

On the cardinality index of fuzzy measures and the signatures of coherent systems

Jean-Luc Marichal* and Pierre Mathonet**

*University of Luxembourg, Luxembourg

**University of Liège, Belgium

Boolean and pseudo-Boolean functions

Boolean functions:

$$f: \{0, 1\}^n \rightarrow \{0, 1\}$$

Pseudo-Boolean functions:

$$f: \{0, 1\}^n \rightarrow \mathbb{R}$$

Set functions: $[n] = \{1, \dots, n\}$

$$f: 2^{[n]} \rightarrow \{0, 1\}$$
$$f: 2^{[n]} \rightarrow \mathbb{R}$$

Set functions

A *discrete fuzzy measure* on the finite set $X = \{1, \dots, n\}$ is a nondecreasing set function $\mu: 2^X \rightarrow [0, 1]$ satisfying the conditions $\mu(\emptyset) = 0$ and $\mu(X) = 1$

Interpretation:

For any subset $S \subseteq X$, the number $\mu(S)$ can be interpreted as the certitude that we have that a variable will take on its value in the set $S \subseteq X$

Set functions

A *cooperative game* on a finite set of players $N = \{1, \dots, n\}$ is a set function $v: 2^N \rightarrow \mathbb{R}$ which assigns to each coalition $S \subseteq N$ of players a real number $v(S)$ which represents the *worth* of S

The game is said to be *simple* if v takes on its values in $\{0, 1\}$

The *structure of a semicoherent system* made up of n components is a set function $\phi: 2^{[n]} \rightarrow \{0, 1\}$...

Power indexes

Let $v: 2^N \rightarrow \mathbb{R}$ be a game on a set $N = \{1, \dots, n\}$ of players
Let $j \in N$ be a player

Banzhaf power index (Banzhaf, 1965)

$$\psi_B(v, j) = \frac{1}{2^{n-1}} \sum_{S \subseteq N \setminus \{j\}} (v(S \cup \{j\}) - v(S))$$

Shapley power index (Shapley, 1953)

$$\psi_{Sh}(v, j) = \sum_{S \subseteq N \setminus \{j\}} \frac{1}{n \binom{n-1}{|S|}} (v(S \cup \{j\}) - v(S))$$

Cardinality index

Let $\mu: 2^X \rightarrow \mathbb{R}$ be a fuzzy measure on a set $X = \{1, \dots, n\}$ of values

Let $k \in \{0, \dots, n-1\}$

Cardinality index (Yager, 2002)

$$C_k = \frac{1}{(n-k)\binom{n}{k}} \sum_{\substack{S \subseteq X \\ |S|=k}} \sum_{x \in X \setminus S} (\mu(S \cup \{x\}) - \mu(S))$$

Interpretation:

C_k is the average gain in certitude that we obtain by adding an arbitrary element to an arbitrary k -element subset

Cardinality index

Alternative formulation (game theory notation)

$$C_k = \frac{1}{(n-k)\binom{n}{k}} \sum_{|S|=k} \sum_{j \in N \setminus S} (v(S \cup \{j\}) - v(S))$$

$$C_k = \frac{1}{\binom{n}{k+1}} \sum_{|S|=k+1} v(S) - \frac{1}{\binom{n}{k}} \sum_{|S|=k} v(S)$$

Interpretation:

C_k is the average gain that we obtain by adding an arbitrary player to an arbitrary k -player coalition

...when compared with the Banzhaf power index...

$$\psi_B(v, j) = \frac{1}{2^{n-1}} \sum_{S \ni j} v(S) - \frac{1}{2^{n-1}} \sum_{S \neq j} v(S)$$

Introduction to network reliability

System

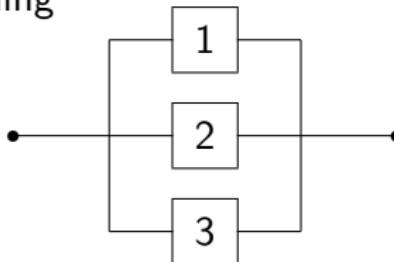
Definition. A *system* consists of several interconnected units

Assumptions:

- ① The system and the units are of the crisply *on/off* kind
- ② A serially connected segment of units is functioning if and only if every single unit is functioning



