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Abstract

This paper presents a synthesis on the essential mathematical properties of Cho-
quet and Sugeno integrals viewed as aggregation functions. Some axiomatic character-
izations are presented. Subfamilies of the class of those integrals are also investigated.

1 Introduction

Aggregation is a process that is used in many technologies. In the aggregation process
we associate with a collection of values, called the arguments, a single value called the
aggregated value. In decision making, values to be aggregated are typically preference or
satisfaction degrees, see e.g. [6].

In this paper, we present some axiomatic characterizations on the well-known Choquet
and Sugeno integrals. These integrals, which can be regarded as aggregation functions,
have been used in many applications, see [11, 12, 15] for more details.

Let us introduce the concept of aggregation function in a formal way. We make a
distinction between aggregation functions having one definite number of arguments and
aggregation operators (or aggregators) defined for all number of arguments.

Let E be a non-empty real interval, finite or infinite, representing the definition set of
the values to be aggregated. Let IN0 denote the set of strictly positive integers.

Definition 1.1 An aggregation function is a function M (n) : En → IR, where n ∈ IN0.

The integer n represents the number of values to be aggregated. When no confusion
can arise, the aggregation functions will be written M instead of M (n).

Definition 1.2 An aggregation operator is a sequence M = (M (n))n∈IN0 whose the nth
element is an aggregation function M (n) : En → IR.

Of course, an aggregation operator can be viewed as a mapping M :
⋃

n∈IN0
En → IR.

For every n ∈ IN0, we then have M(x) = M (n)(x) for all x ∈ En.
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An(E, IR) will denote the set of all aggregation functions from En to IR. Likewise,
A(E, IR) will denote the set of all aggregation operators whose the nth element is in
An(E, IR).

In order to avoid heavy notation, we introduce the following terminology. It will be
used all along this paper.

• We will use the notation N for the set {1, . . . , n}. In a decision making problem,
elements of N generally represent criteria, attributes or voters.

• Πn denotes the set of permutations of N .

• Given a vector (x1, . . . , xn) ∈ En, let (·) be the permutation on N which arranges the
elements of this vector by increasing values: that is, x(1) ≤ . . . ≤ x(n).

• For any permutation π ∈ Πn and any vector x ∈ En, [x1, . . . , xn]π represents the
vector (xπ(1), . . . , xπ(n)).

• For any subset S ⊆ N , eS is the characteristic vector of S, i.e. the vector of {0, 1}n

whose ith component is 1 if and only if i ∈ S. Geometrically, the characteristic vectors
are the 2n vertices of the hypercube [0, 1]n.

• ∧,∨ denote respectively the minimum and maximum operations.

• For all subsets K,T ⊆ N , the notation K ⊆/ T means K ⊂ T and K 6= T .

In order to define the Choquet and Sugeno integrals, we use the concept of fuzzy measure.

Definition 1.3 A (discrete) fuzzy measure on N is a set function µ : 2N → [0, 1] satisfying
the following conditions:

i) µ(∅) = 0, µ(N) = 1,
ii) S ⊆ T ⇒ µ(S) ≤ µ(T ).

µ(S) can be viewed as the weight of importance of the set of elements S. Throughout
this paper, we will often write µS instead of µ(S).

Definition 1.4 A pseudo-Boolean function is a function f : {0, 1}n → IR.

Any fuzzy measure µ : 2N → IR can be assimilated unambigously with an increasing
pseudo-Boolean function fulfilling the boundary conditions f(0, . . . , 0) = 0 and f(1, . . . , 1) =
1. The correspondance is straightforward: we have

f(x) =
∑

T⊆N

µ(T )
∏

i∈T

xi

∏

i/∈T

(1− xi), x ∈ {0, 1}n,

and µ(S) = f(eS) for all S ⊆ N . We shall henceforth make this identification.
Hammer and Rudeanu [16] showed that any pseudo-Boolean function has a unique

expression as a multilinear polynomial in n variables:

f(x) =
∑

T⊆N

a(T )
∏

i∈T

xi, x ∈ {0, 1}n,
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with a(T ) ∈ IR.
In combinatorics, a viewed as a set function on N is called the Möbius transform of µ

(see e.g. Rota [25]), which is given by

a(S) =
∑

T⊆S

(−1)|S|−|T |µ(T ), S ⊆ N.

The inverse transformation is then given by:

µ(S) =
∑

T⊆S

a(T ), S ⊆ N.

We now introduce the concept of discrete Choquet and Sugeno integrals, viewed as
aggregation functions. For this reason, we will adopt a connective-like notation instead of
the usual integral form, and the integrand will be a set of n values x1, . . . , xn. For theorical
developments, see [14, 22, 28, 29].

Definition 1.5 Assume that E ⊇ [0, 1]. Let (x1, . . . , xn) ∈ En, and µ a fuzzy measure on
N . The (discrete) Choquet integral of (x1, . . . , xn) with respect to µ is defined by

Cµ(x1, . . . , xn) :=
n∑

i=1

x(i)[µ{(i),...,(n)} − µ{(i+1),...,(n)}].

Definition 1.6 Let (x1, . . . , xn) ∈ [0, 1]n, and µ a fuzzy measure on N . The (discrete)
Sugeno integral of (x1, . . . , xn) with respect to µ is defined by

Sµ(x1, . . . , xn) :=
n∨

i=1

[x(i) ∧ µ{(i),...,(n)}].

Of course, given a fuzzy measure µ, the Choquet and Sugeno integrals can be regarded
as aggregation functions defined on En and [0, 1]n, respectively.

The paper is organized as follows. In Section 2, we list a number of mathematical
properties for aggregation. In Sections 3 and 4, we investigate the Choquet and Sugeno
integrals and we present some axiomatic characterizations of these families. Section 5
is devoted to the intersection of the two families, namely the class of Boolean max-min
functions. As particular cases, the order statistics are also presented.

