicity (see [6]). Many of them can also be expressed as expected
values of the discrete derivatives (differences) of their arguments (see for instance
(4)). In this section we show that the index I fulfills direct generalizations of
these properties to the framework of functions of L2(In). In particular, we show
that I(f, S) can be interpreted as an expected value of the difference quotient of
f in the direction of S or, under certain natural conditions on f , as an expected
value of the derivative of f in the direction of S.

The first result follows from the very definition of the index.

Proposition 2. For every S ⊆ N , the mapping f 7→ I(f, S) is linear and
continuous.

Recall that if π is a permutation on N , then, for every function f ∈ F (In), the
permutation π acts on f by π(f)(x1, . . . , xn) = f(xπ(1), . . . , xπ(n)). The following
result is then an easy consequence of the change of variables theorem.

Proposition 3. The index I is symmetric. That is, for every permutation π on
N , every f ∈ L2(In), and every S ⊆ N , we have I(π(f), π(S)) = I(f, S).

We now provide an interpretation of I(f, S) as an expected value of the S-
derivative DSf of f . The proof immediately follows from repeated integrations
by parts of (10) and thus is omitted.

For S ⊆ N , denote by hS the probability density function of independent beta
distributions on In with parameters α = β = 2, that is, hS(x) = 6|S|

∏
i∈S xi(1−

xi).

Proposition 4. For every S ⊆ N and every f ∈ L2(In) such that DT f is
continuous and integrable on ]0, 1[n for all T ⊆ S, we have

I(f, S) =
∫

In

hS(x)DSf(x) dx. (11)



Remark 1. (a) Formulas (4) and (11) show a strong analogy between the indexes
IB and I. Indeed, IB(f, S) is the expected value of the S-difference of f with
respect to the discrete uniform distribution whereas I(f, S) is the expected
value of the S-derivative of f with respect to a beta distribution. We will
see in Theorem 2 a similar interpretation of I(f, S) which does not require
all the assumptions of Proposition 4.

(b) Propositions 1 and 4 reveal an analogy between least squares approximations
and Taylor expansion formula. Indeed, while the k-degree Taylor expansion
of f at a given point a can be seen as the unique polynomial of degree at
most k whose derivatives at a coincide with the derivatives of f at the same
point, the best kth approximation of f is the unique multilinear polynomial
of degree at most k that agrees with f in all average S-derivatives for |S| 6 k.

We now give an alternative interpretation of I(f, S) as an expected value,
which does not require the additional assumptions of Proposition 4. In this more
general framework, we naturally replace the derivative with a difference quotient.
To this extent, we introduce some further notation. As usual, we denote by ei
the ith vector of the standard basis for IRn. For every S ⊆ N and every h ∈ In,
we define the S-shift operator ESh on F (In) by

EShf(x) = f

(
x +

∑
j∈S

hjej

)
for every x ∈ In such that x + h ∈ In.

We also define the S-difference (or discrete S-derivative) operator ∆S
h on

F (In) inductively by ∆∅
h f = f and ∆S

hf = ∆
{i}
h ∆

S\{i}
h f for i ∈ S, with

∆
{i}
h f(x) = E

{i}
h f(x) − f(x). Similarly, we define the S-difference quotient op-

erator QSh on F (In) by Q∅
h f = f and QShf = Q

{i}
h Q

S\{i}
h f for i ∈ S, with

Q
{i}
h f(x) = 1

hi
∆
{i}
h f(x).

The next straightforward lemma provides a direct link between the difference
operators and the shift operators. It actually shows that, for every fixed h ∈ In,
the map S 7→ ∆S

h is nothing other than the Möbius transform of the map S 7→
ESh .

Lemma 1. For every f ∈ F (In) and every S ⊆ N , we have

∆S
hf(x) =

∑
T⊆S

(−1)|S|−|T |ETh f(x). (12)

Let us interpret the S-difference operator through a simple example. For
n = 3 and S = {1, 2}, we have

∆S
hf(x) = f(x1+h1, x2+h2, x3)−f(x1+h1, x2, x3)−f(x1, x2+h2, x3)+f(x1, x2, x3).

In complete analogy with the discrete concept of marginal interaction among
players in a coalition S ⊆ N (see [9, §2]), the value ∆S

hf(x) can be interpreted



as the marginal interaction among variables xi (i ∈ S) at x with respect to the
increases hi for i ∈ S.

