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0. INTRODUCTION DU SUJET

0.1.  Position du probléme

Soit A = {a,b,c,...} un ensemble fini avec |A|22 . Ses €éléments, appelés actions,

représentent généralement des objets, des modalités, des décisions, des candidats, des solutions,
etc. Notre objectif est de ranger ces €léments du meilleur au moins bon en prenant en compte
plusicurs critéres ou l'opinion de plusieurs votants. Par exemple, le classement de dix
finalistes d'un concours musical a partir des scores attribués par les juges.

Plusicurs méthodes peuvent étre envisagées pour ranger les actions sur base de telles
informations. Pour comparer ces méthodes nous pouvons étudier leur comportement vis-a-vis
d'un certain nombre de propri€tés "désirables". Celles-ci sont souvent appréciées par le
décideur a travers son expérience et son jugement. Nous pouvons aussi essayer de trouver un
ensemble d'axiomes qui caractérise une méthode particuliére; c'est la voie que nous avons
choisi de suivre. Ce travail a donc pour objet de mettre en évidence des caractérisations

axiomatiques permettant d'identifier une procédure de classement 4 un ensemble d'axiomes.

0.2.  Structures valuées de préférences

Contrairement aux modeles classiques (modéles booléens) ou le décideur ne fait pas
de distinction entre des préférences plus ou moins fortes, nous allons associer 4 chaque couple
(a,b) d'actions, une valeur traduisant le "degré" de la préférence. Plus précisément, ce nombre
va indiquer la force ou la crédibilité de la proposition

"a est au moins aussi bon que b".
Pour qu'il synthétise le résultat de la comparaison de a et b aprés agrégation des différents
points de vue, on peut demander 2 ce nombre de refléter l'importance des critéres pour
Iesquels "a est au moins aussi bon que b" ou encore l'importance de 1'adhésion des votants qui
sont de cet avis. Il suffit par exemple de prendre, selon le cas, la somme des poids des criteres
favorisant a ou le pourcentage de votants déclarant que a est préféré ou indifférent a b.
Quoique de tels procédés soient souvent utilisés, nous savons depuis le marquis de Condorcet
(1785) que lorsque les différents points de vue pris en compte sont conflictuels, il peut étre

difficile de comparer les actions sur base de ces nombres.



Nous définissons une relation (binaire) valuée' sur A comme une fonction R associant

a chaque couple d'actions (a,b) € AxA avec a = b un élément de [0,1] :

R : AxA - [0,1] : (a,b) - R(ab).

D'un point de vue technique, la condition a # b pourrait étre omise de cette définition au prix
de quelques modifications mineures de certains axiomes. Cependant, puisqu'il est clair que
les valeurs R(a,a) sont insignifiantes pour le classement des actions, nous utiliserons cette

définition tout au long de nos développements.

La représentation matricielle d'une relation valuée facilite d'une maniére évidente le traitement
des informations (sur un ordinateur par exemple). Cette représentation consiste 2 attribuer 2
chaque relation valuée R sur A une matrice carrée ot chaque ligne et chaque colonne sont

relatives aux ¢léments de A et dont I'élément d'indices (i,j) n'est autre que le nombre R(1,j),

pour tout ij € A, ,aveci = j.

OO

i | —> RG)

Une représentation sagittale, c'est-a-dire au moyen d'un graphe orienté est également

possible. Un graphe orienté est un ensemble de noeuds X et un ensemble d'arcs U C XxX.

Nous disons que x est I'extrémité initiale et y I'extrémité finale de I'arc u = xy) € U

Considérons donc un graphe orienté pour lequel I'ensemble des noeuds est A et I'ensemble

des arcs U est {(a,b) : a,b € Aet a = b}. Il est clair qu'il y a une correspondance

' On parle aussi de relation floue. Les relations booléennes sont alors appelées relations nettes.
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biunivoque entre relations valuées sur A et valuations entre 0 et 1 portées sur les arcs de ce
graphe. Dans la suite, nous identifions une relation valuée avec son graphe valué associé dans

lequel la valuation vg(u) de I'arc u = (a,b) est R(a,b).

R(a,b)

o— 7

©
b

oV

Cela étant, nous appelons rangement (complet) sur A, tout préordre total sur A (relation binaire
booléenne complete et transitive sur A). De méme, nous appelons rangement partiel sur A,

tout préordre partiel sur A (relation binaire booléenne réflexive et transitive sur A).

Une méthode de rangement (resp. de rangement partiel) > est une fonction assignant un

rangement (resp. un rangement partiel) >(R) sur A a toute relation valuée R sur A :

> : R(A) = P(AxA) : R = >(R)

ou R(A) désigne l'ensemble des relations valuées sur A et P(AxA) l'ensemble des parties de

AxA.

0.3. Le rangement par les scores

Une maniere évidente d'obtenir une méthode de rangement est d'associer un score
S(a,R) a chaque action a et de ranger les actions selon leur score?,

c'est-a-dire :
az(R)b ssi S(a,R) > S(b,R).

Dans ce cas, on a aussi
a=(R)b ssi S(a,R) = S(b,R)
et a>(R)b ssi S(a,R) > S(b,R).

> Le score S(a,R) représente ainsi une "mesure” de la qualité de a.
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La relation >(R) est alors un préordre total puisqu'on est ramené & comparer des nombres

réels. Cette idée fut d'abord proposée par le Chevalier Jean-Charles de Borda en 1781. Clest
actucllement la technique de rangement la plus commune et peut-étre la plus naturelle.
Si deux types de scores, notés S, et S,, sont compétitifs, un rangement partiel peut étre

envisagé en prenant l'intersection des deux rangements complets :
ax(R)b ssi [S,(a,R) = S,(b,R) et S,(a,R) > S,(b,R)]

Dans ce cas, on a aussi

a=(R)b ssi [S,(a,R) = S;(b,R) et S,(a,R) = S,(b,R)]
et a>(R)b ssi [S;(a,R) > S,(b,R) et S,(a,R) > S,(b,R), une au moins de ces inégalités étant
stricte].

Larelation >(R) estalors un préordre partiel en tant qu'intersection de deux préordres totaux.

Voici quelques scores généralement utilisés. Citons d'abord le flux sortant, le flux entrant et

le flot net :

S,@aR) = X R(ac)
ceA\la}

Sa.R) = - Efi{a} R(c,a)

Sy@R = 8,@R + SaR)

ﬂux\\\’;/\/ flux

entrant - sortant




Ensuite, nous pouvons envisager le produit sortant, le produit entrant et le produit net :

Sy @,R) =1, g R@sc)
Sp- @R) = - I, ., R(c,a)

Syp@,R) = Sp(a,R) + S;(a,R)
Enfin, en utilisant les opérateurs Min et Max, nous obtenons

S min,+(@R) = S (@,R) = min__, ., R(a,)

Spax (@R = S, (a,R) = max__, ,R(a,c)
pour le minimum et le maximum sortants ct

Sm].n’_(a,R) = = min . ,,R(c,a)

S ar(@R)

- max, ., ,R(¢,a)

pour le minimum et le maximum entrants.

Drautres scores peuvent encore €tre envisagés. Bien sir, ils sont tous basés sur le principe que

les ¢léments qui plaident en faveur de a sont les arcs du type (a,c), ¢ € A\{a}, alors que ceux

qui plaident contre a sont les arcs du type (c,a), ¢ € A\{a}.



0.4. Exemples

Pour un premier exemple, soient I'ensemble A = {Audi (A), BMW (B), Mercedes (M),
Opel (O), Renault (R), Volvo (V)}
et R,, R,, R;, R, les rangements pour quatre criteres différents dont les poids sont 4/12, 3/12,

3/12 et 2/12 respectivement :

1:V>R>0>B~M>A
,A~B~-M~R>0>V
3:V~O~B>A>R>M
+,A~M~0~V>B~R

Le degré de préférence d'une voiture a sur une autre b est égal a la somme des poids
des criteres pour lesquels on a (a > b) ou (a ~ b). Nous obtenons donc la matrice des

valuations suivante (les valeurs sont multipliées par 12) :

A B M O R A\
Audi (A 1% 5 8 5 8 5
BMW 10 10 6 8 6
Mercedes 9 9 5 5 5
Opel 9 9 9 5 8
Renau R) 7 9 10 7 3
Volvo ( 9 9 9 9 9

En utilisant différents scores (parmi ceux que nous avons présenté dans le paragraphe

précédent), nous obtenons des rangements vari€s :

S:V>0O~B>R>M>A
S V>O>R>B>A>M
S V>O0>R>B>A-~M
Si" V>O0>B>R>M> A
S;:V>O>R>B>A>M
S V>O>R>B>A>M
mnte: Y>B>A ~M ~0>R

S
Six: V>B~O0O~R>A~M



Pour un second exemple, nous comparons le goit de cinq vins Médoc. Soit p(a,b) la

proportion de dégustateurs qui expriment une préférence pour le goit du vin a sur celui du vin

b. Il s'agit d'un cas typique de choix forcé€ ou p(a,b) + p(b,a) = 1 pour tout a,b € A avec

a # b. La relation valuée p est alors appelée une relation probabiliste. Voici la matrice des

proportions observées :

a b c d €
a 57 57 .29 .67
b 43 .70 .52 .28
c 43 .30 72 48
d 7 .48 .28 48
e .33 72 52 .52

Voici quelques rangements obtenus par des scores :

S, S, Sar ta>e>d>b ~c¢
S’ Sy te>a>d>c>b
S S te>c>a>b ~d

min,+> “~max,-

Nous observons par exemple que les scores S;, S;; et Sy donnent le méme rangement. Ceci
n'est pas unc coincidence. Dans toute relation probabiliste R sur A (R(a,b) + R(b,a) = 1),
nous avons
Si(a,R) - Sp(a,R) = [A] - 1
Sxe(@,R) = (JA]-1) + 2 Sg(a,R) = 2 S;(a,R) - (|A|-1)
Spins(@R)=1+S . (a,R)



1. PROPRIETES SOUHAITABLES POUR UNE PROCEDURE DE RANGEMENT

Nous présentons ci-dessous quelques propriétés qui peuvent étre considérées comme
souhaitables par l'utilisateur d'une procédure de rangement. La liste n'est certainement pas
exhaustive (voir aussi sections 5 et 9); de plus, certaines propriétés sont plus discutables que
d'autres; nous verrons également qu'il existe des implications entre certaines d'entre elles.
Dans tous les cas, il peut étre utile, lorsqu'on applique une procédure de rangement, de

connaitre les propriétés qu'elle satisfait et celles qu'elle viole.
prop q q

Dans la suite, nous noterons =(R) et >(R) les parties symétrique et asymétrique

de >(R) , cest-a-dire, pour tout a,b € A,

a=(R)b ssi [ a=(R)b et bx(Ra ]

a>(R)b ssi [ a>(R)b et non b>(R)a ]

Les notations =(R) et >(R) seront parfois remplacées par I(R) et P(R) respectivement.

a. Neutralité vis-a-vis des noms (ou labels) des actions

Si on permute les noms des €léments de A, la relation >(R) doit rester inchangée a

la permutation prés, ce qui, mathématiquement, peut se formuler comme suit :

une méthode de rangement > est dite neutre si et seulement si, pour toute permutation ¢ de

A, pour toute relation valuée R sur A et tout a,b ¢ A :

a>(R)b = o(a)>(R°)o(b)

ou R est défini par R°(o(a), o(b)) = R(a,b) pour tout a,b ¢ A.

La propri¢t¢ de neutralité€ parait indiscutable. Elle signifie que les noms donnés aux actions
ne peuvent avoir aucune influence sur leur rangement (ce qui exclut, par exemple, la procédure

qui consisterait a ranger les actions par ordre alphabétique).
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b. Axiome de non discrimination

Une méthode de rangement > est dite non discriminatoire si et seulement si, pour
toute relation valuée R sur A et tout a,b ¢ A,

[R(a,b) = R(b,a) et R(a,c) = R(b,c), R(c,a) = R(c,b) pour tout ¢ € A\{a,b}] = a =(R)b.

L'axiome de non discrimination dit que si deux actions sont comparées similairement vis-a-vis
de toutes les autres actions, alors elles sont déclarées indifférentes.
Cette propriété est tout a fait acceptable et on peut aisément vérifier qu'elle est une

conséquence de la neutralité?,

En effet, la transposition de a ¢t b ne modifie en rien les hypotheses de la non discrimination

(placées entre crochets). On ne peut donc avoir une préférence stricte entre a et b dans le

rangement.

C. Axiomes de monotonie

Une méthode de rangement est dite monotone si elle ne répond pas "dans la mauvaise

direction” a une modification de R. Plus formellement, > est monotone si, pour toute relation

valuée R sur A et touta,b ¢ A :

a>(R)b = a>(RHb
ou R' est identique a R excepté que

[R'(a,c) > R(a,c) ou R'(c,a) < R(c,a) pour un ¢ e A\{a}] ou

[R'(b,d) < R(b,d) ou R'(d,b) > R(d,b) pour und ¢ A\{b}].

La propri€t¢ de neutralit€ est nécessaire. En effet, la procédure qui consiste 2 ranger
les actions par ordre alphabétique, pour ne citer qu'elle, n'est pas non discriminatoire.
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En conséquence, on a aussi : a>(R)b = a>(R')b*

Une méthode de rangement est dite strictement monotone si elle répond "dans la bonne

direction” a une modification de R. Plus formellement, > est strictement monotone si, pour

toute relation valuée R sur A et tout a,b ¢ A :

az(R)b = a>(RNb

ou R' est défini comme avant.