2 Aggregation properties

If we want to obtain a reasonable or satisfactory aggregation, any aggregation function
should not be used. In order to eliminate the “undesirable” functions, we can adopt an
axiomatic approach and impose that these functions fulfil some selected properties. Such
properties can be dictated by the nature of the values to be aggregated.

The properties we consider in this paper are the following.

• M ∈ An(E, IR) is a symmetric function (Sy) if, for all π ∈ Πn and all x ∈ En, we
have

M(x1, . . . , xn) = M(xπ(1), . . . , xπ(n)).
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The symmetry property essentially implies that the indexing (ordering) of the argu-
ments does not matter. This is required when combining criteria of equal importance
or anonymous expert’s opinions; indeed, a symmetric function is independent of the
labels.

• M ∈ An(E, IR) is a continuous function (Co) if it is continuous in the usual sense.

A continuous aggregation function does not present any chaotic reaction to a small
change of the arguments.

• M ∈ An(E, IR) is increasing (in each argument) (In) if, for all x, x′ ∈ En, we have

xi ≤ x′i ∀i ∈ N ⇒ M(x) ≤ M(x′).

An increasing aggregation function presents a non-negative response to any increase
of the arguments. In other terms, increasing a partial value cannot decrease the result.

• M ∈ An(E, IR) is unanimously increasing (UIn) if, for all x, x′ ∈ En, we have

i) xi ≤ x′i ∀i ∈ N ⇒ M(x) ≤ M(x′)
ii) xi < x′i ∀i ∈ N ⇒ M(x) < M(x′).

A unanimously increasing function is increasing and presents a positive response
whenever all the arguments strictly increase.

• M ∈ An(E, IR) is idempotent (Id) if, for all x ∈ E, we have

M(x, . . . , x) = x.

• M ∈ An([a, b], IR) is weakly idempotent (WId) if

M(a, . . . , a) = a and M(b, . . . , b) = b.

• M ∈ An(E, IR) is stable for the admissible similarity transformations (SSi) if

M(r x1, . . . , r xn) = r M(x1, . . . , xn)

for all x ∈ En and all r > 0 such that r xi ∈ E for all i ∈ N .

• M ∈ An(E, IR) is stable for the admissible positive linear transformations (SPL) if

M(r x1 + s, . . . , r xn + s) = r M(x1, . . . , xn) + s

for all x ∈ En and all r > 0, s ∈ IR such that r xi + s ∈ E for all i ∈ N .

The choice of the interval [0, 1] is not restrictive if we consider that scores are defined
up to a positive linear transformation, as it is the case for example in multiattribute
utility theory.

• M ∈ An([0, 1], IR) is stable for the standard negation (SSN) if

M(1− x1, . . . , 1− xn) = 1−M(x1, . . . , xn), x ∈ [0, 1]n.

The (SSN) property means that a reversal of the scale has no effect on the evaluation.
For a two-place function M , it expresses self-duality of M (compare with De Morgan
laws in fuzzy sets theory, see e.g. [6]).
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• M ∈ An(E, IR) is comparison meaningful (CM) if, for all φ ∈ Φ(E) and all x, x′ ∈ En,
we have

i) M(x) = M(x′) ⇒ M(φ(x1), . . . , φ(xn)) = M(φ(x′1), . . . , φ(x′n)),
ii) M(x) < M(x′) ⇒ M(φ(x1), . . . , φ(xn)) < M(φ(x′1), . . . , φ(x′n)),

where Φ(E) denotes the automorphism group of E, that is the group of all strictly
increasing bijections φ : E → E.

Comparison meaningful functions are suitable to aggregate values defined according
to an ordinal scale.

• M ∈ An(E, IR) is stable for minimum with a constant vector (SMin) if

M(x1 ∧ r, . . . , xn ∧ r) = M(x1, . . . , xn) ∧ r

for all x ∈ En and all r ∈ E.

• M ∈ An(E, IR) is stable for maximum with a constant vector (SMax) if

M(x1 ∨ r, . . . , xn ∨ r) = M(x1, . . . , xn) ∨ r

for all x ∈ En and all r ∈ E.

(SMin) and (SMax) are stability properties written in a functional equation form.
They were introduced by Fodor and Roubens [7] and are visibly related to an algebra
which uses min and max operations instead of classical sum and product operations.

• M ∈ An([0, 1], IR) is stable for minimum between Boolean and constant vectors
(SMinB) if

M(r eT ) ∈ {M(eT ), r}
for all T ⊆ N and all r ∈ [0, 1].

• M ∈ An([0, 1], IR) is stable for maximum between Boolean and constant vectors
(SMaxB) if

M(eT + r eN\T ) ∈ {M(eT ), r}
for all T ⊆ N and all r ∈ [0, 1].

• M ∈ An(E, IR) is additive (Add) if, for all x, x′ ∈ E, we have

M(x1 + x′1, . . . , xn + x′n) = M(x1, . . . , xn) + M(x′1, . . . , x
′
n).

• M ∈ An(E, IR) is minitive (Min) if, for all x, x′ ∈ E, we have

M(x1 ∧ x′1, . . . , xn ∧ x′n) = M(x1, . . . , xn) ∧M(x′1, . . . , x
′
n).

• M ∈ An(E, IR) is maxitive (Max) if, for all x, x′ ∈ E, we have

M(x1 ∨ x′1, . . . , xn ∨ x′n) = M(x1, . . . , xn) ∨M(x′1, . . . , x
′
n).
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• M ∈ An(E, IR) is comonotonic additive (CoAdd) if

M(x1 + x′1, . . . , xn + x′n) = M(x1, . . . , xn) + M(x′1, . . . , x
′
n)

for any two comonotonic vectors x, x′ ∈ E, where two vectors x, x′ ∈ En are said to
be comonotonic if there exists a permutation π ∈ Πn such that

xπ(1) ≤ · · · ≤ xπ(n) and x′π(1) ≤ · · · ≤ x′π(n).