Setting h = y − x in the example above, we obtain

∆S
y−xf(x) = f(y1, y2, x3)− f(y1, x2, x3)− f(x1, y2, x3) + f(x1, x2, x3).

If xi 6 yi for every i ∈ S, then ∆S
y−xf(x) is naturally called the f -volume of the

box
∏
i∈S [xi, yi]. The following straightforward lemma shows that, when f = vS ,

∆S
y−xf(x) is exactly the volume of the box

∏
i∈S [xi, yi].

Lemma 2. For every S ⊆ N , we have ∆S
y−xvS(x) =

∏
i∈S(yi − xi).

In the remaining part of this paper, the notation yS ∈ [xS ,1] means that
yi ∈ [xi, 1] for every i ∈ S.

Theorem 2. For every f ∈ L2(In) and every S ⊆ N , we have

I(f, S) =
1

µ(S)

∫
x∈In

∫
yS∈[xS ,1]

∆S
y−xf(x) dyS dx, (13)

where
µ(S) =

∫
x∈In

∫
yS∈[xS ,1]

∆S
y−xvS(x) dyS dx = 6−|S|.

Remark 2. (a) By Lemma 2, we see that I(f, S) can be interpreted as the av-
erage f -volume of the box

∏
i∈S [xi, yi] divided by its average volume, when

x and yS are chosen at random with the uniform distribution.
(b) As already mentioned in Remark 1(a), Theorem 2 appears as a natural

generalization of formula (4) (similarly to Proposition 4) in the sense that
the marginal interaction ∆S

hf(x) at x is averaged over the whole domain In
(instead of its vertices).

(c) We note an analogy between formula (13) and the importance index defined
by Grabisch and Labreuche in [7, Theorem 1]. Indeed, up to the normal-
ization constant, this importance index is obtained by replacing in formula
(13) the operator ∆S

y−x by ESy−x− I. Moreover, when S is a singleton, both
operators coincide and so do the normalization constants.

As an immediate consequence of Theorem 2, we have the following inter-
pretation of the index I as an expected value of the difference quotients of its
argument with respect to some probability distribution.

Corollary 1. For every f ∈ L2(In) and every S ⊆ N , we have

I(f, S) =
∫
x∈In

∫
yS∈[xS ,1]

pS(x,yS)QSy−xf(x) dyS dx,

where the function pS(x,yS) = 6|S|
∏
i∈S(yi − xi) defines a probability density

function on the set {(x,yS) : x ∈ In,yS ∈ [xS ,1]}.



Let us now analyze the behavior of the interaction index I on some special
classes of functions. The following properties generalize in a very natural way to
our setting the behavior of the Banzhaf interaction index IB with respect to the
presence of null players and dummy coalitions.

Recall that a null player in a game (or a set function) v ∈ GN is a player i ∈ N
such that v(T∪{i}) = v(T ) for every T ⊆ N\{i}. Equivalently, the corresponding
pseudo-Boolean function f : {0, 1}n → IR, given by (1), is independent of xi. The
notion of null player for games is then naturally extended through the notion
of ineffective variables for functions in F (In) as follows. A variable xi (i ∈ N)
is said to be ineffective for a function f in F (In) if f(x) = E

{i}
−xf(x) for every

x ∈ In, or equivalently, if ∆{i}y−xf(x) = 0 for every x,y ∈ In.
Define If = {i ∈ N : xi ineffective for f}. From either (10) or (13), we

immediately derive the following result, which states that any combination of
variables containing at least one ineffective variable for a function f ∈ L2(In)
has necessarily a zero interaction.

Proposition 5. For every f ∈ L2(In) and every S ⊆ N such that S ∩ If 6= ∅,
we have I(f, S) = 0.

We say that a coalition S ⊆ N is dummy in a game (or a set function)
v ∈ GN if v(R∪T ) = v(R) + v(T )− v(∅) for every R ⊆ S and every T ⊆ N \S.
This means that {S,N \S} forms a partition of N such that, for every coalition
K ⊆ N , the relative worth v(K)− v(∅) is the sum of the relative worths of its
intersections with S and N \S. It follows that a coalition S and its complement
N \ S are simultaneously dummy in any game v ∈ GN .

We propose the following extension of this concept.

Definition 2. We say that a subset S ⊆ N is dummy for a function f ∈ F (In)
if f(x) = ES−xf(x) + E

N\S
−x f(x)− f(0) for every x ∈ In.

