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0.

0 .1 .

INTRODUCTION DU SUJET

Position du problème

Soit A = {a,b,c,...} un ensemble fini avec lAlr2. Ses éléments, appelés actions,

représentent généralement des objets, des modalités, des décisions, des candidats, des solutions,

etc. Notre objectif est de ranger ces éléments du meilleur au moins bon en prenant en compte

plusieurs critères ou I'opinion de plusieurs votants. Par exemple, le classement de dix

finalistes d'un concours musical à partir des scores attribués par les juges.

Plusieurs méthodes peuvent être envisagées pour ranger les actions sur base de telles

informations. Pour comparer ces méthodes nous pouvons étudier leur comportement vis-à-vis

d'un certain nombre de propriétés "désirables". Celles-ci sont souvent appréciées par le

décideur à travers son expérience et son jugement. Nous pouvons aussi essayer de trouver un

ensemble d'axiomes qui caractérise une méthode particulière; c'est la voie que nous avons

choisi de suivre. Ce travail a donc pour objet de mettre en évidence des caractérisations

axiomatiques permettant d'identifier une procédure de classement à un ensemble d'axiomes.

0.2. Structures valuées de préférences

Contrairement aux modèles classiques (modèles booléens) où le décideur ne fait pas

de distinction entre des préférences plus ou moins fortes, nous allons associer à chaque couple

(a,b) d'actions, une valeur traduisant le "degré" de Ia préférence. Plus précisément, ce nombre

va indiquer la force ou la crédibilité de la proposition
"a est au moins aussi bon que b".

Pour qu'il synthétise le résultat de la comparaison de a et b après agrégation des différents

points de vue, on peut demander à ce nombre de refléter I'importance des critères pour

lesquels "a est au moins aussi bon que b" ou encore I'importance de I'adhésion des votants qui

sont de cet avis. Il suffit par exemple de prendre, selon le cas, la somme des poids des critères

favorisant a ou le pourcentage de votants déclarant que a est préféré ou indifférent à b.

Quoique de tels procédés soient souvent utilisés, nous savons depuis le marquis de Condorcet

(1785) que lorsque les différents points de vue pris en compte sont conflictuels, il peut être

difficile de comparer les actions sur base de ces nombres.



Nous définissons une relation (binaire) valuéer sur A comme une fonction R associant

à chaque couple d'actions (a,b) e A><A avec a + b un élément de [0,1] :

R : AxA ..+ [0,1] : (a,b) - R(a,b).

D'un point de vue technique, la condition a + b pourrait être omise de cette définition au prix

de quelques modifications mineures de certains axiomes. Cependant, puisqu'il est clair que

les valeurs R(a,a) sont insignifiantes pour le classement des actions, nous utiliserons cette

définition tout au long de nos développements.

La teptésentation matricielle d'une relation valuée facilite d'une manière évidente le traitement

des informations (sur un ordinateur par exemple). Cette représentation consiste à attribuer à

chaque relation valuée R sur A une matrice carrée où chaque ligne et chaque colonne sont

relatives aux éléments de A et dont l'élément d'indices (ij) n'est autre que le nombre R(i,j),

pour tout i,j € A, , avec i * j.

a b c

R(ij)

Une représentation sagittale, c'est-à-dire au moyen d'un graphe orienté est également

possible. Un graphe orienté est un ensemble de noeuds X et un ensemble d'arcs U C XxX.

Nous disons que x est I'extrémité initiale et y I'extrémité finale de I'arc u = (x,y) e U.

J

a
b

i

:

Considérons donc un graphe orienté pour

des arcs U est {(u,b) : a,b € A et a + b). I l  est clair qu'i l  y a une correspondance

lequel I'ensemble des noeuds est A et I'ensemble

'1' On parle aussi de relation floue. Les relations booléennes sont alors appelées relations nettes.



biunivoque entre relations valuées sur A et valuations entre 0 et 1 portées sur les arcs de ce

graphe. Dans la suite, nous identifions une relation valuée avec son graphe valué associé dans

lequel la valuation v*(u) d" I'arc u = (a,b) est R(a,b).

R(a,b)

Cela étant, nous appelons rangement (complet) surA, tout préordre total sur A (relation binaire

booléenne complète et transitive sur A). De même, nous appelons rangement partiel sur A,

tout préordre partiel sur A (relation binaire booléenne réflexive et transitive sur A).

Une méthode de rangement (resp. de rangement partiel)

rangement (resp. un rangement partiel) >(n) sur A à toute relation valuée R sur A :

où R(A) désigne I'ensemble des relations valuées sur A et P(AxA) I'ensemble des parties de

AxA.

0.3. Le rangement par les scores

Une manière évidente d'obtenir une méthode de rangement est d'associer un score

S(a,R) à chaque action a et de ranger les actions selon leur score2,

c'est-à-dire :

Dans ce cas, on a

et

a>(R)b

aussi

a=(R)b

a>(R)b

ssi

une "mesurg"

a
J

S(a,R) > S(b,R).

ssi

ssi

S(a,R) = S(b,R)

S(a,R) > S(b,R).

' I-e, score S(a,R) représente ainsi de la qualité de a.



La relation >(R) est alors un préordre total puisqu'on est ramené à comparer des nombres

réels. Cette idée fut d'abord proposée par le Chevalier Jean-Charles de Borda en l78L C'est

actuellement la technique de rangement la plus commune et peut-être la plus naturelle.

Si deux types de scores, notés 51 et 52, sont compétitifs, un rangement partiel peut être

envisagé en prenant I'intersection des deux rangements complets :

a>(R)b ssi [Sr(a,R) > Sr(b,n) et Sr(a,R) > S2(b,R)]

Dans ce cas. on a aussi

u=(R)b ssi [Sr(a,R) = Sl(b,R) et Sr(a,R) = Sr(b,R)]

et a>(R)b ssi [S,(a,R)

stricte].

La relation >(R) est alors un préordre partiel en tant qu'intersection de deux préordres totaux.

Voici quelques scores généralement utilisés. Citons d'abord le flux sortant, le flux entrant et

le flot net :

sr(a,R) = 
"*r, 

R(a,c)

S"(a,rt) = E R@,a)
ca{\{c}

S"fa,R) = Sr(a,R) + Sla,R)

flux flux
sonântentrant

4



Ensuite, nous pouvons envisager le produit sortant, le produit entrant et le produit net :

So- (a,R) = ["erl\{o, R(arc)

So- (a,R) = - ["e,]\{a, R(c,a)

S"(c,R) = So.(a,R) + So-(a,R)

Enfin, en utilisant les opérateurs Min et Max, nous obtenons

S*r,.(a,R) = S.r(a,R) = min".ra, R(arc)

S.*,*(a,R) = S."*(a,R) = rfraxc€Ar6f(a,c)

pour le minimum et le maximum sortants et

,S.r,_(a,R) = - min"€,{a6f(c,a)

S.*,-(a,R) = - maxc€Ar6f(c,a)

pour le minimum et le maximum entrants.

D'autres scores peuvent encore être envisagés. Bien sûr, ils sont tous basés sur le principe que

les éléments qui plaident en faveur de a sont les arcs du type (a,c), c e A\{a}, alors que ceux

qui plaident contre a sont les arcs du type (c,a), c € A\{a}.



0.4. Exemples

Pour un premier exemple, soient I'ensemble 4 = {Audi (A), BMW (B), Mercedes (Ivf),

Opel (O), Renault (R), Volvo (\|))

et R1, R2, R3, Ro les rangements pour quatre critères différents dont les poids sont 4112, 3112,

3ll2 et 2ll2 respectivement :

R r : V > R > O > B - M > A

R r : A - B - M - R > O > V

R r : V - O - B > A > R > M

R o : A - M - O - V > B - R

I-e degré de préférence d'une voiture a sur une autre b est égal à la somme des poids

des critères pour lesquels on a (a > b) ou (a - b). Nous obtenons donc la matrice des

valuations suivante (les valeurs sont multipliées par 12) :

En utilisant différents scores (parmi ceux que nous avons présenté dans le paragraphe

précédent), nous obtenons des rangements variés :

S r : V > O - B > R > M > A

S " : V > O > R > B > A > M

S * u : V > O > R > B > A - M

S n * : V > O > B > R > M > A

S n - : V > O > R > B > A > M

S * r : V > O > R > B > A > M

S - r . , , * r V > B > A - M - O > R

S - * . - r V > B - O - R > A - M

v
5
6
5
8
a
J

B
8
8
5
5

B M O

5 8 5
1 0 6

9 5
9 9
9 1 0 7
9 9 9

A

10
9
9
7
9

Audi (A)
BMw (B)
Mercedes CM)
Opel (O)
Rènau1t (R)
Volvo



Pour un second exemple, nous comparons le goût de cinq vins Médoc. Soit p(a,b) la

proportion de dégustateurs qui expriment une préférence pour le goût du vin a sur celui du vin

b. I1 s'agit d'un cas typique de choix forcé où p(a,b) + p(b,a) = 1 pour tout a,b € A avec

a + b. La relation valuée p est alors appelée une relation probabiliste. Voici la matrice des

proportions observées :

Voici quelques rangements obtenus par des scores :

SL, SE, SNF

St*, S.-

S,oio,*, S-u*-

a
b
c
d
e

.57 .57 .29
.43 .7A .52
.43 .30 .72
.7t .48 .28
.33 .72 .52 .52

e

.67

.28

.48

.48

: a >  e > d > b  - c

: e > a > d > c > b

: e > c > a > b - d

Nous observons par exemple que les scores SL, SE et S*. donnent le même rangement. Ceci

n'est pas une coincidence. Dans toute relation probabiliste R sur A (R(a,b) + R(b,a) = 1),

nous avons

Sr(a,R) - Su(a,R) = lAl - I

S*u(a,R) = ( lAl-1) + 2 S"(a,R) = 2 Sr(a,R) - ( lAl-1)

S-,o,*(a,R) = 1 + S-^'_(a,R)



a>(R)b ssi

I_es notations =(R) et >(R)

1. PROPRIETES SOUHAITABLES POURUNE PROCEDURE DE RANGEMENT

Nous présentons ci-dessous quelques propriétés qui peuvent être considérées comme

souhaitables par I'utilisateur d'une procédure de rangement. La liste n'est certainement pas

exhaustive (voir aussi sections 5 et 9); de plus, certaines propriétés sont plus discutables que

d'autres; nous verrons également qu'il existe des implications entre certaines d'entre elles.

Dans tous les cas, il peut être utile, lorsqu'on applique une procédure de rangement, de

connaître les propriétés qu'elle satisfait et celles qu'elle viole.

Dans la suite, nous noterons =(R) et t(R) les parties symétrique et asymétrique

de >(R) , c'est-à-dire, pour tout a,b € A,

a=(R)b ssi I a>(R)b et b>(R)a ]

I a>(R)b et non b>(R)a l

seront parfois remplacées par I(R) et P(R) respectivement.

Neutralité vis-à-vis des noms (ou labels) des actions

Si on permute les noms des éléments de A, la relation >(R) doit rester inchangée à

la permutation près, ce qui, mathématiquement, peut se formuler comme suit :

une méthode de rangement

A, pour toute relation valuée R sur A et tout a,b € A :

a>(R)b * o(a)>(R")o(b)

où R' est défini par R"(o(a), o(b)) = R(a,b) pour tout a,b € A.

La propriété de neutralité paraît indiscutable. Elle signifie que les noms donnés aux actions

ne peuvent avoir aucune influence sur leur rangement (ce qui exclut, par exemple, la procédure

qui consisterait à ranger les actions par ordre alphabétique).



b. Axiome de non discrimination

Une méthode de rangement

toute relation valuée R sur A et tout a,b e A,

[R(a,b) = R(b,a) et R(a,c) = R(b,c), R(c,a) = R(c,b) pour tout c € A\{a,b}] =+ a =(R)b.

L'axiome de non discrimination dit que si deux actions sont comparées similairement vis-à-vis

de toutes les autres actions, alors elles sont déclarées indifférentes.

Cette propriété est tout à fait acceptable et on peut aisément vérifier qu'elle est une

conséquence de la neutralité3.

En effet, la transposition de a et b ne modifie en rien les hypothèses de la non discrimination

(placées entre crochets). On ne peut donc avoir une préférence stricte entre a et b dans le

rangement.

c. Axiomes de monotonie

Une méthode de rangement est dite monotone si elle ne répond pas "dans la mauvaise

d i rec t ion ' 'àunemodi f ica t iondeR.Plusformel lement ,> � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

valuée R sur A et tout a,b € A :

a>(R)b - a>(n\b

où R' est identique à R excepté que

[R'(a,c) > R(a,c) ou R'(c,a) < R(c,a) pour un c € A\{a}] ou

[R'(b,d) < R(b,d) ou R'(d,b) > R(d,b) pour un d € A\{b}].

' La propriété de neutralité est nécessaire. En effet, la procédure qui consiste à ranger
les actions par ordre alphabétique, pour ne citer qu'elle, n'est pas non discriminatoire.



En conséquence, on a aussi : a>(R)b + a>(R')b a

Une méthode de rangement est dite strictement monotone si elle répond "dans la bonne

di rec t ion ' 'àunemodi f ica t iondeR.Plusformel lement ,> � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

toute relation valuée R sur A et tout a,b € A :

a>(R)b - a>(R5b

où R' est défini comme avant.

Comme définie ici, la monotonie apparaît comme une propriété acceptable. Elle

signifie que si on modifie la relation R en avantageant (resp. désavantageant) une action, alors

la situation de cette action dans le rangement ne peut pas se détériorer (resp. s'améliorer). La

stricte monotonie demande beaucoup plus, en excluant, en particulier I'usage de tout seuil dans

le traitement des valuations (voir section 8). Elle exige que la modification de R ait un impact

sur le rangement en faveur (resp. défaveur) de I'action qui a été avantagée (resp.

désavantagée).