• M ∈ An(E, IR) is comonotonic minitive (CoMin) if

M(x1 ∧ x′1, . . . , xn ∧ x′n) = M(x1, . . . , xn) ∧M(x′1, . . . , x
′
n)

for any two comonotonic vectors x, x′ ∈ E.

• M ∈ An(E, IR) is comonotonic maxitive (CoMax) if

M(x1 ∨ x′1, . . . , xn ∨ x′n) = M(x1, . . . , xn) ∨M(x′1, . . . , x
′
n)

for any two comonotonic vectors x, x′ ∈ E.

• M ∈ An(E, E) is bisymmetric (B) if

M(M(x11, . . . , x1n), . . . , M(xn1, . . . , xnn))

= M(M(x11, . . . , xn1), . . . , M(x1n, . . . , xnn))

for all square matrices

X =




x11 · · · x1n
...

...
xn1 · · · xnn


 ∈ En×n.

• M ∈ A(E,E) fulfils the general bisymmetry property (GB) if M(x) = x for all x ∈ E,
and

M(M(x11, . . . , x1n), . . . ,M(xp1, . . . , xpn))

= M(M(x11, . . . , xp1), . . . , M(x1n, . . . , xpn))

for all matrices

X =




x11 · · · x1n
...

...
xp1 · · · xpn


 ∈ Ep×n,

where n, p ∈ IN0.

Justification of the general bisymmetry: Consider n judges giving a score to
each of p candidates. These scores, assumed to be defined on the same scale, can be
put in a p× n matrix as follows:




J1 · · · Jn

C1 x11 · · · x1n
...

...
...

Cp xp1 · · · xpn




6



Suppose now that we want to aggregate all the scores in the matrix in order to obtain
a global score of the p candidates. A reasonable way to proceed could be the following:
aggregate the scores of each candidate (aggregation on the rows of the matrix), and
then aggregate these global values. A dual way to proceed would be: aggregate the
scores given by each judge (aggregation on the columns of the matrix), and then
aggregate these values.

The general bisymmetry property for an aggregation operator means that these two
ways to aggregate must lead to the same global score.

• M ∈ An(E, E) is bisymmetric for orderable matrices (BOM) if

M([M([x11, . . . , x1n]π′), . . . , M([xn1, . . . , xnn]π′)]π)

= M([M([x11, . . . , xn1]π), . . . , M([x1n, . . . , xnn]π)]π′)

for all π, π′ ∈ Πn and all ordered square matrices

X =




x11 · · · x1n
...

...
xn1 · · · xnn


 ∈ En×n,

where a matrix X is ordered if its elements satisfy xij ≤ xkl for all i ≤ k and j ≤ l.

A matrix is said to be orderable if it is possible to make it ordered by permuting some
rows and/or some columns.

• M ∈ A(E,E) fulfils the general bisymmetry for orderable matrices (GBOM) if

M([M([x11, . . . , x1n]π′), . . . , M([xp1, . . . , xpn]π′)]π)

= M([M([x11, . . . , xp1]π), . . . , M([x1n, . . . , xpn]π)]π′)

for all π ∈ Πp, all π′ ∈ Πn and all ordered matrices

X =




x11 · · · x1n
...

...
xp1 · · · xpn


 ∈ Ep×n.

Justification of the general bisymmetry for orderable matrices: Consider the
same situation as above: n judges give a score to each of p candidates. Now we start
by removing some values—for example the lowest score given by each judge, or the
lowest score obtained by each candidate. In general, it does not make sense anymore
to aggregate as before.

However, there are situations where it still make sense: if the worst candidate is the
same for each judge then, when removing this candidate, we get a score matrix for
(p−1) candidates and n judges, and we can aggregate as before. Likewise, if the most
intolerant judge is the same for each candidate then, when removing the judge, we
get a score matrix for p candidates and (n−1) judges, and we can aggregate. Clearly,
if we wish to take into account all the possibilities to remove judges and candidates,
we have to consider orderable score matrices.
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3 The Choquet integral

In this section we present some results on the Choquet integral. Geometrically, this inte-
gral corresponds to the so-called Lovász extension of the pseudo-Boolean function which
represents the associated fuzzy measure.

3.1 Lovász extension

Lovász [18, §3] has observed that any x ∈ (IR+)n \ {0} can be written uniquely in the form

x =
k∑

i=1

λi eSi
(1)

where λ1, . . . , λk > 0 and ∅ 6= S1 ⊆/ · · · ⊆/ Sk ⊆ N . For example, we have

(1, 5, 3) = 2 (0, 1, 0) + 2 (0, 1, 1) + 1 (1, 1, 1),

(0, 5, 3) = 2 (0, 1, 0) + 3 (0, 1, 1).

Hence any function f : {0, 1}n → IR with f(0) = 0 can be extended to f̂ : (IR+)n → IR, by
f̂(0) = 0 and

f̂(x) =
k∑

i=1

λi f(eSi
) (x =

k∑

i=1

λi eSi
∈ (IR+)n \ {0});

indeed, f̂ is well defined (due to the uniqueness of (1)) and f̂(x) = f(x) for all x ∈ {0, 1}n.
The function f̂ is called [8] the Lovász extension of f .

Now, the Lovász extension of an arbitrary function f : {0, 1}n → IR is defined by

f̂(x) = f(0) + f̂0(x), x ∈ (IR+)n,

where f̂0 is the Lovász extension of f0 = f − f(0).

The hypercube [0, 1]n can be subdivided into n! simplices of the form

Bπ = {x ∈ [0, 1]n |xπ(1) ≤ · · · ≤ xπ(n)}, π ∈ Πn.