Comme définie ici, la monotonie apparait comme une propriété acceptable. Elle
signifie que si on modifie la relation R en avantageant (resp. désavantageant) une action, alors
la situation de cette action dans le rangement ne peut pas se détériorer (resp. s'améliorer). La
stricte monotonie demande beaucoup plus, en excluant, en particulier I'usage de tout seuil dans
le traitement des valuations (voir section 8). Elle exige que la modification de R ait un impact
sur le rangement en faveur (resp. défaveur) de l'action qui a ét€ avantagée (resp.

désavantagée).

Une méthode de rangement > est dite monotone sur les lignes si pour toute relation valuée

Rsur Aettouta,b ¢ A:

a>(Rb = a>(RHb

ou R' est identique a R excepté que R'(a,c) > R(a,c) pour tout ¢ € A\{a}.

La monotonie sur les lignes est une forte propriété : elle dit que la position d'une action
s'améliore si sa position dans la relation valuée s'est avantagée vis-a-vis de toutes les autres

actions.

*  On ne peut en effet avoir b>(R)a, car par la propriété de monotonie,

on aurait b>(R)a.
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Supposons que R" soit identique a R excepté que R(b,d) > R"(b,d) pour toutd e A\{b}. Il
n'est pas difficile de constater que la monotonie sur les lignes implique que

[a2(R)b = a>(R™b]. .

d. Axiome d'ordinalité

Une méthode de rangement > est dite ordinale si, pour toute relation valuée R sur A et toute

transformation ¢ strictement croissante de [0,1] sur [0,1],

2(R) = 2(¢[RD)

ou 9[R] est une relation valuée telle que ¢[R](c,d) = ¢(R(c,d)) pour tout c,d ¢ A

avec ¢ # d. L'ordinalité¢ implique qu'une méthode de rangement ne fait pas usage des

propri€tés "cardinales" des valuations.

e. Axiome de continuité

Considérons une suite de relations valuées sur A (R' € R(A), i =1,2,...). Nous dirons
que cette suite converge vers R € R(A) si, pour tout € > 0, il existe un entier k tel que, pour

tout j > k et tout a,b € A aveca # b, |Ri(a,b) - R(a,b)| < «.

Une méthode de rangement > est dite continue si, pour toute relation valuée

R € R(A), toute suitc (R' € R(A), i = 1,2,...) convergeant vers R et tout a,b € A :

[a>(RY)b pour tout R de la suite] = [a>(R)b].
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La continuit€ dit que les changements "faibles" dans une relation valuée ne devraient

pas conduire a des réactions chaotiques dans le rangement.

f. Axiome d'égalitarisme

Une méthode de rangement > est égalitaire sur les lignes si pour toute relation valuée
R sur Aettoutab e A,
ax(R)b = ax(R)b

ou R, est identique a R excepté que R,(a,c) = X R(a,d)/( |A|-1) pourtoutc e A\{a}.
deA\la}

Cela signifie que, la relation valuée R étant considérée sous sa représentation matricielle, la
moyenne arithmétique des €léments de la ligne associée a4 une action ne peut diminuer la

position de cette action dans le rangement.

g. Axiomes de définitions sur les flux

Définissons I'ensemble des flux sortants (resp. entrants) de l'action a ¢ A par :
Lip = U {R@O} (tesp. Ep = U, {RCD)}).

Une méthode de rangement > est définie sur les flux sortants (resp. entrants) si pour toute

relation valuée R sur A et tout a,b ¢ A,

L,gr = Ly (resp. E,r = E,p) = a=(R)b.

Une méthode de rangement > est définie sur les flux si pour toute relation valuée R sur A

ettout a,b e A,

12



[Lor = Lyg et E,g = Eyg] = a=(R)b.
Il est clair que si une méthode de rangement est définie sur les flux sortants (resp. entrants),

elle est définie sur les flux. La réciproque est évidemment fausse.

h. Axiomes de renversement des préférences

Une procédure de rangement vérifie l'axiome de renversement faible des préférences

lorsque :

si ax=(R)b
alors [pour tout ¢ € A\{a}, il existe une relation valuée R' identique a R,

excepté que R'(a,c) < R(a,c), telle que bz(RNa]. .

Une procédure de rangement vérifie l'axiome de renversement strict des préférences

lorsque :

si [a2(R)b et R(b,d) # O pour tout d € A\{b}]

alors [pour tout ¢ € A\{a}, il existe une relation valuée R' identique a R,
except¢ que R'(a,c) < R(a,c), telle que b>(R"a].

Le premier axiome €énonce qu'on peut renverser (non strictement) la préférence de a
sur b en abaissant la performance de a par rapport a n'importe quelle action. Dans le second

axiome, on peut renverser strictement la préférence de a sur b a condition que la performance

minimale de b par rapport a toute action soit non nulle.

Remarque  Si on impose R(x,y) > 0 V x,y € A, x =y, alors la condition R(b,d) = 0 est

d'office vérifiée.



i Indépendance vis-a-vis des transformations admissibles

Les axiomes qui vont suivre ne sont sans doute pas impératifs mais ils permettent de

départager facilement certaines procédures.

1) Transformations sur les circuits et les cycles élémentaires

Une caractéristique importante d'une méthode de rangement consiste en la maniére dont elle
traite les "intransitivités" de R. Afin de formaliser ce point, rappelons quelques définitions

bien connues utilis€es dans la théorie des graphes.

Un circuit (resp. un cycle) de longueur q dans un graphe orienté est une collection ordonnée
d'arcs (u;,u,,...,u.) telle que pour i = 1,2,...,q l'extrémité initiale de u, est I'extrémité finale de
u;, et l'extrémité finale de u; est l'extrémité initiale de u,,; (resp. u; = u,,, une des extrémités
de u; est une extrémité de u;, et l'autre une extrémité de u,,;), 0b u, est interprété comme u,
¢t u,,, comme u,.

Un circuit (resp. un cycle) est élémentaire si et seulement si chaque noeud, extrémité d'un arc

du circuit (resp. du cycle) est l'extrémité d'exactement deux arcs du circuit (resp. du cycle).

Une translation sur un circuit élémentaire consiste en l'addition d'une méme

quantité § positive ou négative sur les valuations des arcs du circuit. Une homothétie sur un

circuit élémentaire consiste en la multiplication par une méme quantité 8 strictement positive
des valuations des arcs du circuit. Une transformation (translation ou homothétie) est
admissible si les valuations transformées sont encore comprises entre 0 et 1. Lorsque nous
appliquons une transformation admissible au graphe associé a une relation valuée R, nous
obtenons une autre relation valuée R' et nous disons que R' a ét€ obtenu a partir de R via une

transformation admissible.

Considérons un cycle ¢lémentaire dans le graphe associé a une relation valuée. Un arc u, du
cycle est appel€ arc avant si son extrémité commune avec u, , est son extrémité initiale et arc

arriére sinon. Un cycle est dit alterné si chaque arc avant du cycle est suivit par un arc arriére

et vice-versa.
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Une translation sur un cycle élémentaire consiste en l'addition d'une méme quantité

& positive ou né€gative sur les valuations des arcs avants du cycle et en la soustraction de

cette méme quantité sur les valuations des arcs arricres. Une homothétie sur un cycle
élémentaire consiste en la multiplication par une méme quantité 6 strictement positive des

valuations des arcs avants du cycle et en la division par cette méme quantité des valuations

des arcs arriéres.

Une méthode de rangement est dite indépendante des translations (resp. des homothéties) sur
les circuits si et seulement si pour toutes relations valuées R et R', [R' peut étre obtenu a

partir de R via une translation (resp. une homothétie) admissible sur un circuit élémentaire de

longueur 2 ou 3] = [>(R) = >(R)].

Cet axiome a une interprétation directe. L'indépendance vis-a-vis des translations sur les 2-
circuits, c'est-a-dire sur les circuits de longueur 2, implique que le rangement est uniquement
influencé par les différences R(a,b) - R(b,a). L'indépendance vis-a-vis des translations sur les
3-circuits implique que des intransitivités du type R(a,b) > 0, R(b,c) > 0 et R(c,a) > 0 peuvent
ctre "effacées” en soustrayant Min(R(a,b); R(b,c); R(c,a)) des valuations sur le 3-circuit ((a,b);
(b,c); (c,a)). Une interprétation comparable peut étre obtenue pour l'indépendance vis-a-vis

des homothéties.

Remarque Il est €évident qu'en ajoutant a cet axiome une condition sur un 1-circuit, nous

pourrions considérer des relations pour lesquelles R(a,a) est défini.
ii) Transformations sur une paire d'actions

Une translation sur une paire d'actions {a,b} consiste en l'addition d'une méme

quantit¢ § positive ou négative sur les valuations de tous les arcs sortant de a et de b.
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R’ = t, ,(R) est la relation valuée identique a R excepté que :

R'(a,c) =R(ac) + & VYc e Aa}

R'(b,c) =R(b,c) + & Vc e A\{b}

La translation ¢

s.ap ©Stdite admissible si les valuations transformées sont encore comprises

entre O et 1.

Une méthode de rangement est dite indépendante des translations sur une paire d'actions si

et seulement si pour toutes relations valuées R et R' sur A, et tout a,b € A,

[R" peut é&tre obtenu a partir de R via une translation admissible sur {ab}]
= [a2(R)b < ax=(R)b et b>(R)a = b=(R)al. .

Remarque Il est facile de voir qu'on a aussi a>(R)b <> a>(R)b et b>(R)a « b>(R"a.

iit) Transformations en marguerite

Une translation en marguerite sur une action a consiste en l'addition d'une méme

quantit¢ § positive ou négative sur les valuations de tous les arcs sortants et entrants de a.

R' = ¢, (R) est la relation valuée identique a R excepté que :

R'(ac) = R(ac) + & Ve e Ala}

R'(c,a) =R(c,a) + & Vc e A{a}

16



La translation ts, St dite admissible si les valuations transformées sont encore comprises

entre O et 1.

Une méthode de rangement est dite indépendante des translations en marguerite si et

seulement si pour toutes relations valuées R et R' sur A, et touta e A, [R' peut étre obtenu

a partir de R via une translation admissible en marguerite sur a] => 2B = =2(R)]. -

De toutes ces définitions découlent celles relatives aux homothéties (voir aussi i).
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2. UNE CARACTERISATION DE LA METHODE DU FLOT NET
2.1. Introduction

L'objet de cette section est de présenter une caractérisation axiomatique de la méthode

de rangement basée sur le score suivant :

SNF(a,R) = E (R(a,c) - R(c,a))

ceA\la
M
Le rangement des actions se ramene donc au rangement des scores, c'est-a-dire :
a 2, (Rb ssi Sy(a,R) 2 Sy(b,R)
@

Nous appellerons la méthode définie par (1) et (2) la méthode du Flot Net (Net Flow Method).
Elle s'inspire de la premicre loi de Kirchhoff (loi des noeuds) de la théorie des circuits

Clectriques. La caractérisation que nous allons présenter est due 8 BOUYSSOU (1991). Elle

utilise un systeme de trois axiomes indépendants.

Lorsque R est une relation booléenne, c'est-a-dire lorsque R(a,b) ne peut prendre que les
valeurs 0 ou 1, cette méthode de rangement se ramene a la méthode de rangement de Copeland

(voir section 4). En effet, le score s'écrit alors :

Syr@R) = |{ceA\la} : Ra,c) = 1} |-| {ceA\la} : R(c,a) = 1}|

Avant de mettre en €vidence certaines propriétés de la méthode du flot net, nous devons
mentionner l'utilit¢ de prendre une position sur la nature et la signifiance des valuations R(a,b).
Contrairement aux méthodes utilisant seulement les opérateurs MIN et/ou MAX, il faut

signaler que la méthode du flot net fait usage des propriétés "cardinales" des valuations. En

fait, 1l est clair a partir de (1) et (2) que nous pouvons trés bien avoir 2 (R # 2yl GR)

ou ¢ est une fonction strictement croissante sur [0,1] telle que ¢(0) = 0 et ¢(1) = 1.
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Par conséquent, cetie méthode ne semble pas appropriée lorsque les comparaisons des

valuations n'ont qu'une signification ordinale (échelle ordinale) en terme de crédibilité.

2.2.  Propriétés de la méthode du flot net

Voici quelques propri€tés vérifiées par la méthode du flot net :

1) Neutralité

Il est évident que la méthode du flot net est neutre, donc non discriminatoire.

On a d'ailleurs Syp(a,R) = Syu(o(a), R).

i) Stricte monotonie

La méthode du flot net est strictement monotone. En effet, si R' est identique a R sauf
[R'(a,c) > R(a,c) ou R'(c,a) < R(c,a) pour un ¢ # a] ou
[R'(b,d) < R(b,d) ou R'(d,b) > R(d,b) pour un d + b] alors
[Sxe(a,R") > Syi(a,R) ou Sp(b,R") < Syr(b,R)].

iii)  Indépendance vis-a-vis des translations sur les circuits

Il est clair qu'une translation admissible sur un circuit élémentaire n'altére en rien le score
d'aucune action, lorsque les scores sont définis par (1), de sorte que la méthode du flot net est

indépendante des translations sur les circuits.

En effet, si a est I'extrémité de deux arcs d'un circuit, on a Syx(a,R") = Syu(a,R) + (5-8) =

Sye(a,R), si R' est obtenu a partir de R via une translation admissible de § sur le circuit.

D'une fagon analogue, on voit aisément qu'une translation admissible sur un cycle élémentaire
n'altere le score d'aucune action, lorsque les scores sont définis par (1). Contrairement 2 la

neutralit¢ et la monotonie, cet axiome fait un usage explicite des propriétés cardinales des

valuations.
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2.3 Résultats

Nous sommes a présent en position d'énoncer le résultat principal.

Théoreme 2.1. La méthode du flot net est la seule méthode de rangement qui est

neutre, strictement monotone et indépendante des translations sur les circuits.

