Pivotal decompositions of aggregation functions

Jean-Luc Marichal and Bruno Teheux

Mathematics Research Unit University of Luxembourg, Luxembourg {jean-luc.marichal,bruno.teheux}@uni.lu

1 Preliminaries

A remarkable (though immediate) property of Boolean functions is the so-called *Shannon decomposition* [9], also called *pivotal decomposition* [1]. This property states that, for every *n*-ary Boolean function $f: \{0,1\}^n \rightarrow \{0,1\}$ and every $k \in [n] = \{1,...,n\}$, the following decomposition formula holds

$$f(\mathbf{x}) = \overline{\mathbf{x}}_k f(\mathbf{x}_k^0) + x_k f(\mathbf{x}_k^1), \qquad \mathbf{x} \in \{0, 1\}^n, \tag{1}$$

where $\overline{x}_k = 1 - x_k$ and \mathbf{x}_k^0 (resp. \mathbf{x}_k^1) is the *n*-tuple whose *i*-th coordinate is 0 (resp. 1), if i = k, and x_i , otherwise. Here the '+' sign represents the classical addition for real numbers.

As it is well known, repeated applications of (1) show that any *n*-ary Boolean function can always be expressed as the multilinear polynomial function

$$f(\mathbf{x}) = \sum_{S \subseteq [n]} f(\mathbf{1}_S) \prod_{i \in S} x_i \prod_{i \in [n] \setminus S} \overline{x}_i, \qquad \mathbf{x} \in \{0, 1\}^n,$$
(2)

where $\mathbf{1}_S$ is the characteristic vector of S in $\{0,1\}^n$, that is, the *n*-tuple whose *i*-th coordinate is 1, if $i \in S$, and 0, otherwise.

One can easily show that, if f is nondecreasing (in each variable), decomposition formula (1) reduces to

$$f(\mathbf{x}) = \operatorname{med}(f(\mathbf{x}_k^0), x_k, f(\mathbf{x}_k^1)), \qquad \mathbf{x} \in \{0, 1\}^n,$$
(3)

or, equivalently,

$$f(\mathbf{x}) = \overline{x}_k \left(f(\mathbf{x}_k^0) \wedge f(\mathbf{x}_k^1) \right) + x_k \left(f(\mathbf{x}_k^0) \vee f(\mathbf{x}_k^1) \right), \qquad \mathbf{x} \in \{0, 1\}^n.$$
(4)

where \land (resp. \lor) is the minimum (resp. maximum) operation and med is the ternary median operation.

Actually, any of the decomposition formulas (3)–(4) exactly expresses the fact that f should be nondecreasing and hence characterizes the subclass of nondecreasing n-ary Boolean functions.

Decomposition property (1) also holds for functions $f: \{0,1\}^n \to \mathbb{R}$, called *n-ary pseudo-Boolean functions*. As a consequence, these functions also have the representation given in (2). Moreover, formula (4) clearly characterizes the subclass of nondecreasing *n*-ary pseudo-Boolean functions.

The *multilinear extension* of an *n*-ary pseudo-Boolean function $f: \{0,1\}^n \to \mathbb{R}$ is the function $\hat{f}: [0,1]^n \to \mathbb{R}$ defined by (see Owen [7,8])

$$\hat{f}(\mathbf{x}) = \sum_{S \subseteq [n]} f(\mathbf{1}_S) \prod_{i \in S} x_i \prod_{i \in [n] \setminus S} (1 - x_i), \qquad \mathbf{x} \in [0, 1]^n.$$

Thus defined, one can easily see that the class of multilinear extensions and that of nondecreasing multilinear extensions can be characterized as follows.

Proposition 1. A function $f: [0,1]^n \to \mathbb{R}$ is a multilinear extension if and only if it satisfies

$$f(\mathbf{x}) = (1 - x_k) f(\mathbf{x}_k^0) + x_k f(\mathbf{x}_k^1), \qquad \mathbf{x} \in [0, 1]^n, \ k \in [n].$$

Proposition 2. A function $f: [0,1]^n \to \mathbb{R}$ is a nondecreasing multilinear extension if and only if it satisfies

$$f(\mathbf{x}) = \overline{x}_k \left(f(\mathbf{x}_k^0) \wedge f(\mathbf{x}_k^1) \right) + x_k \left(f(\mathbf{x}_k^0) \vee f(\mathbf{x}_k^1) \right), \qquad \mathbf{x} \in [0,1]^n, \ k \in [n].$$

The decomposition formulas considered in this introduction share an interesting common feature, namely the fact that any variable, here denoted x_k and called *pivot*, can be isolated from the others in the evaluation of functions. This feature may be useful when for instance the values $f(\mathbf{x}_k^0)$ and $f(\mathbf{x}_k^1)$ are much easier to compute than that of $f(\mathbf{x})$. In addition to this, such (pivotal) decompositions may facilitate inductive proofs and may lead to canonical forms such as (2).