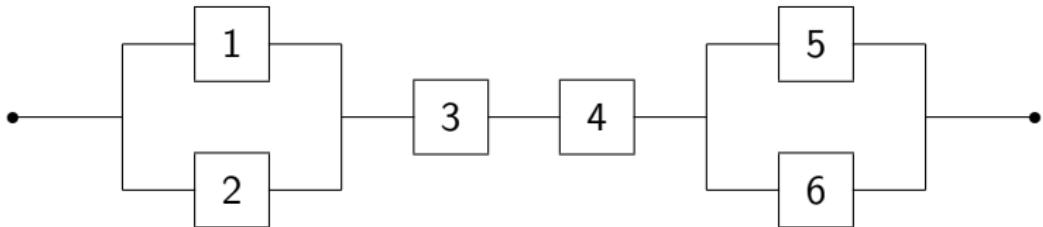
- ③ A system of parallel units is functioning if and only at least one unit is functioning



System

Example. Home video system

1. Blu-ray player
2. DVD player
3. LCD monitor
4. Amplifier
5. Speaker A
6. Speaker B



Structure function

Definition.

The *state of a component* $j \in [n] = \{1, \dots, n\}$ can be represented by a Boolean variable

$$x_j = \begin{cases} 1 & \text{if component } j \text{ is functioning} \\ 0 & \text{if component } j \text{ is in a failed state} \end{cases}$$

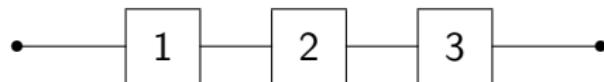
The *state of the system* is described from the component states through a Boolean function $\phi : \{0, 1\}^n \rightarrow \{0, 1\}$

$$\phi(x_1, \dots, x_n) = \begin{cases} 1 & \text{if the system is functioning} \\ 0 & \text{if the system is in a failed state} \end{cases}$$

This function is called the *structure function* of the system

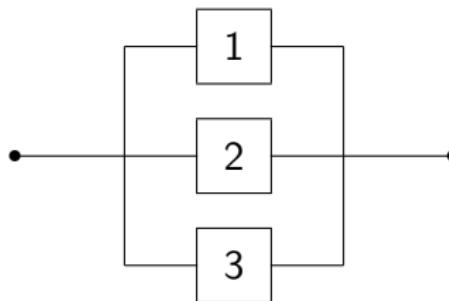
Structure function

Series structure



$$\phi(x_1, x_2, x_3) = x_1 x_2 x_3 = \prod_{j=1}^3 x_j$$

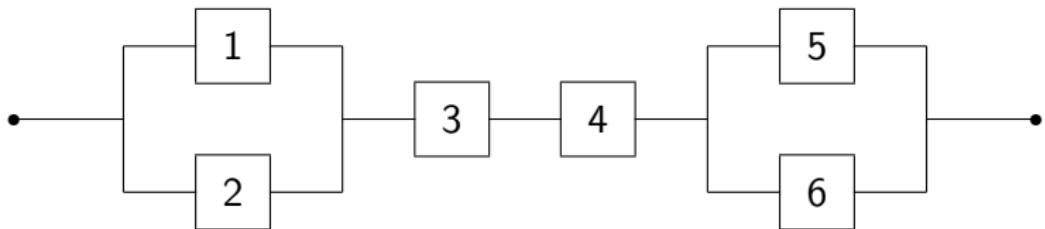
Parallel structure



$$\phi(x_1, x_2, x_3) = 1 - (1 - x_1)(1 - x_2)(1 - x_3) = \prod_{j=1}^3 x_j$$

Structure function

Home video system



$$\phi(x_1, \dots, x_6) = (x_1 \sqcup x_2) \ x_3 \ x_4 \ (x_5 \sqcup x_6)$$

Lifetimes

Notation

- ① T_j = *lifetime* of component $j \in [n]$
- ② T = *lifetime* of the system

We assume that the component lifetimes T_1, \dots, T_n are continuous and i.i.d.