Nous avons déja noté que la méthode du flot net est neutre, strictement monotone et
indépendante des translations sur les circuits. Il reste a prouver qu'elle est la seule. Notons
d'abord que les trois axiomes qui caractérisent la méthode du flot net sont indépendants

comme le montrent les exemples suivants :

i-Soit ®: A — {1,2,...,]A|} une bijection (on numérote les actions)

Définissons >, comme :

az (Rb ssi S(a,R) > S (bR

ou, pour tout ¢ € A, S,(c,R) = Sgp(c,R). D(c).

Cette méthode de rangement est strictement monotone et indépendante des translations sur les

circuits mais non neutre.

1i - Définissons >, comme :

az,(R)b ssi S,(a,R) > S,(b,R)

ou, pour tout ¢ € A, S,(c,R) = - Si(c,R).

Cette méthode de rangement est neutre et indépendante des translations sur les circuits mais

non strictement monotone.
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ii1 - Définissons >, comme :

az,(R)b ssi Sy(a,R) = S,(b,R),

ou pour tout ¢ € A, SRy = X .., (R(cd) - R(d,c))

Cette méthode de rangement est neutre et strictement monotone mais non indépendante des

translations sur les circuits.

Avant de démontrer le théoreme 2.1, nous allons établir quelques lemmes.

Lemme 2.2 Pour toutes relations valuées R et R, si [R' peut étre obtenu 2 partir de
R via une translation admissible sur un circuit élémentaire] alors [R' peut étre obtenu
a partir de R via un nombre fini de translations admissibles sur des circuits
€lémentaires de longueur 2 ou 3]

Démonstration du lemme 2.2.

La preuve se fait par induction sur la longueur q du circuit élémentaire. Si q = 2 ou 3, alors

le lemme est démontré. Supposons maintenant que le lemme soit vrai pour tout q < k avec

k > 3 et montrons qu'il est encore vrai pour q = k + 1. Considérons un circuit élémentaire

de longueur k + 1 :

u; = (a,8y), U, = (Ax83), oy U = (A81), Uy = (a4,1,8;) €t supposons que R' a été obtenu a

partir de R par addition de § sur les arcs de ce circuit. Si § =0, il n'y a rien 2 démontrer.

Supposons que § > O (la démonstration est similaire pour § < 0).

Définissons r = (a;,a,) et s = (a,,a,).

Si ve(r) <1 - 8 et vp(s) < 1 - 8, alors nous avons deux circuits (upuy,...,u ;,8) et

(u,uy,,,r) de longueur respective k et 3 sur lesquels l'addition de § est une translation
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admissible. A ce moment, la soustraction de § sur le 2-circuit (r,s) est alors une translation

admissible. Nous obtenons ainsi R'.

Si ve(r) > 1-8 et vi(s) < 1-8 (le cas vg(r) < 1-8 et vi(s) > 1-8 étant symétrique),

alors I'addition de § sur (u;,u,,...,u,,s) est une translation admissible. Puisque maintenant

les valuations de s et r sont strictement positives, nous pouvons trouver un entier n

suffisamment grand pour que la soustraction de §/n sur le 2-circuit (r,8) soit une translation

admissible. L'addition de §/n sur (u,,u,,;,r) est maintenant une translation admissible. En

répétant n fois ces opérations, nous obtenons finalement R' (voir figure 1).

Si ve(r) > 1 - 3 et v(s) > 1 — 3, vp(s) et vp(r) sont tous deux strictement positifs et nous

pouvons trouver un entier n suffisamment grand pour que la soustraction de §/n sur le 2-

circuit (r,8) soit une translation admissible. L'addition de §/n sur (u,u,,,,r) et sur (u,u,...,

u, ;,8) sont maintenant des translations admissibles. La répétition n fois de ces opérations

conduit a R'.

Ceci termine la démonstration du lemme 2.2 parce que si A est fini, il en va de méme pour

la longueur maximum d'un circuit élémentaire. O

Remarque Le lemme 2.2 implique que l'indépendance vis-a-vis des translations sur les 2
ou 3-circuits élémentaires est équivalente a l'indépendance vis-a-vis des
translations sur les circuits €l€émentaires de longueur quelconque. Ceci justifie,
en particulier, la définition de l'indépendance vis-a-vis des translations sur les

circuits (voir section 1).
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Translation sur un 4-circuit via un nombre de translations sur des 2 ou 3-circuits.

Lorsque R(b,d) <1 - & et R(d,b) > 1 - &, une translation de § sur le 4-circuit

[(a,b),(b,c), (c,d), (d,a)] est obtenue aprés addition de § sur le 3-circuit [(a,b), (b,d),

(d,a)] et l'accomplissement n fois d'une translation de -§/n sur le 2-circuit [(b,d),

(d,b)] et d'une translation de §/n sur le 3-circuit [(b,c), (c,d), (d,b)].

€lémentaires|

Lemme 2.3. Pour toutes relations valuées R et R/, si [R' peut étre obtenu a partir
de R via une translation admissible sur un cycle élémentaire] alors [R' peut étre
obtenu a partir de R via un nombre fini de translations admissibles sur des circuits

Démonstration du lemme 2.3.

Considérons un cycle €lémentaire du graphe associé a R et supposons que R' a été obtenu 2



partir de R par addition de § sur les arcs avants du cycle et par soustraction de § sur les

arcs arricres. Notons respectivement U et Ug l'ensemble des arcs avants et arrieres (F =

forward, B = backward) ducycle. Si § = 0, iln'y arien a démontrer. Supposons §>0 (la

démonstration est similaire pour §<0Q ).

Définissons o . = Max(a Beu, ve(b,a).

Si o, < 1 - & alors l'addition de § sur le circuit élémentaire obtenu en

considérant les arcs de Up et l'ensemble {(ba) € U : (a,b) € U, est une translation

admissible. A ce moment, la soustraction de § sur tous les 2-circuits du type ((a,b), (b,a))

avec (a,b) € Uy constitue des translations admissibles et conduisent a R'.

Si a . > 1 -8, définissons U, = {(a,b) € Uy : vi(ba) > 1 - 8}. .
Pour tout (a,b) € U,, nous avons vp(a,b) > & et ve(ba) > 0. . Puisque § > 0, nous
pouvons trouver un entier n suffisamment grand tel que la soustraction de &/n sur tous les

2-circuits ((a,b), (b,a)) avec (a,b) e U, constitue des translations admissibles. Deés lors

l'addition de &/n sur le circuit obtenu en considérant les arcs de Uy, et les arcs (b,a) si (a,b)

est dans Uy, est une translation admissible.

Il est facile de voir qu'il est possible de répéter n fois ces opérations. Nous obtenons dés lors
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R' apres avoir soustrait § sur les 2-circuits ((a,b), (b,a)) avec (a,b) e Up\U,, toutes ces

translations étant admissibles par construction (voir figure 2).

Ceci termine la démonstration du lemme 2.3., parce que si A est fini, il en va de méme pour

la longueur maximum d'un cycle élémentaire. m]

(O—0 ® @ ®
S e P 3
oo

- +&/n +&/n

) k +&/n @ )

Figure 2

Translation sur un cycle via un nombre de translations sur des circuits.

Lorsque R(b,c) > 1 - &, une translationde & sur le cycle [(a,b), (c,b), (c,d), (d,a)]
est obtenue apres l'accomplissement n fois d'une translation de -§/n sur le 2-circuit [(b,c),

(c,b)] et une translation de §/n sur le 4-circuit [(a,b), (b,c), (c,d), (d,a)].
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Lemme 2.4. Pour toutes relations valuées R et R' sur A, [Sy(c,R) = Syp(c,R")
pour tout ¢ appartenant a A] <> [R' peut tre obtenu a partir de R via un nombre
fini de translations admissibles sur des cycles élémentaires|

Démonstration du lemme 2.4.

La partie <= est €vidente. Afin de démontrer la partie =, supposons que nous ayons deux

relations R et R' pour lesquelles Syp(c,R) = Syp(c,R") pourtoutc € A. SiR =R/, le lemme
est démontré. Si R = R' alors il existe a, b € A avec a # b tels que R(a,b) # R'(a,b) et nous

supposerons que R(a,b)>R'(a,b), l'autre cas €tant symétrique. Des lors, il existe c,d € A\{a}

tels que :

R(c,a)>R'(c,a) ou R(a,d)<R'(a,d) parce qu'autrement

R(c,a)<R/(c,a), R(a,d)>R'(a,d) pour tout c,d € A\la,b},

R(a,b)>R(a,b) et R(ba)<R'(b,a) contredirait Sy(a,R) = S,a,R).

Dans I'un ou l'autre cas, nous pouvons répéter le méme argument et, puisque le nombre
d'actions est fini, ce procédé conduira a un cycle élémentaire dans le graphe associé a R.

Soit A le minimum sur les arcs (a,b) du cycle de |R(a,b) - R'(a,b) |. 1l est facile de vérifier
que l'addition de A sur les arcs du cycle tels que R(x,y)<R'(x,y) et la soustraction de A sur
les arcs du cycle tels que R(x,y)>R'(x,y) est une translation admissible sur le cycle. Nous
obtenons ainsi une relation valuée R;. Si R, = R, le lemme est démontré. Sinon, nous
pouvons répéter le méme argument en commengant avec R, au lieu de R. Puisque A est fini,
il n'y a qu'un nombre fini d'arcs tels que R(x,y) = R'(x,y). Comme a chaque étape le nombre
d'arcs sur lesquels la relation courante et R' sont différents est décroissant d'au moins une
unité, ce procédé s'achévera apres un nombre fini d'étapes, ce qui termine la démonstration

du lemme 2.4. O

Démonstration du théoréme 2.1.

Tout ce que nous avons a démontrer est que si > est neutre, strictement monotone et
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indépendant des translations sur les circuits alors

[a2(R)b = Sy a,R) > S, b,R)], c'est-a-dire

Swi(@,R) = Sy(b,R) = a=(R)b et 3)
Sxe(a,R) > Sp(b,R) = a>(R)b. “

Supposons d'abord que Syx(a,R) = Sye(b,R) pour deux actions a et b. Comme la
relation >(R) est compléte, nous avons soit a>(R)b, soit b>(R)a. Si a>(R)b, appelons v

la permutation de A qui transpose a et b. On vérifie aisément que Syp(c,R) = Syp(c,R") pour

tout ¢ € A. Vu le lemme 2.4, nous savons que R peut étre obtenu a partir de R via un

nombre fini de translations admissibles sur des cycles élémentaires. En combinant les lemmes
2.2. et 2.3. nous concluons que R peut étre obtenu a partir de R via un nombre fini de

translations admissibles sur des circuits élémentaires de longueur 2 ou 3. Dés lors, en utilisant

l'indépendante des translations sur les circuits, nous obtenons >(R)= > (R") si bien que

ax(R")b. Cela ¢tant, la neutralit€ implique b>(R)a, ce qui établit (3).

Supposons maintenant que Syp(a,R)>Syr(b,R) pour deux actions a et b,

et soit d(R) = Syp(a,R) - Syp(b,R). Puisque :

d(R) = E R(a,c) - 2 R(c,a) - E R(bad) + E R(dsb)>

ceA\(a} ceA\la} deANb} deANb}
on ne peut avoir [R(a,c) = 0, R(c,a) =1 Vc € A\{a} et R(b,d) =1, R(d,b) =0

Vd e A\{b}] car cela entrainerait d(R) = - 2 (JA| - 1) < 0.
Il est donc possible de construire une relation valuée R identique a R sauf sur des couples du
type (a,c), (c,a) avec ¢ € A\{a}, (b,d), (d,b) avecd e A\{b}, telle que d(R") = 0. 11 suffit

en effet de diminuer lorsque c'est possible des valuations parmi R(a,c) et R(d,b) et/ou
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augmenter des valuations parmi R(c,a) et R(b,d) jusqu'a obtention d'une relation valuée R” sur
A qui puisse assurer d(R") = 0°. Cela étant, par (3), on a a=(R")b et des applications répétées
de la stricte monotonie conduisent a a>(R)b. Ceci termine la démonstration du théoréme 2.1.

O

2.4. Un exemple

Illustrons la méthode du flot net par un exemple numérique simple.

Soient A = {a,b,c,d} et une relation valuée R sur A donnée par la matrice :

a b ¢ d [

+

a T 9 1126
b| .2 4 319
cl 4 8 81 2
d|]1 6 6 22

F 16 21 19 21

Utilisons la méthode du flot net pour ranger les éléments de A. Les scores sont :

Sw(@,R) = 2.6 - 1.6 = 1
Sw(b,R) = 9-2.1=-12
SwcR) =2 -19=1
Sw(d,R)=22-21=.1

Nous obtenons donc le classement : a > (¢ ~ d) > b.

°  Ceci est effectivement possible. Pour le voir, il suffit de se rappeler un théoréme bien
connu d'analyse : "Toute fonction réelle, continue dans un connexe de R" y prend toute
valeur comprise entre deux quelconques de ses valeurs.”
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3. UNE CARACTERISATION DE LA METHODE DU RAPPORT DES PRODUITS

3.1. Introduction

Nous présentons dans cette section une caractérisation axiomatique de la méthode de

rangement basée sur le score suivant :

Sgp(@.R) = I (R(a,c)/R(c,a))
c€A\{a}

¢

Le rangement des actions se ramene au rangement des scores, c'est-a-dire :

a2, (R)b ssi Spo(a,R) > Spp(b,R).

2
Nous appellerons la méthode définie par (1) et (2) la méthode du Rapport des Produits (RP).

Pour assurer I'existence des scores, nous ferons 1'hypothése suivante :

Rx,y) >0 VxyeA x #y.