Singer [27, §2] has shown that f̂ is defined on each cone Kπ = {λBπ |λ ≥ 0} as the unique
affine function that coincides with f at the n + 1 vertices of Bπ. More formally, f̂ can be
written as:

f̂(x) = f(0) +
n∑

i=1

xπ(i) [f(e{π(i),...,π(n)})− f(e{π(i+1),...,π(n)})], x ∈ Kπ. (2)

3.2 Properties of the Choquet integral and axiomatic character-
izations

Let µ be a fuzzy measure on N . By (2), we immediately see that the Choquet integral Cµ,
defined on (IR+)n, is nothing else than the Lovász extension of the pseudo-Boolean function
fµ which represents µ:

Cµ = f̂µ on (IR+)n.
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Now, assume that E contains the unit interval [0, 1]. Since the Choquet integral fulfils
(SPL), it can be defined unambiguously on En. Thus, the Choquet integral is a piecewise
affine function on En and we have

Cµ(eS) = µ(S), S ⊆ N.

A practical form of Cµ is the following [1].

Proposition 3.1 Assume E ⊇ [0, 1]. Any Choquet integral Cµ : En → IR can be written as

Cµ(x) =
∑

T⊆N

aT

∧

i∈T

xi, x ∈ En,

where a is the Möbius representation of µ.

As it can be easily verified, the Choquet integral fulfils the following aggregation prop-
erties [12]: (Co), (In), (UIn), (Id), (SPL). We shall see below that it also fulfils (CoAdd)
and (BOM).

The class of Choquet integrals has been characterized by Schmeidler [26], see also [9]
and [15, Theorem 8.6]. We present below a slightly different statement.

Theorem 3.1 Assume E ⊇ [0, 1] and let M ∈ An(E, IR). The following statements are
equivalent.

i) M fulfils (In, SPL, CoAdd)
ii) M fulfils (In, SPL, BOM)
iii) there exists a fuzzy measure µ on N such that M = Cµ.

We also have the following characterization.

Theorem 3.2 Assume [0, 1] ⊆ E ⊆ IR+. The Choquet integrals on En are exactly those
M ∈ An(E, IR) which fulfil (In, WId) and

M(λx + (1− λ) x′) = λM(x) + (1− λ) M(x′), λ ∈ [0, 1],

for all comonotonic vectors x, x′ ∈ En.

A Choquet integral operator C is an aggregation operator M ∈ A(E, IR) such that, for
all n ∈ IN0, M (n) is a Choquet integral. Concerning such aggregation operators, we present
the following result.

Theorem 3.3 Assume E ⊇ [0, 1]. M ∈ A(E, E) fulfils (In, SPL, GBOM) if and only if
M is a Choquet integral operator.

3.3 Weighted arithmetic means

The best known and most often used weighted mean in many applications is the weighted
arithmetic mean function (WAM). Recall its definition.
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Definition 3.1 For any weight vector ω = (ω1, . . . , ωn) ∈ [0, 1]n such that

n∑

i=1

ωi = 1,

the weighted arithmetic mean function WAMω associated to ω, is defined by

WAMω(x) =
n∑

i=1

ωi xi.

It is easy to prove that WAM functions fulfil the following properties: (Co), (In), (UIn),
(Id), (SPL), (SSN), (Add), (B).

Moreover, one can readily see that any WAMω is a Choquet integral Cµ with respect to
an additive fuzzy measure (probability measure):

µT =
∑

i∈T

ωi, T ⊆ N.

The corresponding Möbius representation is given by:

{
ai = ωi, ∀i ∈ N ,
aT = 0, ∀T ⊆ N such that |T | 6= 1,

As a consequence, we can see that the weighted arithmetic means are the additive
Choquet integrals.

Theorem 3.4 The Choquet integral Cµ ∈ An(E, IR) fulfils (Add) if and only if there exists
ω ∈ [0, 1]n such that Cµ = WAMω.

Corollary 3.1 Assume E ⊇ [0, 1]. M ∈ An(E, IR) fulfils (In, SPL, Add) if and only if
there exists ω ∈ [0, 1]n such that M = WAMω.

The class of WAM functions includes two important special cases, namely:
• the arithmetic mean AM, when ωi = 1/n for all i,
• the kth projection Pk, when ωk = 1.

It is clear that a WAMω function fulfils (Sy) if and only if ωi = 1/n for all i (arithmetic
mean).

When E = [0, 1], we also have the following two characterizations [21].

Theorem 3.5 M ∈ An([0, 1], [0, 1]) fulfils (In, SSi, SSN, B) if and only if there exists
ω ∈ [0, 1]n such that M = WAMω.

Theorem 3.6 M ∈ A([0, 1], [0, 1]) fulfils (In, SSi, SSN, GB) if and only if, for all n ∈ IN0,
there exists ω ∈ [0, 1]n such that M (n) = WAMω.
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3.4 Ordered weighted averaging functions

The ordered weighted averaging aggregation functions (OWA) were proposed by Yager in
1988 [31]. Since their introduction, they have been applied to many fields. For a recent list
of references, see [17].

These functions are defined as follows.

Definition 3.2 For any weight vector ω = (ω1, . . . , ωn) ∈ [0, 1]n such that
n∑

i=1

ωi = 1,

the ordered weighted averaging function OWAω associated to ω, is defined by

OWAω(x) =
n∑

i=1

ωi x(i).

A fundamental aspect of such a function is the re-ordering step, in particular a score
xi is not associated with a particular weight ωi, but rather a weight is associated with a
particular ordered position of score. This ordering step introduces a non-linearity into the
aggregation process.

OWA functions satisfy a number of well-known and easy-to-prove properties [2, 31],
namely: (Sy), (Co), (In), (UIn), (Id), (SPL), (CoAdd), (BOM). More precisely, it is a well
known fact (see e.g. [5, 23]) that OWA functions are a particular case of discrete Choquet
integrals with respect to a fuzzy measure depending only on the cardinal of subsets. In
fact, the class of OWA functions coincides with the class of Choquet integrals which fulfil
(Sy), see [10, 11]. This result can be stated as follows.