In this note we define a more general concept of pivotal decomposition for various functions $f: [0,1]^n \to \mathbb{R}$, including certain aggregation functions. We also introduce pivotal characterizations of classes of such functions.

2 Pivotal decompositions of functions

The examples presented in the previous section motivate the following definition.

Definition 1. We say that a function $f : [0,1]^n \to \mathbb{R}$ is pivotally decomposable if there exists a subset D of \mathbb{R}^3 and a function $\Phi : D \to \mathbb{R}$, called pivotal function, such that

$$D \supseteq \{ (f(\mathbf{x}_k^0), z, f(\mathbf{x}_k^1)) : z \in [0, 1], \mathbf{x} \in [0, 1]^n \}, \qquad k \in [n]$$

and

$$f(\mathbf{x}) = \Phi(f(\mathbf{x}_k^0), x_k, f(\mathbf{x}_k^1)), \qquad \mathbf{x} \in [0, 1]^n, \ k \in [n].$$

In this case, we say that f is Φ -decomposable.

Example 1 (Lattice polynomial functions). Recall that a *lattice polynomial function* is simply a composition of projections, constant functions, and the fundamental lattice operations \land and \lor ; see, e.g., [3,4]. An *n*-ary function $f: [0,1]^n \rightarrow [0,1]$ is a lattice polynomial function if and only if it can be written in the (disjunctive normal) form

$$f(\mathbf{x}) = \bigvee_{S \subseteq [n]} f(\mathbf{1}_S) \wedge \bigwedge_{i \in S} x_i, \qquad \mathbf{x} \in [0,1]^n.$$

The so-called *discrete Sugeno integrals* are exactly those lattice polynomial functions which are idempotent (i.e., f(x, ..., x) = x for all $x \in [0, 1]$).

Every lattice polynomial function is Φ -decomposable with $\Phi: [0,1]^3 \to \mathbb{R}$ defined by $\Phi(r,z,s) = \text{med}(r,z,s)$; see, e.g., [6].

Example 2 (Lovász extensions). Recall that the *Lovász extension* of a pseudo-Boolean function $f: \{0,1\}^n \to \mathbb{R}$ is the function

$$L_f(\mathbf{x}) = \sum_{S\subseteq[n]} a(S) \bigwedge_{i\in S} x_i,$$

where the set function $a: 2^{[n]} \to \mathbb{R}$ is defined by $a(S) = \sum_{T \subseteq S} (-1)^{|S|-|T|} f(\mathbf{1}_T)$; see, e.g., [5]. The so-called *discrete Choquet integrals* are exactly those Lovász extensions which are nondecreasing and idempotent.

There are ternary Lovász extensions $L_f: [0,1]^3 \to \mathbb{R}$ that are not pivotally decomposable, e.g., $L_f(x_1, x_2, x_3) = x_1 \land x_2 + x_2 \land x_3$.

Example 3 (*T*-norms). A *t*-norm is a binary function $T: [0,1]^2 \to [0,1]$ that is symmetric, nondecreasing, associative, and such that T(1,x) = x. Every t-norm $T: [0,1]^2 \to [0,1]$ is Φ -decomposable with $\Phi: [0,1]^3 \to \mathbb{R}$ defined by $\Phi(r,z,s) = T(z,s)$.

Example 4 (Conjugate functions). Given a function $f: [0,1]^n \to [0,1]$ and a strictly increasing bijection $\phi: [0,1] \to [0,1]$, the ϕ -conjugate of f is the function $f_{\phi} = \phi^{-1} \circ f \circ (\phi, \dots, \phi)$. One can easily show that f is Φ -decomposable for some pivotal function Φ if and only if f_{ϕ} is Φ_{ϕ} -decomposable, where $\Phi_{\phi} = \phi^{-1} \circ \Phi \circ (\phi, \phi, \phi)$. Combining this for instance with Proposition 2 shows that every *quasi-linear mean function* (i.e., ϕ -conjugate of a weighted arithmetic mean) is pivotally decomposable.