©)

La caractérisation que nous allons présenter est trés voisine de celle que nous avons vue
concernant la méthode du flot net (voir section 2). 1l suffit en effet de remplacer dans
I'énoncé du théoréme 2.1. le mot "translations" par "homothéties" et nous obtenons une

caractérisation axiomatique de la méthode du rapport des produits.
3.2. Propriétés et résultats
Il est clair que la méthode du rapport des produits est neutre, strictement monotone et

indépendante des homothéties sur les circuits®. En outre, ces trois propriétés sont

indépendantes. Le résultat principal s'énonce alors comme suit :

6

Vu la condition (3), nous dirons qu'une homothétie est admissible si les valuations
transformées sont dans ]0,1].
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Théoreme 3.1. La méthode du rapport des produits est la seule méthode de
rangement qui est neutre, strictement monotone et indépendante des homothéties
sur les circuits.

Pour démontrer ce théoréme, nous allons reprendre le schéma qui a été utilisé pour
caractériser la méthode du flot net. Les démonstrations seront toutefois un peu plus simple

dans cette section.

Lemme 3.2. Pour toutes relations valuées R et R, si [R' peut étre obtenu a partir
de R via une homothétie admissible sur un circuit élémentaire] alors [R' peut étre
obtenu a partir de R via un nombre fini d'homothéties admissibles sur des circuits
¢lémentaires de longueur 2 ou 3].

Démonstration du lemme 3.2.
La preuve se fait par induction sur la longueur q du circuit élémentaire. Si q = 2 ou 3, alors

le lemme est démontré. Supposons maintenant que le lemme soit vrai pour

tout ¢ < k avec k > 3 et montrons qu'il est encore vrai pour q = k + 1. Considérons un

circuit €lémentaire de longueur k + 1 :
up = (a,3,), Uy = (283), -y U, = (358;,,), U,y = (3,,4,3,), €t supposons que R' a été obtenu 2
partir de R par multiplication par 0 sur les arcs de ce circuit. Si 6 = 1, il n'y a rien 2

démontrer. Sinon, définissons r = (a;, a,) et s = (a,, a,).

Si 6>1, alors la division par 0 sur le 2-circuit (r,s) est une homothétie admissible. A
ce moment, nous avons deux circuits (u;,uy,...,u; ;,8) et (u,u,,,,r) de longueur respective k et

3 sur lesquels la multiplication par 6 est une homothétie admissible. Nous obtenons ainsi R'.
Si6<1, alors la multiplication par 0 sur les circuits (u;,u,,...,u, ;) €t (U,,u,,,r) constitue
des homothéties admissibles. Ensuite, la division par 6 sur le 2-circuit (r,s) est une homothétie

admissible. Nous obtenons ainsi R'.

Ceci termine la démonstration du lemme 3.2, parce que si A est fini, il en va de méme

pour la longueur maximum d'un circuit élémentaire. O
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Lemme 3.3. Pour toutes relations valuées R et R', si [R' peut étre obtenu a partir
de R via une homothétie admissible sur un cycle élémentaire] alors [R' peut étre
obtenu a partir de R via un nombre fini d'homothéties admissibles sur des circuits
¢lémentaires|.

Démonstration du lemme 3.3.

Considérons un cycle ¢lémentaire du graphe associé a R et supposons que R' a été obtenu 2
partir de R par multiplication par 6 sur les arcs avants du cycle et par division par 8 sur les
arcs arricres. Notons respectivement U et U I'ensemble des arcs avants et arriéres du cycle.

Si6=1,iln'y arien a démontrer.

Si 6>1 alors la division par 6 sur tous les 2-circuits du type ((a,b), (b,a)) avec

(a,b) € Ug constitue des homothéties admissibles. A ce moment, la multiplication par 6 sur

le circuit €lémentaire obtenu en considérant les arcs de Uy et l'ensemble {(ba) € U :

(a,b) € Ug} est une homothétie admissible et conduit a R'.

Si 6<1, il suffit d'inverser les deux opérations décrites dans le cas précédent et on

arrive a R'.

Ceci termine la démonstration du lemme 3.3. parce que si A est fini, il en va de méme

pour la longueur maximum d'un cycle élémentaire. ]

Lemme 3.4. Pour toutes relations valuées R et R' sur A, [Sgp(c,R) = Sre(c,R")
pour tout ¢ appartenant a A] <> [R' peut étre obtenu a partir de R via un nombre
fini d'homothéties admissibles sur des cycles élémentaires].

Démonstration du lemme 3.4.

La partic <= est évidente. En effet, on voit aisément qu'une homothétie admissible sur un
cycle €lémentaire n'altére en rien le score d'aucune action lorsque les scores sont définis par
(1). La partie = est identique a celle du lemme 2.4. (voir section 2), excepté qu'il faut

remplacer les mots "addition", "soustraction”, "translation" respectivement par "multiplication”,
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"division" et "homothétie", le score Syr par Sgp, l'expression |R(ab) - R'(a,)b)| par

max(R(a,b)/R'(a,b), R'(a,b)/R(a,b)), et enfin le symbole A par ©. O

Démonstration du théoréme 3.1.

Tout ce que nous avons a démontrer est que si > est neutre, strictement monotone et
indépendant des homothéties sur les circuits alors

ax(Rb = Sg(a,R) 2 Sp(b,R), c’est-a-dire

Se(@,R) = Spp(b,R)  => a=(R)b et @)
Ses(@R) > Sgo(b,R) = a>(R)b ()

La démonstration de (4) est identique a celle qui a été proposée dans la section 2, excepté qu'il
faut évidemment remplacer le mot "translations" par "homothéties" et le score Sy, par Sg,.

Il faut également modifier les numéros des lemmes qui sont utilisés.

Démontrons (5). Supposons que Sgp(a,R) > Sgp(b,R) pour deux actions a et b, et soit d(R)=
SRP(a,R) = SRP(b,R), C'CSI-ﬁ-dirC :

dBR= II (R@c)/Rc@) - I (R(bd)/RAb))

ceA\la} deA\Ib}

Il est alors possible de construire une relation valuée R” identique a R sauf sur des couples du
type (a,c) avec ¢ € A\{a} et (d,b) avecd € A\{b}, telle que d(R") = 0. II suffit en effet de

diminuer des valuations parmi R(a,c) et R(d,b) jusqu'a obtention d'une relation valuée R sur A

qui puisse assurer d(R’) = 0. Cela étant, par (4), on a a=(R")b et des applications répétées de la

stricte monotonie conduisent a a>(R)b. Ceci termine la démonstration du théoréme 3.1. O



3.3.  Un exemple

Reprenons I'exemple qui a €t€ traité dans la section 2. Les scores se calculent aisément :

Spp(a,R) = .63/.08 = 7.875
Sgs(b,R) = .024/.336 = .071
Se(c.R) = .256/.216 = 1.185
Sp(d,R) = .36/24 = 1.5

Le classement est donc : a >d >c¢ > b.



4. LA METHODE DE COPELAND

4.1 Méthode de la majorité par paires de Condorcet

La méthode décrite par le marquis de Condorcet en 1785 est la suivante :
az(R)b ssi R(a,b) > R(ba)

Elle prend tout son sens si R(a,b) est interprété comme le pourcentage de votants déclarant que
a est préféré ou indifférent a b. En effet, a sera classé avant b s'il détient le plus grand
nombre de suffrages. Si le nombre de suffrages en faveur de a et de b est égal, il y a
ballottage. 1l s'agit donc d'une regle a la majorité (simple) par paires. Si R est une relation

probabiliste (R(a,b) + R(b,a) = 1) alors on a :

az(R)b ssi R(ab) > .5

Il est bien connu que la méthode de Condorcet peut conduire a de l'intransitivité. Pour le voir,
considérons par exemple le scrutin suivant relatif a 3 candidats (a,b,c) :

23 votants classent a>b >c¢

17 b>c>a
2 b>a>c
10 c>a>b
8 c>b>a

La matrice de surclassement s'écrit (les valeurs sont multipliées par 60)

a b c
a 33 25
b 27 42
C 35 18

La conclusion tombe : b > ¢, ¢ >a, a > b.



4.2 Méthode de Condorcet modifiée par Copeland

Copeland propose en 1951 une modification de la méthode de Condorcet qui fournit

un rangement. Pour chaque action a, on détermine le score :

Scp@aR) = |ic € A\la} : az (R)c}| - |lc € A\la} : c2(R)al]

c'est-a-dire
Scp@R) = Y sign[R(a,c) - R(c,a)]
c €A\
D
ousignx= -1six<0
Osix=0
1six>0

Le préordre total est alors obtenu a partir des scores :

az.p(R)b ssi Scp(a,R) 2 S ,(b,R)

Reprenons 'exemple précédent. On obtient, par la méthode de Copeland : a ~ b ~c¢. La

méthode du flot net, quant a elle, fournirait le rangement : b > a > ¢. Il y a cependant une

ressemblance entre ces deux méthodes. Si la relation > (R) est assimilée 2 une relation

valuée ne pouvant prendre que les wvaleurs 0 ou 1, alors on a

visiblement §_.(a,R) = S, (a,>(R)) pour toute relation valuée R sur Aettouta ¢ A.

La méthode de Copeland est indépendante des translations et des homothéties en
marguerite. En effet, une translation ou une homothétie admissible en marguerite sur une
action quelconque n'altére en rien le score d'aucune action, lorsque les scores sont définis par

(1). Plus généralement, nous avons le résultat suivant :



Théoréme 4.1. Pour toute relation valuée R sur A et tout a appartenant a A, [le
score S(a,R), fonction uniquement des valuations sur les arcs du type (a,c) et (c,a),
c appartenant a A\{a}, est indépendant des translations et des homothéties
admissibles en marguerite] < [il existe une fonction réelle f définie sur
{-1,0,1}* , n= |A|,

telle que S(a,R) = 1 (sign[R(a,c,) - R(c,,a)},...,sign[R(a,c,;) - R(c,;,a)])

ou {c,, ..., ¢, } = A\{a}].

Démonstration du théoréme 4.1.

La partic <= est €évidente. Démontrons la partie =. Considérons une relation valuée R sur

A et une action a € A. Par hypothese, il existe une fonction réelle g définie sur [0, 1]%*D

telle que : S(a,R) = g (R(a,c,), R(cy,a),...,R(a,c,,), R(c,,, a)).

Exprimons que S(a,R) ne dépend pas des translations admissibles en marguerite.

Posons x;=R(a,c;) et y;=R(c;,a) pour touti ¢ {1,....,n-1}
Translations sur a :

8x; + 3,y + 8, + 8,y +8) =gy Xy 1Y, ) )

avec x, + 8, y, + & € [0,1] pour tout i € 1,..,n-1}

Translations sur ¢, j € {1, .., n-1} :
8O Yps s X+ 8, + 8y s X, Y )) = 8B, Yy e Xy s Y, ) (ii)

avec x; + 8, y; + d € [0,1].

Notons que (it) implique (i).
Fixons j e {1,..,n-1}. La condition (ii) signifie que pour tout point A = (X,,y,,-..,.X, 1,Y,.,) de
[0,1]7Y, la fonction g est constante sur l'ensemble

EM = {(xl,yl,...,xj + 8 LY+ 8 Xy Yan)d X+ 8 ,y,+ 8 € [0,1]}
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Les points de E,; ont pour coordonnées

Xl - Xl’ Yl = YI""an = X_]+ 6 N Y.l = y_|+ 6 "“’Xn-l = Xn»l’ Yn—l = Yn-l avece X_]’ Yj € [0,1].

En éliminant le parametre § entre les équations X; = x+ & etY; =y+ § , on trouve

Y-y =X - x,
Soit alors A le point de E,; dont les coordonnées sont
X =X,Y, = Yoo Xy = X, Yog = Yo,

except€ que

X, Y) = O, yx) siy;-x; € [0,1]

= (xj-yj, 0) si x;-y; € [0,1]

Nous avons donc g(A) = g(\)-

A
Y

1

2

En utilisant ce dernier résultat pour j = 1,2,...,n-1, il vient au total :

XY 155X 1Y 1) = DK=Y 1500, X0 1Y)

ol h est une fonction réelle définie sur [-1, 1]

Exprimons maintenant que S(a,R) ne dépend pas des homothéties admissibles en marguerite.

Pour toutj € {1,..,n-1}, on a, en posant z; = x;-y,,

h(z,,....0z,....2,.)) = h(z,,....Z....2, 1)

avec 0z, € [-1,1], 8 € 10, +o [.

Des lors, la fonction h ne dépend donc pas de la valeur de sa j-iéme variable, mais uniquement

de son signe.



Dans ces conditions, on a
h(z,,...,z,,) = f(sign z,,...,sign z_,)
ou f est une fonction réelle définie sur {-1,0,1}"".

Ceci acheéve la démonstration du théoréme 4.1.



5. UNE CARACTERISATION DE LA METHODE DU MINIMUM SORTANT
5.1. Introduction

Nous présentons dans cette section une caractérisation axiomatique de la méthode de

rangement basée sur le score suivant :

S n(a.R) = min R(a,c)
cEA\@

ey
Le rangement des actions s'effectue selon la régle habituelle :

az_ (Rb ssi S, (a.R) > S_ (bR

€
Nous appellerons la procédure définie par (1) et (2) la procédure du minimum sortant. La

caractérisation est due a PIRLOT (1991). Introduisons également trois autres procédures.

1) La procédure du minimum lexicographique

Notons R(a,1), R(a,2).....R(a,|A|-1) les valeurs distinctes ou non prises par R(a,c), c € A\{a},

rangées dans l'ordre croissant. La procédure du minimum lexicographique, notée >, est

définie par :
a>_(R)b ssi R(a,1) > R(b,1)
ou R(a,1) = R(b,1)
et R(a,2) > R(b,2)

ou ...
c'est-a-dire ssi ilexiste j, 1 < j < |A]-1 tel que

pour tout i < j, R(a,i) = R(b,i)
et, R(a,)) > R(b,))

a =(R)b ssi R(a,i) = R(b,i) pour tout i € {1,...,|A|-1}.
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i) La procédure de l'indifférence

La procédure de l'indifférence, notée >, est définie par :

a=(R)b pour tout a,b € A,a # b,

et pour toute relation valuée R sur A. Bien sir, son intérét n'est que théorique.

