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1 Introduction

Les fonctions d’agrégation sont généralement définies et utilisées pour combiner
et résumer plusieurs valeurs numériques en une seule, de telle sorte que le résultat
final de I'agrégation prenne en compte, d’'une maniere prescrite, toutes les valeurs
individuelles. De telles fonctions sont largement utilisées dans de nombreuses dis-
ciplines bien connues comme la statistique, I’économie, la finance, I'informatique,
etc.

Par exemple, supposons que plusieurs personnes forment des jugements quanti-
fiables sur la mesure d’un objet (poids, longueur, surface, hauteur, importance ou
autres attributs) ou méme sur le ratio de deux telles mesures (combien plus lourd,
plus long, plus grand, plus important un objet est-il par rapport a un autre). Pour
atteindre un consensus sur ces jugements, des fonctions d’agrégation classiques ont
été proposées : la moyenne arithmétique, la moyenne géométrique, la médiane et
bien d’autres encore.

En aide a la décision multicritere, les valeurs a agréger sont généralement des
préférences (d'une alternative par rapport a une autre) ou des degrés de satisfaction
(d’une alternative) relatifs a des criteres. En aide a la décision face a l'incertain, les
valeurs a agréger représentent les conséquences d’une action relatives a des états de
la nature.

Nous supposerons que les valeurs a agréger appartiennent a des échelles numériques,
qui peuvent étre de type ordinal ou cardinal. Sur une échelle ordinale, les nombres
n’ont d’autres significations que de définir une relation d’ordre sur ’échelle, et les
distances ou différences entre les valeurs ne peuvent pas étre interprétées. Sur une
échelle cardinale, les distances entre les valeurs ne sont pas arbitraires. En fait, il y
a plusieurs sortes d’échelles cardinales : sur une échelle d’intervalle, ou la position
du zéro est purement conventionnelle, les valeurs sont définies a une transformation
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linéaire positive pres, c’est-a-dire ¢(x) = rx + s, avec r > 0 et s € R (par exemple
des températures exprimées sur I’échelle Celsius); sur une échelle de ratio, ou un
zéro réel existe, les valeurs sont définies & une similarité pres, c’est-a-dire ¢(x) = rz,
avec r > 0 (par exemple des longueurs exprimées en pouces). Nous reviendrons sur
ces aspects du mesurage a la sous-section 2.2.

Une fois que les valeurs a agréger sont définies, nous pouvons les fusionner en une
seule valeur au moyen d’une fonction d’agrégation. Mais une telle opération peut
s’effectuer de nombreuses fagons selon ce qui est attendu de la fonction d’agrégation,
selon la nature des valeurs a agréger, et selon le type des échelles qui sont utilisées.
Ainsi, pour un probleme donné, le choix d’'une fonction d’agrégation doit étre fait
avec soin et 1'utilisation de telle ou telle fonction doit toujours étre justifiée.

Pour aider le praticien a choisir une fonction d’agrégation appropriée au probleme
qu’il traite, il est utile et méme convenable d’adopter une approche axiomatique.
Cette approche consiste a classer et choisir les fonctions d’agrégation selon des pro-
priétés qu’elles vérifient. Ainsi, un catalogue de propriétés “souhaitables” est établi
et, lorsque c’est possible, une description de la famille des fonctions d’agrégation
satisfaisant un ensemble donné de propriétés est fourni. C’est le principe méme de
I’axiomatisation.

Proposer une caractérisation axiomatique intéressante n’est généralement pas
une tache facile. La plupart du temps, une méme famille de fonctions d’agrégation
peut étre caractérisée par différent ensembles de propriétés. Néanmoins, toutes les
caractérisations possibles ne sont pas également importantes. Certaines impliquent
des conditions purement techniques sans interprétation claire et le résultat devient
inintéressant. D’autres impliquent des conditions qui contiennent explicitement le
résultat et la caractérisation devient triviale. A I'opposé, il y a des caractérisations
ne faisant intervenir que des propriétés naturelles, facilement interprétables. En
fait, c’est le seul cas ou le résultat peut étre considéré comme une contribution
importante. En effet, il améliore notre compréhension des fonctions d’agrégation
concernées et fournit des arguments forts pour justifier ou rejeter leur utilisation
dans un contexte donné.

Le but principal de ce chapitre est de présenter, sur une base axiomatique, les
familles de fonctions d’agrégation les plus utilisées en aide a la décision. Nous nous
limiterons cependant aux fonctions d’agrégation qui associent une valeur numérique
a chaque profil de n valeurs, lesquels représentent des objets ou des alternatives. Nous
ne traiterons pas des fonctions d’utilité qui, de facon plus générale, permettent de
ranger les alternatives sans leur assigner des valeurs précises. Ainsi par exemple, les
procédures de type ‘leximin’ ou ‘discrimin’ sont des procédures de rangement, plutot
que des fonctions d’agrégation a proprement parler.

L’organisation de ce chapitre est la suivante : Dans la section 2, nous donnons
la liste des principales propriétés que nous utiliserons. Cette liste est divisée en
trois grandes parties : (1) les propriétés élémentaires (continuité, symétrie, etc.),
(2) les propriétés liées aux types d’échelles utilisées pour représenter les données, et
(3) certaines propriétés algébriques comme ’associativité. Dans la section 3, nous
présentons le concept de moyenne et ses différentes définitions. La définition qui est
peut-étre la plus commune est celle des moyennes quasi-arithmétiques avec une



axiomatique tres naturelle due a Kolmogoroff et Nagumo. A la section 4, nous
présentons les fonctions associatives, qui sont a l'origine de la théorie des semi-
groupes. Ces fonctions ont permis de développer le concept de connecteurs flous tels
que les t-normes, les t-conormes et les uninormes. A la section 5, nous présentons une
branche importante de la théorie des fonctions d’agrégation, a savoir les intégrales
non-additives de Choquet et de Sugeno. Ces intégrales permettent de généraliser
les modes d’agrégation classiques, comme la moyenne arithmétique pondérée et la
médiane, a des fonctions prenant en compte les interactions possibles parmi les
attributs considérés. Enfin, aux sections 6 et 7, nous présentons des fonctions par-
ticulieres congues pour l'agrégation en présence d’échelles d’intervalle, d’échelles de
ratio et d’échelles ordinales.

Nous terminons cette introduction en précisant quelques notations qui seront
souvent utilisées dans ce chapitre.

D’une fagon générale, nous noterons une fonction d’agrégation a n variables par
A: E™ — R ou E est un intervalle réel, borné ou non. E° désignera l'intérieur de F.
Nous considérerons parfois des suites de fonctions (A™ : E® — R),>;, I'exposant
(") ne servant qu’a préciser le nombre d’arguments de la fonction A™.

Nous utiliserons également N pour désigner I’ensemble des indices {1,...,n} et
2N pour désigner I'ensemble de ses parties. Iy sera aussi utilisé pour désigner I’en-
semble des permutations sur N. Enfin, pour tout S C N, le vecteur caractéristique
de S dans {0, 1}" sera noté 1g.

Il existe également des notations relativement standards pour certaines fonctions
d’agrégation. Voici les plus courantes :

— La moyenne arithmétique est définie par

1.
=1

— Pour tout vecteur de poids w = (wy,...,w,) € [0,1]" tel que >, w; = 1, la
moyenne arithmétique pondérée et la fonction moyenne ordonnée sont définies
respectivement par

WAM,,(z) = Zwixi,
i1

OWA,(z) = Zwix(i),
i=1

oli (+) représente une permutation sur N telle que zqy < -+ < 2.
— Pour tout k£ € N, la projection et la statistique d’ordre associées au keme
argument sont respectivement définies par

Pi(xz) = xy,
OSk(x) = .T(k).

— Pour tout S C N, S # @, les fonctions minimum partiel et maximum partiel
associés a S sont respectivement définis par

ming(z) = min ;,

3



maxg(z) = MAX ;.

Dans ce chapitre, les opérations min et max seront parfois notées A et V, respec-
tivement.

2 Propriétés pour 'agrégation

Comme nous venons de le dire dans 'introduction, pour choisir un mode d’agrégation
raisonnable et satisfaisant, il est utile d’adopter une approche axiomatique et sélectionner
ainsi les fonctions d’agrégation qui vérifient certaines propriétés. De telles propriétés
peuvent étre dictées par la nature des valeurs a agréger. Par exemple, dans un
probleme classique d’analyse multicritere, un des objectifs est d’évaluer le score glo-
bal d’une alternative a partir de scores partiels obtenus sur différents criteres. Dans
ce cas, il ne serait pas tres naturel de donner au score global une valeur inférieure
au plus petit des scores partiels ou supérieure au plus grand des scores partiels.
Ainsi, seule une fonction de type “interne” (une moyenne) peut étre utilisée. Pour
donner un autre exemple, supposons que 1’on souhaite agréger des opinions dans
une procédure de vote. Si les votants sont anonymes, la fonction d’agrégation doit
étre symétrique.