Une méthode de rangement

R s u r A e t t o u t a , b  €  A :

a>(R)b * a>(R\b

où R' est identique à R excepté que R'(a,c) > R(a,c) pour tout c € A\{a}.

La monotonie sur les lignes est une forte propriété : elle dit que la position d'une action

s'améliore si sa position dans la relation valuée s'est avantagée vis-à-vis de toutes les autres

actions.

" On ne peut en effet avoir b>(Rt)a, cat par la propriété de monotonie,

on aurait b>(R)a.

10



Supposons que R" soit identique à R excepté que R(b,d) > R"(b,d) pour tout d € A\tb). Il

n'est pas difficile de constater que la monotonie sur les lignes implique que

la>(R)b * a>(R'5U1.

d. Axiome d'ordinalité

Une méthode de rangement

transformation Q strictement croissante de [0,1] sur [0,1],

>(R) = >(otRl)

où Q[R] est une relation valuée telle que Q[R](",d) = Q(R(c,d)) pour tour c,d € A

avec c + d. L'ordinalité implique qu'une méthode de rangement ne fait pas usage des

propriétés "cardinales" des valuations.

e. Axiome de contnuité

Considérons une suite de relations valuées sur A (Ri € R(A), i - 1,2,...). Nous dirons

que cette suite converge vers R € R(A) si, pour tout e > 0, il existe un entier k tel 9ue, pour

tou t  j  >  ke t tou t  a ,b  €  Aavec  a  +b ,  lR r (a ,b )  -R (a ,b ) | .  u .

Une méthode de rangement

R  €  R(A) , tou tesu i te (R i  €  R(A) ,  i = I , 2 , . . . ) conve rgean tve rsRe t tou ta ,b  €  A :

la>(Rt)b pour tout Ri de Ia saitel * [a>(R)b].

1 1



La continuité dit que les changements "faibles" dans une relation valuée ne devraient

pas conduire à des réactions chaotiques dans le rangement.

f. Axiome d'égalitarisme

Une méthode de rangement

R sur A et tout a,b € A,

a>(R)b * a>(Ro)b

où R, est identique à R excepté que R"(a,c) = 
J, 

R(ad)l( l/l-1) pour tour c € A\{a}.

Cela signifie 9ue, la relation valuée R étant considérée sous sa représentation matricielle, la

moyenne arithmétique des éléments de la ligne associée à une action ne peut diminuer la

position de cette action dans le rangement.

g. Axiomes de définitions sur les flux

Définissons I'ensemble des flux sortants (resp. entrants) de I'action a € A par :

Lu,R = 
4*rr, {R(a,c)} (resp. Eu,R = 

[eer{c} {R(c,a)}).

Une méthode de rangement

relation valuée R sur A et tout a,b € A,

LnR = I-o,o (resp. E",o = Eo,J e s=(R)b.

Une méthode de rangement

et tout a,b € A,

t2



[L.,* = Lt,n et E.* = F,o,n] =e 2=(R)b.

Il est clair que si une méthode de rangement est définie sur les flux sortants (resp. entrants),

elle est définie sur les flux. La ré,ciproque est évidemment fausse.

h. Axiomes de renver:sement des préférences

Une procédure de rangement vérifie l'axiome de renversement faible des préférences

lorsque :

si a>(R)b

alors [pour tout c e A\{a}, il existe une relation valuée R' identique à R,

excepté que R'(a,c)

Une procédure de rangement vérifie l'axiome d.e renversement strict des préférences

lorsque :

si [a>(R)b et R(bd) + 0 pour tout d e ,a\{b}l

alors [pour tout c € A\{a}, il existe une relation valuée R' identique à R,

excepté que R'(a,c) < R(a,c), telle que b>(R')a].

[.e premier axiome énonce qu'on peut renverser (non strictement) la préférence de a

sur b en abaissant la performance de a par rapport à n'importe quelle action. Dans le second

axiome, on peut renverser strictement la préférence de a sur b à condition que la performance

minimale de b par rapport à toute action soit non nulle.

Remarque SionimposeR(*,y) > 0Vx,y € A, X + y,  alors lacondit ionR(b,d) + Oest

d'office vérifiée.

13



Indépendance vis-à-vis des transformations admissibles

Iæs axiomes qui vont suivre ne sont sans doute pas impératifs mais ils permettent de

départager facilement certaines procédures.

i) Transformations sur les circuits et les cycles élémentaires

Une caructéristique importante d'une méthode de rangement consiste en la manière dont elle

traite les "intransitivités" de R. Afin de formaliser ce point, rappelons quelques définitions

bien connues utilisées dans la théorie des graphes.

Un circuir (resp. un cycle) de longueur q dans un graphe orienté est une collection ordonnée

d'arcs (u1,u2,...,uq) telle que pour i = I,2,...,gl'extrémité initiale de u, est I'extrémité finale de

u,-, et I'extrémité finale de u, est I'extrémité initiale de u'*, (resp. ui * ui_l, une des extrémités

de u, est une extrémité de u,-, et I'autre une extrémité de u,*r), où uo est interprété, comme uo

et uo+r comme u1.

Un circuit (resp. un cycle) est élémentaire si et seulement si chaque noeud, extrémité d'un arc

du circuit (resp. du cycle) est I'extrémité d'exactement deux arcs du circuit (resp. du cycle).

Une translation sur un circuit élémentaire consiste en I'addition d'une môme

quantité ô positive ou négative sur les valuations des arcs du circuit. Une homothétie sur un

circuit élémentaire consiste en la multiplication par une même quantité 0 strictement positive

des valuations des arcs du circuit. Une transformation (translation ou homothétie) est

admissible si les valuations transformées sont encore comprises entre 0 et 1. I-oque nous

appliquons une transformation admissible au graphe associé à une relation valuée R, nous

obtenons une autre relation valuée R' et nous disons que R' a été obtenu à partir de R via une

transformation adm issible.

Considérons un cycle élémentaire dans le graphe associé à une relation valuée. Un arc u, du

cycle est appelé arc avant si son extrémité commune avec u,-, est son extrémité initiale et arc

arrière sinon. Un cycle est dit alterné si chaque arc avant du cycle est suivit par un arc arrière

et vice-versa.

I4



Une translation sur un cycle élémentaire consiste en I'addition d'une même quantité

du cycle et en la soustraction deô positive ou négative sur les valuations des arcs avants

cette même quantité sur les valuations des arcs arrières. Une homothétie sur un cycle

élémentaire consiste en la multiplication par une même quantité 0 strictement positive des

valuations des arcs avants du cycle et en la division par cette même quantité des valuations

des arcs arrières.

Une méthode de rangement est dite indépendnnte des translations (resp. des homothéties) sur

les circuirs si et seulement si pour toutes relations valuées R et R', [R' peut être obtenu à

partir de R via une translation (resp. une homothétie) admissible sur un circuit élémentaire de

longueur 2 ou 3l - t>(R) = >(R)1.

Cet axiome a une interprétation directe. L'indépendance vis-à-vis des translations sur les 2-

circuits, c'est-à-dire sur les circuits de longueur 2, implique que le rangement est uniquement

influencé, par les différences R(a,b) - R(b,a). L'indépendance vis-à-vis des translations sur les

3-circuits implique que des intransitivités du type R(a,b) > 0, R(b,c) > 0 et R(c,a) > 0 peuvent

être "effacées" en soustrayant Min(R(a,b); R(b,c); R(c,a)) des valuations sur le 3-circuit ((a,b);

(b,c); (c,a)). Une interprétation comparable peut être obtenue pour I'indépendance vis-à-vis

des homothéties.

Remarque Il est évident qu'en ajoutant à cet axiome une condition sur un l-circuit, nous

pourrions considérer des relations pour lesquelles R(a,a) est défini.

i i) Transformations sur une paire d'actions

Une translatfutn sur Ltne paire d'actions {a,b} consiste en I'addition d'une même

quantité ô positive ou négative sur les valuations de tous les arcs sortant de a et de b.
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Rl = t6o,6(R) est la relation valuée identique à R excepté que :

R'(a,c) = R(a,c) + ô Vc € A\{a}

R ' (b ,c)  =R(b,c)+ ô  Vc €  A\ {b}

La translation taob est dite admissible si les valuations transformées sont encore comprises

entre 0 et 1.

Une méthode de rangement est dite indépendante des translations sur une paire d'actions si

et seulement si pour toutes relations valuées R et R' sur A, et tout a,b € A,

[R' peut être obtenu à partir de R via une translation admissible sur {u,b}]

=+ la>(R)b * a>(R|)U et b>(R)a * b>(R\al.

Remarque Il est facile de voir qu'on a aussi a>(R)b + a>(R')b et b>(R)a <+ b>(R')a.

iii) Transformations en marguerite

Une translation en marguerite sur une action a consiste en I'addition d'une même

quantité ô positive ou négative sur les valuations de tous les arcs sortants et entrants de a.

R' = tô4(R) est la relation valuée identique à R excepté que :

R'(a,c) = R(a,c) + ô Vc € A\{a}

R'(c,a) = R(c,a) + ô Vc € A\{a}
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La translation tuo est dite admissible si les valuations transformées sont encore comprises

entre 0 et 1.

Une méthode de rangement est dite indépendante des translations en marguerite si et

seulement si pour toutes relations valuées R et R' sur A, et tout a € A, [R' peut être obtenu

à partir de R via une translation admissible en marguerite sur a] => t>(n) = >(R)].

De toutes ces définitions découlent celles relatives aux homothéties (voir aussi i).
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2. UNE CARACTERISATION DE LA METIIODE DU FLOT NET

2.1. Introduction

L'objet de cette section est de présenter une caractérisation axiomatique de la méthode

de rangement basée sur le score suivant :

s"r{a,R) = I (R@,c)-R(c,a))
c ez{\{c}

(1)

[-e rangement des actions se ramène donc au rangement des scores, c'est-à-dire :

a >ivr(R)b ssi S""(a,À) > SNr(b,R)

(2)

I.{ous appellerons la méthode définie par (1) et (2) la méthode du Flot Ner (Net Flow Method).

Elle s'inspire de la première loi de Kirchhoff (loi des noeuds) de la théorie des circuits

électriques. La caractérisation que nous allons présenter est due à BOUYSSOU (1991). Elle

utilise un système de trois axiomes indépendants.

I-orsque R est une relation booléenne, c'est-à-dire lorsque R(a,b) ne peut prendre que les

valeurs 0 ou 1, cette méthode de rangement se ramène à la méthode de rangement de Copeland

(voir section 4). En effet, le score s'écrit alors :

S""(a,R) = l {ce,a\{a):  R(a,c) --  1} l - l  {ceA\{d} :  R(c,a) = t} l

Avant de mettre en évidence certaines propriétés de la méthode du flot net, nous devons

mentionner I'utilité de prendre une position sur la nature et la signifiance des valuations R(a,b).

Contrairement aux méthodes utilisant seulement les opérateurs MIN et/ou MAX, il faut

signaler que la méthode du flot net fait usage des propriétés "cardinales" des valuations. En

fait, il est clair à partir de (1) et (2) que nous pouvons très bien avoir >rvlR) * >jvl4R) ,

où 0 est une fonction strictement croissante sur [0,1] telle que Q(0) = 0 et Q(1) = 1.
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Par conséquent, cette méthode ne semble pas appropriée lorsque les comparaisons des

valuations n'ont qu'une signification ordinale (échelle ordinale) en terme de crédibilité.

2.2. Propriétés de la méthode du flot net

Voici quelques propriétés vérifiées par la méthode du flot net :

i) Neutralité

Il est évident que la méthode du flot net est neutre, donc non discriminatoire.

On a d'ailleurs S*o(a,R) = SNp(o(a), R").

ii) Stricte monotonie

La méthode du flot net est strictement monotone. En effet, si R' est identique à R sauf

[R'(a,c) > R(a,c) ou R'(c,a) < R(c,a) pour un c + a] ou

[R'(b,d) < R(b,d) ou R'(d,b) > R(d,b) pour un d + b] alors

[S*.(a,R') > S*o(a,R) ou SNF(b,R') < S*o(b,R)].

iii) Indépendance vis-à-vis des translations sur les circuits

Il est clair qu'une translation admissible sur un circuit élémentaire n'altère en rien le score

d'aucune action, lorsque les scores sont définis par (1), de sorte que la méthode du flot net est

indépendante des translations sur les circuits.

En effet, si a est I'extrémité de deux arcs d'un circuit, on a S*o(a,R') = S*.(a,R) + (ô -ô) =

S".(a,R), si R' est obtenu à partir de R via une translation admissible de ô sur le circuit.

D'une façon analogue, on voit aisément qu'une translation admissible sur un cycle élémentaire

n'altère le score d'aucune action, lorsque les scores sont définis par (1). Contrairement à la

neutralité et la monotonie, cet axiome fait un usage explicite des propriétés cardinales des

valuations.
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2.3 Résultats

Nous sommes à présent en position d'énoncer le résultat principal.

Théorème 2.1. La méthode du flot net est la seule méthode de rangement qui est

neutre, strictement monotone et indépendante des translations sur les circuits.

Nous avons déjà noté que la méthode du flot net est neutre, strictement monotone et

indépendante des translations sur les circuits. Il reste à prouver qu'elle est la seule. Notons

d'abord que les trois axiomes qui caractérisent la méthode du flot net sont indépendants

comme le montrent les exemples suivants :

i - Soit O: A + {I,2,...,1A1} une bijection (on numérote les actions)

Définissons rt comme :

a>{R)b ssi S,(a,R) > Sr(b,R)

où, pour tout c € A, Sr(c,R) = S*u(c,R). O(c).