Theorem 3.7 Let µ be a fuzzy measure on N . Then the following assertions are equivalent.
i) µ depends only on the cardinality of subsets
ii) there exists ω ∈ [0, 1]n such that Cµ = OWAω

iii) Cµ fulfils (Sy).

The fuzzy measure µ associated to an OWAω is given by

µT =
n∑

i=n−|T |+1

ωi, T ⊆ N, T 6= ∅,

and its Möbius representation by [13, Theorem 1]

aT =
|T |−1∑

j=0

(|T | − 1

j

)
(−1)|T |−1−j ωn−j, T ⊆ N, T 6= ∅.

The class of OWA functions includes some important special cases:
• the min function, when ω1 = 1,
• the max function, when ωn = 1,
• the arithmetic mean 1

n

∑
i xi, when ωi = 1/n for all i,

• the kth order statistic x(k), when ωk = 1,
• the median (x(n/2) + x(n/2+1))/2, when n is even and

ωn/2 = ωn/2+1 = 1/2,
• the median x(n+1

2
), when n is odd and ωn+1

2
= 1,

• the mean excluding the extremes as used by some jury of
international olympic competitions, when ω1 = ωn = 0 and
ωi = 1

n−2
for i 6= 1, n.
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Characterizations of OWA functions can be deduced from Theorems 3.1, 3.3 and 3.7,
see also [20].

Theorem 3.8 Assume E ⊇ [0, 1] and let M ∈ An(E, IR). The following statements are
equivalent.

i) M fulfils (Sy, In, SPL, CoAdd)
ii) M fulfils (Sy, In, SPL, BOM)
iii) there exists ω ∈ [0, 1]n such that M = OWAω.

Theorem 3.9 Assume E ⊇ [0, 1]. M ∈ A(E, E) fulfils (Sy, In, SPL, GBOM) if and only
if, for all n ∈ IN0, there exists ω ∈ [0, 1]n such that M (n) = OWAω.

4 The Sugeno integral

We now investigate the Sugeno integral under the viewpoint of aggregation. In particular, it
will be shown that this integral can be written in the form of a weighted max-min function,
which will be introduced and studied hereafter.

The formal analogy between the weighted max-min function and the multilinear poly-
nomial is obvious: minimum corresponds to product, maximum does to sum. Moreover,
it is emphasized that weighted max-min functions can be calculated as medians, i.e., the
qualitative counterparts of multilinear polynomials.

Most of the results presented here can be found in Marichal [19].

4.1 Weighted max-min functions

If fµ is the pseudo-Boolean function which represents a given fuzzy measure µ, then we can
write

fµ(x) =
∨

T⊆N

[
µT ∧ (

∧

i∈T

xi)
]
, x ∈ {0, 1}n.

However, such an expression can sometimes be simplified as the following example shows:
assuming that N = {1, 2} and µ1 = 1, µ2 = 0, we have

fµ(x) = x1 ∨ (x1 ∧ x2) = x1. (3)

Thus, in a more general way, we see that there exist several set functions c : 2N → [0, 1]
fulfilling c∅ = 0 and ∨

T⊆N

cT = 1

such that
fµ(x) =

∨

T⊆N

[
cT ∧ (

∧

i∈T

xi)
]
, x ∈ {0, 1}n.

We now investigate a natural extension of such a pseudo-Boolean function: the weighted
max-min function.

Definition 4.1 For any set function c : 2N → [0, 1] such that c∅ = 0 and

∨

T⊆N

cT = 1,

12



the weighted max-min function W∨∧
c : [0, 1]n → [0, 1] associated to c is defined by

W∨∧
c (x) =

∨

T⊆N

[
cT ∧ (

∧

i∈T

xi)
]
, x ∈ [0, 1]n.

Observe that we have
W∨∧

c (eS) =
∨

T⊆S

cT , S ⊆ N.

As already observed in (3), the set function c which defines W∨∧
c is not uniquely determined.

The next proposition precises conditions under which two weighted max-min functions are
identical.

Proposition 4.1 Let c and c′ be set functions defining W∨∧
c and W∨∧

c′ respectively. Then
W∨∧

c′ = W∨∧
c if and only if for all T ⊆ N , T 6= ∅, we have

{
c′T = cT , if cT >

∨
K⊆/ T cK,

0 ≤ c′T ≤
∨

K⊆T cK , if cT ≤ ∨
K⊆/ T cK.

Let c be any set function defining W∨∧
c and let T ⊆ N , T 6= ∅. If cT >

∨
K⊆/ T cK then

cT cannot be modified without altering W∨∧
c . In the other case, it can be replaced by any

value lying between 0 and
∨

K⊆T cK .
If c is such that

∀T ⊆ N, T 6= ∅ : cT = 0 ⇔ cT ≤
∨

K⊆/ T

cK

then all the cT ’s are taken as small as possible and we say that W∨∧
c is put in its canonical

form. By contrast, if c is such that

∀T ⊆ N : cT =
∨

K⊆T

cK

then the cT ’s are taken as large as possible and we say that W∨∧
c is put in its complete form.

In this case, c is a fuzzy measure since it is increasing. In fact, W∨∧
c is put in its complete

form if and only if c is increasing.
For instance, all the possible expressions of x1 ∨ (x1 ∧ x2) as a two-place weighted max-

min function are given by

x1 ∨ (λ ∧ x1 ∧ x2), λ ∈ [0, 1].

The case λ = 0 corresponds to the canonical form and the case λ = 1 corresponds to the
complete form.

4.2 Weighted min-max functions

By exchanging the position of the max and min operations in Definition 4.1, we can define
the weighted min-max functions as follows.

13



Definition 4.2 For any set function d : 2N → [0, 1] such that d∅ = 1 and

∧

T⊆N

dT = 0,

the weighted min-max function W∧∨
d : [0, 1]n → [0, 1] associated to d is defined by

W∧∨
d (x) =

∧

T⊆N

[
dT ∨ (

∨

i∈T

xi)
]
, x ∈ [0, 1]n.