Barlow-Proschan importance index

Importance index (Barlow-Proschan, 1975)

$$I_{\text{BP}}^{(j)} = \Pr(T = T_j) \quad j \in [n]$$

$I_{\text{BP}}^{(j)}$ is a measure of importance of component j

In the i.i.d. case:

$$I_{\text{BP}}^{(j)} = \sum_{S \subseteq [n] \setminus \{j\}} \frac{1}{n \binom{n-1}{|S|}} (\phi(S \cup \{j\}) - \phi(S)) = \psi_{\text{Sh}}(\phi, j)$$

System signature

Let $T_{(1)} \leq \dots \leq T_{(n)}$ be the order statistics obtained from the variables T_1, \dots, T_n

System signature (Samaniego, 1985)

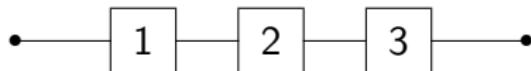
$$s_k = \Pr(T = T_{(k)}) \quad k = 1, \dots, n$$

In the i.i.d. case (Boland, 2001)

$$s_k = \frac{1}{\binom{n}{n-k+1}} \sum_{\substack{S \subseteq [n] \\ |S|=n-k+1}} \phi(S) - \frac{1}{\binom{n}{n-k}} \sum_{\substack{S \subseteq [n] \\ |S|=n-k}} \phi(S) = C_{n-k}$$

B-P importance index and system signature

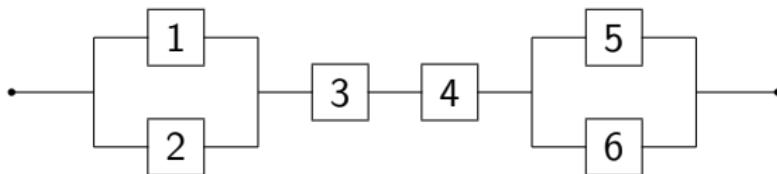
Series structure



$$I_{BP} = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3} \right) \quad s = (1, 0, 0)$$

B-P importance index and system signature

Home video system



$$I_{BP} = \left(\frac{1}{15}, \frac{1}{15}, \frac{11}{30}, \frac{11}{30}, \frac{1}{15}, \frac{1}{15} \right)$$

$$s = \left(\frac{1}{3}, \frac{2}{5}, \frac{4}{15}, 0, 0, 0 \right)$$

Manual computation of the cardinality index

Manual computation

Any set function $f:2^{[n]} \rightarrow \mathbb{R}$ can be represented as a multilinear polynomial

$$f(x_1, \dots, x_n) = \sum_{S \subseteq [n]} f(S) \prod_{j \in S} x_j \prod_{j \in [n] \setminus S} (1 - x_j)$$

$$f(x_1, \dots, x_n) = \sum_{S \subseteq [n]} c(S) \prod_{j \in S} x_j$$

Manual computation

The *multilinear extension* of f (Owen, 1972) is the function $\bar{f}: [0, 1]^n \rightarrow \mathbb{R}$ defined by

$$\bar{f}(x_1, \dots, x_n) = \sum_{S \subseteq [n]} f(S) \prod_{j \in S} x_j \prod_{j \in [n] \setminus S} (1 - x_j)$$

$$\bar{f}(x_1, \dots, x_n) = \sum_{S \subseteq [n]} c(S) \prod_{j \in S} x_j$$

Example:

$$\max(x_1, x_2) = x_1 \sqcup x_2 = 1 - (1 - x_1)(1 - x_2) = x_1 + x_2 - x_1 x_2$$

Manual computation: Banzhaf and Shapley power indexes

$$\psi_B(f, j) = \left(\frac{\partial}{\partial x_j} \bar{f} \right) \left(\frac{1}{2}, \dots, \frac{1}{2} \right)$$

$$\psi_{Sh}(f, j) = \int_0^1 \left(\frac{\partial}{\partial x_j} \bar{f} \right) (x, \dots, x) dx$$

(Owen, 1972)

Manual computation: Cardinality index

With any n -degree polynomial $p: \mathbb{R} \rightarrow \mathbb{R}$ we associate the *reflected* polynomial $R^n p: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$(R^n p)(x) = x^n p\left(\frac{1}{x}\right)$$

$$p(x) = a_0 + a_1 x + \cdots + a_n x^n \Rightarrow (R^n p)(x) = a_n + a_{n-1} x + \cdots + a_0 x^n$$