Cette méthode de rangement est strictement monotone et indépendante des translations sur les

circuits mais non neutre.

ii - Définissons >, comme :

a>r(R)b ssi Sr(a,R) > Sz(b,R)

où, pour tout c € A, Sr(c,R) = - S*r(c,R).

Cette méthode de rangement est neutre et indépendante des translations sur les circuits mais

non strictement monotone.
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iii - Définissons >3 comme :

a>r(R)b ssi Sr(a,R) > S3(blR),

où pour tout c € A, Sr(c,R) = Ea.,lrr"r (R(c,d)2 - R(d,c)2)

Cette méthode de rangement est neutre et strictement monotone mais non indépendante des

translations sur les circuits.

Avant de démontrer le théorème 2.L, nous allons établir quelques lemmes.

I'emme 2.2 Pour toutes relations valuées R et R', si [R' peut être obtenu à partir de
R via une translation admissible sur un circuit élémentairel alors [R' peut être obtenu
à partir de R via un nombre fini de translations admissibles sur des circuits
élémentaires de longueur 2 ou 3]

Démonstration du lemm e 2.2.

La preuve se fait par induction sur la longueur q du circuit élémentaire. Si q = 2 ou 3, alors

l e l e m m e e s t d é m o n t r é . S u p p o s o n s m a i n t e n a n t q u e l e l e m m e s o i t v r a i p o u r t o u t q < � � � � �

k

d e l o n g u e u r k +  1 :

ul = (ar,a2), u2 = (a.r,a3),..., uk = (âr,âr*r), ur*r = (au*r,ar) et supposons que R' a été obtenu à

partir de R par addition de ô sur les arcs de ce circuit. Si ô = 0, il n'y a rien à démontrer.

Supposons que ô > 0 (la démonstration est similaire pour g < 0).

Définissons r = (a'a) et s = (an,ur).

si v^(r)

(un,un*r,r) de longueur respective k et 3 sur lesquels I'addition de ô est une translation
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admissible. A ce moment, la soustraction de ô sur le 2-circuit (r,s) est alors une translation

admissible. Nous obtenons ainsi R'.

Si v^(r)

alors I'addition de ô sur (ur,u2:...,u1-11s) est une translation admissible. Puisque maintenant

les valuations de s et r sont strictement positives, nous pouvons trouver un entier n

suffisamment grand pour que la soustraction de 6ln sur le 2-circuit (.,r) soit une translation

admissible. L'addition de 6ln sur (uo,ur+r,r) est maintenant une translation admissible. En

ré,pétant n fois ces opérations, nous obtenons finalement R' (voir figure 1).

si v^(r)

pouvons trouver un entier n suffisamment grand pour que la soustraction de 6ln sur le 2-

circuit (r,s) soit une translation admissible. L'addition de 6ln sur (un,ur*r,r) et sur (u1,u2,...,

ur-r,S) sont maintenant des translations admissibles. La répétition n fois de ces opérations

conduit à R'.

Ceci termine la démonstration du lemme 2.2 parce que si A est fini, il en va de même pour

la longueur maximum d'un circuit élémentaire. tr

Remarque Iæ lemme 2.2 implique que I'indépendance vis-à-vis des translations sur les 2

ou 3-circuits élémentaires est équivalente à I'indépendance vis-à-vis des

translations sur les circuits élémentaires de longueur quelconque. Ceci justifie,

en particulier, la définition de I'indépendance vis-à-vis des translations sur les

circuits (voir section 1).
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Figure I

Translation sur un 4-circuit via un nombre de translations sur des 2 ou 3-circuits.

lnrsque R(bd)

[(a,b),(b,c), (c,d), (d,a)] est obtenue après addition de ô sur le 3-circuit [(a,b), (b,d),

(d,a)] et I'accomplissement n fois d'une translation de - 6ln sur le 2-circuit [(b,d),

(d,b)] et d'une translation de 6ln sur le 3-circuit [(b,c), (c,d), (d,b)].

Lemme 2.3. Pour toutes relations valuées R et R', si [R' peut être obtenu à partir
de R via une translation admissible sur un cycle élémentaire] alors [R' peut être
obtenu à partir de R via un nombre fini de translations admissibles sur des circuits
élémentaires]

Démonstration du lemme 2.3.

Considérons un cycle élémentaire du graphe associé à R et supposons que R' a é,tê obtenu à

o

23



partir de R par addition de ô sur les arcs avants du cycle et par soustraction de ô sur les

arcs arrières. Notons respectivement U. et U" I'ensemble des arcs avants et arrières (F =

forward,B=backward)ducycle.  Si  ô = 0,  i ln 'y ar ienàdémontrer.  Supposons ô>0 ( la

démonstration est similaire pour ô < 0 ).

Définissons d_o = Maxla,b)eu" v^(bo).

si d."t

considérant les arcs de UF et I'ensemble {1b,a1 € IJ : (a,b) € U ) est une translation

admissible. A ce moment, la soustraction de ô sur tous les 2-circuits du type ((a,b), (b,a))

avec (a,b) € U B constitue des translations admissibles et conduisent à R'.

st d-o ) 1 - 6, définissons llp = {1a,b1 € Un : v^(b,a)

Pour tout (a,b) € IJo nous avons v^(a,b)

pouvons trouver un entier n suffisamment grand tel que la soustraction de 6ln sur tous les

2-circuits ((a,b), (b,a)) avec (a,b) € IJ, constitue des translations admissibles. Dès lors

I'addition de 6ln sur le circuit obtenu en considérant les arcs de U, et les arcs (b,a) si (a,b)

est dans IJu, est une translation admissible.

Il est facile de voir qu'il est possible de répéter n fois ces opérations. Nous obtenons dès lors
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R' après avoir soustrait ô sur les 2-circuits ((a,b), (b,a)) avec (a,b) € U"\Ur, toutes ces

translations étant admissibles par construction (voir figure 2).

Ceci termine la démonstration du lemme 2.3., parce que si A est fini, il en va de même pour

la longueur maximum d'un cycle élémentaire. tr

@-=+>Or 1
l . rro

t l
t l  

n ro ' s

O- -ô,">O

î*" .'"1
P O

Figure 2

Translation sur un cycle via un nombre de translations sur des circuits.

I

I-orsque R(b,c)

est obtenue après I'accomplissement n fois d'une translation de - 6ln sur le 2-circuit [(b,c),

(c,b)] et une translation de 6ln sur le 4-circuit [(a,b), (b,"), (",d), (d,a)].

o

o

o-^F
o
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Lemme 2.4. Pour toutes relations valuées R
pour tout c appartenant à A] e [R' peut être
fini de translations admissibles sur des cvcles

et R' sur A, [S*u(c,R) = S*.(c,R')
obtenu à partir de R via un nombre
élémentaires]

Démonstration du lemme 2.4.

La partie € est évidente. Afin

relations R et R' pour lesquelles

de démontrer la partie +, supposons que nous ayons deux

S*o(c,R) = S*u(c,R') pour tout c € A. Si R = R', le lemme

e s t d é m o n t r é .  S i R + R ' a l o r s i l e x i s t e a , b  €  A a v e c a + b t e l s q u e R ( a , b ) * R ' ( a , b ) e t n o u s

supposerons que R(a,b)>R'(a,b), I'autre cas étant symétrique. Dès lors, il existe c,d € A\{a}

tels que :

R(c,a)>R'(c,a) ou R(a,d)<R'(a,d) parce qu'autrement

R(c,a)<Rt(c,a), R(ad)>R'(ad) pour tout cd e A\{n,bI,

R(a,b)>R'(o,b) et R(b,a)<Rt(b,a) contredirait S*fa'n = S*fa,R\.

Dans I'un ou I'autre cas, nous pouvons répéter le même argument et, puisque le nombre

d'actions est fini, ce procédé conduira à un cycle élémentaire dans le graphe associé à R.

Soit A le minimum sur les arcs (a,b) du cycle de lR(a,b) - R'(a,b) | . I1 est facile de vérifier

que I'addition de A sur les arcs du cycle tels que R(x,y)<R'(*,y) et la soustraction de À sur

les arcs du cycle tels que R(x,y)>R'(*,y) est une translation admissible sur le cycle. Nous

obtenons ainsi une relation valuée Rr. Si Rl - R', le lemme est démontré. Sinon, nous

pouvons répéter le même argument en commençant avec R, au lieu de R. Puisque A est fini,

il n'y a qu'un nombre fini d'arcs tels que R(x,y) + R'(*,y). Comme à chaque étape le nombre

d'arcs sur lesquels la relation courante et R' sont différents est décroissant d'au moins une

unité, ce procédé s'achèvera après un nombre fini d'étapes, ce qui termine la démonstration

du lemme 2.4.

Démonstration du théorème 2.1.

Tout ce que nous avons à démontrer est que si
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indépendant des translations sur les circuits alors

la>(R)b .* S"r{a,R)

S*u(a,R) = S*r(b,R) - a=(R)b et

S*u(a,R) > S*r(b,R) - a>(R)b.

Supposons d'abord que S*r(a,R) = SNF(b,R) pour deux actions a et b. Comme la

relation >(R) est complète, nous avons soit a>(R)b, soit b>(R)a. Si a>(R)b, appelons v

la permutation de A qui transpose a et b. On vérifie aisément que S*.(c,R) = S*r(c,R") pour

tout c € A. Vu le lemme 2.4., nous savons que R" peut être obtenu à partir de R via un

nombre fini de translations admissibles sur des cycles élémentaires. En combinant les lemmes

2.2. et 2.3. nous concluons que R" peut être obtenu à partir de R via un nombre fini de

translations admissibles sur des circuits élémentaires de longueur 2 ou 3. Dès lors, en utilisant

l ' i ndépendan tedes t rans1a t i onssu r lesc i r cu i t s ,nousob tenons>(R)=> � � � � � � � � � � � � �

a>(R")b. Cela étant, la neutralité implique b>(R)a, ce qui établit (3).

Supposons maintenant que S*u(a,R)>S*u@,R) pour deux actions a et b,

et soit d(R) = S*r(â,R) - SNF(b,R). Puisque :

d(R> = I R(a,c) E R(c,a) I R(bd) + E R(d,b),
cez{\{u) ceâ\{z) del{\{}} del\tD)

onnepeu tavo i r [R (a ,c )  =  0 ,  R (c ,â )  =  1Vc  €  A \ {a }  e tR(b ,d )=  1 ,  R (d ,b )=g

Vd € A\{b} l  carcela enrraînerai td(R) -  -Z ( lAl  -  1) < 0.

Il est donc possible de construire une relation valuée R. identique à R sauf sur des couples du

type (a,c), (",u) avec c € A\{a}, (b,d), (d,b) avec d e A\{b}, relle que d(R.) = 0. Il suffit

en effet de diminuer lorsque c'est possible des valuations parmi R(a,c) et R(d,b) etlou

(3)

(4)
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augmenter des valuations parmi R(c,a) et R(b,d) jusqu'à obtention d'une relation valuée R* sur

A qui puisse assurer d(R.) = 0s. Cela étant, par (3), on a s=(R.)b et des applications répétées

de la stricte monotonie conduisent à a>@)b. Ceci termine la démonstration du théorème2."1..

2.4. Un exemple

Illustrons la méthode du flot net par un exemple numérique simple.

Soient A - 
{a,b,c,d} et une relation valuée R sur A donnée par la matrice :

a b c d E -

tr

.2

.4

I

.7 .9

.4

1

.3

.8.8

.6 .6

1.6 2.1 1.9 2.r

2.6

.9

2

2.2d

t

Utilisons la méthode du flot net pour ranger les éléments de A. I-es scores sont :

S*u(a,R) =2.6 -  1.6 = 1

S N F ( b , R ) =  . 9 - Z J - - I . 2

S * u ( c , R ) = 1 ,  - 1 . 9 = . 1

s N F ( d , R )  _ 2 . 2 - 2 . I  _ . I

Nous obtenons donc le classement : a > (c - d) > b.

s Ceci est effectivement possible. Pour le voir, il suffit de se rappeler un théorème bien
connu d'analyse : "Toute fonction réelle, continue dans un connexe de R'y prend toute
valeur comprise entre deux quelconques de ses valeurs."
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3 . UNE CARACTERISATION DE I,A METHODE DU RAPPORT DES PRODUITS

Introduction

Nous présentons dans cette section une caractérisation axiomatique de la méthode de

rangement basée sur le score suivant :

so(a,R) = 
".*.r, 

(R(a,c)lR(c,a))

3 .1 .

(1)

I-e rangement des actions se ramène au rangement des scores, c'est-à-dire :

a>o(R)b ssi So(a,R) > SRr,(b,R).

(2)

Nous appellerons la méthode définie par (1) et (2) la méthode du Rapport des Produùs (RP).

Pour assurer I'existence des scores, nous ferons I'hypothèse suivante :

R ( x , y ) > 0  Y x , y e A , x + y .

(3)

La caractérisation que nous allons présenter est très voisine de celle que nous avons vue

concernant la méthode du flot net (voir section 2). Il suffit en effet de remplacer dans

l'énoncé du théorème 2.I. le mot "translations" par "homothéties" et nous obtenons une

caractérisation axiomatique de la méthode du rapport des produits.

3.2. Propriétés et résultats

Il est clair que la méthode du rapport des produits est neutre, strictement monotone et

indépendante des homothéties sur les circuits6. En outre, ces trois propriétés sont

indépendantes. Le résultat principal s'énonce alors comme suit :

Vu la condition (3), nous dirons qu'une
transformées sont dans ]0,1].

homothétie est admissible si les valuations
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Théorème 3.1. La méthode du rapport des produits est la seule méthode de
rangement qui est neutre, strictement monotone et indépendante des homothéties
sur les circuits.