Observe that we have

W∧∨
d (eS) =

∧

T⊆N\S
dT , S ⊆ N.

Moreover, the set function d which defines W∧∨
d is not uniquely determined; indeed, we

have, for instance, x1 ∧ (x1 ∨ x2) = x1. We then have a result similar to Proposition 4.1.

Proposition 4.2 Let d and d′ be set functions defining W∧∨
d and W∧∨

d′ respectively. Then
W∧∨

d′ = W∧∨
d if and only if for all T ⊆ N , T 6= ∅, we have

{
d′T = dT , if dT <

∧
K⊆/ T dK,∧

K⊆T dK ≤ d′T ≤ 1, if dT ≥ ∧
K⊆/ T dK.

Let d be any set function defining W∧∨
d and let T ⊆ N , T 6= ∅. If dT <

∧
K⊆/ T dK then

dT cannot be modified without altering W∧∨
d . In the other case, it can be replaced by any

value lying between
∧

K⊆T dK and 1.
If d is such that

∀T ⊆ N, T 6= ∅ : dT = 1 ⇔ dT ≥
∧

K⊆/ T

dK

then all the dT ’s are taken as large as possible and we say that W∧∨
d is put in its canonical

form. By contrast, if d is such that

∀T ⊆ N : dT =
∧

K⊆T

dK

then the dT ’s are taken as small as possible and we say that W∧∨
d is put in its complete

form. In this case, d is decreasing. In fact, W∧∨
d is put in its complete form if and only if d

is decreasing.

4.3 Correspondance formulas and equivalent forms

Any weighted max-min function can be put under the form of a weighted min-max function
and conversely. The next proposition gives the correspondance formulas.

Proposition 4.3 Let c and d be set functions defining W∨∧
c and W∧∨

d respectively. Then
we have

W∨∧
c = W∧∨

d ⇔ ∨

K⊆T

cK =
∧

K⊆N\T
dK ∀T ⊆ N.
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When W∨∧
c and W∧∨

d are put in their complete forms, the correspondance formulas
become simpler.

Corollary 4.1 For any increasing set function c defining W∨∧
c and any decreasing set

function d defining W∧∨
d , we have

W∨∧
c = W∧∨

d ⇔ cT = dN\T ∀T ⊆ N.

W∨∧
c and W∧∨

d can be written under equivalent forms involving at most n variable
coefficients. These coefficients only depend on the order of the xi’s.

This result can be formulated as follows.

Theorem 4.1 i) For any increasing set function c defining W∨∧
c , we have, for all x ∈

[0, 1]n,

W∨∧
c (x) =

n∨

i=1

[x(i) ∧ c{(i),...,(n)}]

= median(x1, . . . , xn, c{(2),...,(n)}, c{(3),...,(n)}, . . . , c{(n)}).

ii) For any decreasing set function d defining W∧∨
d , we have, for all x ∈ [0, 1]n,

W∧∨
d (x) =

n∧

i=1

[x(i) ∨ d{(1),...,(i)}]

= median(x1, . . . , xn, d{(1)}, d{(1),(2)}, . . . , d{(1),...,(n−1)}).

4.4 Alternative expressions of the Sugeno integral and axiomatic
characterizations

Theorem 4.1 shows that the class of the Sugeno integrals coincides with the family of
weighted max-min functions which, in turn, coincides with the family of weighted min-max
functions. This allows to derive alternative expressions of the Sugeno integral.

Theorem 4.2 Let x ∈ [0, 1]n and µ be a fuzzy measure on N . Then we have

Sµ(x) =
n∨

i=1

[x(i) ∧ µ{(i),...,(n)}]

=
n∧

i=1

[x(i) ∨ µ{(i+1),...,(n)}]

=
∨

T⊆N

[
µT ∧ (

∧

i∈T

xi)
]

=
∧

T⊆N

[
µN\T ∨ (

∨

i∈T

xi)
]

= median(x1, . . . , xn, µ{(2),...,(n)}, µ{(3),...,(n)}, . . . , µ{(n)}).

Let us consider an example. Assume that N = {1, 2, 3} and x ∈ [0, 1]3 with x3 ≤ x1 ≤
x2. Then

Sµ(x1, x2, x3) = x3 ∨ (x1 ∧ µ{1,2}) ∨ (x2 ∧ µ{2})

= (x3 ∨ µ{1,2}) ∧ (x1 ∨ µ{2}) ∧ x2

= median(x1, x2, x3, µ{1,2}, µ{2}).
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We can observe that, as an aggregation function, the Sugeno integral with respect to a
measure µ is an extension on the entire hypercube [0, 1]n of the pseudo-Boolean function
fµ which defines µ.

As the following theorem shows, the class of Sugeno integrals can be characterized by
means of some selected properties.

Theorem 4.3 Let M : [0, 1]n → IR. Then the following assertions are equivalent:
i) M fulfils (In, Id, CoMin, CoMax)
ii) M fulfils (In, SMin, SMax)
iii) M fulfils (In, Id, SMinB, SMaxB)
iv) There exists a set function c : 2N → [0, 1] such that M = W∨∧

c

v) There exists a set function d : 2N → [0, 1] such that M = W∧∨
d

vi) There exists a fuzzy measure µ on N such that M = Sµ

4.5 Weighted maximum and minimum functions

Min and max functions have been extended by Dubois and Prade [3], in a way which is
consistent with possibility theory: the weighted minimum (wmin) and maximum (wmax).

Definition 4.3 For any weight vector ω = (ω1, . . . , ωn) ∈ [0, 1]n such that

n∨

i=1

ωi = 1,

the weighted maximum function wmaxω associated to ω is defined by

wmaxω(x) =
n∨

i=1

(ωi ∧ xi), x ∈ [0, 1]n.

