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Boolean and pseudo-Boolean functions

Boolean functions:

f ∶ {0,1}n → {0,1}

Pseudo-Boolean functions:

f ∶ {0,1}n → R

Set functions: [n] = {1, . . . ,n}

f ∶2[n] → {0,1}
f ∶2[n] → R



Set functions

A discrete fuzzy measure on the finite set X = {1, . . . ,n} is a
nondecreasing set function µ∶2X → [0,1] satisfying the conditions
µ(∅) = 0 and µ(X ) = 1

Interpretation:
For any subset S ⊆ X , the number µ(S) can be interpreted as the
certitude that we have that a variable will take on its value in the
set S ⊆ X



Set functions

A cooperative game on a finite set of players N = {1, . . . ,n} is a
set function v ∶2N → R which assigns to each coalition S ⊆ N of
players a real number v(S) which represents the worth of S

The game is said to be simple if v takes on its values in {0,1}

The structure of a semicoherent system made up of n components
is a set function φ∶2[n] → {0,1} ...



Power indexes

Let v ∶2N → R be a game on a set N = {1, . . . ,n} of players
Let j ∈ N be a player

Banzhaf power index (Banzhaf, 1965)

ψB(v , j) = 1

2n−1 ∑
S⊆N∖{j}

(v(S ∪ {j}) − v(S))

Shapley power index (Shapley, 1953)

ψSh(v , j) = ∑
S⊆N∖{j}

1

n (n−1
∣S ∣

)
(v(S ∪ {j}) − v(S))



Cardinality index

Let µ∶2X → R be a fuzzy measure on a set X = {1, . . . ,n} of values
Let k ∈ {0, . . . ,n − 1}

Cardinality index (Yager, 2002)

Ck = 1

(n − k)(nk)
∑
S⊆X
∣S ∣=k

∑
x∈X∖S

(µ(S ∪ {x}) − µ(S))

Interpretation:
Ck is the average gain in certitude that we obtain by adding an
arbitrary element to an arbitrary k-element subset



Cardinality index

Alternative formulation (game theory notation)

Ck = 1

(n − k)(nk)
∑
∣S ∣=k

∑
j∈N∖S

(v(S ∪ {j}) − v(S))

Ck = 1

( n
k+1

) ∑
∣S ∣=k+1

v(S) − 1

(n
k
) ∑

∣S ∣=k

v(S)

Interpretation:
Ck is the average gain that we obtain by adding an arbitrary player
to an arbitrary k-player coalition

...when compared with the Banzhaf power index...

ψB(v , j) = 1

2n−1 ∑
S∋j

v(S) − 1

2n−1 ∑
S/∋j

v(S)



Introduction to network reliability



System

Definition. A system consists of several interconnected units

Assumptions:

1 The system and the units are of the crisply on/off kind

2 A serially connected segment of units is functioning if and
only if every single unit is functioning

1 2 3r r
3 A system of parallel units is functioning if and only at least

one unit is functioning

3

2

1

r r



System

Example. Home video system

1. Blu-ray player
2. DVD player
3. LCD monitor
4. Amplifier
5. Speaker A
6. Speaker B

2

1

3 4

6

5r r



Structure function

Definition.
The state of a component j ∈ [n] = {1, . . . ,n} can be represented
by a Boolean variable

xj =
⎧⎪⎪⎨⎪⎪⎩

1 if component j is functioning

0 if component j is in a failed state

The state of the system is described from the component states
through a Boolean function φ ∶ {0,1}n → {0,1}

φ(x1, . . . , xn) =
⎧⎪⎪⎨⎪⎪⎩

1 if the system is functioning

0 if the system is in a failed state

This function is called the structure function of the system



Structure function
Series structure

1 2 3r r
φ(x1, x2, x3) = x1 x2 x3 =

3

∏
j=1

xj

Parallel structure

3

2

1

r r

φ(x1, x2, x3) = 1 − (1 − x1)(1 − x2)(1 − x3) =
3

∐
j=1

xj



Structure function

Home video system
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φ(x1, . . . , x6) = (x1 ∐ x2) x3 x4 (x5 ∐ x6)



Lifetimes

Notation

1 Tj = lifetime of component j ∈ [n]
2 T = lifetime of the system

We assume that the component lifetimes T1, . . . ,Tn

are continuous and i.i.d.