Dans cette section, nous présentons quelques propriétés qui peuvent étre vues
comme souhaitables ou non en fonction du probleme considéré. Bien sur, toutes ces
propriétés ne sont pas requises avec la méme intensité et peuvent avoir des objectifs
tres différents. Certaines représentent des conditions impératives dont la violation
conduirait a des modes d’agrégation contre-intuitifs. D’autres sont plus techniques et
ont pour seul but de faciliter la représentation ou le calcul des fonctions d’agrégation.
Enfin, il y a aussi des propriétés plutot facultatives qui ne s’appliquent que dans des
circonstances particulieres et qui ne sont pas universellement acceptées.

2.1 Propriétés mathématiques élémentaires

Définition 2.1 A: E™ — R est symétrique si, pour tout m € Iy, on a
Ay, .. 20) = A(Zr@)s - - Tr(n)) (x € E™).

La propriété de symétrie signifie que 'ordre des z; est sans importance pour
I’agrégation. Ceci est requis notamment lorsque ’on combine des criteres d’impor-
tances égales ou des opinions d’experts anonymes.

Définition 2.2 A : E" — R est continu s’il est continu au sens habituel.

L’avantage d’une fonction continue est qu’elle ne présente aucun saut brusque
suite a de faibles variations des valeurs partielles.

Définition 2.3 A: E™ — R est



— non décroissant si, pour tous x,x’ € E™, on a
r<az = Alx)<A(),
— strictement croissant s’il est non décroissant et si , pour tous x,x’ € E™, on a
r<aetx#2 = Ax)<A),

— unanimement croissant s’il est non décroissant et si , pour tous x,x’ € E™, on
a
r<z = A(x) < A(2).

Une fonction non décroissante présente un comportement non négatif a tout ac-
croissement des arguments. En d’autres termes, 'accroissement d’une valeur partielle
ne fait pas décroitre le résultat. La fonction est strictement croissante si, en plus,
elle réagit positivement a tout accroissement d’au moins une valeur partielle. Enfin,
la fonction est unanimement croissante si elle est non décroissante et présente une
réaction positive chaque fois que tous les arguments croissent. Par exemple, nous
observons que, sur [0,1]", la fonction maximum A(z) = maxz; est unanimement
croissante, alors que la somme bornée A(x) = min(}_" ; x;,1) ne 'est pas.

Définition 2.4 A: E" — R est idempotent si A(z,...,x) = x pour tout x € E.

Définition 2.5 A : [a,b]" — R est faiblement idempotent si A(a,...,a) = a et
A(b, ..., b) =b.

Dans de nombreuses applications, il est requis que la fonction d’agrégation vérifie
la propriété d’idempotence : si tous les z; sont identiques, M(x1,...,x,) restitue la
valeur commune.

Définition 2.6 A: E" — R est
— conjonctif si A(z) < minz; pour tout z € E™,
— disjonctif si maxx; < A(z) pour tout x € E",
— interne si minx; < A(z) < maxz; pour tout v € E™.

Les fonctions conjonctives combinent les valeurs comme si elles étaient reliées par
un opérateur logique “ET”. En d’autres termes, le résultat de ’agrégation n’est élevé
que si toutes les valeurs partielles sont élevées. Les t-normes sont des fonctions qui
se comportent de cette maniére (voir la sous-section 4.5). A 'opposé, les fonctions
disjonctives combinent les valeurs comme un opérateur logique “OU”, de telle sorte
que le résultat de la combinaison est élevé si au moins I'une des valeurs partielles
est élevée. Les fonctions disjonctives les plus connues sont les t-conormes.

Entre ces deux situations extrémes se trouvent les fonctions internes, situées
entre le min et le max. Dans ce type de fonctions, une valeur partielle faible peut étre
compensée par une autre plus élevée. Par definition, les fonctions de type “moyennes”
sont des fonctions internes (voir Section 3).



2.2 Propriétés de stabilité liées aux types d’échelles

Selon le type d’échelle qui est utilisé, les opération autorisées sur les valeurs
sont plus ou moins limitées. Par exemple, une agrégation sur des échelles ordinales
doit nécessairement se restreindre aux opérations n’utilisant rien d’autre que des
comparaisons, telles que les statistiques d’ordre.

Une échelle de mesurage est une application qui associe un nombre réel a chaque
objet mesuré. Le type d’une échelle, ainsi défini par Stevens [100, 101], est la donnée
d’une classe de transformations admissibles, transformations permettant de passer
d’une échelle acceptable a une autre. Par exemple, une échelle sera appelée échelle de
ratio si la classe des transformations admissibles consiste en les similarités ¢(x) = rz,
avec r > (0. Dans ce cas, les valeurs sont déterminées au choix de I'unité pres. La
masse est un exemple d’échelle de ratio. La conversion de kilogrammes en livres
est donnée par la transformation admissible ¢(z) = 2.2x. La longueur (centimetres,
pouces) et les intervalles de temps (années, secondes) sont deux autres exemples
d’échelles de ratio. Une échelle et dite échelle d’intervalle si la classe des transforma-
tions admissibles consiste en les transformations linéaires positives ¢(z) = rx + s,
avec r > 0 et s € R. Les valeurs sont alors déterminées au choix de 1'unité pres mais
aussi de la position du zéro. La température (sauf lorsqu’il y a un zéro absolu) définit
une échelle d’intervalle. Ainsi par exemple, la transformation permettant de passer
des degrés Celsius aux degrés Fahrenheit est donnée par ¢(x) = 92/5 + 32. Une
échelle est dite échelle ordinale si la classe des transformations admissibles consiste
en les bijections ¢ strictement croissantes. Dans ce cas, les valeurs sont déterminées
a l'ordre pres. Par exemple, 1’échelle de la qualité de l'air utilisée dans plusieurs
grandes villes est une échelle ordinale. Elle associe la valeur 1 a de air irrespirable,
2 a de lair insatisfaisant, 3 a de 'air acceptable, 4 & de 'air de bonne qualité, 5
a de l'air excellent. Pour définir une telle échelle, on aurait pu utiliser les nombres
1.2, 6.5, 8.7, 205.6, 750, ou n'importe quelle série de nombres qui préserve 'ordre
défini. D’autres définitions de types d’échelle peuvent étre trouvées dans le livre de
Roberts [91] sur la théorie du mesurage ; voir également Roberts [92, 93]. Le lecteur
trouvera aussi plus détails sur le mesurage dans le chapitre 7?7 de ce volume.

Une proposition impliquant des échelles de mesurage est dite signifiante si le
fait qu’elle soit vraie ou fausse est invariant lorsque les échelles sont remplacées par
des versions acceptables [91, p. 59]. Par exemple, une méthode de rangement est
signifiante si le rangement des alternatives induit par ’agrégation sous-jacente ne
dépend pas des transformations admissibles d’échelles.

En 1959, Luce [61] observa que la forme générale d'une relation fonctionnelle
entre des variables est relativement restreinte lorsqu’on connait le type d’échelle
utilisé pour les variables. Ces restrictions peuvent étre déterminées par la formu-
lation d’'une équation fonctionnelle basée sur les transformations admissibles. La
méthode de Luce est basée sur le principe qu’une transformation admissible des
variables indépendantes peut conduire a une transformation admissible de la va-
riable dépendante. Par exemple, supposons que f(a) = A(fi(a),..., fu(a)), ou f et
fi,--., fn sont toutes des échelles de ratio dont les unités sont indépendantes les



unes des autres. Dans ce cas, nous obtenons I’équation fonctionnelle

A(rixy, .. rpeye) = R(ry, .o ) Az, -0y x),
r; >0, R(ry,...,r,) >0.

Aczél et col. [9] ont alors montré que les solutions de cette équation sont données
par

n
A(z) =a]] gi(z:), aveca >0, g >0,
i=1
et ou les fonctions g; vérifient

9i(x;y;) = gi(x;)g:(y;) pour tous z;,y; € R.

Dans cette sous-section, nous présentons quelques équations fonctionelles rela-
tives a certains types d’échelle. Le lecteur intéressé pourra trouver de plus amples
détails dans [8, 9] et un état de I'art dans [93].

Définition 2.7 A: R" — R est
— signifiant pour les mémes échelles de ratio entrées-sorties si, pour tout r > 0,
on a
A(ray,...,rz,) =rA(xy, ..., 2,) (x € R"),

— signifiant pour les mémes échelles de ratio entrées si, pour tout r > 0, il existe
R, > 0 tel que

A(rxy, ..., rzy,) = Ry A(z1, ..., xy) (x € R"),

— signifiant pour les mémes échelles d’intervalle entrées-sorties si, pour tousr > 0
et seR, ona

Alrey 4+ s,...,rxn + 8) =1A(21, ..., x0) + 8 (x € R"),

— signifiant pour les mémes échelles d’intervalle entrées si, pour tous r > 0 et
s € R, il emiste R, s >0 et S,5 € R tels que

Alrzy +s,...,rxn +8) = R jA(xq, ..., x,) + Sy (x € R"),

— signifiant pour les mémes échelles ordinales entrées-sorties si, pour toute bijec-
tion strictement croissante ¢ : R — R, on a

A(p(z1),. .., () = 0(A(xq, ..., xy)) (x € R"),

— signifiant pour les mémes échelles ordinales entrées si, pour toute bijection
strictement croissante ¢ : R — R, il existe une fonction strictement croissante
Yy R — R telle que

A(p(z1), ..., d(xn)) = Yo(Alxy, ..., 20)) (x € R").