For any weight vector ω = (ω1, . . . , ωn) ∈ [0, 1]n such that

n∧

i=1

ωi = 0,

the weighted minimum function wminω associated to ω is defined by

wminω(x) =
n∧

i=1

(ωi ∨ xi), x ∈ [0, 1]n.

Any wmaxω function is a W∨∧
c function whose canonical form is defined by:

{
ci = ωi, ∀i ∈ N ,
cT = 0, ∀T ⊆ N such that |T | 6= 1,

and complete form by:
cT =

∨

i∈T

ωi, ∀T ⊆ N.

In this case, if c is increasing then it represents a possibility measure π which is characterized
by the following property:

π(S ∪ T ) = π(S) ∨ π(T ), ∀S, T ⊆ N.
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Likewise, any wminω function is a W∧∨
d function whose canonical form is defined by:

{
di = ωi, ∀i ∈ N ,
dT = 1, ∀T ⊆ N such that |T | 6= 1,

and complete form by:
dT =

∧

i∈T

ωi, ∀T ⊆ N.

In this case, if d is decreasing then the set function c′, defined by c′T = dN\T for all T ⊆ N ,
represents a necessity measure N which is characterized by the following property:

N (S ∩ T ) = N (S) ∧N (T ), ∀S, T ⊆ N.

The functions wmaxω and wminω have been characterized by Fodor and Roubens [7].
We present below a slightly more general statement.

Theorem 4.4 i) M ∈ An([0, 1], IR) fulfils (WId, SMinB, Max) if and only if there exists
ω ∈ [0, 1]n such that M = wmaxω.

ii) M ∈ An([0, 1], IR) fulfils (WId, SMaxB, Min) if and only if there exists ω ∈ [0, 1]n

such that M = wminω.

We know that the weighted minimum and maximum functions are particular Sugeno
integrals. More precisely, we have the following.

Theorem 4.5 Let µ be a fuzzy measure on N . Then the following assertions are equivalent.
i) µ is a possibility measure
ii) there exists ω ∈ [0, 1]n such that Sµ = wmaxω

iii) Sµ fulfils (Max).
The following assertions are equivalent.
iv) µ is a necessity measure
v) there exists ω ∈ [0, 1]n such that Sµ = wminω

vi) Sµ fulfils (Min).

4.6 Ordered weighted maximum and minimum functions

Dubois et al. [4] used the ordered weighted maximum (owmax) and minimum (owmin) for
modelling soft partial matching. The basic idea of owmax (and owmin) is the same as in
the OWA function introduced by Yager [31]. That is, in both papers weights are associated
with a particular rank rather than a particular element.

Definition 4.4 For any weight vector ω = (ω1, . . . , ωn) ∈ [0, 1]n such that

1 = ω1 ≥ . . . ≥ ωn,

the ordered weighted maximum function owmaxω associated to ω is defined by

owmaxω(x) =
n∨

i=1

(ωi ∧ x(i)), x ∈ [0, 1]n.

For any weight vector ω′ = (ω′1, . . . , ω
′
n) ∈ [0, 1]n such that

ω′1 ≥ . . . ≥ ω′n = 0,
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the ordered weighted minimum function owminω associated to ω is defined by

owminω(x) =
n∧

i=1

(ω′i ∨ x(i)), x ∈ [0, 1]n.

In Definition 4.4, the inequalities ω1 ≥ . . . ≥ ωn and ω′1 ≥ . . . ≥ ω′n are not restrictive.
Indeed, if there exists i ∈ {1, . . . , n− 1} such that ωi ≤ ωi+1 and ω′i ≤ ω′i+1 then we have

(ωi ∧ x(i)) ∨ (ωi+1 ∧ x(i+1)) = ωi+1 ∧ x(i+1),

(ω′i ∨ x(i)) ∧ (ω′i+1 ∨ x(i+1)) = ω′i ∨ x(i).

This means that ωi can be replaced by ωi+1 in owmaxω and ω′i+1 by ω′i in owminω.
Any owmaxω function is a W∨∧

c function whose canonical form is defined by:

∀T ⊆ N, T 6= ∅ : cT =

{
0, if ωn−|T |+1 = ωn−|T |+2,
ωn−|T |+1, else,

and complete form by:
∀T ⊆ N, T 6= ∅ : cT = ωn−|T |+1.

Likewise, any owminω function is a W∧∨
d function whose canonical form is defined by:

∀T ⊆ N, T 6= ∅ : dT =

{
1, if ω′|T | = ω′|T |−1,
ω′|T |, else,

and complete form by:
∀T ⊆ N, T 6= ∅ : dT = ω′|T |.

The next proposition shows that any ordered weighted maximum function can be put
in the form of an ordered weighted minimum function and conversely.

Proposition 4.4 Let ω and ω′ be weight vectors defining owmaxω and owminω′ respectively.
Then we have

owminω′ = owmaxω ⇔ ω′i = ωi+1 ∀i ∈ {1, . . . , n− 1}.
We also have, for all x ∈ [0, 1]n,

owmaxω(x) = median(x1, . . . , xn, ω2, . . . , ωn),

owminω′(x) = median(x1, . . . , xn, ω′1, . . . , ω
′
n−1).

The owmaxω and owminω′ functions are exactly those weighted max-min functions (or
Sugeno integrals) which fulfil (Sy):

Theorem 4.6 Let µ be a fuzzy measure on N . Then the following assertions are equivalent.
i) µ depends only on the cardinality of subsets
ii) there exists ω ∈ [0, 1]n such that Sµ = owmaxω

iii) there exists ω′ ∈ [0, 1]n such that Sµ = owminω′

iv) Sµ fulfils (Sy).

Note that other characterizations of these families have been obtained in [7] by means
of ordered versions of (SMin), (SMax), (Min) and (Max), which seem to be unappealing
properties.
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5 Common area between the two classes of integrals

5.1 Boolean max-min and min-max functions

The Boolean max-min and min-max functions are defined as follows.