(M. and Mathonet, 2013)

Setting $p(x) = \frac{d}{dx}(\bar{f}(x, \dots, x))$, we have

$$(R^{n-1} p)(x+1) = \sum_{k=1}^n s_k \binom{n}{k} k x^{k-1}$$

Manual computation: Cardinality index

Example. Home video system

$$\phi(x_1, \dots, x_6) = (x_1 \sqcup x_2) \ x_3 \ x_4 \ (x_5 \sqcup x_6)$$

$$\begin{aligned}\overline{\phi}(x_1, \dots, x_6) &= x_1 x_3 x_4 x_5 + x_2 x_3 x_4 x_5 + x_1 x_3 x_4 x_6 + x_2 x_3 x_4 x_6 \\ &\quad - x_1 x_2 x_3 x_4 x_5 - x_1 x_2 x_3 x_4 x_6 - x_1 x_3 x_4 x_5 x_6 - x_2 x_3 x_4 x_5 x_6 \\ &\quad + x_1 x_2 x_3 x_4 x_5 x_6\end{aligned}$$

$$\overline{\phi}(x, \dots, x) = 4x^4 - 4x^5 + x^6$$

Manual computation: Cardinality index

$$\bar{\phi}(x, \dots, x) = 4x^4 - 4x^5 + x^6$$

$$p(x) = \frac{d}{dx}(\bar{\phi}(x, \dots, x)) = 16x^3 - 20x^4 + 6x^5$$

$$(R^5 p)(x) = 6 - 20x + 16x^2$$

$$(R^5 p)(x+1) = 2 + 12x + 16x^2 = s_1 \binom{6}{1} + s_2 \binom{6}{2} 2x + s_2 \binom{6}{3} 3x^2 + \dots$$

$$\Rightarrow s = \left(\frac{1}{3}, \frac{2}{5}, \frac{4}{15}, 0, 0, 0 \right)$$

$$\Rightarrow C = \left(0, 0, 0, \frac{4}{15}, \frac{2}{5}, \frac{1}{3} \right)$$

Least squares approximation problems

Least squares approximation problems

Denote by V the set of games g on N of the form

$$g(\mathbf{x}) = c_0 + \sum_{j \in N} c_j x_j, \quad c_0, c_1, \dots, c_n \in \mathbb{R}$$

Approximation problem (Hammer and Holzman, 1992)

Given a game f on N , the *best first-degree approximation* of f is the game f^* on N that minimizes the square distance

$$\|f - g\|^2 = \sum_{\mathbf{x} \in \{0,1\}^n} (f(\mathbf{x}) - g(\mathbf{x}))^2$$

from among all games $g \in V$.

We have

$$c_j^* = \psi_B(f, j) \quad j \in N$$

Least squares approximation problems

Denote by V_c the set of games g on N of the form

$$g(\mathbf{x}) = \sum_{j \in N} c_j x_j \quad \text{such that } g(1, \dots, 1) = f(1, \dots, 1)$$

Approximation problem (Charnes et al., 1988)

For a given game f on N , the *best c-approximation* of f is the unique game f^* on N that minimizes the square distance

$$\|f - g\|_c^2 = \sum_{T \subseteq N} \frac{1}{\binom{n-2}{|T|-1}} (f(T) - g(T))^2$$

from among all games $g \in V_c$.

We have

$$c_j^* = \psi_{\text{Sh}}(f, j) \quad j \in N$$

Least squares approximation problems

Denote by V_s the set of *symmetric* games g on N , that is, of the form

$$g(\mathbf{x}) = c_0 + \sum_{k=1}^n c_k x_{(k)}, \quad c_0 = 0$$

Approximation problem (M. and Mathonet, 2012)

For a given game f on N , the *best symmetric approximation* of f is the unique game f^* on N that minimizes the square distance

$$\|f - g\|_s^2 = \sum_{T \subseteq N} \frac{1}{\binom{n}{|T|}} (f(T) - g(T))^2$$

from among all games $g \in V_s$.

We have

$$c_k^* = s_k = C_{n-k} \quad k = 1, \dots, n$$

Thank you for your attention!

arXiv : 1004.2593