2.3 Propriétés algébriques

Les propriétés qui suivent se rapportent aux procédures d’agrégation qui peuvent
se “décomposer” en agrégations partielles c¢’est-a-dire pour lesquelles il est possible
de partitionner I’ensemble des attributs en sous-groupes disjoints, de construire une
agrégation partielle pour chaque sous-groupe et ensuite de combiner ces résultats
partiels pour obtenir une valeur globale. Une telle décomposition peut prendre plu-
sieurs formes. Peut-étre une des plus “restrictives” de ces décompositions est 1'as-
sociativité, bien connue des algébristes. Nous présentons également deux autres for-
mulations plus faibles : décomposabilité et bisymétrie.

Présentons tout d’abord ’associativité pour les fonctions a deux arguments.

Définition 2.8 A: E? — E est associatif si, pour tout x € E*, on a
A(A(ilfl, 1'2), 373) = A(l’l, A(.%'Q, 33'3))

Une vaste littérature est consacrée a I’équation fonctionnelle d’associativité. Pour
une liste de références, voir [4, §6.2].
Cette propriété s’étend aux suites de fonctions comme suit :

Définition 2.9 La suite (A™ : R® — R),s; est associative si AV (x) = x pour
tout v € E et

A(”)(xl, ey Ty Tt 1y e v oy Ty) = A(”)(A(k)(:z:l, ce oy TE), A("_k)(xkﬂ, )
pour tout x € E™ et tous k,n € N tels que 1 < k < n.

Ce qui est implicite dans la définition d’une suite associative, c’est la maniere
de passer tres facilement d’une agrégation de n valeurs a une agrégation de n + 1
valeurs. En effet, de la définition, on déduit la formule

A(”+1)(x1, e Tpy) = A®) (A(”) (X1, o, Tp), Tny1)s

pour tout n € N\ {0}.

Passons a présent a la propriété de décomposabilité. Dans ce but, nous intro-
duisons la notation suivante : pour tout & € N\ {0} et tout = € R, nous posons
k-x=uwx, ...z (kfois). Par exemple,

A(3 -, 2. y) = A(l’,l',l',y,y)-

Définition 2.10 La suite (A™ : R" — R),; est décomposable si A (z) = 2 pour
tout v € E et

A (@ Tty ) = AP (A (2, x), (n—k)- AT (2, 2))

pour tout x € E™ et tous k,n € N tels que 1 < k < n.



La définition ici est la méme que celle de I'associativité, excepté que les agrégations
partielles sont dupliquées un nombre de fois égal au nombre de valeurs agrégées.

Cette propriété de décomposabilité a été introduite sous le nom d’associativité
des moyennes par Bemporad [14, p. 87] dans une caractérisation de la moyenne
arithmétique. Elle a aussi été utilisée par Kolmogoroff [59] et Nagumo [83] pour
caractériser les moyennes quasi-arithmétiques. Plus récemment, Marichal et Rou-
bens [71] ont proposé d’appeler cette propriété “décomposabilité” pour ne pas la
confondre avec ’associativité classique.

La propriété de bisymétrie, qui résulte simultanément de I’associativité et la
symétrie, est définie pour les fonctions a n variables comme suit :

Définition 2.11 A : E™ — FE est bisymétrique si

A(A(.I'll, Ce ,l‘ln), Ce ,A(f}?nl, Ce ,l'nn))
= A(A(I’H, PN ,l’nl), PN ,A([Eln, c ,Inn))

pour toute matrice carrée (z;;) € E™™.

Pour des fonctions a deux variables, cette propriété a été étudiée d’'un point
de vue algébrique en 1'utilisant principalement dans des structures privées de la
propriété d’associativité. Pour une liste de références, voir [4, §6.4] et [6, Chapitre 17].

Pour une suite de fonctions, cette propriété devient :

Définition 2.12 La suite (A™ : R® — R),,>; est bisymétrique si AV (z) =z pour
tout v € E et

A(p)(A(”)(xll, e L) ,A(”)(xnl, e Tpn))
= A(n)(A(p)(l’H, e ,[Epl), e ,A(p)(xln, .. ,ZL’pn))

pour tous n,p € N\ {0} et toute matrice (x;;) € EP*".

3 Moyennes

Il ne serait pas convenable de proposer un chapitre sur les fonctions d’agrégation
sans traiter des fonctions de type moyenne. Déja bien connu et étudié par les Grecs
de I’Antiquité (voir par exemple [12, Chapitre 3]), le concept de moyenne a donné
lieu aujourd’hui a un champs d’étude tres vaste avec une variété impressionnante
d’applications. En fait, une abondante littérature sur les propriétés de plusieurs
moyennes (tels que la moyenne arithmétique, géométrique, etc.) a déja été écrite,
surtout depuis le 19eme siecle, et continue a se developper aujourd’hui. Un excellent
panorama du domaine peut étre trouvé dans Frosini [44]. Voir aussi le remarquable
ouvrage de Bullen et al. [18].

La premiere définition moderne de la moyenne est probablement due a Cau-
chy [19], qui considérait en 1821 la moyenne de n variables indépendantes x1, ..., z,
comme une fonction M (z1,...,x,) qui devrait étre interne (cf. Definition 2.6) a
I'ensemble des valeurs des z;.

Le concept de moyenne en tant qu’égaliseur numérique est habituellement at-
tribué a Chisini [20], qui donna en 1929 la définition suivante (p. 108) :
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Soit y = g(z1, ..., x,) une fonction de n variables indépendantes 1, . . .,
représentant des quantités homogenes. Une moyenne de zq,...,x, par
rapport a la fonction g est un nombre M tel que, si tous les x; sont
remplacés par M, la valeur de la fonction reste inchangée, c’est-a-dire,

g(M,....M)=g(z1,...,2,).

Lorsque g est la somme, le produit, la somme des carrés, la somme des in-
verses, ou encore la somme des exponentielles, la solution de I’équation de Chisini
correspond respectivement a la moyenne arithmétique, la moyenne géométrique, la
moyenne quadratique, la moyenne harmonique, et la moyenne exponentielle. Mal-
heureusement, comme ’a remarqué de Finetti [26, p. 378], la définition de Chisini
est si générale qu’elle n'implique méme pas que la “moyenne”—en supposant qu’il
existe une solution réelle a I’équation de Chisini—soit une fonction interne au sens
de Cauchy.

La citation suivante de Ricci [90, p. 39] pourrait également étre considérée comme
une autre critique possible de 'approche de Chisini :

... lorsque toutes les valeurs deviennent égales, la moyenne devient cette
valeur commune. La proposition inverse n’est pas vraie. Si une fonction
de plusieurs variables prend leur valeur commune lorsque toutes les va-
riables coincident, ce n’est pas une condition suffisante pour appeler cette
fonction une moyenne. Par exemple, la fonction

g(x1,Tay . xy) =Xy + (T — 1) + (T — 22) + -+ (T, — Tpq)

vaut x, lorsque x; = --- = x,, mais est méme supérieure a x,, chaque
fois que x,, est supérieur a n’importe laquelle des autres variables.

En 1930, Kolmogoroff [59] et Nagumo [83] considéraient que la moyenne devrait
étre beaucoup plus que simplement une fonction interne ou un égaliseur numérique.
Ils ont alors défini une valeur moyenne comme une suite décomposable (cf. Defini-
tion 2.10) de fonctions

M(l)(xl) = xl,M(z)(xl,xg), .. .,M(”)(xl, R R

qui sont continues, symétriques, strictement croissantes, et idempotentes. Ils ont en-
suite démontré, indépendamment 1'un de ’autre, que ces conditions sont nécessaires
et suffisantes pour la quasi-arithméticité de la moyenne, c¢’est-a-dire, pour 1’existence
d’une fonction f continue et strictement monotone telle que M ™ soit de la forme

n

Zf(%)} (1)

=1

M™ (zy, .. x,) = f_l{

pour tout n € N'\ {0}.

Les moyennes quasi-arithmétiques (1) comprennent la plupart des moyennes
algébriques connues ; voir Table 1. Cependant, certaines moyennes, comme la médiane,
ne font pas partie de cette catégorie.
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f(x) M (zy, ..., z,) nom
T % En: x; arithmétique
i=1
n 1/2
x? (% > :Uf) / quadratique
i=1
n 1/n f
log x ( I1 xl) géométrique
i=1
x~! 1 harmonique
F
=1
n 1/
z* (e € R\ {0}) (% > x?) / puissance
i=1
e (e R\ {0}) L1n (% §: eo””> exponentielle
i=1

TaB. 1 — Exemples de moyennes quasi-arithmétiques

Les propriétés ci-dessus, définissant une valeur moyenne, sont assez naturelles.
Par exemple, on peut facilement voir que, pour les moyennes non décroissantes,
I'idempotence est équivalente a 'internalité de Cauchy, et ces deux propriétés sont
acceptées par tous les statisticiens comme des conditions minimales pour définir une
moyenne.