Pour démontrer

caractériser la méthode

dans cette section.

circuit élémentaire de longueur k + l- :

u1 = (ar,ar) ,  \2 = (ar,ar) , . . . ,  uk = (a1,a1*1),

partir de R par multiplication par 0 sur

démontrer. Sinon, définissons r = (ar, au)

ce théorème, nous allons reprendre le schéma qui a été utilisé pour

du flot net. Les démonstrations seront toutefois un peu plus simple

I = 2 ou 3, alors

soit vrai pour

Considérons un

Lemme 3.2. Pour toutes relations valuées R et R', si [R' peut être obtenu à partir
de R via une homothétie admissible sur un circuit élémentaire] alors [R' peut être
obtenu à partir de R via un nombre fini d'homothéties admissibles sur des circuits
élémentaires de longueur 2 ou 3].

Démonstration du lemme 3.2-

La preuve se fait par induction sur la longueur q du circuit élémentaire. Si

le lemme est démontré. Supposons maintenant que le lemme

tou t  q  <  kavec  k  >  3  e tmon t ronsqu ' i l  es tenco rev ra ipou rg=k+  1 .

a

a

R ' a

L,  i l

ut*t

les

et

= (âr*r,âr), et supposons que

arcs de ce circuit. Si e =

s = (a., ar).

été obtenu

n'y a rien

Si 0>1, alors la division par 0 sur le Z-circuit (r,s) est une homothétie admissible. A

ce moment, nous avons deux circuits (u1,u2,...,uk-1,s) et (uu,uu*r,r) de longueur respective k et

3 sur lesquels la multiplication par 0 est une homothétie admissible. Nous obtenons ainsi R'.

Si 0<1, alors la multiplication par 0 sur les circuits (u1,u2,...,ur_r,s) et (u1,u1*r,r) constitue

des homothéties admissibles. Ensuite, la division par 0 sur Ie Z-circuit (r,s) est une homothétie

admissible. Nous obtenons ainsi R'.

Ceci termine la démonstration du lemme3.2, parce que si A est fini, il en va de même

pour la longueur maximum d'un circuit élémentaire. tr
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Lemme 3.3. Pour toutes relations valuées R et R', si [R' peut être obtenu à partir
de R via une homothétie admissible sur un cycle élémentaire] alors [R' peut être
obtenu à partir de R via un nombre fini d'homothéties admissibles sur des circuits
élémentaires].

Démonstration du lemme 3.3-

Considérons un cycle élémentaire du graphe associé à R et supposons que R' a été, obtenu à

partir de R par multiplication par 0 sur les arcs avants du cycle et par division par 0 sur les

arcs arrières. Notons respectivement U. et U" I'ensemble des arcs avants et arrières du cvcle.

Si 0 = 1, il n'y a rien a démontrer.

Si 0>1 alors

(u,b) € lJu constitue

le circuit élémentaireobtenu en considérant les arcs de uF et I'ensemble {(b,u) € u :

(u,b) € Uu) est une homothétie admissible et conduit à R'.

Si 0<1, il suffit d'inverser les deux opérations décrites dans le cas précédent et on
arrive à R'.

Ceci termine la démonstration du lemme 3.3. parce que si A est fini, il en va de même

pour la longueur maximum d'un cycle élémentaire. tr

l,emme 3.4. Pour toutes relations valuées R et R' sur A, [S*o(c,R) = S*r(c,R')
pour tout c appartenant à A] <+ [R' peut être obtenu à partir de R via un nombre
fini d'homothéties admissibles sur des cycles élémentaires].

Démonstration du lemme 3.4.

La partie € est évidente. En effet, oo voit aisément qu'une homothétie admissible sur un

cycle élémentaire n'altère en rien le score d'aucune action lorsque les scores sont définis par

(1). La partie -> est identique à celle du lemm e 2.4. (voir section 2), excepté qu'il faut

remplacer les mots "addition", "soustraction", "translation" respectivement par "multiplication",

la division par e sur tous les 2-circuits du type ((a,b), (b,a)) avec

des homothéties admissibles. A ce moment, la multiplication par 0 sur
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"division" et "homothétie", le score S*. par S*r, I'expression lR(a,b) - R'(a,b) |
max(R.(a,b)/R'(a,b), R'(a,b)/R(a,b)), et enfin le symbole Â par @.

Démonstration du theorème 3.1.

Tout ce que nous avons à démontrer est que si

indépendant des homothéties sur les circuits alors

par

E

(4)

(s)
S*r(a,R) = S*,(b,R) =+ a=(R)b et

S*r(a,R) > SRp(b,R) +a>(R)b

La démonstration de (a) est identique à celle qui a été proposée dans la section2,, excepté qu'il

faut évidemment remplacer le mot "translations" p"r "homothéties" et le score S*. par S*r.

Il faut également modifier les numéros des lemmes qui sont utilisés.

Démontrons (5). Supposons que So,(a,R) t S*r(b,R) pour deux actions a et b, et soit dG)=

S*r(a,R) - SRp(b,R), c'est-à-dire :

Il est alors possible de construire une relation valuée R. identique à R sauf sur des couples du

type (a,c) avec c € A\{a} et (d,b) avec d € A\{b}, telle que d(R.) = 0. Il suffit en effet de

diminuer des valuations parmi R(a,c) et R(d,b) jusqu'à obtention d'une relation valuée R' sur A

qui puisse assurer d(R') = Q. Cela étant, par (4), on a s=(R')b et des applications répétées de la

stricte monotonie conduisent à a>(R)b. Ceci termine la démonstration du théorème 3.1. tr
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3.3. Un exemple

Reprenons I'exemple qui a été traité dans la section 2. Les scores se calculent aisément :

S* . (a ,R)  - . 631 .08 -7 .875

SRP@,R) - .O241.336_.O71

So.(c ,R)  - .2561.216-  1 .185

SRp(d,R) =.361.24 = 1.5

Le classement est donc : a > d > c > b.

a a
J-)



4. LA METHODE DE COPELAND

4.L Méthode de la majorité par paires de Condorcet

La méthode décrite par le marquis de Condorcet en 1785 est la suivante :

a>c(nb ssi R(a,b) > R(b,a)

Elle prend tout son sens si R(a,b) est interprété comme le pourcentage de votants déclarant que

a est preféré, ou indifférent à b. En effet, a sera classé avant b s'il détient le plus grand

nombre de suffrages. Si le nombre de suffrages en faveur de a et de b est égal, il y a

ballottage. Il s'agit donc d'une règle à la majorité (simple) par paires. Si R est une relation

probabiliste (R(a,b) + R(b,a) - 1) alors on a :

a>r(R)b ssi R(a,b)

Il est bien connu que la méthode de Condorcet peut conduire à de I'intransitivité. Pour le voir,

considérons par exemple le scrutin suivant relatif à 3 candidats (a,b,c) :

23votantsc lassent  a  >b >c

1 7  b > c > a

2  b > a > c

1 0  c > a > b

8  c > b > a

La matrice de surclassement s'écrit (les valeurs sont multipliées par 60)

a b c

33 25

27 42

35 18

a

b

c

La conclusion tombe : b > c, c ) a, a > b.
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4.2 Méthode de Condorcet modifiée par Copeland

Copeland propose en 1951 une modification de la méthode de Condorcet qui fournit

un rangement. Pour chaque action a, on détermine le score :

c'est-à-dire

S.(a,R)= I sign[R(a,c)-^R(c,a)]
c ez{\{a}

(1 )

o ù s i g n x =  - 1 s i  x < 0

0 s i x = 0

l s i x > 0

I-e préordre total est alors obtenu à partir des scores :

a>rr(R)b ssi Sr"(a,R)

Reprenons I'exemple précédent. On obtient, par la méthode de Copeland : a - b - c. La

méthodedu  f l o tne t ,  quan tàe l l e ,  f ou rn i ra i t l e  rangemen t :  b  >  a  >c .  I l  y  acependan tune

ressemblance entre ces deux méthodes. Si la relation >lB est assimilée à une relation

valuée ne pouvant prendre que les valeurs 0 ou I, alors on a

visiblement S""(c,R) = S*r{o,>c(R)) pour toute relation valuée R sur A et tout a € A.

La méthode de Copeland est indépendante des translations et des homothéties en

marguerite. En effet, une translation ou une homothétie admissible en marguerite sur une

action quelconque n'altère en rien le score d'aucune action, lorsque les scores sont définis par

(1). Plus généralement, nous avons le résultat suivant :
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Théorème 4.1. Pour toute relation valuée R sur A et tout a appartenant à A, [e
score S(a,R), fonction uniquement des valuations sur les arcs du type (a,c) et (c,a),
c appartenant à A\{a}, est indépendant des translations et des homothéties
admissibles en marguerite] e [il existe une fonction réelle f définie sur
{ - 1 , 0 ,  1 } o - 1 , n =  l A l ,
telle que S(a,R) = f (sign[R(a,cr) - R(c,,a)],...,sign[R(a,c"_,) - R(c"_,,a)])
où {cr, ..., c.,_r} = A\{a}].

Démonstration du théorème 4.1.

La partie € est évidente. Démontrons la partie +. Considérons une relation valuée R sur

A et une action a e A. Par hypothèse, il existe une fonction réelle g définie sur [0, 114'-tl

telle que : S(a,R) = g (R(a,cr), R(c1,â),...,R(a,co_r), R(c"_r, a)).

Exprimons que S(a,R) ne dépend pas des translations admissibles en marguerite.

Posons \=R(a,c,) et y,=R(",,a) pour tout i e {1,...,n-1}

Translations sur a :

S@, + ô, )yr + 6,.. . frn_r + ô, )r,_r + ô) = g(xtJ1,.. f i r_p!n_1)

avec xi + ô, )i + ô e [0,1] pour tout i e {l,...,n-t}

(i)

Translations sur c,, j  € {I, ..., n-1} :

g(xp lv ..., xi + ô, )i + ô, ..., xn_r, !n_t) = g(11, lp ..., xn_rt !r_t)

a v e c x j  + ô , ) i  + ô  e  [ 0 , 1 ] .

(ii)

Notons que (ii) implique (i).

Fixons j e {1,...,n-1}. La condition (ii) signifie que pour tout point À = (X1,}1,...,xo_r,yo_r) de

[0,112c'-tl, la fonction g est constante sur I'ensemble

E r , i  { ( x r , y r , . . . , * j *  ô  , y j *  ô  , . . . , X n - 1 , y o - r ) : x r +  ô  , y j *  ô  €  [ 0 , 1 ] ]

36



[-es points de E^, ont pour coordonnées

X r = X r , Y r = Y r , . . . , X . ;  = X j *  ô , Y i = y : +  ô , . . . , X o - t = X n - 1 , Y o - r = y n _ 1  a v e c X j , \  €  [ 0 , 1 ] .

En éliminant le paramètre ô entre les équations 4 = x�* ô "t Yj = yj+ ô, on trouve

Y : - y : = 4 - * : .

Soit alors \ le point de Eu, dont

Xt = XrrYr  =  Yrr . . . rXn- l  =  Xo-1rYo-1

excepté que

(4, Y:) = (0, y,-x,) si y'-x, e

les coordonnées sont

= 
Yo-1t

[0,1]

= (*:-y:, o)

Nous avons donc g(À)

si x,-y, € [0,1]

= s(\).

Yj

1

Err,

En utilisant ce dernier résultat pour j = 1,2,...,il-1, il vient au total

g(xr,yr,...,Xo_1,yo_r) = h(xr-yr,...,Xo_r-y"_r)

où h est une fonction réelle définie sur [-1", 1]*t.

Exprimons maintenant que S(a,R) ne dépend pas des homothéties admissibles en marguerite.

Pour tout j € {1,...,n-1}, on a, en posant z, = x;yy

h(2 r , . .  . ,02 i , .  . . ,2 n-1) -  h(z t ,  . .  . ,2 i , . .  . ,2 , . -1)

avec 02, € [-1,1], e € ]0, roo t.

Dès lors, la fonction h ne dépend donc pas de lavaleur de sa j-ième variable, mais uniquement

de son signe.
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Dans ces conditions. on a

h(tr, . . . ,2o_r) = f(sign zr,. . . ,sign zn_r)

où f est une fonction réelle définie sur {-1,0,1}o-t.

Ceci achève la démonstration du théorème 4.1. tr
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5. UNE CARACTERISATION DE LA METHODE DU MINRTUM SORTANT

5.1. Introduction

Nous présentons dans cette section une caractérisation axiomatique de la méthode de

rangement basée sur le score suivant :

s-r(a,Â) = 
"*u, 

R(a,c)

(1)

Le rangement des actions s'effectue selon la règle habituelle :

a>.r(R)b ssf Srr(a,R) > S.io(b,R)

(2)

Nous appellerons la procédure définie par (1) et (2) la procédure du minimum sortant. La

caractérisation est due à PIRLOT (1991)" Introduisons également trois autres procédures"

i) La procédure du minimum lexicographique

Notons R(a,1), R(a,2),...,R(a, lAl-1) les valeurs distinctes ou non prises par R(a,c), c E A\{a},

rangées dans I'ordre croissant. La procédure du minimum lexicographique, notée à^t est

définie par :

a >r(R)b ssi R(a,l) t R(b,l)

ou R(a,1) = R(b,1)

et R(a,2) > R(b,2)

o u . . .

c'est-à-dire ssi i l  existe j, 1

pour tout i . j, R(a,i) = R(b,i)

et, R(aj) t R(bj)

a =d(R)b ssi  R(a, i )  = R(b, i )  pour tout i  € {1, . . . ,  lAl-1}.
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ii) La procédure de I'indifférence

La procédure de I'indifférence, notée >r est définie par :

a=r(R)b pour tout a,b € A, a + b,

et pour toute relation valuée R sur A. Bien sûr, son intérêt n'est que théorique.