Barlow-Proschan importance index

Importance index (Barlow-Proschan, 1975)

I
(j)
BP = Pr(T = Tj) j ∈ [n]

I
(j)
BP is a measure of importance of component j

In the i.i.d. case:

I
(j)
BP = ∑

S⊆[n]∖{j}

1

n (n−1
∣S ∣

)
(φ(S ∪ {j}) −φ(S)) = ψSh(φ, j)



System signature

Let T(1) ⩽ ⋯ ⩽ T(n) be the order statistics obtained from the
variables T1, . . . ,Tn

System signature (Samaniego, 1985)

sk = Pr(T = T(k)) k = 1, . . . ,n

In the i.i.d. case (Boland, 2001)

sk = 1

( n
n−k+1

) ∑
S⊆[n]

∣S ∣=n−k+1

φ(S) − 1

( n
n−k

) ∑
S⊆[n]
∣S ∣=n−k

φ(S) = Cn−k



B-P importance index and system signature

Series structure

1 2 3r r

IBP = ( 1

3
,

1

3
,

1

3
) s = (1,0,0)



B-P importance index and system signature

Home video system
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IBP = ( 1
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Manual computation of the cardinality index



Manual computation

Any set function f ∶2[n] → R can be represented as a multilinear
polynomial

f (x1, . . . , xn) = ∑
S⊆[n]

f (S) ∏
j∈S

xj ∏
j∈[n]∖S

(1 − xj)

f (x1, . . . , xn) = ∑
S⊆[n]

c(S) ∏
j∈S

xj



Manual computation

The multilinear extension of f (Owen, 1972) is the function
f ∶ [0,1]n → R defined by

f (x1, . . . , xn) = ∑
S⊆[n]

f (S) ∏
j∈S

xj ∏
j∈[n]∖S

(1 − xj)

f (x1, . . . , xn) = ∑
S⊆[n]

c(S) ∏
j∈S

xj

Example:
max(x1, x2) = x1 ∐ x2 = 1 − (1 − x1)(1 − x2) = x1 + x2 − x1x2



Manual computation: Banzhaf and Shapley power indexes

ψB(f , j) = ( ∂

∂xj
f )(1

2 , . . . ,
1
2
)

ψSh(f , j) = ∫
1

0
( ∂

∂xj
f )(x , . . . , x)dx

(Owen, 1972)



Manual computation: Cardinality index

With any n-degree polynomial p∶R→ R we associate the reflected
polynomial Rnp∶R→ R defined by

(Rnp)(x) = xn p( 1
x
)

p(x) = a0+a1 x+⋯+an xn ⇒ (Rnp)(x) = an+an−1 x+⋯+a0 xn

(M. and Mathonet, 2013)

Setting p(x) = d
dx

(f (x , . . . , x)), we have

(Rn−1p)(x + 1) =
n

∑
k=1

sk (n

k
) k xk−1



Manual computation: Cardinality index

Example. Home video system

φ(x1, . . . , x6) = (x1 ∐ x2) x3 x4 (x5 ∐ x6)

φ(x1, . . . , x6) = x1x3x4x5 + x2x3x4x5 + x1x3x4x6 + x2x3x4x6

−x1x2x3x4x5 − x1x2x3x4x6 − x1x3x4x5x6 − x2x3x4x5x6

+x1x2x3x4x5x6

φ(x , . . . , x) = 4x4 − 4x5 + x6



Manual computation: Cardinality index

φ(x , . . . , x) = 4x4 − 4x5 + x6

p(x) = d
dx

(φ(x , . . . , x)) = 16x3 − 20x4 + 6x5

(R5p)(x) = 6 − 20x + 16x2

(R5p)(x +1) = 2+12x +16x2 = s1 (6

1
)+s2 (6

2
)2 x +s2 (6

3
)3 x2+⋯

⇒ s = (1
3 ,

2
5 ,

4
15 ,0,0,0)

⇒ C = (0,0,0, 4
15 ,

2
5 ,

1
3
)



Least squares approximation problems



Least squares approximation problems

Denote by V the set of games g on N of the form

g(x) = c0 + ∑
j∈N

cj xj , c0, c1, . . . , cn ∈ R

Approximation problem (Hammer and Holzman, 1992)
Given a game f on N, the best first-degree approximation of f is
the game f ∗ on N that minimizes the square distance

∥f − g∥2 = ∑
x∈{0,1}n

(f (x) − g(x))2

from among all games g ∈ V .

We have
c∗j = ψB(f , j) j ∈ N



Least squares approximation problems

Denote by Vc the set of games g on N of the form

g(x) = ∑
j∈N

cj xj such that g(1, . . . ,1) = f (1, . . . ,1)

Approximation problem (Charnes et al., 1988)
For a given game f on N, the best c-approximation of f is the
unique game f ∗ on N that minimizes the square distance

∥f − g∥2
c = ∑

T⊆N

1

( n−2
∣T ∣−1

)
(f (T ) − g(T ))2

from among all games g ∈ Vc .

We have
c∗j = ψSh(f , j) j ∈ N



Least squares approximation problems

Denote by Vs the set of symmetric games g on N, that is, of the
form

g(x) = c0 +
n

∑
k=1

ck x(k) , c0 = 0

Approximation problem (M. and Mathonet, 2012)
For a given game f on N, the best symmetric approximation of f
is the unique game f ∗ on N that minimizes the square distance

∥f − g∥2
s = ∑

T⊆N

1

( n
∣T ∣

)
(f (T ) − g(T ))2

from among all games g ∈ Vs .

We have
c∗k = sk = Cn−k k = 1, . . . ,n



Thank you for your attention!

arXiv : 1004.2593


