Pivotal decompositions of aggregation functions

Jean-Luc Marichal and Bruno Teheux
University of Luxembourg, Mathematics Research Unit 6, rue Richard Coudenhove-Kalergi, L-1359 Luxembourg, Luxembourg
\{jean-luc.marichal, bruno.teheux\}@uni.lu

1 Preliminaries

A remarkable (though immediate) property of Boolean functions is the so-called Shannon decomposition [9], also called pivotal decomposition [1]. This property states that, for every n-ary Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ and every $k \in[n]=\{1, \ldots, n\}$, the following decomposition formula holds

$$
\begin{equation*}
f(\mathbf{x})=\bar{x}_{k} f\left(\mathbf{x}_{k}^{0}\right)+x_{k} f\left(\mathbf{x}_{k}^{1}\right), \quad \mathbf{x} \in\{0,1\}^{n}, \tag{1}
\end{equation*}
$$

where $\bar{x}_{k}=1-x_{k}$ and \mathbf{x}_{k}^{0} (resp. \mathbf{x}_{k}^{1}) is the n-tuple whose i-th coordinate is 0 (resp. 1), if $i=k$, and x_{i}, otherwise. Here the ' + ' sign represents the classical addition for real numbers.

As it is well known, repeated applications of (1) show that any n-ary Boolean function can always be expressed as the multilinear polynomial function

$$
\begin{equation*}
f(\mathbf{x})=\sum_{S \subseteq[n]} f\left(\mathbf{1}_{S}\right) \prod_{i \in S} x_{i} \prod_{i \in[n] \backslash S} \bar{x}_{i}, \quad \mathbf{x} \in\{0,1\}^{n}, \tag{2}
\end{equation*}
$$

where $\mathbf{1}_{S}$ is the characteristic vector of S in $\{0,1\}^{n}$, that is, the n-tuple whose i-th coordinate is 1 , if $i \in S$, and 0 , otherwise.

One can easily show that, if f is nondecreasing (in each variable), decomposition formula (1) reduces to

$$
\begin{equation*}
f(\mathbf{x})=\operatorname{med}\left(f\left(\mathbf{x}_{k}^{0}\right), x_{k}, f\left(\mathbf{x}_{k}^{1}\right)\right), \quad \mathbf{x} \in\{0,1\}^{n}, \tag{3}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
f(\mathbf{x})=\bar{x}_{k}\left(f\left(\mathbf{x}_{k}^{0}\right) \wedge f\left(\mathbf{x}_{k}^{1}\right)\right)+x_{k}\left(f\left(\mathbf{x}_{k}^{0}\right) \vee f\left(\mathbf{x}_{k}^{1}\right)\right), \quad \mathbf{x} \in\{0,1\}^{n} . \tag{4}
\end{equation*}
$$

where $\wedge($ resp. $\vee)$ is the minimum (resp. maximum) operation and med is the ternary median operation.

Actually, any of the decomposition formulas (3)-(4) exactly expresses the fact that f should be nondecreasing and hence characterizes the subclass of nondecreasing n-ary Boolean functions.

Decomposition property (1) also holds for functions $f:\{0,1\}^{n} \rightarrow \mathbb{R}$, called n-ary pseudo-Boolean functions. As a consequence, these functions also have the representation given in (2). Moreover, formula (4) clearly characterizes the subclass of nondecreasing n-ary pseudo-Boolean functions.

The multilinear extension of an n-ary pseudo-Boolean function $f:\{0,1\}^{n} \rightarrow \mathbb{R}$ is the function $\hat{f}:[0,1]^{n} \rightarrow \mathbb{R}$ defined by (see Owen $[7,8]$)

$$
\hat{f}(\mathbf{x})=\sum_{S \subseteq[n]} f\left(\mathbf{1}_{S}\right) \prod_{i \in S} x_{i} \prod_{i \in[n] \backslash S}\left(1-x_{i}\right), \quad \mathbf{x} \in[0,1]^{n} .
$$

Thus defined, one can easily see that the class of multilinear extensions and that of nondecreasing multilinear extensions can be characterized as follows.

Proposition 1. A function $f:[0,1]^{n} \rightarrow \mathbb{R}$ is a multilinear extension if and only if it satisfies

$$
f(\mathbf{x})=\left(1-x_{k}\right) f\left(\mathbf{x}_{k}^{0}\right)+x_{k} f\left(\mathbf{x}_{k}^{1}\right), \quad \mathbf{x} \in[0,1]^{n}, k \in[n] .
$$

Proposition 2. A function $f:[0,1]^{n} \rightarrow \mathbb{R}$ is a nondecreasing multilinear extension if and only if it satisfies

$$
f(\mathbf{x})=\bar{x}_{k}\left(f\left(\mathbf{x}_{k}^{0}\right) \wedge f\left(\mathbf{x}_{k}^{1}\right)\right)+x_{k}\left(f\left(\mathbf{x}_{k}^{0}\right) \vee f\left(\mathbf{x}_{k}^{1}\right)\right), \quad \mathbf{x} \in[0,1]^{n}, k \in[n] .
$$

The decomposition formulas considered in this introduction share an interesting common feature, namely the fact that any variable, here denoted x_{k} and called pivot, can be isolated from the others in the evaluation of functions. This feature may be useful when for instance the values $f\left(\mathbf{x}_{k}^{0}\right)$ and $f\left(\mathbf{x}_{k}^{1}\right)$ are much easier to compute than that of $f(\mathbf{x})$. In addition to this, such (pivotal) decompositions may facilitate inductive proofs and may lead to canonical forms such as (2).