La propriété de décomposabilité des moyennes est assez naturelle. Lorsqu’elle est
associée a l'idempotence, elle peut s’écrire

M® @y, oa) = MP (2, a)
U

n n / /
M (xy, . ap T, - Tn) = M )(xl,...,xk,xkﬂ,...,xn)

ce qui signifie que la moyenne ne change pas lorsqu’on modifie certaines valeurs sans
modifier leur moyenne partielle.

L’objectif de cette section n’est pas de présenter un état de l'art de tous les
résultats connus de ce vaste royaume des moyennes. Nous ne faisons ici qu’effeurer
la surface du sujet en mettant en évidence des caractérisations axiomatiques pour
les familles de moyennes les plus connues et les plus souvent utilisées.

Les médianes et, plus généralement, les statistiques d’ordre, qui sont des moyennes
particulieres, construites pour agréger des valeurs ordinales, seront brievement presentées
a la section 7.
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3.1 Moyennes quasi-arithmétiques

Comme nous venons de le mentionner, les moyennes quasi-arithmétiques ont été
introduites a ’aide d’une axiomatique tres naturelle. Dans cette sous-section, nous
étudions ces moyennes en tant que fonctions a n variables, mais aussi en tant que
suites de fonctions. Des résultats sur cette classe de moyennes peuvent aussi étre
trouvés dans [18, Chapitre 4].

Il a été demontré par Aczél [2] (voir aussi [4, §6.4] et [6, Chapitre 17]) que
les moyennes quasi-arithmétiques sont les seules fonctions M : E" — FE qui soient
symétriques, continues, strictement croissantes, idempotentes et bisymétriques. L’énoncé
de ce résultat peut étre formulé comme suit :

Théoreme 3.1 M : E" — E est une fonction symétrique, continue, strictement
croissante, idempotente et bisymétrique si et seulement sl existe une fonction f :
E — R continue et strictement monotone telle que

n
M) =f1=Y fl@)]  (xeE). (2)
i=1

Les moyennes quasi-arithmétiques (2) sont des fonctions d’agrégation internes
et couvrent un large spectre de moyennes, comprenant les moyennes arithmétiques,
quadratiques, géométriques, et harmoniques ; voir Table 1.

La fonction f apparaissant dans (2) est appelée générateur de M. On peut mon-
trer que f est déterminé a une transformation linéaire pres : avec f(z), toute fonction

g(x)=rf(x)+s (r,s € Ryr #£0)

définit le méme M, et uniquement les fonctions de cette forme.
En plus de ce résultat d’Aczél, nous avons également celui de Kolmogoroff-
Nagumo que nous rappelons ici :

Théoréme 3.2 La suite (M™ : E™ — E),>; est une suite décomposable de fonc-
tions symétriques, continues, strictement croissantes et idempotentes si et seulement
s’il existe une fonction f: E — R continue et strictement monotone telle que
M) = =3 fa)] (e B,
i=1
Nagumo [83] a étudié certaines sous-familles de la classe des moyennes quasi-
arithmétiques. Il a démontré le résultat suivant (voir aussi [5, §4] et [6, Chapitre 15]) :

Proposition 3.1 Supposons E =10, 00[ ou un sous-intervalle.
(i) M : E™ — E est une moyenne quasi-arithmétique signifiante pour les mémes
échelles de ratio entrées-sorties si et seulement si

— soit M est la moyenne géométrique :

3=

(z € E"),
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— ou M est la moyenne puissance : il existe a € R\ {0} tel que
1 1
M(x) = (— ) e E"). 3
(1) =(->af)"  (er (3)

(11) M : E™ — E est une moyenne quasi-arithmétique signifiante pour les mémes
échelles dintervalle entrées-sorties si et seulement si M est la moyenne arithmétique.

Notons M) la moyenne puissance (3) générée par o € R\ {0}. Il est bien connu
[13, §16] que, si oq < ap alors Ma,)(z) < Ma,)(z) pour tout x €0, +-o00[" (égalité
si et seulement si tous les z; sont égaux).

Cette famille particuliere de moyennes a été étudiée par Dujmovi¢ [35, 36] et
plus tard par Dyckhoff et Pedrycz [37]. Elle comprend la plupart des moyennes
traditionnelles : la moyenne arithmétique M), la moyenne harmonique My, la
moyenne quadratique M), et trois cas limites : la moyenne géométrique M), le
minimum M_.) et le maximum M. (voir par exemple [1]).

En revenant au Théoreme 3.1, notons qu'Aczél [2] a aussi étudié le cas ou la
symétrie et I'idempotence sont omises (voir aussi [4, §6.4] et [6, Chapitre 17]). Il a
obtenu le résultat suivant :

Théoréme 3.3 (i) M : E" — E est une fonction continue, strictement croissante,
idempotente, et bisymétrique si et seulement s’il existe une fonction f : E — R
continue et strictement monotone et des mombres réels wy,...,w, > 0 vérifiant
Yiwi =1 tels que

n

M(z) = D wif@)]  (we B, (4)

i=1

(11) M : E™ — E est une fonction continue, strictement croissante, et bisymétrique
si et seulement s’il existe une fonction f : E — R continue et strictement monotone
et des nombres réels p1,...,p, > 0 et ¢ € R tels que

M(x) = fl[épif(xi) tq  (weEn. (5)

Les moyennes quasi-linéaires (4) et les fonctions quasi-linéaires (5) sont des fonc-
tions d’agrégation pondérées. L’unicité vis-a-vis de f est discutée en détail dans [4,
§6.4]. Quelques cas particulier de moyennes quasi-linéaires sont présentés dans la
Table 2.

3.2 Moyennes lagrangiennes et moyennes de Cauchy

Considérons le point intermédiaire M dans la formule classique du théoreme des
accroissements finis de Lagrange

Fy) = F(z) = F'(M)(y—x)  (z,y€E), (6)
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f(x) M (x) nom de la moyenne pondérée
x i Wi T; arithmétique
i=1
n 1/2 .
x? ( Wi 3:12) quadratique
i=1
log = ﬁ xy géométrique
i=1
n 1/a .
z* (v € R\ {0}) (Z Wi x?) puissance
i=1

TAB. 2 — Exemples de moyennes quasi-linéaires

comme une fonction des variables x,y, avec la convention M (z,z) = x,ou F : E —
R est une fonction continiment dérivable et strictement convexe ou concave. En
reformulant cette définition en termes d’intégrales au lieu de dérivées, nous pouvons
réécrire (6) comme

M(z,y) = f_1<yix/:f(§)d§>7 si @ #y, (7)

x, six =1y,

pour z,y € E, ou f : E — R est une fonction continue et strictement mono-
tone. Cette fonction M(x,y) est appelée la moyenne lagrangienne associée a f ;
voir par exemple [15] et [18, p. 343]. L’unicité du générateur est la méme que pour
les moyennes quasi-arithmétiques, c’est-a-dire, défini a une méme transformation
linéaire pres; voir [15, Corollaire 7] et [75, Théoreme 1].

Plusieurs moyennes classiques sont lagrangiennes. Les moyennes arithmétique et
géométrique correspondent & prendre respectivement f(z) =z et f(x) = 1/2? dans
(7). Cependant la moyenne harmonique n’est pas lagrangienne.

En général, certaines des moyennes les plus communes sont a la fois quasi-
arithmétiques et lagrangiennes, mais il y a des moyennes quasi-arithmétiques, comme
la moyenne harmonique, qui ne sont pas lagrangiennes. Inversement, la moyenne lo-
garithmique

-y
M(z,y) = { logz — logy
x, for x =y > 0,

, forz,y>0,z#vy,

est un exemple de moyenne lagrangienne (f(x) = 1/x) qui n’est pas quasi-arithmétique.
Considérons a présent le théoreme de la valeur moyenne de Cauchy, qui s’énonce
de la maniere suivante : pour toutes fonctions F et g, continues sur un intervalle
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[z, y] et dérivables sur |z, y|, il existe M € |a, b[ tel que

Fly) - F(z) _ F'(M)
gy) —g(x)  g(M)

Si les fonctions g et f := F’/¢' sont strictement monotone sur |z,y[, la valeur
moyenne M (z,y) est unique et peut étre écrite comme

My = (M /gayf(ﬁ)dg(ﬁ)) siz 7y,

T, siz =y,

pour z,y € E. Elle est alors appelée la moyenne de Cauchy associée au couple (f,g) ;
voir [16]. Une telle moyenne est continue, symétrique, idempotente et strictement
croissante.