Remarque : on a toujours P,@) - A.

iii) La procédure du produit sortant

La procédure du produit sortant est basée sur le score :

sn.(a,R) = 
".lr' 

R(a,c)

c'est-à-dire :

a>o.(R)b ssf So.(a,R) > Sn.(b,R)

5.2. Propriétés

La procédure z-i,, est monotone, indépendante des translations sur une paire d'actions

et vérifie les deux axiomes de renversement des préférences. I-es procédures 2^t et >r sont

monotones et indépendantes des translations sur une paire d'actions. I-a procédure >r vérifie

I'axiome de renversement faible, mais pas I'axiome de renversement strict. La procédure

2mt vérifie I'axiome de renversement strict mais pas I'axiome de renversement faible.
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Seul le dernier point nécessite justification. La procédure 2^t ne vérifie pas I'axiome

de renversement faible des préférences. En effet, soit A - 
{a,b,c,d} et supposons que R(a,x)

et R(b,x) soient donnés par les schémas suivants (représentations au moyen de curseurs) :

.In.il

a c d

R(b+)

On a>-,(R)b.

En considérant R' identique à R, sauf sur (a,c) où R'(a,c) - 0, on devrait renverser (non

strictement) la préférence, c'est-à-dire avoir b>^{R)a. Or on continue à avoir a>-,(R')b.

La procédure 2tr* est monotone, vérifie les deux axiomes de renversement des préférences,

mais n'est pas indépendante des translations sur une paire d'actions.

Justifions encore le dernier point. Soient 4 = {a,b,c} et la relation valuée R sur A donnée par

la matrice

a b c l T +

.3 .3

.8  . 1

.1 .6

T
I' r l

t l
.I4

b c d
R(a,x)

a

b

.09

.08

.06
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On a a>o.(R)b.

Considérons la relation valuée R' = t.r,",o(R). On a Sn*(a,R') = .25 et Srr*(b,R') - .30, c'est-à-

dire b>rr*(R')a.

5.3. Résultats

Annonçons dès maintenant le résultat principal :

Théorème 5.1. La procédure du minimum sortant est la seul méthode de
rangement qui est monotone, indépendante des translations sur une paire d'actions
et qui vérifie les deux axiomes de renversement des préférences.

Avant de démontrer ce théorème, nous allons établir quelques résultats.

Lemme 5.2. Si > vérifie I'axiome de renversement faible des préférences et
a>(R)b, alors So,,,,(a,R) * 0.

Démonstration du lemme 5.2.

On procède par I'absurde. Si a>(R)b, on a en particulier a>(R)b. Soit c € A\{a} tel que

S-,,(a,R) = R(a,c) = 0. Si I'axiome de renversement faible est valide, on peut faire en sorte

que b>(R/)a avec R' identique à R sauf sur (a,c) où R'(a,c) < R(a,c). Comme R(a,c) = Q,

on a R' = R et donc b>(R)a, ce qui contredit I'hypothèse.

Proposition 5.3. Si > est indépendant des translations sur une paire d'actions et
satisfait I'axiome de renversement faible des préférences, alors
[aI-,,(R)b =+ aI(R)b].

tr
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Démonstration de la proposition 5.3.

Supposons que S-,o(a,R) = S-m(b,R) = ô. Soit R' = t_6sb(R). On a S-,o(a,R') = S_io(b,R')

= 0. si on avait a>(R)b (or b>(R)a) on aurait a>(R')b (ou b>(R')a) , ce qui est en

contradiction avec le lemme 5.2.

Comme la relation >(R) est complète, on a donc a=(R)b.

Proposition 5.4. Si à est monotone, indépendant des translations sur une paire
d'actions et vérifie I'axiome de renversement faible des préférences, alors
[aP(R.)b * âP-i.,G)b].

Démonstration de la proposition 5.4.

On ne peut en effet avoir aI-'"(R)b car alors aI(R)b, en vertu de la proposition 5.3.. Supposons

donc avoir bP,"i,(R)a, c'est-à-dire S-io(b,R)>S-,,(a,R). Soit alors d € A\{b} tel que R(b,d)

= S-ro(b,R) et soit R' identique à R sauf sur (b,d) où R'(b,d) = S_,,(a,R). Vu la propriété de

monotonie, on a aP(R')b. Or S-,n(b,R') = S-,,,(a,R'), c'est-à-dire al_,o(R')b. Ce qui contredit

la proposition 5.3. tr

Proposition 5.5 Si > est monotone, indépendant des translations sur une paire
d'actions et satisfait I'axiome de renversement strict des préférences alors
[aP-,,(R)b - aP(R)b].

Démonstration de la proposition 5.5.

Supposons, a contrario, b>(R)a.

Soit d = S-io(â,R) - S-i"(b,R) > 0 et notons c* un élément quelconque de A\{b}

tel que R(b,c.) = S-,,(b,R).

a) Modifions R en R' en changeant seulement les valuations des arcs (b,c) inférieures à

S-,'(a,R) :

R'(b,c) = max [S-,,(a,R),R(b,")] Vc € A\{b}.

Sur les autres arcs : R' - R.
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En particulier, R'(b,c.) = R(b,c*) * d = S-io(a,R) et S-,o(b,R') = S-,o(a,R').

Par la propriété de monotonie, on a b>(R\a.

b) On applique à R' une translation admissible sur {",b}. Soit e > 0 aussi petit que I'on veut

et soit ô = s,","(b,R') - r. on définit R" = t_6ob(R5, d" sorte que

R"(a,c) = R'(a,c) - ô Vc € A\{a},

e t  R"(b ,c)=R' (b ,c)  -  ô  Vc €  A\ {b} .

On a S-,o(a,R") = S-,o(b,R") - e,

et par I'indépendance vis-à-vis des translations sur {a,b} : b>(Rtt)a.

c) Définissons R"* à partir de R" en annulant la valeur de R"(b,c.) :

R " * ( b , c * ) = R " ( b , c * ) - t

et R"* = R" sur tous les autres arcs.

Par I'axiome de renversement strict, la préférence s'est renversée et on a aP(R".)b.
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Film de la démonstration de la proposition 5.5.

Supposons b>(R)a.

S'",,r'(a'R)

f\
V,

a

_ l d
I

s . (b.R)
m t n '

S-,rr(a'R)

R'
Rla,x)

uz(R)a

ô = S.u(â,R) -e

Rtt = t-oon(R\

R'(b,,t)

b>(R)a

R'(a,x)

dku".) niLrntb".)
bz(R?a

R'*arqil.lb

tono{Nt-)

pll*76,ç*1 = O
- 4p1pil.16

R" R"*

R(a,x)

R'6,x)

l l *

RO,x)

4 5



d) Appliquons à R"*, la translation tao,t inverse de celle appliquée au b). On définit ainsi

R'* = t6pb(R""), c'est-à-dire :

R'.(a,c) = R"*(a'c) + ô Vc € A\{a},

R' . (b,c) = R"*(b,c) + ô Vc € A\{b}.

Par I'indépendance vis-à-vis des translations sur {u,b} : aP(R'.)b.

Cela étant, R' 
* 

ne diffère de R' que sur I'arc (b,c.) :

R' 
.(b,c.) = R'(b,c.) - e.

Si s est suffisamment petit, on a

R(b,c-) < R' 
.(b,c.)

et R(b,c)

et pourtant b>(R)a et aP(R' 
.)b, 

en contradiction avec I'hypothèse de monotonie. tr

Corollaire 5,6. Si > est monotone, indépendant des translations sur une paire
d'actions et satisfait I'axiome de renversement strict des préférences, alors
[aI(R)b + al-,o(R)b]. tr

En combinant les résultats 5.3., 5.4.,5.5. et 5.6., nous obtenons la caractérisation annoncée par

le théorème 5. 1.

5.4. La méthode du maximum entrant

En s'inspirant de la caractétisation que nous venons de présenter, nous avons pu mettre

en évidence une caractérisation de la méthode de maximum entrant. Cette dernière méthode.

notée -lnax,-
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Sro,-(a,R) = -frtaxceArttR(c,a).

Dégageons tout d'abord les propriétés auxquelles on s'attend. Comme la procédure

à-i,, , la procédure >mÂx,_ est monotone. Ensuite, pour être vérifiés, I'indépendance vis-à-

vis des translations sur une paire d'actions et les deux axiomes de renversement des

préférences doivent cependant être légèrement modifiés, puisqu'ils ont été définis uniquement

à partir des arcs sortants. Il est toutefois très facile de les convertir en les définissant sur les

arcs entrants. Nous introduisons ainsi de nouveaux axiomes. Pour les distinguer de leurs

frères jumeaux, nous pouvons leur attribuer le préfixe rrE, pour "entrants" (entering), quitte à

donner aux autres le préfixe "L" pour "sortants" (leaving) :

i) Une E-translation sur une paire d'actions {a,b} consiste en I'addition d'une même

quantité ô positive ou négative sur les valuations de tous les arcs entrant en a et en b.

Une méthode de rangement est dite indépendante des E-translations sur une paire d'actions

si et seulement si pour toutes relations valuées R et R' sur Ao et tout a,b € A, [R' peut être

obtenu à partir de R via une E-translation admissible sur

{a,b}l = la>(R)b * a>(R\U et b>(R)a * b>(R)al.

ii) Une procédure de rangement vérifie l'axiome de E-renversement faible des préférences

lorsque

si a>(R)b

alors [pour tout c € A\{a}, il existe une relation valuée R' identique à R, excepté

que R/(c,a) > R(c,a), telle que b>(R5al.

Elle vérifie l'axiome de E-renversement strict des préférences lorsque

s i I  a> (R)b  e tR(d ,b )  *  l pou r tou td  €  A \ {b } ]  a lo rs [pou r rou tc  €  A \ {a } , i l ex i s reune
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relation valuée R' identique à R, excepté que R'(c,a) > R(c,a) telle que b >(R')a].

Ces nouveaux axiomes êtant maintenant installés, nous avons la caractérisation suivante.

Théorème 5.7.
rangement qui
d'actions et qui

La procédure
est monotone,
vérifie les deux

du maximum entrant est la seule méthode de
indépendante des E-translations sur une paire
axiomes de E-renversement des préférences.

Irs résultats préliminaires s'énoncent comme suit (ils se démontrent comme dans le paragraphe

précédent) :

1 .  S i

alors S-^*,_(a,R) * -1.

2. Si

de E-renveaement faible des préférences, alors

[aI-^.,_(R)b - aI(R)b].

3 .  S i

I'axiome de E-renversement faible des préférences, alors

[aP(R)b - aP-*. E)b].

4. Si

I'axiome de E-renversement strict des préférences alors

[aP-*,_(R)b - aP(R)b].

s. si

I'axiome de E-renversement strict des préférences, alors

[aI(R)b * âI-u", (R)b].
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6. UNE DEUXIEME CARACTERISATION DE LA METHODE DU MINIMUM

SORTANT

Dans cette section, nous présentons une caructérisation axiomatique de la méthode du

minimum sortant distincte de celle décrite dans la section précédente. Elle est due à

BOUYSSOU (1992) et s'énonce comme suit :

Théorème 6.L La méthode du minimum sortant est la seule méthode de rangement
qui est neutre, ordinale, continue, monotone sur les lignes et égalitaire sur les
lignes.

Il est clair que la procédure du minimum sortant est neutre, ordinale et monotone sur les

lignes. De plus, elle est continue car si la suite (Ri € R(A), i = !,2,...) converge vers une

relation valuée R € R(A), alors pour tout a € A, la suite (S_,o,(a,Rt), i - !,2,...) converge

(au sens usuel) vers S-,"(a,R).

La méthode du minimum sortant n'est cependant pas la seule méthode de rangement qui est

neutre, ordinale, continue et monotone sur les lignes. Par exemple, c'est aussi le cas pour la

méthode du maximum sortant dont la définition est évidente. Il nous faut donc un axiome

supplémentaire qui soit plus spécifique à la méthode du minimum sortant. L'axiome

d'égalitarisme sur les lignes nous vient alors en aide. La méthode du minimum sortant est

clairement égalitaire sur les lignes alors que la méthode du maximum sortant ne I'est pas.

Iæs lemmes qui suivent vont être utilisés dans la démonstration du théorème 6.1.

Lemme 6.2. Si une méthode de rangement > est neutre, continue, ordinale et
monotone sur les lignes, alors pour toute relation valuée R sur A et tout a,b
appartenant à A avec a + b,
[R(a,c) = 1 pour tout c appartenant à A\{a}] = a2(R)b.

Démonstration du lemme 6.2.

SupposonSaucont ra i requ ' i lex is teuneméthodederangement> � � � � � � � � � � � � � � � � � � � � � � �
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etmonotonesur les  l ignes,e tdeuxact ionsa,b  €  Aaveca +bte l lesqueR(a,c)  =  l  pour tout

c e A\{a} et b>(R)a.

Considérons une suite (e, € [0,1], i 
- 1,2,...) convergeant vers 0. A cette suite, nous

associons une suite de relations valuées (Ri e R(A), i = I,2,...) telle gue, pour tout c,d € A,

avec c * d,

Rilc,d; = R(c,d) si et seulement si c = â et

Ri1c,d; = InâX {O,R(c,d) - s,} sinon.

La suite (Ri € R(A), i = I,2,,...) converge vers R et donc, par continuité, nous devons avoir

b>(Rr)a pour un R de la suite.