Remarque : on a toujours P(R) = &.
iii) La procédure du produit sortant
La procédure du produit sortant est basée sur le score :

Sp-@R) = II Rac)
ceA\la}

c'est-a-dire :

az2(R)b ssi Sp(a,R) > S;.(b,R)

5.2. Propriétés

Laprocédure > . est monotone, indépendante des translations sur une paire d'actions
et vérifie les deux axiomes de renversement des préférences. Les procédures >, €t >, sont

monotones et indépendantes des translations sur une paire d'actions. La procédure > ! vérifie

l'axiome de renversement faible, mais pas I'axiome de renversement strict. La procédure

>, vérifie I'axiome de renversement strict mais pas l'axiome de renversement faible.
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Seul le dernier point nécessite justification. La procédure >, ne vérifie pas I'axiome

de renversement faible des préférences. En effet, soit A = {a,b,c,d} et supposons que R(a,x)

et R(b,x) soient donnés par les schémas suivants (représentations au moyen de curseurs) :

-
b c d a c d
R(a,x) R(b,x)

On a>_(R)b.

En considérant R' identique a R, sauf sur (a,c) ou R'(a,c) = 0, on devrait renverser (non

strictement) la préférence, c'est-a-dire avoir bzml(R’)a, Or on continue & avoir a>_(R")b.

La procédure >.. est monotone, vérifie les deux axiomes de renversement des préférences,

mais n'est pas indépendante des translations sur une paire d'actions.

Justifions encore le dernier point. Soient A = {a,b,c} et la relation valuée R sur A donnée par

la matrice
a b c T
a 3 3 .09
b 8 1 .08
C 1 .6 .06
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On a a>.(R)b.

Considérons la relation valuée R' =t,, (R). Ona Sj,(a,R") =.25 et S;;,(b,R") = .30, c'est-a-
dire b>,(RYa.

5.3.  Résultats

Annongons des maintenant le résultat principal :

Théoréme 5.1. La procédure du minimum sortant est la seul méthode de
rangement qui est monotone, indépendante des translations sur une paire d'actions
et qui vérifie les deux axiomes de renversement des préférences.

Avant de démontrer ce théoréme, nous allons établir quelques résultats.

Lemme 5.2. Si > vérifie 'axiome de renversement faible des préférences et
a>(R)b, alors S_; (a,R) = 0.

Démonstration du lemme 5.2.
On procéde par l'absurde. Si a>(R)b, on a en particulier a>(R)b. Soitc € A\{a} tel que
S.in(a,R) = R(a,c) = 0. Si l'axiome de renversement faible est valide, on peut faire en sorte

que b>(R"Ya avec R' identique a R sauf sur (a,c) ot R'(a,c) < R(a,c). Comme R(a,c) = 0,

onaR'" =R etdonc bz(R)a, ce qui contredit I'hypothése. a

Proposition 5.3. Si > est indépendant des translations sur une paire d'actions et
satisfait l'axiome de renversement faible des préférences, alors
[al . (R)b = al(R)b].

min
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Démonstration de la proposition 5.3.

Supposons que S;,,(a,R) =S, (b,R)= 8. SoitR' =z, ,(R). OnaS,(aR) =S,,(bR)

= 0. Si on avait a>(R)b (ou b>(R)a) on aurait a>(R")b (ou b>(R"a), ce qui est en

contradiction avec le lemme 5.2.

Comme la relation >(R) est complete, on a donc a=(R)b.

Proposition 5.4. Si > est monotone, indépendant des translations sur une paire
d'actions et vérifie I'axiome de renversement faible des préférences, alors

[aP(R)b = aP_, (R)b].

Démonstration de la proposition 5.4.

On ne peut en effet avoir al;,(R)b car alors aI(R)b, en vertu de la proposition 5.3.. Supposons
donc avoir bP_ (R)a, c'est-a-dire S, (b,R)>S (a,R). Soit alors d e A\{b} tel que R(b,d)

= Shin(b,R) et soit R' identique a R sauf sur (b,d) ou R'(b,d) = S_,.(a,R). Vu la propriété de
monotonie, on a aP(RYb. Or S (b,R") =S_; (a,R"), clest-a-dire al_ (R)b. Ce qui contredit
la proposition 5.3. o

Proposition 5.5 Si > est monotone, indépendant des translations sur une paire

d'actions et satisfait I'axiome de renversement strict des préférences alors
[aPmin(R)b = aP(R)b]

Démonstration de la proposition 5.5.

Supposons, a contrario, b>(R)a.
Soit d = S_;(a,R) - S,;,(b,R) > 0 et notons ¢ un élément quelconque de A\{b}

tel que R(b,c") = S_,(b,R).

a) Modifions R en R' en changeant seulement les valuations des arcs (b,c) inféricures 2
Smin(a7R) :

R'(b,c) = max [S.;(a,R), R(b,c)] Vc e A\{b}.

Sur les autres arcs : R' = R,
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En particulier, R'(b,c ") = R(b,c) +d = S_;.(a,R) et S_, (b,R") = S.in(a,RY).

Par la propriété de monotonie, on a b>(R')a.

b) On applique a R' une translation admissible sur {a,b}. Soit € > 0 aussi petit que l'on veut

ctsoit § =S,,(b,R) -& Ondéfinit R" = ¢, (R, de sorte que

R"(a,c) =R'(ac) - & Vc e Aa},

et R'(bc)=R(bec) - 8§ Vc e Ab}.

Ona S (a,R") =S_.(bR") = ¢,

min min

et par l'indépendance vis-a-vis des translations sur {a,b} : b>(RMa.
p p

¢) Définissons R"" a partir de R" en annulant la valeur de R"(b,c") :
R"(b,c’) = R'(b,c’) - ¢
et R" = R" sur tous les autres arcs.

Par I'axiome de renversement strict, la préférence s'est renversée et on a aP(R"")b.
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Film de la démonstration de la proposition 5.5.

Supposons b>(R)a.

S_.. @R -

R T __T_'L' ] S:mcb,R)

R(a,%) R(b,x) ¢*

AT 70T 1T

R(a,x) R(b,x) R(a,x) R(b,x)

R’ b=Ra aP(R*)b R’ ’

8 = S,.(b,R)-€
R” = t_ﬁ’a,b(RI)

@ R = 1,,,®")

i - € —— T e iy
14%

R(a,x) R"(b,x) R"(;,X) R(b,x)

/ . *
R b>[R"a R™(b,ec* =0 RI/

= aP(R"*)b
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d) Appliquons a R"", la translation ¢

8.0b inverse de celle appliquée au b). On définit ainsi

R = ¢, ,,(R™), clest-a-dire :

R'"(ac) =R"(ac) + 6 Ve e Aal,

R'"(b,c) = R"(bc) + & Vc e A\{b}.
Par l'indépendance vis-a-vis des translations sur {a,b} : aP(R'")b.
Cela étant, R'" ne différe de R' que sur l'arc (b,c") :

R'(b,c”) = Ri(b,c") - &.

Si € est suffisamment petit, on a

R(b,c") < R'*(b,c)

et R(b,c) < R7(bc) Ve e A\{b},

et pourtant b>(R)a et aP(R' )b, en contradiction avec I'hypothése de monotonie. O

Corollaire 5.6. Si > est monotone, indépendant des translations sur une paire

d'actions et satisfait l'axiome de renversement strict des préférences, alors
[aI(R)b = al_, (R)b]. O

En combinant les résultats 5.3., 5.4., 5.5. et 5.6., nous obtenons la caractérisation annoncée par

le théoréme 5.1.

5.4. La méthode du maximum entrant

En s'inspirant de la caractérisation que nous venons de présenter, nous avons pu mettre

en €évidence une caractérisation de la méthode de maximum entrant. Cette derniére méthode,

notée > , utilise le score
max,—

23
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8oy -(@,R) = -max, cana R(C,0).

max, -

Dégageons tout d'abord les propriétés auxquelles on s'attend. Comme la procédure
gag prop q p

> ., la procédure > est monotone. Ensuite, pour tre vérifiés, 1'indépendance vis-a-
min max, -

vis des translations sur une paire d'actions et les deux axiomes de renversement des
préférences doivent cependant étre légerement modifiés, puisqu'ils ont été définis uniquement
a partir des arcs sortants. Il est toutefois treés facile de les convertir en les définissant sur les
arcs entrants. Nous introduisons ainsi de nouveaux axiomes. Pour les distinguer de leurs
fréres jumeaux, nous pouvons leur attribuer le préfixe "E" pour "entrants" (entering), quitte a

donner aux autres le préfixe "L" pour "sortants" (leaving) :

i) Une E-translation sur une paire d'actions {a,b} consiste en l'addition d'une méme

quantit¢ § positive ou négative sur les valuations de tous les arcs entrant en a et en b.

Une méthode de rangement est dite indépendante des E-translations sur une paire d'actions

si et seulement si pour toutes relations valuées R et R' sur A, et tout a,b € A, [R' peut étre
obtenu a partir de R via une E-translation admissible sur

{a,b}] = [a2(R)b < a=(R)b et b>(R)a = b>(RNa].

i) Une procédure de rangement vérifie l'axiome de E-renversement faible des préférences

lorsque

si a>(R)b
alors [pour tout ¢ € A\{a}, il existe une relation valuée R' identique a R, excepté
que R'(c,a) > R(c,a), telle que b>(R)a].

Elle véritie l'axiome de E-renversement strict des préférences lorsque

si[ ax(R)b et R(d,b) # 1 pour toutd e A\{b}] alors [pour tout ¢ e A\{a}, il existe une
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relation valuée R' identique a R, excepté que R'(c,a) > R(c,a) telle que b >(R")a].

Ces nouveaux axiomes étant maintenant installés, nous avons la caractérisation suivante.

Théoréme 5.7. La procédure du maximum entrant est la seule méthode de
rangement qui est monotone, indépendante des E-translations sur une paire
d'actions et qui vérifie les deux axiomes de E-renversement des préférences.

Les résultats préliminaires s'énoncent comme suit (ils se démontrent comme dans le paragraphe

précédent) :

Si > vérifie 'axiome de E-renversement faible des préférences et a>(R)b,

alors S_ . (a,R) = -1.

Si > est indépendant des E-translations sur une paire d'actions et satisfait 1'axiome

de E-renversement faible des préférences, alors

[al,.. (R)b = al(R)b].

Si > est monotone, indépendant des E-translations sur une paire d'actions et vérifie

l'axiome de E-renversement faible des préférences, alors

[aP(R)b = aP . (R)b].

Si > est monotone, indépendant des E-translations sur une paire d'actions et satisfait

l'axiome de E-renversement strict des préférences alors

[aP,.. . (R)b = aP(R)b].

Si > est monotone, indépendant des E-translations sur une paire d'actions et satisfait

l'axiome de E-renversement strict des préférences, alors

[a(R)b = al,_,, (R)b].
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6. UNE DEUXIEME CARACTERISATION DE LA METHODE DU MINIMUM
SORTANT

Dans cette section, nous présentons une caractérisation axiomatique de la méthode du
minimum sortant distincte de celle décrite dans la section précédente. Elle est due a

BOUYSSOU (1992) et s'énonce comme suit :

Théoréme 6.1. La méthode du minimum sortant est la seule méthode de rangement

qui est neutre, ordinale, continue, monotone sur les lignes et égalitaire sur les
lignes.

Il est clair que la procédure du minimum sortant est neutre, ordinale et monotone sur les

lignes. De plus, elle est continue car si la suite (R € R(A), i = 1,2,...) COnverge vers une

relation valuée R € R(A), alors pour tout a ¢ A, la suite (Smm,(a,Ri), i=12,.) converge

(au sens usuel) vers S_ (a,R).

La méthode du minimum sortant n'est cependant pas la seule méthode de rangement qui est
neutre, ordinale, continue et monotone sur les lignes. Par exemple, c'est aussi le cas pour la
méthode du maximum sortant dont la définition est évidente. Il nous faut donc un axiome
supplémentaire qui soit plus spécifique a la méthode du minimum sortant. L'axiome
d'égalitarisme sur les lignes nous vient alors en aide. La méthode du minimum sortant est
clairement égalitaire sur les lignes alors que la méthode du maximum sortant ne l'est pas.

Les lemmes qui suivent vont étre utilisés dans la démonstration du théoréme 6.1.

Lemme 6.2. Si une méthode de rangement > est neutre, continue, ordinale et
monotone sur les lignes, alors pour toute relation valuée R sur A et tout ab
appartenant a A avec a # b,

[R(a,c) = 1 pour tout ¢ appartenant a A\{a}] = a>(R)b.

Démonstration du lemme 6.2.

Supposons au contraire qu'il existe une méthode de rangement > neutre, continue, ordinale
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et monotone sur les lignes, et deux actions a,b € A avec a # b telles que R(a,c) = 1 pour tout
c € A\{a} et b>(R)a.
Considérons une suite (¢, € [0,1], i = 1,2,...) convergeant vers 0. A cette suite, nous

associons une suite de relations valuées (R' € R(A), i = 1,2,...) telle que, pour toutc,d € A,

avec ¢ = d,
R'(c,d) = R(c,d) si et seulement si ¢ = a et

R(c,d) = max {0,R(c,d) - ¢} sinon.
La suite (R' € R(A), i=1,2,..) converge vers R et donc, par continuité, nous devons avoir

b>(R)a pour un R de la suite.