Lorsque g = f (resp. g est la fonction identité), on retrouve la moyenne quasi-
arithmétique (resp. lagrangienne) générée par f. La moyenne anti-lagrangienne [16]
est obtenue lorsque f est la fonction identité. Par exemple, la moyenne harmonique
est une moyenne anti-lagrangienne générée par la fonction g = 1/z?%. Les générateurs
d’une méme moyenne anti-lagrangienne sont définis a une méme transformation
linéaire pres.

4 Fonctions d’agrégation associatives

Avant de présenter des axiomatiques sur les fonctions associatives, nous rappe-
lons quelques concepts bien utiles. Un semi-groupe (E, A) est un ensemble E muni
d’une opération associative A : E? — E. Comme précédemment, nous supposerons
que E est un intervalle réel, borné ou non. Un élément e € E est

a) une identité pour A si A(e,z) = A(x,e) = x pour tout z € E,

b) un zéro (ou annihilateur) pour A si A(e,z) = A(z,e) = e pour tout z € E,

¢) un idempotent pour A si A(e,e) = e.

Pour tout semi-groupe (E, A), il est clair qu’il y a au plus une identité et au plus
un zéro pour A dans F, et les deux sont idempotents.

Nous introduisons également le concept de somme ordinale, bien connu en théorie
des semi-groupes (voir par exemple [22, 60]).

Définition 4.1 Soit K un ensemble totalement ordonné et soit {(Ey, Ax) |k € K}
une collection de semi-groupes disjoints indexés par K. Alors la somme ordinale de
{(Ex, Ax) | k € K} est définie par l'union Uek Ey, sous l'opération binaire suivante :

Alz,y) = {Ak<$>y); st 3k € K tel que x,y € Ej,
Y) = min(x,y), si 3k, ks € K ki # ko tels que v € Ey, ety € Ey,.

La somme ordinale est un semi-groupe sous 'opération définie ci-dessus.
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4.1 Fonctions strictement croissantes

En étudiant les solutions continues et strictement croissantes sur £? de 1’équation
fonctionnelle d’associativité (cf. Définition 2.8), Aczél [3] fut a l'origine du résultat
suivant (voir aussi [4, Sect. 6.2]).

Théoreme 4.1 Soit E un intervalle réel, borné ou non, ouvert sur une extrémité.
A E* — E est continu, strictement croissant et associatif si et seulement s’il existe
une fonction f: E — R continue et strictement monotone telle que

Az,y) = [Tf@) + f)]  ((z,y) € E). (8)

Il a aussi été démontré que la fonction f apparaissant dans (8) est unique a une
constante multiplicative pres, c’est-a-dire, avec f(x) toute fonction g(z) = r f(z)
(r € R\ {0}) représente le méme A, et uniquement les fonctions de ce type.

De plus, la fonction f est telle que, si e € E alors

Ale,e) =e & f(e)=0. (9)

De la, et vu la stricte monotonie de f, il y a au plus un idempotent pour A (qui est
I'identité en fait) et donc A ne peut étre idempotent. Ainsi, il n’existe aucune fonc-
tion qui soit simultanément continue, strictement croissante, idempotente et associa-
tive. Cependant, on peut remarquer que toutes les fonctions continues, strictement
croissantes et associatives sont symétriques. La somme (f(z) = z) et le produit
(f(x) = logx) sont des exemples bien connus de fonctions continues, strictement
croissantes et associatives.

Selon Ling [60], tout semi-groupe (£, M) vérifiant les hypotheses du Théoreme 4.1
est dit Aczélien.

Puisque toute suite associative de fonctions (A™ : E" — E),s; est univoque-
ment déterminée par sa fonction a deux variables, nous avons immédiatement le
résultat suivant :

Corollaire 4.1 Soit E un interval réel, borné ou non, ouvert sur une extrémaité.
(A™ : E" — E),>1 est une suite associative de fonctions continues et strictement
croissantes si et seulement s’il existe une fonction f : E — R continue et strictement
monotone telle que, pour tout n € N\ {0},

A (g) = f71 [z”;fm)} (v € BY).

4.2 Semi-groupes Archimédiens

Certains auteurs ont tenté de généraliser le Théoreme 4.1 en relachant la stricte
croissance en la non décroissance. Il semble cependant que la classe des fonctions
continues, non décroissantes et associatives n’ait pas encore été décrite. Toutefois,
sous certaines conditions, des résultats ont été obtenus.

D’abord, nous énongons une représentation qui est souvent attribuée a Ling [60].
A vrai dire, son principal théoreme peut se déduire facilement de résultats connus
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précédemment sur la topologie des semi-groupes; voir Faucett [38] et Mostert et
Shields [79]. Néanmoins, I’avantage de 'approche de Ling est double : (i) le trai-
tement de deux cas différents par une approche unifiée et (ii) des démonstrations
élémentaires.

Théoréme 4.2 Soit E = [a,b]. A: E* — E est continu, non décroissant, associatif
et

Alb,x) ==z (x e E) (10)
Alz,r) < x (x € E°) (11)

si et seulement s’il existe une fonction f : E — [0,+00] continue et strictement
décroissante, avec f(b) =0, telle que

Alz,y) = f[min(f(2) + f(y), f(a))]  (z.y € E). (12)

Le fait que E soit fermé n’est pas réellement une restriction. Si E est un intervalle
réel, borné ou non, avec b pour extrémité supérieure (b peut étre +00), alors nous
pouvons remplacer la condition (10) par

tligl— A(t,t) =0, tlirgl_ Alt,z) =x (x € E).

Toute fonction f solutionnant 1’équation (12) est appelé générateur additif (ou
simplement générateur) de M. De plus, nous pouvons facilement voir que toute
fonction A de la forme (12) est symétrique et conjonctive.

La condition (10) exprime que b est une identité a gauche pour M. Il s’avere, de
(12), que b agit comme une identité, et a comme un zéro. La condition (11) exprime
simplement qu’il n’y a pas d’idempotent pour A dans |a,b[. En effet, par la non
décroissance et (10), nous avons toujours A(z,z) < A(b, z) = x pour tout x € [a, b].

Selon que f(a) est fini ou infini (rappelons que f(a) € [0,4+oc]), A prend une
forme bien définie (voir Fodor et Roubens [43, §1.3] et Schweizer et Sklar [99)]) :

— f(a) < 400 si et seulement si A a des diviseurs de zéro (c’est-a-dire Iz, y €

la,b] tel que A(x,y) = a). Dans ce cas, il existe une fonction g : [a,b] — [0, 1]
continue et strictement croissante, avec g(a) = 0 et g(b) = 1, telle que

A(z,y) = g 'max(g(z) + g(y) — 1,0)]  (z,y € [a,b]). (13)

Pour le voir, il suffit de poser g(z) := 1 — f(x)/f(a).
Pour les suite associatives (A™ : [a,b]" — [a, b])n>1, (13) devient

AW (g) = g [max(f:lg@) —n+1,0)]  (¥€a,b]", neN\{0}).

— limy 4+ f(z) = +00 si et seulement si A est strictement croissant sur |a, b[.
Dans ce cas, il existe une fonction ¢ : [a,b] — [0, 1] continue et strictement
croissante, avec g(a) = 0 et g(b) = 1, telle que

Alz,y) =g ' g(x) g(w)]  (z,y € [a,b]), (14)
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Pour le voir, il suffit de poser g(z) := exp(—f(z)).
Pour les suite associatives (A™ : [a,b]" — [a, b])n>1, (14) devient

n

AO@) =g [[Tgt@)] (@€ [ob]", neN\{o}).

=1

Bien sir, le Théoreme 4.2 peut aussi étre écrit sous une forme duale comme suit :

Théoréme 4.3 Soit E = [a,b]. A: E?* — E est continu, non décroissant, associatif
et

Ala,z) == (x € E)
Alz,z) > x (x € E°)

si et seulement s’il existe une fonction f : E — [0,+00] continue et strictement
croissante, avec f(a) =0, telle que

A(z,y) = [ [min(f(z) + f(v), f()]  (z,y € B). (15)

Ici encore, E peut étre un intervalle quelconque, éventuellement non borné. Les
fonctions A de la forme (15) sont symétriques et disjonctives. Il n’y a aucun idem-
potent intérieur. L’extrémité inférieure a agit comme une identité et l'extrémité
supérieure b agit comme un zéro.

Un fois encore, deux cas peuvent étre examinés :

— f(b) < 400 si et seulement si A a des diviseurs de zéro (c’est-a-dire Jz,y €

la,b] tel que A(z,y) = b). Dans ce cas, il existe une fonction g : [a,b] — [0, 1]
continue et strictement croissante, avec g(a) = 0 et g(b) = 1, telle que

A(z,y) = ¢ 'min(g(z) + g(y),1)]  (x,y € [a,b]). (16)

Pour le voir, il suffit de poser g(z) := f(z)/f(b).
Pour les suite associatives (A™ : [a,b]" — [a,b])n>1, (16) devient

AW (z) = g7t {min(j g(x;), 1)} (x € [a,b]", n € N\ {0}).