Considérons à présent une suite de transformations strictement croissantes (Q,, i = !,2,...) de

[0,1] sur [0,1] telle que Q,(x) = x'pour tout x € [0,1]. La suite (0,[R] e R(A), t - I,2,...)

converge vers une relation valuée R. € R(A) telle gue, pour tout c,d € A

avec c + d, R.(c,d) = 1 si et seulement si c = â et R.(c,d) = 0 sinon. L'ordinalité implique

b>(Q,[R'])u pour tout Q,[R] de la suite et la continuité conduit à b>(R.)a.

Considérons enf inunerelat ionvaluéeR tel leque R(c,d) = 0pourtoutc,d € Aavecc + d.

La neutralité implique a=G)b et la monotonie sur les lignes conduit à a>(R.)b, d'où une

contradiction. tr

Lemme 6.3. Si une méthode de rangement
monotone sur les lignes et égalitaire sur les lignes, alors pour toute relation valuée
R sur A et tout a,b appartenant à A avec a +b, [R(a,c)=l pour tout c appartenant
à A\{a} et R(b,d)<l pour un d appartenant à A\{b}l + a>(R)b.
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Démonstration du lemme 6.3.

Supposonsaucont ra i requ ' i lex is teuneméthodederangement> � � � � � � � � � � � � � � � � � � � � � � � � �

monotone sur les lignes et égalitaire sur les lignes, et deux actions a,b € A avec a *b telles

que R(a,c) = 1 pour tout c € A\{a}, R(b,d) < L pour un d € A\{b} et b>(R)a.

Par l'égalitarisme sur les lignes, nous avons b>(R)a. Puisque, par hypothèse, Rb(b,d)<l,

nous pouvons trouver une relation valuée R'

tout d € A\{b}. Dès lors la monotonie sur

lemme 6.2.

Démonstration du théorème 6.1.

identique à Ro excepté que R'(b,d)>R o@,d) pour

les lignes conduit à b>(R')a, ce qui contredit le

tr

Nous avons déjà observé que la méthode du minimum sortant est neutre, continue, ordinale,

monotone sur les lignes et égalitaire sur les lignes. Donc, tout ce que nous avons à démontrer

est que si la méthode de rangement

et égalitaire sur les lignes alors

[a>(R)b .* S*,(a,R)

S-,,(a,R) = S-,o(b,R) - a=S.)b et

S-,,(a,R) > S-,"(b,R) - a>(R)b.

Supposons d'abord que S-,o(a,R) > S-,,(b,R) pour une relation valuée R sur A et deux actions

â ,b  €  A .  Posons {= { "  €  A \ {b } :R (b ,c )=S- ,o (b ,R) } .

Considérons une suite de transformations strictement croissantes (0,, i - I,2,...) telle que:

0 ' ( * )  = x s i x

= xl/ i  sinon.

(1)

(2)
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La suite (q,[R], i  = 1.f....) converge vers une relation R'

R.(a,c) = 1 pour tout c € A\{a},

pour laquelle :

lemme 6.3. que a>(R')b.

pour tout Qi[R] de la suite.

R.(b,c) = S,in(b,R) pour

= 1 sinon.

Comme $ est non vide

Cela étant, si b>(R)a,

t o u t c  €  A e t

et S*o@,R).l, nous savons d'après le

alors I'ordinalité implique â>(Q,[R])a

Ensuite, la continuité conduit à b>(R')a, donc à une contradiction. Ceci établit (2).

Afin de démontrer (1), supposons que S.,o(a,R) = S-io(b,R)= ô pour R € R(A) et deux

actions a,b € A. Si ô = 1 alor5 a=(R)b par le lemme 6.2.

Supposons ô * 1 et b>(R)a, la démonstration pour I'autre cas est similaire. Il est facile de

construire une suite (R. € R(A), i -- I,2,...) convergeant vers R et telle que

Sn'.n(a,R') t S*,n(b,R') pour tout Ri de la suite, par exemple en prenant Ri identique à R excepté

que Ri(a,c) = min {1, R(a,c) + Ui) pour tout c € 4. Donc (2) implique a>(R,)b pour tous

les Ri de la suite. En utilisant la continuité, nous avons a>(R)b, c'est-à-dire une

contradiction. Ceci établit (1) et complète la démonstration du théorème 6.1. tr

Il n'est pas difficile de voir qu'une démonstration semblable peut être utilisée pour caractériser

la méthode du maximum sortant en modifiant d'une manière évidente l'égalitarisme sur les

lignes. De plus, en remplaçant la monotonie sur les lignes et l'égalitarisme sur les lignes par

des axiomes similaires relatifs aux colonnes, nous obtenons une caractérisation de la méthode

du minimum entrant ainsi qu'une caractérisation de la méthode du maximum entrant.

Il nous reste encore à observer qu'il est impossible de déduire un des cinq axiomes qui
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caractérisent la méthode du minimum sortant à partir des quatre autres. I-es exemples suivants

le montrent bien :

i - Soit (D : A + {I.,2,..., lAl } une bijecrion

Définissons

a>(R)b ssf 5-6( a,R)l A @)

Cette méthode de rangement est ordinale, continue, monotone sur les lignes et égalitaire sur

les lignes mais non neutre.

ii - Définissons ,L comme :

a> r(R)b ssf Sr(a,R)
da{\{c}

(méthode du flux sortant).

Cette méthode de rangement est neutre, continue, monotone sur les lignes et égalitaire sur les

lignes mais non ordinale.

iii - La méthode du minimum lexicographique 2*t (voir section 5) est neutre, ordinale,

monotone sur les lignes et égalitaire sur les lignes mais non continue.

Pour montrer qu'elle est non continue, considérons deux actions a,b € A et une relation

valuéeRsurAtelle queR(a,1) = S-,o(a,R) = S-io(b,R) = R(b,1) etR(b,2) > R(a,2). On a donc

b>-'(R)a. Il est facile de construire une suite de relations valuées (Ri € R(A), i = 1,2,...)

convergeant vers R et telle que S-,o(a,R') > S-io(b,Ri). Pour tout Ri de la suite, on a a>_,(Rt)b

ce qui viole la continuité.

iv - La méthode de I'indifférence >r (voir section 5) est neutre, ordinale, continue et
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égalitaire sur les lignes mais non monotone sur les lignes.

v - La méthode du maximum sortant est neutre, ordinale, continue et monotone sur les lignes

mais non égalitaire sur les lignes.
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7. UNE CARACTERISATION D'UNE METHODE FONDEE SUR LES FLUX

SORTANTS ET ENTRANTS

7.I. Introduction

Iæ but de cette section est d'étudier une méthode permettant d'obtenir un préordre

partiel au départ d'une relation de préférence valuée. Cette méthode, fondée sur la notion de

flux sortant et de flux entrant est caractérisée par un système de trois axiomes indépendants.

Elle est définie par :

a>rlR)b ssi [Sr(a,R)

(1 )

où St (a,R) = E R(a,c) [flux sortant]
cel\{a}

et S. (a,R) = -".Rr,^(c,a) [flux entrant]

Il est facile de vérifier que la méthode définie par (1) est vraiment une méthode de

rangement partiel et que la relation , ur{n) n'est pas nécessairement complète7. Nous

appellerons la méthode de rangement partiel définie par (1) la méthode LIE

(L = Leaving, E = Entering).

La caractérisation que nous présentons dans cette section est due à BOUYSSOU et

PERNY (1990). Tout au long de cette section, nous ferons I'hypothèse que I'ensemble A

contient au moins 3 éléments. L'intérêt de la méthode LÆ réside dans sa simplicité et son

attrait intuitif. Elle généralise, par le biais de I'utilisation des flux entrants et sortants pour le

cas valué, I'idée de la déclaration que a est préféré à b si a "bat" plus d'actions que b et "est

battu" par moins d'actions.

' Elle ne le sera que si R a des propriétés spéciales, par exemple si R(c,d) + R(d,c) est
constant pour tout c,d appartenant à A.
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Cependant, puisqu'un préordre partiel n'est pas nécessairement complet, Ia

méthode 2uz permettra à deux actions d'être déclarées incomparables. Bien que cela puisse

paraître étrange, il ne faut pas oublier que I'information disponible peut être très pauvre, voire

conflictuelle. I-e, fait de déclarer a et b incomparables signifie donc qu'il semble difficile de

prendre, du moins à ce stade de l'étude, une position définie sur la comparaison de a et b.

Toutefois, on démontre qu'étant donné une structure de préordre partiel, il est toujours possible

de remplacer les incomparabilités par des préférences de manière à en faire une structure de

préordre total.

il faut encore préciser que la méthode LÆ utilise les propriétés "cardinales"

valuations. Par conséquent, elle ne semble pas appropriée lorsque les comparaisons

valuations n'ont qu'une signification ordinale en terme de crédibilité.

7.2. Propriétés de la méthode L/E

I-es propriétés que nous avons définies dans la section 1 concernent les méthodes de

rangement. Bien entendu, elles restent valables pour les méthodes de rangement partiel.

Dans la suite, nous noterons J(R) la relation d'incomparabilité de >(R), c'est-à-dire, pour

tout a,b € A, aJ(R)b ssi fnon a>(R)b et non b>(R)al.

Nous savons que la neutralité implique la non discrimination pour des méthodes de

rangement partiel conduisant toujours à une relation binaire complète. Lorsque

I'incomparabilité est tolérée, la neutralité implique que pour toute relation valuée R sur A et

t o u t a , b  €  A , [ R ( a , b ) = R ( b , a ) e t R ( a , c ) = R ( b , c ) , R ( c , a ) = R ( c , b ) p o u r t o u t c  €  A \ { a } ]

+ [aIS.)b ou aJ(R)b]. La non discrimination exclut le dernier cas. Il est clair que la méthode

LÆ est non discriminatoire. De plus, elle est strictement monotone et donc monotone.

Définissons A* et A- comme des duplications disjointes de I'ensemble A. Nous notons

des

des
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a* (resp. a-) l'élément de A*(resp.A-) correspondant à a € A. Considérons un graphe orienté

G pour lequel I'ensemble des noeuds est X = A* U A et I'ensemble des arcs est U = {(x*,y-)

€ X2 : x* € A*, y- € A- et x + y). Dans cette section, nous identifions une relation valuée

R avec le graphe valué dans lequel pour tout a,b € A, la valuation v*(u) de I'arc g = (a*,b-)

est R(a,b). Nous notons que tous les cycles de G sont alternés par constructions.

Cela éIant, nous dirons qu'une méthode de rangement partiel est independante des

translations (resp. des homothéties) sur les cycles alternés si et seulement si pour toutes

relations valuées R et R', [R' peut être obtenu à partir de R via une translation (resp. une

homothétie) admissible sur un 4-cycle ou un 6-cycle alterné élémentaire] + t>(R) = >(R)1.

n est facile de voir que si R' peut être obtenu à partir de R via une translation

admissible sur un cycle alterné élémentaire, alors Sr(a,R) = Sr(a,R') et S"(a,R) = S"(a,R') pour

tout a € A, si bien que la méthode LÆ est indépendante des translations sur les cycles

alternés (voir figure 1).

Etant donné la morphologie particulière du graphe G, nous devons faire I'hypothèse
que I'ensemble A contient au moins 3 éléments.
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R a b c d

a %+t -e

b %
c -e ry+e

d 4,

a + r

b + r

d + r

Figure 1 : une translation admissible sur un 4-cycle alterné élémentaire

7 .3 " Résultats

Il est facile de voir que la méthode LÆ n'est pas la seule méthode de rangement partiel

qui soit non discriminatoire, monotone et indépendante des translations sur les cycles alternés.

C'est aussi le cas pour la procédure de I'indifférence >r (voir section 5). Cette méthode,

cependant, n'est pas strictement monotone. Malheureusement, la méthode LÆ n'est pas la

seule méthode de rangement partiel qui soit non discriminatoire, strictement monotone et

indépendante des translations sur les cycles alternés. Par exemple, c'est aussi le cas pour la

méthode du flot net 2,vr (voir section 2). Néanmoins, les méthodes de rangement partiel qui

sont non discriminatoires, (strictement) monotones et indépendantes des translations sur les

cycles alternés ont de fortes relations avec la métho de LIE et nous avons ce qui suit :
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Théorème 7.L. Si une méthode de rangement partiel > est non discriminatoire,
monotone et indépendante des translations sur les cycles alternés, alors pour toute
relation valuée R sur A, on a [aàræ(R)b) + a>(R)b pour tout a, b appartenant à
A]. En outre, si > est strictement monotone, alors pour toute relation valuée R sur
A, on a [a>'u(R)b + a>(R)b pour tout a,b appartenant à A].

Ir théorème 7.I. dit que la

méthode de rangement partiel qui

translations sur les cvcles alternés.

méthode LÆ est [a plus petite (au sens de I'inclusion)

soit non discriminatoire, monotone et indépendante des

Si

des translations sur les cycles alternés, il se peut qu'on ait a>r"(R)b e1 a=(R)b. La seconde

par t iedecethéorèmedi tqu 'unete l les i tuat ionest imposs ib les i> � � � � � � � � � � � � � � � � � � � � � � �

Dès lors, Ia méthode LÆ "impose" ses indifférences et ses strictes préférences à chaque

méthode de rangement partiel qui soit non discriminatoire, strictement monotone et

indépendante des translations sur les cycles alternés. Ces méthodes de rangement partiel

diffèrent de la méthode LIE par la comparaison en termes d'indifférence ou de préférence

stricte d'actions qui étaient déclarées incomparables avec la métho de LlE.

Nous avons déjà noté que la méthode LÆ est non discriminatoire, strictement monotone

et indépendante des translations sur les cycles alternés. Observons aussi que ces trois axiomes

sont indépendants comme le montrent les exemples suivants :

i) Soit (D : A * {L,2,...,lAl} une bijecrion.