In this note we define a more general concept of pivotal decomposition for various functions $f:[0,1]^{n} \rightarrow \mathbb{R}$, including certain aggregation functions. We also introduce pivotal characterizations of classes of such functions.

2 Pivotal decompositions of functions

The examples presented in the previous section motivate the following definition.
Definition 1. We say that a function $f:[0,1]^{n} \rightarrow \mathbb{R}$ is pivotally decomposable if there exists a subset D of \mathbb{R}^{3} and a function $\Phi: D \rightarrow \mathbb{R}$, called pivotal function, such that

$$
D \supseteq\left\{\left(f\left(\mathbf{x}_{k}^{0}\right), z, f\left(\mathbf{x}_{k}^{1}\right)\right): z \in[0,1], \mathbf{x} \in[0,1]^{n}\right\}, \quad k \in[n]
$$

and

$$
f(\mathbf{x})=\Phi\left(f\left(\mathbf{x}_{k}^{0}\right), x_{k}, f\left(\mathbf{x}_{k}^{1}\right)\right), \quad \mathbf{x} \in[0,1]^{n}, k \in[n]
$$

In this case, we say that f is Φ-decomposable.
Example 1 (Lattice polynomial functions). Recall that a lattice polynomial function is simply a composition of projections, constant functions, and the fundamental lattice operations \wedge and \vee; see, e.g., $[3,4]$. An n-ary function $f:[0,1]^{n} \rightarrow[0,1]$ is a lattice polynomial function if and only if it can be written in the (disjunctive normal) form

$$
f(\mathbf{x})=\bigvee_{S \subseteq[n]} f\left(\mathbf{1}_{S}\right) \wedge \bigwedge_{i \in S} x_{i}, \quad \mathbf{x} \in[0,1]^{n}
$$

The so-called discrete Sugeno integrals are exactly those lattice polynomial functions which are idempotent (i.e., $f(x, \ldots, x)=x$ for all $x \in[0,1]$).

Every lattice polynomial function is Φ-decomposable with $\Phi:[0,1]^{3} \rightarrow \mathbb{R}$ defined by $\Phi(r, z, s)=\operatorname{med}(r, z, s)$; see, e.g., [6].

Example 2 (Lovász extensions). Recall that the Lovász extension of a pseudo-Boolean function $f:\{0,1\}^{n} \rightarrow \mathbb{R}$ is the function

$$
L_{f}(\mathbf{x})=\sum_{S \subseteq[n]} a(S) \bigwedge_{i \in S} x_{i}
$$

where the set function $a: 2^{[n]} \rightarrow \mathbb{R}$ is defined by $a(S)=\sum_{T \subseteq S}(-1)^{|S|-|T|} f\left(\mathbf{1}_{T}\right)$; see, e.g., [5]. The so-called discrete Choquet integrals are exactly those Lovász extensions which are nondecreasing and idempotent.

There are ternary Lovász extensions $L_{f}:[0,1]^{3} \rightarrow \mathbb{R}$ that are not pivotally decomposable, e.g., $L_{f}\left(x_{1}, x_{2}, x_{3}\right)=x_{1} \wedge x_{2}+x_{2} \wedge x_{3}$.

Example 3 (T-norms). A t-norm is a binary function $T:[0,1]^{2} \rightarrow[0,1]$ that is symmetric, nondecreasing, associative, and such that $T(1, x)=x$. Every t-norm $T:[0,1]^{2} \rightarrow$ $[0,1]$ is Φ-decomposable with $\Phi:[0,1]^{3} \rightarrow \mathbb{R}$ defined by $\Phi(r, z, s)=T(z, s)$.

Example 4 (Conjugate functions). Given a function $f:[0,1]^{n} \rightarrow[0,1]$ and a strictly increasing bijection $\phi:[0,1] \rightarrow[0,1]$, the ϕ-conjugate of f is the function $f_{\phi}=\phi^{-1} \circ$ $f \circ(\phi, \ldots, \phi)$. One can easily show that f is Φ-decomposable for some pivotal function Φ if and only if f_{ϕ} is Φ_{ϕ}-decomposable, where $\Phi_{\phi}=\phi^{-1} \circ \Phi \circ(\phi, \phi, \phi)$. Combining this for instance with Proposition 2 shows that every quasi-linear mean function (i.e., ϕ-conjugate of a weighted arithmetic mean) is pivotally decomposable.