— lim; ;- f(x) = +o00 si et seulement si A est strictement croissant sur |a, b|.
Dans ce cas, il existe une fonction g : [a,b] — [0,1] continue et strictement
croissante, avec g(a) = 0 et g(b) = 1, telle que

A, y) =g M- (1 -g@)A-gW)]  (z,y€ la,b]), (17)

Pour le voir, il suffit de poser g(x) := 1 — exp(—f(z)).
Pour les suite associatives (A™ : [a,b]" — [a,b])n>1, (17) devient

n

Ay =g [1=T[(1 = g(z:))] (2 € [a,b]", n € N\ {0}).

i=1
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Tout semi-groupe vérifiant les hypotheses du Théoreme 4.2 ou 4.3 est appelé
Archimédien, voir Ling [60]. En d’autres mots, tout semi-groupe (E, A) est dit Ar-
chimédien si A est continu, non décroissant et associatif, une extrémité de E étant
une identité pour A, et il n’y a pas d’idempotent pour M a l'intérieur de E. Nous
pouvons faire la distinction entre les semi-groupes Archimédiens conjonctifs ou dis-
jonctifs selon que l'identité se trouve a l'extrémité supérieure ou inférieure de F,
respectivement. Un semi-groupe Archimédien est dit proprement Archimédien ou
Aczélien si tout générateur additif est non borné, sinon il est improprement Ar-
chimédien.

Ling [60, §6] a démontré que tout semi-groupe Archimédien peut étre obtenu
comme limite de groupes Aczéliens.

4.3 Une classe de fonctions associatives non décroissantes

Nous présentons maintenant une description des fonctions A : [a,b]*> — [0, 1]
qui sont continues, non décroissantes, faiblement idempotentes et associatives. Pour
tout @ € [a, b], nous définissons A, ;e comme I'ensemble des fonctions A : [a, b]? —
0, 1] continues, non décroissantes, faiblement idempotentes, associatives et telles que
A(a,b) = A(b,a) = 0. Les cas extrémes A, pq et Agpp joueront un role important
dans la suite. Les résultats de cette sous-section peuvent étre trouvés dans [65].

Théoreme 4.4 A : [a,b]> — [0,1] est continu, non décroissant, faiblement idem-
potent et associatif si et seulement s’il existe o, 3 € [a,b] et deux fonctions Ag anp.ang €
Acanpang €t Aavpbavs € Aavspavs tels que, pour tous x,y € [a,b],

Aa,a/\,@,a/\,@(xv y)7 s1 x,y € [CL, a A B]
A(J:a y) = Aoa\/ﬁ,b,avﬂ(xa y)a s1 x,y € [O./ \% ﬁa b]
(aNx)V(BAY)V(xAYy), sinon.

Passons a présent a la description de A,p,. Mostert et Shields [79, p. 130,
Théoreme B| ont démontré le théoreme suivant :

Théoréme 4.5 A : [a,b]? — [a,b] est continu, associatif et tel que a agit comme un
zéro et b comme une identité si et seulement si
- soit
A(z,y) =min(z,y)  (z,y € [a,0]),
— ou il existe une fonction continue et strictement décroissante f : [a,b] —
[0, +00], avec f(b) =0, tel que

A(z,y) = f[min(f(2) + f(y), f(@))] (2.9 € [a,0])

(semi-groupe Archimédien conjonctif),
— ou 1l existe un ensemble dénombrable d’indices K C N, une famille de sous-
intervalles ouverts disjoints {|ax, bx[ |k € K} de [a,b] et une famille {fi |k €
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K} de fonctions continues et strictement décroissantes fi : [ax, by] — [0, +00],
avec fr(by) = 0, tels que, pour tous x,y € [a,b],

Az, y) = {fk_l[min(fk(x) + fx(v), felar))], si Ik € K tel que x,y € [ag, by,
’ min(z,y), sinon,

(somme ordinale de semi-groupes Archimédiens conjonctifs).

On peut montrer que A, est la famille des fonctions A : [a, b]> — [a,b] conti-
nues, non décroissantes, associatives et telles que a agit comme un zéro et b comme
une identité. En conséquence, la description de la famille A, ; , est aussi donnée par
le Théoreme 4.5. De plus, il s’avere que toutes les fonctions vérifiant les hypotheses
de ce résultat sont symétriques, non décroissantes et conjonctives.

Le Théoreme 4.5 peut aussi étre écrit sous une forme duale comme suit :

Théoréme 4.6 A : [a,b]> — [a,b] est continu, associatif et tel que a agit comme
une identité et b comme un zéro si et seulement si
- soit
A(z,y) = max(z,y)  (z,y € [a,0]),

— ou il existe une fonction continue et strictement croissante f : [a,b] — [0, +0o0],
avec f(a) =0, tel que

A(z,y) = fmin(f(z) + f(y), f(b))]  (z,y € [a,b])

(semi-groupe Archimédien disjonctif),

— ou il existe un ensemble dénombrable d’indices K C N, une famille de sous-
intervalles ouverts disjoints {|ax, bx[ |k € K} de [a,b] et une famille {fi |k €
K} de fonctions continues et strictement croissantes f. - [ax, br] — [0, +0o0],
avec fr(ag) =0, tels que, pour tous x,y € [a, ],

Az, y) = {fkl[mln(fk(l’) + fiu(y), fu(br)) ], si Tk € K tel que x,y € |ay, by,

max(z,y), sinon,
(somme ordinale de semi-groupes Archimédiens disjonctifs).

Comme précédemment, A, est la famille des fonctions A : [a,b]* — [a,b]
continues, non décroissantes, associatives et telles que a agit comme une identité
et b comme un zéro. La description de la famille A,;; est donc donnée par le
Théoreme 4.6. De plus, toutes les fonctions vérifiant les hypotheses de ce résultat
sont symétriques, non décroissantes et disjonctives.

Les Théoremes 4.4, 4.5 et 4.6 réunis fournissent une description complete de
la famille des fonctions A : [a,b]* — [a,b] continues, non décroissantes, faiblement
idempotentes et associatives. En imposant des conditions supplémentaires, on ob-
tient les corollaires qui suivent :

Corollaire 4.2 A : [a,b]> — [a,b] est continu, strictement croissant, faiblement
idempotent et associatif si et seulement s’il existe une fonction g : [a,b] — [0,1]
continue et strictement croissante, avec g(a) =0 et g(b) =1 tel que
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- soit
A(z,y) =g ' 9(x) g(y)]  (z,y € [a,b]),

Az,y) =g ' g(x) +9(y) —9(x) g(v)] (2,9 € [a,]).

Corollaire 4.3 A : [a,b]* — [a,b] est symétrique, continu, non décroissant, faible-
ment idempotent et associatif si et seulement s’il existe o € [a,b] et deuz fonctions
Avona € Avan € Aapa € Aapa tels que, pour tous x,y € [a,b],

Aa,a,a(xy y); St z,y S [CL, a]
Az, y) = { Aapalz,y), siz,y € [a,l]
a, stnon.

Corollaire 4.4 A : [a,b]?> — [a,b] est continu, non décroissant, faiblement idem-
potent, associatif et a eractement une identité dans |a,b] si et seulement si A €

Aa,b,a U Aa,b,b .

4.4 Fonctions associatives internes

Passons maintenant aux fonction associatives internes ou, en quelque sorte, aux
moyennes associatives. Comme ces fonctions sont toutes idempotentes, nous étudions
les fonctions associatives idempotentes. Bien que nous ayons déja observé qu’il
n’existe aucune fonction continue, strictement croissante, idempotente et associa-
tive, la classe des fonctions continues, non décroissantes, idempotentes et associatives
n’est pas vide et peut étre décrite a partir du Théoréme 4.4. Cependant, Fodor [42]
avait déja obtenu cette description dans un cadre plus général. Le théoreme est le
suivant :

Théoréme 4.7 Soit E un intervalle réel, borné ou non. A : E* — E est continu,
non décroissant, idempotent et associatif si et seulement s’il existe o, 3 € E tel que

Alz,y) = (aha)V(BAY) V(@ Ay)  ((z,y) € EB?). (18)

Notons que, par la distributivité de A et V, A peut aussi étre écrit sous la forme
équivalente :

Alz,y) = BVa)A(avy) AzVy)  ((z,y) € E?).