Définissons 11 comme :

a>r(R)b ssf [Sr,r(a,R) > SL,r(b,R) et Sfa,R) > Slb,n)]

où St,r(c,R) = St(c,R).@(c), pour tout c € A.

Cette méthode de rangement partiel est strictement monotone (et donc monotone) et

indépendante des translations sur les cycles alternés mais n'est pas non discriminatoire.
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ii) Définissons >2 comme :

a>r(R)b ssf [Sr(a,R) < Sr(â,R) et Sfa,R) s Slb,R)].

Cette méthode de rangement partiel est non discriminatoire et indépendante des

translations sur les cycles alternés mais n'est pas monotone (et donc n'est pas

strictement monotone).

iii) Définissons )3 comme :

a>j(R)b ssi [Sr,r(a,R) > Su(b,R) et Sr,r(a,R) > Sff(b,R)]

oùSq(c,R) = E n("d) ' " t  S",r(c,Æ) = -  E ,R(d,c)2,pourtoutc eA.
da{\{c} d€l\{c)

Cette méthode de rangement partiel est non discriminatoire et strictement monotone

mais n'est pas indépendante des translations sur les cycles alternés.

Avant de démontrer le théorème 7.L., nous allons établir quelques lemmes.

I*mme 7.2. Pour toutes relations valuées R et R', si [R' peut être obtenu à partir
de R via une translation admissible sur un cycle alterné élémentaire] alors [R' peut
être obtenu à partir de R via un nombre fini de translations admissibles sur des 4-
cycles etlou des 6-cycles alternés élémentaires].

Démonstration du lemme 7.2.

La démonstration se fait par induction sur k où 2k est la longueur d'un cycle alterné

élémentaire de G. Si k = 2 ou 3, alors le lemme est démontré. Supposons maintenant que le

lemme soit vrai pour k

Considérons un cycle alterné élémentaire C de longueur Z(k+l) de G, c'est-à-dire une

collection ordonnée de couples d'actions {(*,*,y-,); (x1*1*,y, ) r i = I,2,...,k+1} avec pour tout

i j  €  { I , 2 , . . . , k + 1 } :
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Xi * yi, Xi*r * y, (parce que les arcs du type ("*,"-) ne sont pas dans G),

et x, + x,, yi + y: (parce que le cycle est élémentaire),

où xn*, est interprété comme xl.

Montrons que toute translation admissible sur C peut être obtenue via un nombre fini

de translations sur des cycles alternés élémentaires de longueur supérieure à 4 et inférieure à

2k. Afin de le montrer, nous déclarons que pour un j e {1,2,...,k+1},

Ç. = ((xr*,yr-), (xr*,yr-), (xr*,yz-), (xr*,yr-),..., (x,*,1-), (xr*,yi-))

et

c' j = ((xr.,yi-), (x.;*r*,Y1-), (x1*r*,Y;*r-), (x;*z*,y;*,-),...,(x**r*,yr*r-), (*r*,y**r-))

correspondent tous deux à des cycles alternés élémentaires de G. La condition (2) implique

que nous devons chercher un candidat dans {2,3,...,k}. A partir de (3), nous savons que

{2,3,...,k} contient au plus un élément t tel que Xr = yt. Soit J I'ensemble obtenu en ôtant t,

s i u n t e 1 t e x i s t e , d e { 2 , 3 , . . . , k } . N o u s a v o n s | J l > � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

pas vide et la déclaration est démontrée.

Par construction, C: "t C', sont chacun de longueur supérieure à 4 et inférieur e à 2k (voir

figure 2). Ces deux cycles alternés élémentaires n'ont que I'arc (xr*,y,-) en commun. Cet arc

est arrière dans C, et avant dans C',.

+ Y r +
\ r  

* t  
t r j <  

- t  ' A
l t ,  I
r r l
| '. I
t  ' .  I
l r l- t  |  ' .  

l + t
I  t .  I

- f . . c .  l
} i + t v  " .  - J  

t
r  . ' v ^

t *r" '.- l- 'l r

l ' . '
l r l

f C .  l
+ e  I  

- J  ' .  f  - p
l r l -

l ' .  1

x * .  |  - {  :
r r r l  - È f  

- l X =
- e  

V -  + e  " J
.J

(2)

(3)

une translation sur C via des translations sur C,Figure 2 :
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Supposons maintenant que R' aitété obtenu à partirde R via une translation admissible

d e e s u r C .  S i e = 0 , i l n ' y  a r i e n à d é m o n t r e r .  S u p p o s o n s m a i n t e n a n t q u e s > 0 ( l ' a u t r e  c a s

étant symétrique).

Si R(xr,y,) t 0 alors nous pouvons trouver un entier n suffisamment grand tel que une

translation de e/n sur C., soit une translation admissible. Après cette première transformation,

I'exécution d'une translation de e/n est une translation admissible que C',. Il est facile de voir

gue, après avoir répété n fois ces transformations, nous obtenons R'.

Si R(xt,1) = 0 alors I'exécution d'une translation de r sur C', est une translation

admissible. Après cette première transformation, I'exécution d'une translation de r sur C, est

une translation admissible. Nous obtenons R' après ces deux transformations. Ceci termine

la démonstration du lemme 7.2.

I-e lemme suivant établit un lien crucial entre translations admissibles sur les cvcles

alternés élémentaires et flux sortants et entrants.

Lemme 7.3. Pour toutes relations valuées
= Se(a,R') pour tout a appartenant à A] o
un nombre fini de translations admissibles

R et R', [Sr(a,R) = Sr(a,R') et S"(a,R)

[R' peut être obtenu à partir de R via
sur des cycles alternés élémentaires].

Démonstration du lemme 7.3.

La partie e est évidente. Afin de démontrer la partie +, supposons que nous ayons un R et

un R' pour lesquels Sr(c,R) = Sr(c,R')et Su(c,R) = Sr(c,R') pour tout c € A. Si R = R', le

l e m m e e s t d é m o n t r é .  S i R + R ' a l o r s i l e x i s t e a , b  €  A a v e c a + b t e l s q u e R ( a , b ) + R ' ( a , b )

et nous supposerons que R(a,b) > R'(a,b), I'autre cas étant symétrique. Dès lors, il existe d

€ A\{a} tel que R(a,d) < R'(a,d) sinon R(a,d)

et R(a,b) > R'(a,b) contredirait Sr(a,R) = Sr_(a,R'). En utilisant un argument similaire, il existe

un c € A\{d} tel que R(c,d) > R'(c,d). Ce procédé conduit à la construction d'une collection

ordonnée d'arcs de G [(a*, b-), (a*,d-), ("*,d-)].

tr
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En répétant le même procédé, nous créerons un cycle élémentaire de G puisque le nombre

d'actions est fini. Soit Â le minimum sur les arcs (a*,b-) du cycle de lR(a,b) - R'(a,b) l. il

est facile de vérifier que I'addition de A sur les arcs du cycle tel que R(*,y) < R'(*,y) et la

soustraction de ce même nombre sur les arcs du cycle tels que R(*,y) > R'(*,y) est une

translation admissible sur le cycle. Nous obtenons ainsi une relation valuée Rr. Si Rl = R',

le lemme est démontré. Sinon, nous pouvons Épéter le même argument en commençant avec

R, au lieu de R. Puisque A est fini, il y a seulement un nombre fini d'arcs tels que R(x,y) +

R'(*,y). Puisque, à chaque êtape,le nombre d'arcs sur lesquels la relation courante et R' sont

différents est décroissant d'au moins une unité, ce procédé s'achèvera après un nombre fini

d'étapes. Ceci termine la démonstration du lemme 7.3. tr

Démonstration du théorème 7.1.

P o u r é t a b l i r l a p r e m i è r e p a r t i e d u t h é o r è m e , n o u s d e v o n s m o n t r e r q u e s i > � � � � � �

discriminatoire, monotone et indépendant des translations sur les cycles alternés, alors

Sr(a,R)

Montrons d'abord que si

sur les cycles alternés alors

St(a,R) = Sr_(b,R) et Sr(a,R) = SE@,R) =; s=(R)b g)

Afin de démontrer (4) considérons une relation valuée R sur A telle que Sr(a,R) = Sr(b,R) et

Sr(a,R) = Ss(b,R) pour un a et un b de A. Définissons R. par

R.(a,b) = R.(b,a) = (R(u,b) + R(b,a))/2,

R.(a,c) = R.(b,c) = (R(a,c) + R(b,c))/2 pour tout c € A\{a,b},

R.(c,a) = R.(c,b) = (R(c,a) + R(c,b))12 pour rout c € A\{a,b},

R.(c,d) = R(c,d) pour tout c,d e A\{a,b}

Il est clair que R. est une relation valuée sur A.

Nous avons R.(a,b) = R.(b,a), R.(a,c) = R.(b,c) et R.(c,a) = R.(c,b) pour tout c € A\{a,b}.

63



Donc la non discrimination implique u=(R.)b.

Nous avons aussi Sr(c,R-) = Sr(c,R) et Su(c,R*) = S"(c,R) pour tout c € A. Vu le lemme

7.3., nous savons que R. peut être obtenu à partir de R via un nombre fini de translations sur

des cycles alternés élémentaires. Vu le lemme 7.2., I'indépendance vis-à-vis des translations

sur les cycles alternés implique >(R) = >(R-). Donc a=(R)b, ce qui établir (4).

Montrons maintenant que si

translations sur les cvcles alternés alors

Sr(a,R)

+ a>(R)b, (s)

ce qui complètera la démonstration de la première partie du théorème.

Afin de démontrer (5), supposons que Sr(a,R)

de ces inégalités étant stricte. Notons dr(R) = Sr(a,R) - Sr(b,R) et dr(R) = Se(a,R) - SE@,R),

c'est-à-dire

dL(R) = t R(a,c)
ca{\{z}

dÂn = E R@,b)
d€l\{ô}

On ne peut avoir [R(a,c) = 0, R(c,a) = 1. Vc € A\{a} et,R(b,d) = L, R(d,b) = 0 V

d € A\{b}l car cela entraînerait dr(R) = du(R) = -(lAl-1)<0.

Il est donc possible d'obtenir une relation valuée R- identique à R sauf sur des couples du type

(u,"), (c,a) avec c € A\{a}, (b,d), (d,b) avec d € A\{b}, telle que dr(R.) = du(R.) = 0. n

suffit en effet de diminuer lorsque c'est possible des valuations parmi R(a,c) et R(d,b) etlou
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augmenter des valuations parmi R(c,a) et R(b,d) jusqu'à obtention d'une relation valuée R* sur

A qui puisse assurer drG) = dn(R.) = 0. Cela étant, par (4), on a a=(R.)b et des applications

répétées de la monotonie conduisent à a>(R)b. Ceci termine la démonstration de la première

partie du théorème.

A f i n d e d é m o n t r e r l a s e c o n d e p a r t i e , n o u S d e v o n s m o n t r e r q u e s i > � � � � � �

discriminatoire, strictement monotone et indépendant des translations sur les cycles alternés

alors :

Sr(a,R)

+ a>(R)b.

Puisque la stricte monotonie implique la monotonie, nous savons que (4) reste vrai. Dès lors

en utilisant la stricte monotonie au lieu de la monotonie dans la démonstration de (5), nous

voyons que (6) est vrai, ce qui complète la démonstration du théorème 7.I. tr

7.4. Une méthode fondée sur les produits sortants et entrants

Dans la section 3, nous avons présenté une caractérisation de la méthode du rapport des

produits en nous basant sur la méthode du flot net. En utilisant une conversion semblable,

nous pouvons, à partir de la méthode LÆ, donner une caractérisation axiomatique de la

méthode de rangement partiel suivante :

(6)

a>ov-(ft)b ssi 1So.(a,ft) > Str.(b,R) et So-(a,R) > Str-(b,ft)I

où So-(a,b) = [cal\{'fi@,c) [produit sortant]

[produit entrant]et So-(a,b) = -4*lrrrR(co)

Comme pour la méthode RP, nous faisons ici I'hypothèse suivante

R ( x , y ) > O  V x , y  €  A n x  + y .
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Nous avons alors le résultat :

Théorème 7.4. Si une méthode de rangement partiel > est non discriminatoire,
monotone et indépendante des homothéties sur les cycles alternés, alors pour toute
relation valuée R sur A" on a

[a2.,*,_(R)b - a2(R)b pour tout a,b appartenant à A].
En outre, Si ) est strictement monotone, alors pour toute relation valuée R sur A,
on a [a>.,*r_(R)b - a>(R)b pour tout a,b appartenant à A].

La conversion des lemmes7.2. et7.3. ne posent pas de problème. A noter cependant

gue, pour la première partie de la démonstration du théorème 7.4., il faut remplacer les

moyennes arithmétiques de la démonstration du théorème 7.1. par des moyennes géométriques.
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8. UNE METIIODE A SEUIL

Dans cette section, nous ferons I'hypothèse que R est une relation probabiliste (R(",b)

+ R(b,a) - 1). Introduisons un seuil l" € [0,1] et considérons la méthode >r définie par:

a> r(R)b ssi R(a,b)

ou encore en posant ,RÀ = >r(R),

aRtb ssi R(a,b)

En notant P^ - Pr(R), Ir = Ir(R) et J^ = Jr,(R),

nous avons immédiatement, si l, + F = 1,

a P^b ssi R(a,b) > l, et R(a,b) ) !r,

a I^b ssi À

a J^b ssi p < R(a,b) < 1..

En particulier, Ix = O si À > .5 et Jr. = A si À < .5.

La proposition suivante précise certaines inclusions.