For every $k \in[n]$, and every $\mathbf{a} \in[0,1]^{n}$, we define the unary section $f_{k}^{\mathbf{a}}:[0,1] \rightarrow \mathbb{R}$ of f by setting $f_{k}^{\mathrm{a}}(x)=f\left(\mathbf{a}_{k}^{x}\right)$. The k th argument of f is said to be inessential if $f_{k}^{\text {a }}$ is constant for every $\mathbf{a} \in[0,1]^{n}$. Otherwise, it is said to be essential. We say that a unary section f_{k}^{a} of f is essential if the k th argument of f is essential.

For every function $f: X^{n} \rightarrow Y$ and every map $\sigma:[n] \rightarrow[m]$, we define the function $f_{\sigma}: X^{m} \rightarrow Y$ by $f_{\sigma}(\mathbf{a})=f(\mathbf{a \sigma})$, where $\mathbf{a} \sigma$ denotes the n-tuple $\left(a_{\sigma(1)}, \ldots, a_{\sigma(n)}\right)$.

Define on the set $U=\cup_{n \geqslant 1} \mathbb{R}^{[0,1]^{n}}$ the equivalence relation \equiv as follows: For functions $f:[0,1]^{n} \rightarrow \mathbb{R}$ and $g:[0,1]^{m} \rightarrow \mathbb{R}$, we write $f \equiv g$ if there exist maps $\sigma:[m] \rightarrow[n]$ and $\mu:[n] \rightarrow[m]$ such that $f=g_{\sigma}$ and $g=f_{\mu}$. Equivalently, $f \equiv g$ means that f can be obtained from g by permuting arguments or by adding or deleting inessential arguments.

Definition 2. Let $\Phi: D \rightarrow \mathbb{R}$ be a pivotal function. We denote by C_{Φ} the class of all the functions $f:[0,1]^{n} \rightarrow \mathbb{R}($ where $n \geqslant 0)$ that are \equiv-equivalent to a Φ-decomposable function with no essential argument or no inessential argument. We say that a class $C \subseteq U$ is pivotally characterizable if there exists a pivotal function Φ such that $C=C_{\Phi}$. In that case, we say that C is Φ-characterized.

Proposition 3. Let Φ be a pivotal function.
(i) A nonconstant function $f:[0,1]^{n} \rightarrow \mathbb{R}$ is in C_{Φ} if and only if so are its essential unary sections.
(ii) A constant function $f:[0,1]^{n} \rightarrow\{c\}$ is in C_{Φ} if and only if $\Phi(c, z, c)=c$ for every $z \in[0,1]$.

Example 5 (Lattice polynomial functions). The class of lattice polynomial functions is Φ-characterized for the pivotal function $\Phi:[0,1]^{3} \rightarrow \mathbb{R}$ defined by $\Phi(r, z, s)=\operatorname{med}(r, z, s)$.

3 Classes characterized by their unary members

Proposition 3 shows that a class C_{Φ} is characterized by the essential unary sections of its members. This observation motivates the following definition, which is inspired from [2].

Definition 3. A class $C \subseteq U$ is characterized by its unary members if it satisfies the following conditions:
(i) A nonconstant function f is in C if and only if so are its essential unary sections.
(ii) If f is a constant function in C and $g \equiv f$, then g is in C.

We denote by CU the family of classes characterized by their unary members.
Theorem 1. Let Φ be a pivotal function. A nonempty subclass of C_{Φ} is characterized by its unary members if and only if it is pivotally characterizable.

Theorem 2. The family CU can be endowed with a complete and atomic Boolean algebra structure.

References

1. R.E. Barlow and F. Proschan. Importance of system components and fault tree events. Stochastic Processes and Their Applications, 3:153-172, 1975.
2. M. Couceiro. Classes determined by unary sections. Working paper.
3. M. Couceiro and J.-L. Marichal. Characterizations of discrete Sugeno integrals as polynomial functions over distributive lattices Fuzzy Sets and Systems, 161 (5): 694-707, 2010.
4. M. Couceiro and J.-L. Marichal. Polynomial functions over bounded distributive lattices. J. of Multiple-Valued Logic and Soft Computing, 18 (3-4): 247-256, 2012.
5. M. Grabisch, J.-L. Marichal, R. Mesiar, and E. Pap. Aggregation functions. Cambridge University Press, UK, 2009.
6. J.-L. Marichal. Weighted lattice polynomials. Discrete Mathematics, 309(4):814-820, 2009.
7. G. Owen. Multilinear extensions of games. Management Sci., 18:P64-P79, 1972.
8. G. Owen. Multilinear extensions of games. In: A.E. Roth, editor. The Shapley Value. Essays in Honor of Lloyd S. Shapley, pages 139-151. Cambridge University Press, 1988.
9. C.E. Shannon. A symbolic analysis of relay and switching circuits. Trans. Amer. Inst. of Electrical Engineers, 57: 713-723, 1938.