Pour les suites associatives de fonctions, le résultat peut étre formulé comme
suit :

Théoréme 4.8 Soit E un intervalle réel, borné ou non. (A™ : E" — E),>; est
une suite associative de fonctions continues, non décroissantes et idempotentes si et
seulement s’il existe a, 3 € E tel que

AN (@) = (arz)V (V (@ABAZ))V (BAz)V(

=2 %

xl) (x € E™, n € N\{0}).

n—1 n
=1
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Avant Fodor [42], le cas des fonctions symétriques avait été obtenu par Fung and
Fu [45] et d’'une maniere plus concise par Dubois et Prade [31]. Le résultat peut étre
formulé comme ceci :

Théoreme 4.9 Soit E un intervalle réel, borné ou non.
i) A: E* — E est symétrique, continu, non décroissant, idempotent et associatif si
et seulement s’il existe a € E tel que

A(z,y) = médiane(zx, y, «) (x,y € F).

ii) (A . E" — E),>1 est une suite associative de fonctions symétriques, continues,
non décroissantes et idempotentes si et seulement s’il existe a € E tel que

AM () = médiane( &xi, Qmi, a) (x € E", ne N\ {0}). (19)

Les trois théoremes précédents montrent que I'idempotence est rarement consis-
tente avec I'associativité. Par exemple, la moyenne associative (19) n’est pas tres
décisive puisqu’elle conduit & une valeur prédéfinie o des qu’il existe z; < «a et
xr; > .

Czogala et Drewniak [23] ont examiné le cas o A possede une identité e € F.
Ils ont obtenu le résultat suivant :

Théoreme 4.10 Soit E un intervalle réel, borné ou non.
i) Si A : E* — E est non décroissant, idempotent, associatif et a une identité e € E,
alors il existe une fonction décroissante g : E — E avec g(e) = e telle que, pour
tous r,y € I,
TNy, siy < g(x)
Az, y) = { *Vy, sty > g(x)
rANyouzxVy, siy=g(zr).

it) Si A : E* — E est continu, non décroissant, idempotent, associatif et a une
identité e € E, alors A = min ou max.

4.5 t-normes, t-conormes, uninormes

Dans la théorie des ensembles flous, un des principaux sujets consiste a définir
des connecteurs logiques flous qui sont des extensions appropriées des connecteurs
logiques ‘ET’, ‘OU’ et ‘NON’ dans le cas ou ’ensemble des valeurs est l'intervalle
unité [0, 1] au lieu de la paire {0, 1}.

Les connecteurs flous modélisant les ‘ET” et ‘OU’ sont appelés normes trian-
gulaires (ou t-normes) et conormes triangulaires (t-conormes), respectivement ; voir

11, 99].

Définition 4.2 i) Une t-norme est une fonction T : [0,1]* — [0, 1] symétrique, non
décroissante, associative et ayant 1 comme identité.

it) Une t-conorme est une fonction S : [0,1]*> — [0, 1] symétrique, non décroissante,
associative et ayant 0 comme identité.
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L’étude de ces fonctions a commencé avec Schweizer et Sklar [97, 98] et Ling [60] ;
voir aussi Dubois et Prade [32]. Aujourd’hui, il existe une littérature tres abondante
sur le domaine ; voir le livre de Klement, Mesiar et Pap [58].

Bien str, la famille des ¢-normes continues n’est rien d’autre que la classe Ag 1,
et la famille des ¢-conormes continue est la classe Ay ;1. Ces deux classes ont été
completement décrites dans cette section. De plus, le Corollaire 4.4 fournit une
caractérisation de leur union.

Corollaire 4.5 A : [0,1]> — [0, 1] est continu, non décroissant, faiblement idem-
potent, associatif et a exactement une identité dans [0,1] si et seulement si A est
une t-norme continue ou une t-conorme continue.

Il est bien connu que les t-normes et t-conormes sont largement étudiées en
théorie des ensembles flous, surtout dans la modélisation des connecteurs flous et des
implications floues (voir [105]). Les applications a des problemes pratiques requierent
'utilisation des t-normes ou t-conormes les plus appropriées. Sur ce sujet, Fodor [40]
a présenté une méthode de construction de nouvelles t-normes a partir de t-normes.

A noter aussi que certaines propriétés des t-normes, telles que ’associativité, ne
jouent pas de role essentiel dans la modélisation des préférences et la théorie du
choix. Récemment, certains auteurs [10, 37, 110] ont étudié des opérations binaires
non associatives sur [0, 1| dans différents contextes. Ces opérateurs peuvent étre vus
comme des généralisations de t-normes et t-conormes dans le sens qu’ils incluent ces
derniers. De plus, Fodor [41] a défini et étudié le concept de t-normes faibles. Ses
résultats ont été utilement appliqués dans le cadre des relations de préférence floues
strictes.

Depuis peu, d’autres fonctions associatives ont été introduites et étudiées : les
t-opérateurs [72] et les uninormes [108] (voir aussi [73, 74]), qui se sont avérées utiles
dans les systemes experts, les réseaux neuronaux et la théorie des quantificateurs
flous.

Définition 4.3 i) Un t-operateur est une fonction F : [0,1]* — [0,1] symétrique,
non décroissante, associative, ayant 0 et 1 comme éléments idempotents et telle que
les sections x — F(x,0) et x — F(x,1) sont continues sur [0, 1].

it) Une uninorme est une fonction U : [0,1]* — [0, 1] symétrique, non décroissante,
associative et ayant une identité.

Il est clair qu'une uninorme devient une t-norme (resp. t-cornorme) lorsque I'iden-
tité est 1 (resp. 0).

Nous n’insisterons pas sur ce sujet des t-normes, t-conormes, et uninormes. Le
lecteur intéressé consultera le remarquable ouvrage de Klement, Mesiar et Pap [58].

Pour des résultats encore plus récents, signalons un excellent article sur les fonc-
tions associatives par Sander [94].
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5 Intégrales non additives

De nombreuses fonctions d’agrégation peuvent étre vues comme des intégrales
discretes non additives par rapport a des mesures non additives. Dans cette section,
nous introduisons principalement les intégrales de Choquet et de Sugeno. Le lecteur
trouvera plus de détails sur ce domaine dans le chapitre 7?7 de ce volume.

5.1 Motivations

Un des aspects significatifs dans les problemes d’agrégation est la prise en compte
de l'importance des attributs ou criteres considérés, laquelle est habituellement
modélisée par 1'utilisation de poids. Puisque ces poids doivent étre pris en compte
durant la phase d’agrégation, il est nécessaire d’utiliser des fonctions d’agrégation
pondérées, abandonnant ainsi la propriété de symétrie. Jusqu’a récemment, les fonc-
tions d’agrégation pondérées les plus utilisées étaient des fonctions de type moyennes,
tels que les moyennes quasi-linéaires (4).

Cependant, les moyennes arithmétiques pondérées et, plus généralement, les
moyennes quasi-linéaires présentent certaines faiblesses. Aucune de ces fonctions
n’est capable de modéliser une quelconque interaction parmi les attributs. En ef-
fet, il est bien connu en théorie de I'utilité multiattribut (MAUT) que ces fonctions
conduisent a I'indépendance préférentielle mutuelle (voir par exemple [39]) parmi les
attributs, qui exprime, dans un certain sens, I'indépendance des attributs. Comme
ces fonctions ne sont pas appropriées en présence d’attributs dépendants, la ten-
dance a été de construire des attributs censés étre indépendants, ce qui entrainait
souvent des erreurs dans les évaluations.

Dans le but d’obtenir une représentation flexible des phenomenes complexes
d’interaction parmi les attributs ou criteres (par exemple, une synergie positive
ou négative entre certains criteres), il s’est avéré utile de remplacer le vecteur poids
par une fonction d’ensemble non additive, permettant ainsi de définir un poids non
seulement sur chaque critere, mais aussi sur chaque sous-ensemble de criteres.

C’est dans ce but que l'utilisation des mesures floues a été proposée par Su-
geno [102] pour généraliser les mesures additives. Il est maintenant bien connu que,
dans de nombreuses situations du monde réel, I’additivité n’est pas une propriété
appropriée pour les fonctions d’ensemble, a cause de 'absence d’additivité dans de
nombreuses facettes du raisonnement humain. Pour pouvoir exprimer la subjectivité
humaine, Sugeno proposa de remplacer la propriété d’additivité des fonctions d’en-
semble par la monotonie et appela ces mesures monotone non additive des mesures
floues.

Considérons l'ensemble des n indices N = {1,...,n}. Selon les applications
considérées, ces indices peuvent représenter des attributs, des criteres, des juges, des
experts, des votants, etc. Pour souligner le fait que N a n éléments, nous écrirons
parfois N,

Définition 5.1 Une mesure floue sur N est une fonction d’ensemble p : 2V — [0, 1]
qui est monotone, c’est-a-dire u(S) < u(T) chaque fois que S C T, et vérifie les
conditions limites u(2) =0 et u(N) = 1.
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Dans les problemes d’analyse multicritere, le coefficient p(.S), pour un S C N
donné, est généralement interprété comme le poids ou I'importance de la combinaison
S de criteres. Ainsi, en plus des poids usuels sur les criteres pris séparément, des
poids sur toute combinaison de criteres sont également définis. La monotonie signifie
alors simplement que le fait d’ajouter un nouveau critere a une combinaison ne peut
faire décroitre son importance. Dans ce chapitre, I’ensembles des mesures floues sur
N sera noté Fy.