Proposition 8.1.
i) Pour tout seuil o appartenant à [0,]"], on a

R ^ Ç R . , ,  1 1  Ç I , e t J . , Ç J ^ .
ii) Si À > .5 alors pour tout seuil ct appartenant à ]p,À], on a P^ C P.,.
iii) Si 1, < .5 alors pour tout seuil ct appartenant à ]F,1], on â P.. Ç P^.

Démonstration de la proposition 8.1.

i ) D é m o n t r o n s l a p r e m i è r e i n c l u s i o n . o n a ( a , b ) € R i ' ê R ( a , b ) > � � � � � � � � � � �

n Dans le cas d'un vote, si l. = .8 par exemple, nous dirons que a est classé avant b s'il
est préféré à b pour 80% des électeurs. Le cas particulier À - .5 correspond à la
méthode de la majorité par paires de Condorcet (voir section 4).
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R.,. L,es deux autres inclusions découlent immédiatement de la première.

ii) On a (u,b) € P^ = Ri, € R(a,b)

€ pr.

iii) Se démontre de la même façon que ii).

En général, la méthode >t ne fournit pas un préordre. Cependant, sous certaines

conditions, la relation R^ peut contenir un ordre total (relation binaire booléenne complète

antisymétrique et transitive). Pour éclairer ce point, nous présentons les résultats suivants qui

ont été introduits par Kôhler en 1978.

Supposons que la relation R soit à valeurs dans I'ensemble des nombres rationnelslO.

Soit alors D* = [0, 1AI, 2N,...,1] un découpage de [0,1] en N parties égales (N € 19.) tel que

{R(*,y) : X, y € A, X + y } E {0, lÆ{, 2N,...,1}.

Un tel découpage existe puisque A est finil1.

Notons \ = jÂ\ et pj - 1-\ pour tout j € {0,...,N}. Posons également ô = 1N.

Théorème 8.2. [Rrj contient un ordre total O] o [Rp:*a ne contient pas de circuit].

Démonstration du théorème 8.2.

Montrons d'abord que (a,b) , R^, * (b,a) € Rpr*a.

On a (a,b), R^, * R(a,b)

10 Ce sera toujours le cas si R(a,b) est interprété comme le pourcentage de votants
déclarant que a est prêfêrê ou indifférent à b.

11 Il suffit de prendre pour N le dénominateur commun des valeurs de R écrites sous
forme de fractions rationnelles irréductibles.

tr
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Montrons que la condition est nécessaire (+).

Soit a, classé premier dans O. On a alors

(a'c) e O e R^ Y c e d\{cr} - (c,ar) € Rur*a V c €,4\{c1}.

Donc a, n'a pas de prédécesseur dans Rur*'.

Soit a, classé second dans O. On a alors

(a,c) e O e R^ Y c e,{\{c'ArI - (c,a2) € R*r*a V c e z{\{apar}.

Donc a, n'a pas de prédécesseur autre que a1 dans nn *0. En poursuivant le raisonnement,

Rur*u est sans circuit-

Montrons que la condition est suffisante (e). Comme nur*'. est sans circuit, il existe un

o rd re to ta lOqu ié tend  *u r * ' . (O f  Rur *o  ) " .  Dès lo rs ,ona (a ,b )  €  O+(b ,a )É  Rur * ' .

(sinon (b,a) € O et O ne serait pas un ordre total),

+ (a,b) , R^,

Théorème 8.3. Soit À, le plus grand \ tel que R^. contienne un ordre total et p le
plus petit p, tel que Rp.i+u soit sans circuit. Alors I, + p = 1.

12 Il s'agit d'un résultat bien connu de la théorie des graphes : "La condition nécessaire
et suffisante pour qu'un graphe soit sans circuit est qu'il puisse être mis en ordre".

tr
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Démonstration du théorème 8.3.

1 existe car Ro contient tous les ordres totaux et tr existe car Rr*u est vide donc sans circuit.

Cela étant, 1-1" est le plus petit trr., tel que Rnr*o soit sans circuit. En effet, s'il y en avait

encore un plus petit que lui, par exemple 1-I -ô, alors par le théorème 8.2.,

R^*u contiendrait un ordre total, ce qui est contraire à la définition de À.

Théorème 8.4. O I R,,*a <> O C Rr

Démonstration du théorème 8.4.

La partie:=> a déjà été démontrée (voir théorème 8.2., partie e).

Pour la partie e, nous procédons par I'absurde. Supposons

i ) ( u , b ) ç ' o , c ' e s t - à - d i r e ( b , a ) € o C R ; e t d o n c R ( b , a ) > � �

ii) (a,b) . Ru*u, c'est-à-dire R(a,b)

Au total, on a R(a,b) + R(a,b)

Tout ordre total contenu dans R^ (et qui contient donc Ru*u ) est appelé un ordre prudent.

Examinons un exemple. Soient A = {a,b,c,d} et R une relation probabiliste donnée par la

m a t r i c e a b c d

.8

0

.2

. 2  1 . 9

.4 .3

.6  .L

.7 .g

tr

tr

a

b

c

d
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Il est évident que le découpage Dro = [0,.I,.2,...,1] convient le mieux13. On note alors que

les relations Rr.r, Rr, R.n et R., sont sans circuit et que R., contient le circuit

( b - a + d - b ) .

Nous avons donc u - .7 et L - .3.

a

T r b
K

, l

c

d

a b c d

0 1 1

1  o o
0 0  0

0 1 1

a

4 r '  
b
c

d

En conséquence, la relation R., contient un ordre prudentla : b > a > d > c.

Parsimplecuriosité, ut i l isons la méthodedu f lot net. Verdict:  a > d > b > c.

13 On aura avantage à choisir un découpage D* pour lequel N est le plus petit possible.

14 Ici I'ordre prudent est unique, mais ce n'est pas le cas en général.

a b c d

0 1

1

1

1 1

I

I

0

1
0

0
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9. RECHERCHES FUTURES

Comme nous I'avons déjà mentionnéprécédemment, I'analyse faite ici n'est exhaustive

ni du point de vue des procédures, ni du point de vue des propriétés. En effet, nous pouvons

créer sans limite de nouvelles méthodes de rangement, ne serait-ce déjà que par des

combinaisons convenables de méthodes existantes. Voici quelques procédures qu'il serait peut-

être intéressant d'étudier. Donnons-les au moven d'une fonction de score :

S(a,R) = min R(a,c) - min R(c,a)

S(a,R) = min (R(a,c) - R(c,a))

S(a,R) = mâX R(a,c) - max R(c,a)

S(a,R) = mâX (R(a'c) - R(c,a))

Du point de vue des propriétés, on pourrait en dégager de plus naturelles encore que

celles dont nous disposons. En effet, des propriétés relatives, pzt exemple, à des

transformations sur des circuits sont assez artificielles et avaient apparemment pour rôle de

compléter un ensemble d'axiomes pour établir une caractérisation.

En vue d'élargir notre répertoire de propriétés, nous pouvons considérer celles qui suivent :

1. Axiomes de négation, de symétrie et de dualité

A partir d'une relation valuée R sur A, on peut définir :

- la relation complémentaire R" par R"(a,b) = l-R(a,b);

- la relation réciproque R-l par R-11a,b; = R(b,a);

- la relation duale Rd par Rd1a,b; = L-R(b,a).

En particulier, R est une relation probabiliste ssi Rd = R15.

Une méthode de rangement

pour toute relation valuée R sur A et tout a,b € A,

15 En abrégé, on écrit R" = L-R et Rd = L-R-1.
A noter que (R-l)-t = R et (R')-t = (R-t)" = Rd.
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a>(R)b .* b>(R )a (resp. b>(R-r)a, a>(R5U>.

Il est clair que si une méthode de rangement

vérifie le troisième.

2. Axiome d'homogénéité

Une méthode de rangement

A, tout a,b € A et tout t € ]0,1[ :

a>(R)b * a>(tR)b

3. Axiome d'universalité

Une méthode de rangement

valuée sur A. Cet axiome est incontournable et doit être vérifié en priorité au même titre que

la neutralité qui, rappelons-le, interdit un traitement partial des actions permettant de privilégier

ou d'handicaper certains éléments de A identifiés par leurs labels. La condition d'universalité

est nécessaire si on veut pouvoir appliquer la méthode systématiquement, même dans le cas

de préférences cycliques.

4. Indépendance par rapport aux actions non discriminantes

L'axiome d'indépendnnce par rapport aux actians non discriminantes consiste à

demander que la position respective de a et b dans >(R) ne dépende en aucune manière des

actions tierces c € A\{a,b} qui se comparent de la même façon à a et à b. Nous pouvons le

formaliser comme suit :
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[V B C A, (V b,b' € B, V c € A\8, R(b,c) = R(b',c) et R(c,b) = R(c,b'))

+ >(NB) = >(R)/Bl

où XÆ représente la restriction d'une relation X au sous-ensemble B.

5. Respect des données

I-e, support d'une relation valuée R sur A est la relation booléenne Supp(R) sur An

définie par

a Supp@.)b ssi R(a,b) * 0.

Cela étant, I'axiome de respect des données consiste à demander que la méthode de

rangement

respecte I'information contenue dans R. Plus précisément, si Supp(R) est un préordre, alors

la méthode de rangement

[S.rpp(R) est un préordre + >(R) C Supp(R)]

6. Respect de la relation de couverture

L'axiome de respect de la relation de couverture consiste à demander que, si d'après

la relatiot R, une action a se comporte systématiquement au moins aussi bien qu'une action

b vis-à-vis de toute action tierce c € A\{a,b}, alors a doit être placé au moins aussi bien que

b dans le classement final. Formellement, considérons la relation de couverture sur A notée

Co définie par :

V a , b  €  A , â C o b + [ V c  €  A , R ( c , b )  >  R ( c , a ) e t R ( a , c )  2  R ( b , c ) ]

La condition de respect de la couverture s'écrit alors :

V a , b  €  A , â C o b + [ V c  €  4 ( c  > ( n )  b = + c  > ( R )  a ) e t ( a  > ( R )  c = + b  > ( R )  c ) ]
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7. Indépendance par rapport aux extrêmes

Cetax iomecons is teàdemanderque lo rsqu 'onapp l i que laméthode> � � � � � � � � � � �

R, et que I'on supprime I'ensemble des actions qui figurent en tête dans >(R) , on obtienne

lemêmerésu1ta tqu 'ensuppr imantd i rec tementcesé lémentsavantd 'app l iquer> � � � � � � � �

cet axiome permet par exemple de se prémunir d'un désistement des candidats en tête de

classement.

Formellement, nous pouvons écrire la condition suivante :

V B C A , [ V b  €  B , V a  €  A \ B , n o n a > ( R ) b ]  o u

[Vb €  B,Va €  A\B,nonb>(R)u] - [  >(R/ ( / \B) )  =  >(Ry(d\B)  ]

Cette condition peut être éventuellement renforcée si on impose qu'elle soit également vérifiée

lorsque seulement une partie de la classe de tête se désiste.

Cette condition ne doit pas être confondue avec la condition d'indépendance par rapport aux

actions non discriminantes. En effet, s'il est vrai que les actions de B se comparent de la

même façon vis-à-vis des actions de A\8, c'est ici au sens de la relation >(R) et non pas de

la relation R.

Pour terminer, nous présentons ici un tableau synthétique recensant différentes méthodes de

rangement ainsi que leur comportement vis-à-vis de certains axiomes. Nous pouvons ainsi

mieux déceler d'éventuelles relations de dominance entre les procédures analysées.

Commençons par numéroter quelques axiomes que nous connaissons déjà :

4.1. Neutralité

4.2. Non discrimination

4.3.1. Monotonie

4.3.2. Stricte monotonie

4.3.3 Monotonie sur les lignes
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4.3.4. Monotonie sur les colonnes

4.4. Ordinalité

4.5. Continuité

4.6.1. Egalitarisme sur les lignes

4.6.2. Egalitarisme sur les colonnes

4.7.1. Définition sur les flux sortants

4.7.2. Définition sur les flux entrants

4.7 .3. Définition sur les flux

4.8.1. L-Renversement faible des préférences

4.8.2. E-Renversement faible des préférences

4.8.3. L-Renversement strict des préférences

4.8.4. E-Renversement strict des préférences

4.9.1. Indépendance vis-à-vis des translations sur les circuits

4.9.2. Indépendance vis-à-vis des homothéties sur les circuits

4.9.3. Indépendance vis-à-vis des L-translations sur une paire d'actions

4.9.4. Indépendance vis-à-vis des E-translations sur une paire d'actions

4.9.5. Indépendance vis-à-vis des L-homothéties sur une paire d'actions

4.9.6. Indépendance vis-à-vis des E-homothéties sur une paire d'actions

4.10. 1. Négation

4.10.2. Symétrie

4.10.3. Dualité

4.1 1. Homogénéité

4.I2. Universalité

Procédons de même pour quelques méthodes de rangement :

M.1.1. Flux sortant (L)

M.I.z. Flux entrant (E)

M.1.3. Flot Net (NF)

M.z.I. Produit sortant (n-)

M.2.2. Produit entrant (n)

M.2.3. Rapport des produirs (RP)

M.3.1. Minimum sortant (min)
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M.3.2. Minimum entrant (min,-)

M.4.1. Maximum sortant (max)

M.4.2. Maximum entrant (max,-)

M.5. Minimum lexicographique (ml)

M.6. Indifférence (f)

M.7. Copeland (CP)

I-e tableau ci-dessous indique les propriétés satisfaites par les procédures de rangement (r'N'r

signifie que la propriété n'est pas satisfaite; I'absence de "N" signifie que la propriété est

satisfaite). Les démonstrations et contre-exemples sont connus ou faciles à établir.
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Méthodes
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