Considérons a présent une suite de transformations strictement croissantes (¢, i = 1,2,...) de

[0,1] sur [0,1] telle que ¢,(x) = X' pour tout x e [0,1]. La suite (¢,[R'] € R(A), i = 1,2,...)
converge vers une relation valuée R e R(A) telle que, pour tout c,d € A

avec ¢ # d, R'(c,d) = 1 si et seulement si ¢ = a et R°(c,d) = 0 sinon. L'ordinalité implique

b>(¢,[R'])a pour tout ¢,[R'] de la suite et la continuité conduit 2 b>(R*)a.

Considérons enfin une relation valuée R telle que R(c,d) = 0 pour tout c,d € A avec ¢ = d.

La neutralité¢ implique a=(R)b et la monotonie sur les lignes conduit 2 a>(R")b, d'ou une

contradiction. O

Lemme 6.3. Si une méthode de rangement > est neutre, continue, ordinale,
monotone sur les lignes et €galitaire sur les lignes, alors pour toute relation valuée
R sur A et tout a,b appartenant a A avec a =b, [R(a,c)=1 pour tout ¢ appartenant
a A\{a} et R(b,d)<1 pour un d appartenant a A\{b}] = a>(R)b.

50



Démonstration du lemme 6.3.

Supposons au contraire qu'il existe une méthode de rangement > neutre, continue, ordinale,
monotone sur les lignes et €galitaire sur les lignes, et deux actions a,b € A avec a =b telles
que R(a,c) = 1 pour tout ¢ € A\{a}, R(b,d) < 1 pourund ¢ A\{b} et b>(R)a.

Par I'égalitarisme sur les lignes, nous avons bx(R)a. Puisque, par hypothése, Ry(b,d)<1,
nous pouvons trouver une relation valuée R' identique a R, excepté que R'(b,d)>R (b,d) pour
toutd e A\{b}. Dés lors la monotonie sur les lignes conduit a b>(R")a, ce qui contredit le

lemme 6.2. o

Démonstration du théoréme 6.1.

Nous avons dé€ja observé que la méthode du minimum sortant est neutre, continue, ordinale,

monotone sur les lignes et €galitaire sur les lignes. Donc, tout ce que nous avons a démontrer

est que si la méthode de rangement > est neutre, continue, ordinale, monotone sur les lignes
et €galitaire sur les lignes alors

[a>(R)b = S, (a,R) > S_, (b,R)], c'est-a-dire

S.in(a,R) = Si.(b,R) = a=(R)b et €))
S.in(@R) > S_. (b,R) = a>(R)b. 2)

Supposons d'abord que S_; (a,R) > S_;.(b,R) pour une relation valuée R sur A et deux actions
ab e A Posons A, = {c € A\{b} : R(b,c) = S_..(b,R)}.

Considérons une suite de transformations strictement croissantes (¢, i = 1,2,...) telle que :
0(x) =xsix < S .(bR)et

= x"" sinon.
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La suite (¢;[R}, i = 1.2....) converge vers une relation R" pour laquelle :

R'(a,c) = 1 pour tout ¢ € A\{a},

R'(b,c) = S,..(b,R) pour tout ¢ € A, et

= 1 sinon.

Comme A, est non vide et S_; (b,R)<1, nous savons d'aprés le lemme 6.3. que a>(R")b.

Cela étant, si b>(R)a, alors l'ordinalité implique bz(¢,[R)a pour tout $[R] de la suite.

Ensuite, la continuité conduit & b>(R*)a, donc a une contradiction. Ceci établit (2).

Afin de démontrer (1), supposons que S_ (a,R) = S_, (b,R)= § pour R € R(A) et deux
actions a,b € A. Si § =1 alors a=(R)b par le lemme 6.2.
Supposons § = 1 et b>(R)a, la démonstration pour l'autre cas est similaire. Il est facile de

construire une suite (R € R(A), i = 1,2,...) convergeant vers R et telle que

S.is(3,R) > S_, (b,R") pour tout R' de la suite, par exemple en prenant R' identique 2 R excepté

que R'(a,c) = min {1, R(a,c) + 1/i} pour toutc ¢ A,. Donc (2) implique a>(R*)b pour tous

~=a

les R' de la suite. En utilisant la continuité, nous avons a>(R)b, c'est-a-dire une

contradiction. Ceci €tablit (1) et compléte la démonstration du théoréme 6.1. ]

Il n'est pas difficile de voir qu'une démonstration semblable peut étre utilisée pour caractériser
la méthode du maximum sortant en modifiant d'une maniére évidente I'égalitarisme sur les
lignes. De plus, en remplagant la monotonie sur les lignes et I'égalitarisme sur les lignes par
des axiomes similaires relatifs aux colonnes, nous obtenons une caractérisation de la méthode

du minimum entrant ainsi qu'une caractérisation de la méthode du maximum entrant.

Il nous reste encore a observer qu'il est impossible de déduire un des cing axiomes qui
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caractérisent la méthode du minimum sortant a partir des quatre autres. Les exemples suivants

le montrent bien :

1-Soitd: A— {1,2,...,|]A| } une bijection

Définissons > comme :
ax2(R)b ssi S, (a,R)/®(a) > S_, (b,R)/®(D).
Cette méthode de rangement est ordinale, continue, monotone sur les lignes et égalitaire sur

les lignes mais non neutre.

ii - Définissons > , comme :

az, (R)b ssi S;(a,R) > S,(b,R), ou, pour tout c € A, S,(c,R) = defi{c}R(c,d)

(méthode du flux sortant).
Cette méthode de rangement est neutre, continue, monotone sur les lignes et égalitaire sur les

lignes mais non ordinale.

iii - La méthode du minimum lexicographique >, (voir section 5) est neutre, ordinale,

monotone sur les lignes et égalitaire sur les lignes mais non continue.

Pour montrer qu'elle est non continue, considérons deux actions a,b € A et une relation

valuée R sur A telle que R(a,1) = S (a,R) = S_,.(b,R) = R(b,1) et R(b,2) > R(a,2). On a donc

b>_(R)a. Il est facile de construire une suite de relations valuées (R’ € R(A), i = 1,2,...)

convergeant vers R et telle que S_ (a,R") > S_,(b,R). Pour tout R’ de la suite, on a a>_(R')b

ce qui viole la continuité.

iv - La méthode de l'indifférence 2, (voir section 5) est neutre, ordinale, continue et
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égalitaire sur les lignes mais non monotone sur les lignes.

v - La méthode du maximum sortant est neutre, ordinale, continue et monotone sur les lignes

mais non €galitaire sur les lignes.
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7. UNE CARACTERISATION D'UNE METHODE FONDEE SUR LES FLUX
SORTANTS ET ENTRANTS

7.1. Introduction

Le but de cette section est d'étudier une méthode permettant d'obtenir un préordre
partiel au départ d'une relation de préférence valuée. Cette méthode, fondée sur la notion de
flux sortant et de flux entrant est caractérisée par un systtme de trois axiomes indépendants.

Elle est définie par :

a UE(R)b ssi [S,(a,R) > S,(b,R) et S(a,R) > S(b,R)]

)
ouS;, (a,R)= ¥ R(a,0) [flux sortant]
ceANla}
et S (a,R) = - ¥ R(c,a) [flux entrant]
ceA\la}

Il est facile de vérifier que la méthode définie par (1) est vraiment une méthode de

rangement partiel et que la relation >, (R) n'est pas nécessairement compléte’. Nous
g p q y p p

appellerons la méthode de rangement partiel définie par (1) la méthode L/E

(L = Leaving, E = Entering).

La caractérisation que nous présentons dans cette section est due 8 BOUYSSOU et
PERNY (1990). Tout au long de cette section, nous ferons I'hypothése que I'ensemble A
contient au moins 3 €léments. L'intérét de la méthode L/E réside dans sa simplicité et son
attrait intuitif. Elle généralise, par le biais de l'utilisation des flux entrants et sortants pour le
cas valué, I'idée de la déclaration que a est préféré a b si a "bat" plus d'actions que b et "est

battu" par moins d'actions.

7 Elle ne le sera que si R a des propriétés spéciales, par exemple si R(c,d) + R(d,c) est

constant pour tout ¢,d appartenant a A.
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Cependant, puisqu'un  préordre partiel n'est pas nécessairement complet, la
méthode > ye Permettraa deux actions d'étre déclarées incomparables. Bien que cela puisse
paraitre €trange, il ne faut pas oublier que l'information disponible peut étre trés pauvre, voire
conflictuelle. Le fait de déclarer a et b incomparables signifie donc qu'il semble difficile de
prendre, du moins a ce stade de I'étude, une position définie sur la comparaison de a et b.

Toutefois, on démontre qu'étant donné une structure de préordre partiel, il est toujours possible
q p p ] p

de remplacer les incomparabilités par des préférences de maniére a en faire une structure de

préordre total.

Il faut encore préciser que la méthode L/E utilise les propriétés "cardinales" des
valuations. Par conséquent, elle ne semble pas appropriée lorsque les comparaisons des

valuations n'ont qu'une signification ordinale en terme de crédibilité.
7.2.  Propriétés de la méthode L/E

Les propri€t€s que nous avons définies dans la section 1 concernent les méthodes de

rangement. Bien entendu, elles restent valables pour les méthodes de rangement partiel.

Dans la suite, nous noterons J(R) la relation d'incomparabilité de >(R), c'est-a-dire, pour
p > P

tout a,b € A, al(R)b ssi [non a>(R)b et non b>(R)al.

Nous savons que la neutralité implique la non discrimination pour des méthodes de
rangement partiel conduisant toujours a une relation binaire compléte.  Lorsque

l'incomparabilité est tolérée, la neutralité¢ implique que pour toute relation valuée R sur A et
touta, b e A, [R(a,b) = R(b,a) et R(a,c) = R(b,c), R(c,a) = R(c,b) pour tout ¢ ¢ A\{a}]

= [al(R)b ou aJ(R)b]. La non discrimination exclut le dernier cas. Il est clair que la méthode

L/E est non discriminatoire. De plus, elle est strictement monotone et donc monotone.

Définissons A* et A" comme des duplications disjointes de I'ensemble A. Nous notons
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a’ (resp. a’) I'élément de A'(resp.A’) correspondant aa € A. Considérons un graphe orienté

G pour lequel I'ensemble des noeuds est X = A" U A’ et I'ensemble des arcs est U = {(x",y)

e X’:x" € A",y € A etx #y}. Dans cette section, nous identifions une relation valuée

R avec le graphe valué dans lequel pour tout a,b € A, la valuation vi(u) de I'arc u = (a*,b)
est R(a,b). Nous notons que tous les cycles de G sont alternés par construction®.
Cela ¢tant, nous dirons qu'une méthode de rangement partiel est indépendante des

translations (resp. des homothéties) sur les cycles alternés si et seulement si pour toutes

relations valuées R et R', [R' peut €tre obtenu a partir de R via une translation (resp. une

homothétie) admissible sur un 4-cycle ou un 6-cycle alterné élémentaire] = [>(R) = >(R%)].

N

Il est facile de voir que si R' peut étre obtenu a partir de R via une translation

admissible sur un cycle alterné €lémentaire, alors S, (a,R) = S (a,R") et Sg(a,R) = Si(a,R") pour
tout a € A, si bien que la méthode L/E est indépendante des translations sur les cycles

alternés (voir figure 1).

® Etant donné la morphologie particuliére du graphe G, nous devons faire I'hypothése

que l'ensemble A contient au moins 3 éléments.
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a+

b+ ™

.
N\\m

c+

d+ ™ d-

Figure 1 : une translation admissible sur un 4-cycle alterné élémentaire

7.3. Résultats

Il est facile de voir que la méthode L/E n'est pas la seule méthode de rangement partiel

qui soit non discriminatoire, monotone et indépendante des translations sur les cycles alternés.
Clest aussi le cas pour la procédure de I'indifférence 2, (voir section 5). Cette méthode,
cependant, n'est pas strictement monotone. Malheureusement, la méthode L/E n'est pas la

seule méthode de rangement partiel qui soit non discriminatoire, strictement monotone et

4
indépendante des translations sur les cycles alternés. Par exemple, clest aussi le cas pour la

méthode du flot net 2, . (voir section 2). Néanmoins, les méthodes de rangement partiel qui

sont non discriminatoires, (strictement) monotones et indépendantes des translations sur les

cycles alternés ont de fortes relations avec la méthode L/E et nous avons ce qui suit :
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Théoreme 7.1. Si une méthode de rangement partiel > est non discriminatoire,
monotone et indépendante des translations sur les cycles alternés, alors pour toute
relation valuée R sur A, on a [a> gx(R)b) = a>(R)b pour tout a, b appartenant a
A]. En outre, si > est strictement monotone, alors pour toute relation valuée R sur
A, on a [a> x(R)b = a>(R)b pour tout a,b appartenant a A].

Le théoreme 7.1. dit que la méthode L/E est la plus petite (au sens de l'inclusion)

mcthode de rangement partiel qui soit non discriminatoire, monotone et indépendante des

translations sur les cycles alternés. Si > est non discriminatoire, monotone et indépendant

des translations sur les cycles alternés, il se peut qu'on ait a>; (R)b et a=(R)b. La seconde

artic de ce théoré¢me dit qu'une telle situation est impossible si > est strictement monotone.
p q p

Des lors, la méthode L/E "impose" ses indifférences et ses strictes préférences a chaque
méthode de rangement partiel qui soit non discriminatoire, strictement monotone et
indépendante des translations sur les cycles alternés. Ces méthodes de rangement partiel
different de la méthode L/E par la comparaison en termes d'indifférence ou de préférence

stricte d'actions qui €taient déclarées incomparables avec la méthode L/E.

Nous avons déja noté que la méthode L/E est non discriminatoire, strictement monotone
et indépendante des translations sur les cycles alternés. Observons aussi que ces trois axiomes

sont indépendants comme le montrent les exemples suivants :

1) Soit @ : A — {1,2,...,|A|} une bijection.