Definition 5.1 i) For any set function c : 2N → {0, 1} such that c∅ = 0 and

∨

T⊆N

cT = 1,

the Boolean max-min function B∨∧c associated to c is defined by B∨∧c = W∨∧
c .

ii) For any set function d : 2N → {0, 1} such that d∅ = 1 and

∧

T⊆N

dT = 0,

the Boolean min-max function B∧∨d associated to d is defined by B∧∨d = W∧∨
d .

Thus defined, a Boolean max-min function (resp. Boolean min-max function) is nothing
else than a weighted max-min function (resp. weighted min-max function) whose canonical
and complete forms are defined by set functions taking their values in {0, 1}. Moreover, we
can write, for any x ∈ [0, 1]n,

B∨∧c (x) =
∨

T⊆N
cT =1

∧

i∈T

xi ∈ {x1, . . . , xn}, (disjunctive normal form)

B∧∨d (x) =
∧

T⊆N
dT =0

∨

i∈T

xi ∈ {x1, . . . , xn}, (conjunctive normal form).

In terms of fuzzy measures, if the set function c is increasing, it represents a 0-1 fuzzy
measure. More precisely, Murofushi and Sugeno [23, §2] showed the following result.

Proposition 5.1 If µ is a 0-1 fuzzy measure on N then the Choquet and the Sugeno integral
take the following form:

Cµ = Sµ = B∨∧µ .

We now present a stronger result: the intersection of the class of Choquet integrals and
the class of Sugeno integrals coincides with the class of Boolean max-min functions.

Theorem 5.1 Let M ∈ An([0, 1], IR). Then the following assertions are equivalent.
i) There exists a 0-1 fuzzy measure µ on N such that M = Sµ.
ii) There exist fuzzy measures µ and ν on N such that M = Cµ = Sν.
iii) M fulfils (UIn) and there exists a fuzzy measure µ on N such that M = Sµ.
iv) There exists a set function c : 2N → {0, 1} such that M = B∨∧c .
v) There exists a set function d : 2N → {0, 1} such that M = B∧∨d .

Since any B∨∧c function is a Choquet integral (see Proposition 5.1), it fulfils (SPL) and
thus it can be defined on any En, where E ⊇ [0, 1]. We then have the following result.
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Theorem 5.2 Let M ∈ An(E, IR), with E ⊇ [0, 1]. Then the following assertions are
equivalent.

i) There exists a 0-1 fuzzy measure µ on N such that M = Cµ.
ii) M fulfils (In, SPL) and M(eT ) ∈ {0, 1} for all T ⊆ N .
iii) There exists a set function c : 2N → {0, 1} such that M = B∨∧c .
iv) There exists a set function d : 2N → {0, 1} such that M = B∧∨d .

We also have the following result.

Theorem 5.3 Let M ∈ An(E, IR). Then the following assertions are equivalent.
i) M fulfils (Co, Id, CM).
ii) There exists a set function c : 2N → {0, 1} such that M = B∨∧c .
iii) There exists a set function d : 2N → {0, 1} such that M = B∧∨d .

5.2 Order statistics and medians

The order statistics are defined as follows (cf. van der Waerden [30, §17]).

Definition 5.2 For any k ∈ N , the order statistic function OSk associated to the kth
argument is defined by

OSk(x) = x(k).

Any order statistic OSk is a B∨∧c whose canonical form is defined by

∀T ⊆ N, T 6= ∅ : cT =
{

1, if |T | = n− k + 1,
0, otherwise,

and complete form by:

∀T ⊆ N, T 6= ∅ : cT =
{

1, if |T | ≥ n− k + 1,
0, otherwise.

Of course, it is also a B∧∨d function whose canonical form is defined by:

∀T ⊆ N, T 6= ∅ : dT =
{

0, if |T | = k,
1, otherwise,

and complete form by:

∀T ⊆ N, T 6= ∅ : dT =
{

0, if |T | ≥ k,
1, otherwise.

Thus, we have:
x(k) =

∨
T⊆N

|T |=n−k+1

∧

i∈T

xi =
∧

T⊆N
|T |=k

∨

i∈T

xi, k ∈ N.

By Theorem 4.2, we also have

x(k) = median(x1, . . . , xn, 1, . . . , 1︸ ︷︷ ︸
k−1

, 0, . . . , 0︸ ︷︷ ︸
n−k

), k ∈ N.

It is known [24, Theorem 4.3] that the order statistics on any En form the class of
functions satisfying (Sy, Co, Id, CM). They are also the Boolean max-min functions fulfilling
(Sy). As a consequence, we have the following result.
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Theorem 5.4 Let M ∈ An([0, 1], IR). Then the following assertions are equivalent.
i) M fulfils (Sy) and there exists a 0-1 fuzzy measure µ such that M = Cµ.
ii) M fulfils (Sy) and there exists a 0-1 fuzzy measure µ such that M = Sµ.
iii) M fulfils (UIn) and there exists ω ∈ [0, 1]n such that M = owmaxω.
iv) M fulfils (Sy) and there exists a set function c such that M = B∨∧c .
v) There exists k ∈ N such that M = OSk.

A particular case of order statistic is the so-called median of an odd number of scores.
If x1, . . . , x2k−1 ∈ E, we have

median(x1, . . . , x2k−1) = x(k) =
∨

1≤i1<···<ik≤2k−1

(xi1 ∧ · · · ∧ xik)

=
∧

1≤i1<···<ik≤2k−1

(xi1 ∨ · · · ∨ xik).

For instance, we have

median(x1, x2, x3) = (x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x2 ∧ x3)

= (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3).

Regarding medians, we have the following immediate characterization.

Theorem 5.5 Let k ∈ IN0 and M ∈ A2k−1([0, 1], IR). Then M is an order statistic fulfilling
(SSN) if and only if M = median.
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