For every $k \in [n]$, and every $\mathbf{a} \in [0, 1]^n$, we define the *unary section* $f_k^{\mathbf{a}} : [0, 1] \to \mathbb{R}$ of f by setting $f_k^{\mathbf{a}}(x) = f(\mathbf{a}_k^x)$. The *k*th argument of f is said to be *inessential* if $f_k^{\mathbf{a}}$ is constant for every $\mathbf{a} \in [0, 1]^n$. Otherwise, it is said to be *essential*. We say that a unary section $f_k^{\mathbf{a}}$ of f is *essential* if the *k*th argument of f is essential.

For every function $f: X^n \to Y$ and every map $\sigma: [n] \to [m]$, we define the function $f_{\sigma}: X^m \to Y$ by $f_{\sigma}(\mathbf{a}) = f(\mathbf{a}\sigma)$, where $\mathbf{a}\sigma$ denotes the *n*-tuple $(a_{\sigma(1)}, \ldots, a_{\sigma(n)})$.

Define on the set $U = \bigcup_{n \ge 1} \mathbb{R}^{[0,1]^n}$ the equivalence relation \equiv as follows: For functions $f: [0,1]^n \to \mathbb{R}$ and $g: [0,1]^m \to \mathbb{R}$, we write $f \equiv g$ if there exist maps $\sigma: [m] \to [n]$ and $\mu: [n] \to [m]$ such that $f = g_{\sigma}$ and $g = f_{\mu}$. Equivalently, $f \equiv g$ means that f can be obtained from g by permuting arguments or by adding or deleting inessential arguments.

Definition 2. Let $\Phi: D \to \mathbb{R}$ be a pivotal function. We denote by C_{Φ} the class of all the functions $f: [0,1]^n \to \mathbb{R}$ (where $n \ge 0$) that are \equiv -equivalent to a Φ -decomposable function with no essential argument or no inessential argument. We say that a class $C \subseteq U$ is pivotally characterizable if there exists a pivotal function Φ such that $C = C_{\Phi}$. In that case, we say that C is Φ -characterized.

Proposition 3. Let Φ be a pivotal function.

(i) A nonconstant function $f: [0,1]^n \to \mathbb{R}$ is in C_{Φ} if and only if so are its essential unary sections.

(ii) A constant function $f: [0,1]^n \to \{c\}$ is in C_{Φ} if and only if $\Phi(c,z,c) = c$ for every $z \in [0,1]$.

Example 5 (Lattice polynomial functions). The class of lattice polynomial functions is Φ -characterized for the pivotal function $\Phi: [0,1]^3 \to \mathbb{R}$ defined by $\Phi(r,z,s) = \text{med}(r,z,s)$.

3 Classes characterized by their unary members

Proposition 3 shows that a class C_{Φ} is characterized by the essential unary sections of its members. This observation motivates the following definition, which is inspired from [2].

Definition 3. A class $C \subseteq U$ is characterized by its unary members if it satisfies the following conditions:

(i) A nonconstant function f is in C if and only if so are its essential unary sections. (ii) If f is a constant function in C and $g \equiv f$, then g is in C.

We denote by CU the family of classes characterized by their unary members.

Theorem 1. Let Φ be a pivotal function. A nonempty subclass of C_{Φ} is characterized by its unary members if and only if it is pivotally characterizable.

Theorem 2. *The family* CU *can be endowed with a complete and atomic Boolean algebra structure.*

References

- 1. R.E. Barlow and F. Proschan. Importance of system components and fault tree events. *Stochastic Processes and Their Applications*, 3:153–172, 1975.
- 2. M. Couceiro. Classes determined by unary sections. Working paper.
- M. Couceiro and J.-L. Marichal. Characterizations of discrete Sugeno integrals as polynomial functions over distributive lattices *Fuzzy Sets and Systems*, 161 (5): 694–707, 2010.
- 4. M. Couceiro and J.-L. Marichal. Polynomial functions over bounded distributive lattices. *J. of Multiple-Valued Logic and Soft Computing*, 18 (3-4): 247–256, 2012.
- 5. M. Grabisch, J.-L. Marichal, R. Mesiar, and E. Pap. *Aggregation functions*. Cambridge University Press, UK, 2009.
- 6. J.-L. Marichal. Weighted lattice polynomials. Discrete Mathematics, 309(4):814-820, 2009.
- 7. G. Owen. Multilinear extensions of games. Management Sci., 18:P64-P79, 1972.
- 8. G. Owen. Multilinear extensions of games. In: A.E. Roth, editor. *The Shapley Value. Essays in Honor of Lloyd S. Shapley*, pages 139–151. Cambridge University Press, 1988.
- 9. C.E. Shannon. A symbolic analysis of relay and switching circuits. *Trans. Amer. Inst. of Electrical Engineers*, 57: 713–723, 1938.