Définissons >, comme :

ax,(R)b ssi [S,.(a.R) > S,.1(b.R) et S{a,R) > S(b,R)]

ou S; ,(c,R) = S, (c,R).P(c), pour tout ¢ £ A.

Cette méthode de rangement partiel est strictement monotone (et donc monotone) et

indépendante des translations sur les cycles alternés mais n'est pas non discriminatoire.
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1) Définissons >, comme :

az,(R)b ssi [S;(a,R) < S;(b,R) et S(a,R) < S;(b,R)].

Cette méthode de rangement partiel est non discriminatoire et indépendante des
translations sur les cycles alternés mais n'est pas monotone (et donc n'est pas

strictement monotone).

iij)  Définissons >, comme :

az,(R)b ssi [S; ;(a,R) > S, 3(b,R) et Sgaa,R) 2 Sz3(b,R)]

ot S;,(c,R) = X R(c,d)P et Sy .(c,R) = - ¥ R(dc)?, pour tout ¢ € A.
’ dea\ic} ’ eA\ic)

d

Cette méthode de rangement partiel est non discriminatoire et strictement monotone

mais n'est pas indépendante des translations sur les cycles alternés.

Avant de démontrer le théoréme 7.1., nous allons établir quelques lemmes.

Lemme 7.2. Pour toutes relations valuées R et R', si [R' peut étre obtenu a partir
de R via une translation admissible sur un cycle alterné élémentaire] alors [R' peut
¢tre obtenu a partir de R via un nombre fini de translations admissibles sur des 4-
cycles et/ou des 6-cycles alternés élémentaires).

Démonstration du lemme 7.2.
La démonstration se fait par induction sur k ou 2k est la longueur d'un cycle alterné

¢lémentaire de G. Si k = 2 ou 3, alors le lemme est démontré. Supposons maintenant que le

lemme soit vrai pour k > 3 et montrons qu'il est encore vrai pour k +1.

Considérons un cycle alterné élémentaire C de longueur 2(k+1) de G, c'est-a-dire une

collection ordonnée de couples d'actions {(x;",y); (x;,,5y;) : i = 1,2,....k+1} avec pour tout

ij e {1,2..k+1} :

60



X; # ¥i» Xis1 # Y; (parce que les arcs du type (a*,a‘)’ ne sont pas dans G), 2)
et X, # X, ¥; # Y, (pafce que le cycle est élémentaire), 3)

ou X,,, est interprété comme X,.

Montrons que toute translation admissible sur C peut étre obtenue via un nombre fini

de translations sur des cycles alternés élémentaires de longueur supérieure 2 4 et inférieure a

2k. Afin de le montrer, nous déclarons que pour unj e {1,2,...k+1},

Cj = ((xy1) (X25y1)s (%55¥2), (X3%Y2)5e00s (xj+’yj-)’ (Xl+’Yj-))

ct

C;= ((X1+,)’j')’ (Xj+1+7yj'.)a (Xj+1+7yj'+1')v (xj+2+’Yj+1-)"‘”(Xk+l+’Yk+1-)’ (X" Yie1))

correspondent tous deux a des cycles alternés élémentaires de G. La condition (2) implique
que nous devons chercher un candidat dans {2,3,...,k}. A partir de (3), nous savons que

{2,3,...,k} contient au plus un élément t tel que x, = y.. Soit J l'ensemble obtenu en 6tant t,

si un tel t existe, de {2,3,....k}. Nous avons J] = (k-1) - 1'=k-2. Puisque k>3 , J n'est

pas vide et la déclaration est démontrée.
Par construction, C; et C'; sont chacun de longueur supérieure 2 4 et inférieure a 2k (voir
figure 2). Ces deux cycles alternés élémentaires n'ont que l'arc (x,%y;) en commun. Cet arc

est arriere dans Cj et avant dans C' 5

+ yl- +
+€ —€ Xy

X m > N g |

L %
[

] .+
] ‘\

-£€ * +E
- C i
o1 ¥ 3 j
X1 - M Yo

+g N, A

\. 1

.‘ 1

C|‘ " i
+E J "‘ :—E

. [

+ '} X
S T >n < n,t
—€ ¥ " +€ )

J

Figure 2 : une translation sur C via des translations sur CetC
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Supposons maintenant que R' ait €t€ obtenu a partir de R via une translation admissible
de e sur C. Sie =0,iln'y arien a2 démontrer. Supposons maintenant que € > 0 (l'autre cas

¢tant symétrique).

Si R(x,,y;) > 0 alors nous pouvons trouver un entier n suffisamment grand tel que une
translation de &/n sur C; soit une translation admissible. Aprés cette premiére transformation,
I'exécution d'une translation de &/n est une translation admissible que C';. 1l est facile de voir

que, apres avoir répété n fois ces transformations, nous obtenons R'.

Si R(x;,y)) = 0 alors I'exécution d'une translation de € sur C'; est une translation
admissible. Apres cette premiére transformation, l'exécution d'une translation de € sur C; est
une translation admissible. Nous obtenons R' apres ces deux transformations. Ceci termine

la démonstration du lemme 7.2. O

Le lemme suivant €tablit un lien crucial entre translations admissibles sur les cycles

alternés élémentaires et flux sortants et entrants.

Lemme 7.3. Pour toutes relations valuées R et R', [S;(a,R) = S;(a,R") et Si(a,R)
= Sg(a,R’) pour tout a appartenant 4 A] < [R' peut étre obtenu a partir de R via
un nombre fini de translations admissibles sur des cycles alternés élémentaires].

Démonstration du lemme 7.3.

La partie <= est évidente. Afin de démontrer la partie =, supposons que nous ayons un R et

un R' pour lesquels S, (c,R) = S, (c,R")et Sg(c,R) = Sg(c,R") pourtoutc € A. SiR=R le

lemme est démontré. Si R # R' alors il existe a,b € A aveca = b tels que R(a,b) # R'(a,b)

et nous supposerons que R(a,b) > R'(a,b), I'autre cas étant symétrique. Dés lors, il existe d
€ A\{a} tel que R(a,d) < R'(a,d) sinon R(a,d) > R'(a,d) pour toutd e A\{ab}

et R(a,b) > R'(a,b) contredirait S (a,R) = S, (a,R"). En utilisant un argument similaire, il existe

unc e A\{d} tel que R(c,d) > R'(c,d). Ce procédé conduit & la construction d'une collection

ordonnée d'arcs de G [(a%, b), (a*,d), (c*,d)].
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En répétant le méme procéd€, nous créerons un cycle élémentaire de G puisque le nombre
d'actions est fini. Soit A le minimum sur les arcs (a*,b’) du cycle de |R(a,b) - R'(a,b) |- 1l
est facile de vérifier que l'addition de A sur les arcs du cycle tel que R(x,y) < R'(x,y) et la
soustraction de ce méme nombre sur les arcs du cycle tels que R(x,y) > R'(x,y) est une
translation admissible sur le cycle. Nous obtenons ainsi une relation valuée R,. Si R, =R/,
le lemme est démontré. Sinon, nous pouvons répéter le méme argument en commengant avec
R, au licu de R. Puisque A est fini, il y a seulement un nombre fini d'arcs tels que R(x,y) #
R'(x,y). Puisque, a chaque étape, le nombre d'arcs sur lesquels la relation courante et R' sont
différents est décroissant d'au moins une unité, ce procédé s'achévera aprés un nombre fini

d'étapes. Ceci termine la démonstration du lemme 7.3. O

Démonstration du théoréme 7.1.

Pour ¢tablir la premicre partie du théoréme, nous devons montrer que si > est non

discriminatoire, monotone et indépendant des translations sur les cycles alternés, alors

Si(aR) > Si(bR)et Sy@aR) > Sy(b,R) = ax>(R)b.

Montrons d'abord quesi > est non discriminatoire, monotone et indépendant des translations

sur les cycles alternés alors
S;(a,R) = S;(b,R) et Sp(a,R) = Si(b,R) = a=(R)b 4
Afin de démontrer (4) considérons une relation valuée R sur A telle que S;(a,R) = S;(b,R) et
Sk(a,R) = Sy(b,R) pour un a et un b de A. Définissons R" par

R(a,b) = R'(b,a) = (R(a,b) + R(b,a))/2,

R'(ac) = R'(b,c) = (R(a,c) + R(b,c))/2 pour tout ¢ € A\{a,b},
R'(c,a) = R'(c,b) = (R(c,a) + R(c,b))/2 pour tout ¢ € A\{a,b},

R'(c,d) = R(c,d) pour tout c,d e A\{a,b}
Il est clair que R” est une relation valuée sur A.

Nous avons R'(2,b) = R'(b,a), R'(a,c) = R'(b,c) et R'(c,a) = R'(c,b) pour tout ¢ € A\{a,b}.
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Donc la non discrimination implique a=(R")b.

Nous avons aussi S;(¢,R") = S (c,R) et Sg(c,R") = Sg(c,R) pour tout ¢ € A. Vu le lemme

7.3., nous savons que R” peut étre obtenu a partir de R via un nombre fini de translations sur

des cycles alternés €lémentaires. Vu le lemme 7.2., l'indépendance vis-a-vis des translations

sur les cycles alternés implique >(R) = >(R*). Donc a=(R)b, ce qui établit (4).

Montrons maintenant que si > est non discriminatoire, monotone et indépendant des
translations sur les cycles alternés alors

Si(aR) > S5/(b,R) et Si(a,R) > Si(b,R), une au moins de ces inégalités étant stricte,

= az(R)b, ©)
ce qui completera la démonstration de la premiére partie du théoréme.
Afin de démontrer (5), supposons que S;(a,R) > S;(b,R)etSy(a,R) > Sg(b,R), une au moins

de ces inégalités ¢tant stricte. Notons d; (R) = S;(a,R) - S;(b,R) et dg(R) = Si(a,R) - Sg(b,R),

c'est-a-dire

d@® = X R@ac)- ¥ Rbd

ceA\la} deA\b}

dR = ¥ Rdb) - ¥ Rca).

deA\{b} ceA\(a}

On ne peut avoir [R@a,c) = 0, R(c,a) = 1 ¥ ¢ € A\{a} et,R(bd) = 1, R(d,b) = 0 Vv

d e A\{b}] car cela entrainerait d;(R) = dg(R) = -(]A|-1)<O0.
Il est donc possible d'obtenir une relation valuée R™ identique a R sauf sur des couples du type
(a,0), (c,a) avec ¢ € A\{a}, (b,d), (d,b) avecd e A\{b}, telle que d;(R") = dx(R") = 0. Il

suffit en effet de diminuer lorsque c'est possible des valuations parmi R(a,c) et R(d,b) et/ou
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augmenter des valuations parmi R(c,a) et R(b,d) jusqu'a obtention d'une relation valuée R” sur

A qui puisse assurer d; (R") = dg(R") = 0. Cela étant, par (4), on a a=(R")b et des applications

répétées de la monotonie conduisent 2 a>(R)b. Ceci termine la démonstration de la premiére

partie du théoreme.

Afin de démontrer la seconde partic, nous devons montrer que si > est non

discriminatoire, strictement monotone et indépendant des translations sur les cycles alternés

alors :
S;(a,R) > S (b,R) et Sg(a,R) > Sg(b,R), une au moins de ces inégalités étant stricte,

= a>(R)b. 6)
Puisque la stricte monotonie implique la monotonie, nous savons que (4) reste vrai. Des lors
en utilisant la stricte monotonie au lieu de la monotonie dans la démonstration de (5), nous

voyons que (6) est vrai, ce qui complete la démonstration du théoréme 7.1. m
7.4. Une méthode fondée sur les produits sortants et entrants

Dans la section 3, nous avons présent€ une caractérisation de la méthode du rapport des
produits en nous basant sur la méthode du flot net. En utilisant une conversion semblable,

nous pouvons, a partir de la méthode L/E, donner une caractérisation axiomatique de la

méthode de rangement partiel suivante :

a2, (R)b ssi [Sp(a,R) > Spb,R) et S;(a,R) > Sy(b,R)]

ou Sy(a,b) = I, ,R(a,0) [produit sortant]

et Sp(a,b) = -1, R(C,a) [produit entrant]

Comme pour la méthode RP, nous faisons ici I'hypothése suivante :

Rxy)>0 vxy € A, x=y.
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Nous avons alors le résultat :

Théoreme 7.4. Si une méthode de rangement partiel > est non discriminatoire,
monotone et indépendante des homothéties sur les cycles alternés, alors pour toute
relation valuée R sur A, on a

[a>[,, (R)b = a>(R)b pour tout a,b appartenant a A].

En outre, si = est strictement monotone, alors pour toute relation valuée R sur A,
on a [a>p,, (R)b = a>(R)b pour tout a,b appartenant a Al].

La conversion des lemmes 7.2. et 7.3. ne posent pas de probleme. A noter cependant
que, pour la premicre partie de la démonstration du théoréme 7.4., il faut remplacer les

moyennes arithmétiques de la démonstration du théoréme 7.1. par des moyennes géométriques.
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8. UNE METHODE A SEUIL

Dans cette section, nous ferons I'hypothése que R est une relation probabiliste (R(a,b)

+ R(b,a) = 1). Introduisons un seuil A ¢ [0,1] et considérons la méthode » , définie par :

ax,(R)b ssi R(a,b) > A,

ou encore en posant R, = 2,(R),

aR, b ssi Ra,b) > 2°.

En notant P, = P,(R), I, = L(R) et J, = I,(R),

nous avons immédiatement, si A + u = 1,

a P,b ssiR(a,b) > A etR(a,b) > p,

alLb ssiA < R@b) < u,

al,b ssip < R(ab) <A
En particulier, I, = @ siA > Set], = Jsi A< .5

La proposition suivante précise certaines inclusions.