The following proposition gives an immediate interpretation of this definition.

Proposition 6. A subset S ⊆ N is dummy for a function f ∈ F (In) if and
only if there exist functions fS , fN\S ∈ F (In) such that IfS

⊇ N \ S, IfN\S
⊇ S

and f = fS + fN\S.

The following result expresses the natural idea that interaction index for
subsets that are properly partitioned by a dummy subset must be zero. It is an
immediate consequence of Propositions 2, 5, and 6.

Proposition 7. For every f ∈ L2(In), every nonempty subset S ⊆ N that is
dummy for f , and every subset K ⊆ N such that K ∩ S 6= ∅ and K \ S 6= ∅,
we have I(f,K) = 0.

4 Applications

We now calculate explicit expressions of the interaction index for two classes
of functions, namely pseudo-multilinear polynomials and discrete Choquet inte-
grals.



4.1 Pseudo-multilinear polynomials

As a first application, we derive an explicit expression of the index I for the class
of pseudo-multilinear polynomials, that is, the class of multilinear polynomials
with transformed variables.

Definition 3. We say that a function f ∈ L2(In) is a pseudo-multilinear poly-
nomial if there exists a multilinear polynomial g ∈ F (IRn) and n unary func-
tions ϕ1, . . . , ϕn ∈ L2(I) such that f(x) = g(ϕ1(x1), . . . , ϕn(xn)) for every
x = (x1, . . . , xn) ∈ In.

Using expression (5) of multilinear polynomials, we immediately see that any
pseudo-multilinear polynomial f ∈ L2(In) can be written in the form

f(x) =
∑
T⊆N

a(T )
∏
i∈T

ϕi(xi).

The following result yields an explicit expression of the interaction index
for this function in terms of the interaction indexes for the unary functions
ϕ1, . . . , ϕn.

Proposition 8. For every pseudo-multilinear polynomial f ∈ L2(In) and every
S ⊆ N , we have

I(f, S) =
∑
T⊇S

a(T )
∏

i∈T\S

I(ϕi,∅)
∏
i∈S
I(ϕi, {i}).

Remark 3. Proposition 8 can actually be easily extended to functions of the form

f(x) =
∑
T⊆N

a(T )
∏
i∈T

ϕTi (xi),

where ϕTi ∈ L2(I) for i = 1, . . . , n and T ⊆ N .

An interesting subclass of pseudo-multilinear polynomials is the class of mul-
tiplicative functions, that is, functions of the form f(x) =

∏n
i=1 ϕi(xi), where

ϕ1, . . . , ϕn ∈ L2(I). For every multiplicative function f ∈ L2(In) and every
S ⊆ N , assuming I(f,∅) 6= 0, the ratio I(f, S)/I(f,∅) is also multiplicative in
the sense that

I(f, S)
I(f,∅)

=
∏
i∈S

I(ϕi, {i})
I(ϕi,∅)

. (14)

4.2 The discrete Choquet integrals

A discrete Choquet integral is a function f ∈ F (In) of the form

f(x) =
∑
T⊆N

a(T ) min
i∈T

xi, (15)



where the set function a : 2N → IR is nondecreasing with respect to set inclusion
and such that a(∅) = 0 and

∑
S⊆N a(S) = 1.2 These functions are mainly used

in aggregation function theory and decision making. For general background, see
for instance [8, Section 5.4].

The following proposition yields an explicit expression of the interaction in-
dex for the class of discrete Choquet integrals. We first consider a lemma and
recall that the beta function is defined, for any integers p, q > 0, by

B(p, q) =
∫ 1

0

tp−1(1− t)q−1 dt =
(p− 1)!(q − 1)!

(p+ q − 1)!
.

Proposition 9. If f ∈ F (In) is of the form (15), then we have

I(f, S) = 6|S|
∑
T⊇S

a(T )B(|S|+ 1, |T |+ 1).

Remark 4. The map a 7→ I(f, S) = 6|S|
∑
T⊇S a(T )B(|S| + 1, |T | + 1) defines

an interaction index, in the sense of [6], that is not a probabilistic index (see [6,
Section 3.3]). However, if we normalize this interaction index (with respect to |S|)
to get a probabilistic index, we actually divide I(f, S) by 6|S|B(|S|+ 1, |S|+ 1)
and retrieve the index IM defined in [16].
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