Proposition 8.1.

i) Pour tout seuil o appartenant a [0,A], on a
R,CR,I,CI,et], CJ,.
i) Si A > .5 alors pour tout seuil o appartenant a Ju,A], ona P, CP_.

iii)  Si A < .5 alors pour tout seuil « appartenant a Ju,1], on a P, C P,.

Démonstration de la proposition 8.1.

i) Démontrons la premiére inclusion. Ona(a,b) € Ry« R(@b) > A( > a)=(a,b) €

° Dans le cas d'un vote, si A = .8 par exemple, nous dirons que a est classé avant b s'il

est préféré a b pour 80% des é€lecteurs. Le cas particulier A = .5 correspond 2 la
méthode de la majorité par paires de Condorcet (voir section 4).
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R,. Les deux autres inclusions découlent immédiatement de la premiére.

1) Ona(ab) € P, =R, « R(ab) > A. Orh > aetA>1-a. Parconséquent, (a,b)

e P,.

1i1) Se démontre de la méme fagon que ii). a

En général, la méthode >, ne fournit pas un préordre. Cependant, sous certaines

conditions, la relation R, peut contenir un ordre total (relation binaire booléenne compléte
antisymétrique et transitive). Pour €clairer ce point, nous présentons les résultats suivants qui

ont €t€ introduits par Kohler en 1978.

Supposons que la relation R soit & valeurs dans l'ensemble des nombres rationnels™.

Soit alors Dy = [0, 1/N, 2/N,...,1] un découpage de [0,1] en N parties égales (N e N,) tel que

{R(xy) : x,y € A, x =y} C{0, 1/N, 2/N,...,1}.
Un tel découpage existe puisque A est fini''.

Notons A; = j/N et w, = 1-A pour tout j € {0,...,N}. Posons également § = 1/N.

Théoréme 8.2. [R;; contient un ordre total O] < [R,,,, ne contient pas de circuit].

Démonstration du théoréme 8.2.

Montrons d'abord que (a,b) € le = (ba) ¢ Rp,+5‘

Ona (gb)e le = R(a,b) > Aj = R(b,a) < p; = R(b,a)<p.j + 3 = (ba) ¢ Rp,+a

" Ce sera toujours le cas si R(a,b) est interprété comme le pourcentage de votants
déclarant que a est préféré ou indifférent a b.

" 11 suffit de prendre pour N le dénominateur commun des valeurs de R écrites sous
forme de fractions rationnelles irréductibles.
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Montrons que la condition est nécessaire (=>).

Soit a, class€ premier dans O. On a alors

(a,0) € O ¢ le V¢ eA\a} = (ca) ¢R ,, VceA\al

P'j*'b
Donc a, n'a pas de prédécesseur dans R ,.
1 B8

Soit a, classé€ second dans O. On a alors

(@) € O ¢ le V¢ € A\a,a,} = (ca) ¢ Rpj,d3 V ¢ € A\la,.a,).
Donc a, n'a pas de prédécesseur autre que a; dans RPJ*“‘ En poursuivant le raisonnement,

Rpj+6 est sans circuit.

Montrons que la condition est suffisante («<=). Comme RP .5+ ©st sans circuit, il existe un
j
. s 12 p
ordre total O qui étend Rp,+a‘ 02 Rp.j+6 ). Déslors,ona (a,b) € O=>(b,a) & Rpj+6'

(sinon (b,a) € O et O ne serait pas un ordre total),

= (a,b) € RA, O

Théoréme 8.3. Soit A, le plus grand A, tel que RM-_contienne un ordre total et u le
plus petit w; tel que R;,; soit sans circuit. Alors A + u = 1.

1l s'agit d'un résultat bien connu de la théorie des graphes : "La condition nécessaire
et suffisante pour qu'un graphe soit sans circuit est qu'il puisse €tre mis en ordre".
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Démonstration du théoréeme 8.3.

A existe car R, contient tous les ordres totaux et w existe car R,,, estvide donc sans circuit.

Cela ¢tant, 1-A est le plus petit y; tel que Rp,+a soit sans circuit. En effet, s'il y en avait

encore un plus petit que lui, par exemple 1-A-§, alors par le théoréme 8.2.,

R-

Z.s contiendrait un ordre total, ce qui est contraire a la définition de e O

Théoréeme 84. O DO R,,, < O C Ry

u+o

Démonstration du théoréme 8.4.
La partie = a déja été¢ démontrée (voir théoreme 8.2., partie <=).

Pour la partie <=, nous procédons par l'absurde. Supposons
p P P PP

i) (a,b) & O, cest-a-dire (b,a) € O C Ry, et donc R(b,a) > A,

ii) (a,b) € R'“B, c'est-a-dire R(a,b) 2 p o+ 8.

Au total, on a R(a,b) + R(a,b) > A + p+3d=1+3. o

Tout ordre total contenu dans Rj; (et qui contient donc Rya ) est appelé un ordre prudent.

Examinons un exemple. Soient A = {a,b,c,d} et R une relation probabiliste donnée par la

matrice a b c d
a 2 1 8
b| .8 4 3
c o0 6 1
d| 2 7 9
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Il est évident que le découpage D,y = [0,.1,.2,...,1] convient le mieux®>. On note alors que
les relations R, ;, R;, R, et R sont sans circuit et que R, contient le circuit
(b—>a—=d—b).

Nous avons donc u = .7 et =3

a b c d a b ¢ d
a 1 1 a O 1 1
R, b 0 0 R, bl 1 1 1
cl 0 O 0 cl 0 1 0
dj]o 1 1 djJ] o0 1 1

En conséquence, la relation R ; contient un ordre prudent® : b >a >d > c.

Par simple curiosité, utilisons la méthode du flot net. Verdict: a >d > b > c.

* On aura avantage 2 choisir un découpage Dy pour lequel N est le plus petit possible.
' Ici l'ordre prudent est unique, mais ce n'est pas le cas en général.
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9. RECHERCHES FUTURES

Comme nous l'avons déja mentionné précédemment, l'analyse faite ici n'est exhaustive
ni du point de vue des procédures, ni du point de vue des propriétés. En effet, nous pouvons
créer sans limite de nouvelles méthodes de rangement, ne serait-ce déja que par des
combinaisons convenables de méthodes existantes. Voici quelques procédures qu'il serait peut-
étre int€ressant d'étudier. Donnons-les au moyen d'une fonction de score :

S(a,R) = min R(a,c) - min R(c,a)

S(a,R) = min (R(a,c) - R(c,a))

S(a,R) = max R(a,c) - max R(c,a)

S(a,R) = max (R(a,c) - R(c,a))

Du point de vue des propri€tés, on pourrait en dégager de plus naturelles encore que
celles dont nous disposons. En effet, des propriétés relatives, par exemple, a des
transformations sur des circuits sont assez artificielles et avaient apparemment pour rdle de
compléter un ensemble d'axiomes pour établir une caractérisation.

En vue d'¢largir notre répertoire de propri€tés, nous pouvons considérer celles qui suivent :

1. Axiomes de négation, de symétrie et de dualité

A partir d'une relation valuée R sur A, on peut définir :
- la relation complémentaire R par R°(a,b) = 1-R(a,b);
- la relation réciproque R* par R(a,b) = R(b,a);
- la relation duale RY par Ra,b) = 1-R(b,a).

En particulier, R est une relation probabiliste ssi R = RY.

Une méthode de rangement > vérifie l'axiome de négation (resp. de symétrie, de dualité) ssi

pour toute relation valuée R sur A et tout a,b ¢ A,

' En abrégé, on écrit R® = 1-R et R = 1-R™.
A noter que (R")* =R et (R = R")* = R%.
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a>(Rb < bz2(R%a (resp. b>(R Va, a=(Rb).

Il est clair que si une méthode de rangement > vérifie deux de ces trois axiomes, alors elle

vérifie le troisiéme.

2. Axiome d'homogénéité

Une méthode de rangement > est dite homogeéne ssi pour toute relation valuée R sur

A,touta,b € Aettoutt € ]0,1] :

a>(R)b = a>(tR)b

3. Axiome d'universalité

Une méthode de rangement > est dite universelle si elle est définie pour toute relation

valuée sur A. Cet axiome est incontournable et doit étre vérifié en priorité au méme titre que
la neutralit€ qui, rappelons-le, interdit un traitement partial des actions permettant de privilégier
ou d'handicaper certains éléments de A identifiés par leurs labels. La condition d'universalité
est nécessaire si on veut pouvoir appliquer la méthode systématiquement, méme dans le cas

de préférences cycliques.

4. Indépendance par rapport aux actions non discriminantes

L'axiome d'indépendance par rapport aux actions non discriminantes consiste 2

demander que la position respective de a et b dans >(R) ne dépende en aucune maniére des

actions tierces ¢ € A\{a,b} qui se comparent de la méme fagon a a et 2 b. Nous pouvons le

formaliser comme suit :
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[WBCA, (Vbb € B, Vc e AB, R(bc) = R(b',c) et R(c,b) = R(c,b))

= 2(R/B) = 2(R)/B]

ou X/B représente la restriction d'une relation X au sous-ensemble B.

5. Respect des données

Le support d'une relation valuée R sur A est la relation booléenne Supp(R) sur A,
définie par
a Supp(R)b ssi R(a,b) = 0.

Cela étant, l'axiome de respect des données consiste a demander que la méthode de

rangement > ne crée pas d'information inutile, lorsqu'il est possible d'obtenir un préordre qui

respecte l'information contenue dans R. Plus précisément, si Supp(R) est un préordre, alors

la méthode de rangement > doit fournir un préordre >(R) contenu dans Supp(R) :

[Supp(R) est un préordre = >(R) € Supp(R)]

6. Respect de la relation de couverture

L'axiome de respect de la relation de couverture consiste 2 demander que, si d'aprés

la relation R, une action a se comporte systématiquement au moins aussi bien qu'une action

b vis-a-vis de toute action tierce ¢ € A\{a,b}, alors a doit étre placé au moins aussi bien que

b dans le classement final. Formellement, considérons la relation de couverture sur A notée

C, définie par :
Va,b e A,aC,b<=[Vc € A R(,b) > R(ca)etR(@ac) > R(b,e)]
La condition de respect de la couverture s'écrit alors :

Vab € A,aCib=[vc € A, (c 2(R) b=c >(R) a)et(a >(R) c=b >(R) c)]
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7. Indépendance par rapport aux extrémes

Cet axiome consiste a demander que lorsqu'on applique la méthode > 2 une relation

R, et que I'on supprime l'ensemble des actions qui figurent en t€te dans >(R) , on obtienne

le méme résultat qu'en supprimant directement ces éléments avant d'appliquer > . Vérifier

cet axiome permet par exemple de se prémunir d'un désistement des candidats en téte de
classement.

Formellement, nous pouvons écrire la condition suivante :

VBCA,[Vb € B,Va ¢ A\B, non a>(R)b] ou

[Vb € B,Va € A\B, non b>[R)a] = [ >(R/(A\B)) = 2(R)/(A\B) |

Cette condition peut €tre éventuellement renforcée si on impose qu'elle soit également vérifiée
lorsque seulement une partie de la classe de téte se désiste.
Cette condition ne doit pas €tre confondue avec la condition d'indépendance par rapport aux

actions non discriminantes. En effet, s'il est vrai que les actions de B se comparent de la

méme fagon vis-a-vis des actions de A\B, c'est ici au sens de la relation >(R) et non pas de

la relation R.

Pour terminer, nous présentons ici un tableau synthétique recensant différentes méthodes de
rangement ainsi que leur comportement vis-a-vis de certains axiomes. Nous pouvons ainsi
mieux déceler d'éventuelles relations de dominance entre les procédures analysées.

Commengons par numéroter quelques axiomes que nous connaissons déja :

Al Neutralité

A2. Non discrimination
A3.1. Monotonie

A3.2. Stricte monotonie

A33 Monotonie sur les lignes
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A3.4.
A4
AS.
A.6.1.
A.6.2.
A7.1.
A7.2.
A7.3.
A8.1.
A8.2.
A.8.3.
A8.4.
A9.1.
A9.2.
A9.3.
A9.4.
A9.5.
A9.6.
A10.1.
A.10.2.
A.10.3.
All.
A.12.

Monotonie sur les colonnes

Ordinalité

Continuité

Egalitarisme sur les lignes

Egalitarisme sur les colonnes

Définition sur les flux sortants

Définition sur les flux entrants

Définition sur les flux

L-Renversement faible des préférences

E-Renversement faible des préférences

L-Renversement strict des préférences

E-Renversement strict des préférences

Indépendance vis-a-vis des translations sur les circuits
Indépendance vis-a-vis des homothéties sur les circuits
Indépendance vis-a-vis des L-translations sur une paire d'actions
Indépendance vis-a-vis des E-translations sur une paire d'actions
Indépendance vis-a-vis des L-homothéties sur une paire d'actions
Indépendance vis-a-vis des E-homothéties sur une paire d'actions
Négation

Symétrie

Dualité

Homoggénéité

Universalité

Procédons de méme pour quelques méthodes de rangement :

M.1.1.
M.1.2.
M.1.3.
M.2.1.
M.2.2.
M.2.3.
M.3.1.

Flux sortant (L)

Flux entrant (E)

Flot Net (NF)

Produit sortant (IT")
Produit entrant (IT)
Rapport des produits (RP)

Minimum sortant (min)
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M.3.2. Minimum entrant (min,-)

M.4.1. Maximum sortant (max)
M.4.2. Maximum entrant (max,-)

M.S. Minimum lexicographique (ml)
M.6. Indifférence (I)

M.7. Copeland (CP)

Le tableau ci-dessous indique les propri€tés satisfaites par les procédures de rangement ("N"
signifie que la propriété n'est pas satisfaite; I'absence de "N" signifie que la propriété est

satisfaite). Les démonstrations et contre-exemples sont connus ou faciles a établir.
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Méthodes
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