A partir d’une telle mesure floue, on peut construire une fonction d’agrégation
permettant de calculer une sorte de valeur moyenne en prenant en compte les co-
efficients de la mesure floue. Une telle fonction d’agrégation est une intégrale floue,
concept introduit par Sugeno [102, 103].

Les intégrales floues sont des intégrales d’une fonction par rapport a une mesure
floue, par analogie a I'intégrale de Lebesgue qui est définie par rapport a une mesure
ordinaire (additive). Comme l'intégrale d’une fonction représente généralement sa
valeur moyenne, une intégrale floue peut étre considérée comme un cas particulier
de fonction d’agrégation.

Contrairement aux moyennes arithmétiques pondérées, les intégrales floues sont
capables de prendre en compte les interaction éventuelles parmi les attributs ou
criteres. C’est une des raisons pour lesquelles ces intégrales ont été largement étudiées
dans les problémes d’aide multicritere a la décision [48, 50, 51, 52].

11 existe plusieurs classes d’intégrales floues, parmi lesquelles les plus représentatives
sont celles de Choquet et Sugeno. Dans cette section, nous étudions de pres ces deux
types d’intégrales en tant que fonctions d’agrégation. En particulier, nous présentons
des caractérisations axiomatiques de ces intégrales. La différence principale entre ces
deux intégrales est que la premiere est appropriée pour agréger des valeurs définies
sur une échelle d’intervalle, alors que la seconde est plutot congue pour agréger des
valeurs définies sur une échelle ordinale.

5.2 L’intégrale de Choquet

L’intégrale de Choquet a été introduite en théorie des capacités [21]. Elle a ensuite
été utilisée dans plusieurs contextes, notamment en théorie de 1'utilité non additive
[46, 95, 96, 104], en théorie des mesures et intégrales floues [25, 56, 80, 81] (voir
également I'excellent volume édité [52]), mais aussi en finance [28] et en théorie des
jeux [29].

Comme cette intégrale est considérée ici comme une fonction d’agrégation a n
variables, nous adopterons la notation d’une simple fonction plutot que la forme
intégrale usuelle, et I'intégrande sera un ensemble ordonné de n valeurs réelles, noté
x=(r1,...,2,) € R™.

Définition 5.2 Soit u € Fy. L'intégrale de Choquet (discréte) de x € R™ par
rapport a p est définie par
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ou (-) indique une permutation sur N telle que x1y < ... < x4). D’autre part,
Agy ={(@0),....(n)}, et Apir) = 2.

Par exemple, si 23 < 7 < x5, nous avons

Culzr,mo,23) = a3 [p({3,1,2}) — u({1,2})]
+ z1 [u({1,2}) — p({2})]
+ 2 n({2}).

Ainsi, I'intégrale de Choquet discrete est une expression linéaire, a un réarrangement
pres des arguments. Elle est étroitement liée a l'intégrale de Lebesgue discrete
(moyenne arithmétique pondérée) puisque ces deux intégrales coincident lorsque
la mesure floue est additive :

Cu(z) = Z/L(Z) T (x € R™).

Dans ce sens, I'intégrale de Choquet est une généralisation de I'intégrale de Lebesgue.

Passons a present aux axiomatiques de l'intégrale de Choquet. Tout d’abord,
comme on peut le voir, cette fonction d’agrégation vérifie un certain nombre de
propriétés naturelles : elle est continue, non décroissante, unanimement croissante,
idempotente, interne, signifiante pour les mémes échelles d’intervalle entrées-sorties ;
voir par exemple [50]. Elle vérifie aussi la propriété d’additivité comonotone [27, 96],
c’est-a-dire,

flar + 2, e, +2)) = flay, .. w,) + f(2), ..., 2)

pour tous vecteurs comonotones x, ' € R™, ou deux vecteurs x, 2’ € R" sont como-
notone s’il existe une permutation o sur N telle que

Ty S0 S To(my €t Thay <o ST

Une justification de cette propriété en aide a la décision multicritere peut étre trouvée
dans [77, 78].

Le résultat suivant [69, Proposition 4.1] donne une caractérisation de l'intégrale
de Choquet a deux variables d’une maniere tres naturelle :

Proposition 5.1 f : R? — R est non décroissant et signifiant pour les échelles
d’intervalle entrées-sorties si et seulement s’il existe p € Fy tel que f =C,,.

La classe des intégrales de Choquet a n variables a d’abord été caractérisée par
Schmeidler [96], en utilisant I’additivité comonotone; voir aussi [25], [24], [47], et
[53, Théoreme 8.6]. Notons que ce résultat avait été énoncé et démontré dans le cas
continu (infini) plut6t que dans le cas discret.

Théoreme 5.1 f : R" — R est non décroissant, additif comonotone, et vérifie
Uidentité f(1n) =1 si et seulement s’il existe p € Fy tel que f =C,,.

26



Comme l'intégrale de Choquet est définie a partir d’'une mesure floue, il est
parfois utile de considérer, pour un ensemble N donné, la famille des intégrales de
Choquet sur N comme un ensemble de fonctions

(iR >R | pe Fy)

ou, de fagon équivalente, comme une fonction f : R" x Fy — R.

Citons une premiere caractérisation de la famille des intégrales de Choquet sur
N ; voir Groes et col. [55]. Pour tout S C N, S # &, notons g la mesure floue sur
N définie par pug(T) =181 T O S et 0 sinon.

Théoréme 5.2 La classe des fonctions {f, : R* — R | u € Fy} vérifie les pro-
priétés suivantes :
— pour tous p,v € Fy et tout X € R tels que Au+ (1 — N)v € Fy on a

f)\,u-i—(l—/\)l/ - )\fu + (1 - A)fl/’

— pour tout S € N, on a f,, = ming,
si et seulement si f, = C, pour tout p € Fy.

Une seconde caractérisation, obtenue par 'auteur [62, 63], s’énonce comme suit :

Théoréme 5.3 La classe des fonctions {f, : R* — R | p € Fy} vérifie les pro-
priétés suivantes :

— toute fonction f, est une expression linéaire de p, c’est-a-dire qu’il existe 2"
fonctions gp : R* — R (' C N) telles que f, = Ypcygr (1) pour tout
peFn,

— pour tout p € Fy et tout S C N, on a f,(1s) = pu(S),

— pour tout p € Fn, la fonction f, est non décroissante et signifiante pour les
échelles d’intervalle entrées-sorties,

si et seulement si f, = C, pour tout p € Fn.

Ces deux caractérisations sont assez naturelles et, en réalité, assez proches I'une
de l'autre. La condition de linéarité proposée dans la seconde caractérisation est
utile si 'on veut conserver un modele d’agrégation aussi simple que possible. Tech-
niquement, cette condition est équivalente a la condition de superposition :

f)\l,u—l—)\zu = /\lf,u + )\2f1/

pour tous u, v € Fy et tous A\j, Ay € R tels que A+ ov € Fi. Bien sir, la linéarité
implique la premiere condition de la premiere caractérisation. De plus, sous cette
condition de linéarité, les autres conditions sont équivalentes. En fait, dans la preuve
de la seconde caractérisation [62, 63] I'auteur a remplacé la condition f,, = ming
par ces trois conditions : f,(1g) = u(S5), non décroissance et signifiance pour les
échelles d’intervalle entrées-sorties de f,,.

Nous avons également les trois résultats suivants [62, §4.2.3] :
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Proposition 5.2 Une intégrale de Choquet C,, : R" — R est bisymétrique si et
seulement st

C, € {ming, maxg | S € N} U{WAM,, |w € [0,1]"}.

Proposition 5.3 Une suite d’intégrales de Choquet C := (Ci?z) : R" — R),>1 est
bisymétrique si et seulement si
— soit, pour tout n € N\ {0}, il existe S C N, tel que C/(ﬁ) = ming,

— ou, pour tout n € N\ {0}, il existe S C N, tel que Ci?,)l) = maxg,
— ou, pour tout n € N\ {0}, il existe w € [0,1]" tel que C/%) = WAM,,,

Proposition 5.4 Une suite d’intégrales de Choquet C := (C/(ﬁ) : R" — R),>; est
decomposable si et seulement si

~ s0it C = (min™),5;,

~ ou C = (max™),>,

— ou il existe 6 € [0, 1] tel que, pour tout n € N\ {0}, on a Cs(l,)l) = WAM,,, avec

(1 o Q)n—iei—l
Wy = —
w1 Oy-ipiT

(1 € Ny,).

Proposition 5.5 Une suite d’intégrales de Choquet C := (C;%> : R" — R),>1 est
associative si et seulement si

C = (min("))nzl ou (max(”))nzl ou (Pl("))nzl ou (Pén))nzy

Venons-en a présent a certains cas particuliers de I'intégrale de Choquet, a savoir :
les moyennes arithmétiques pondérées (WAM) et les fonctions moyennes ordonnées
(OWA).

La moyenne arithmétique pondérée WAM,, est une intégrale de Choquet définie
a partir d’'une mesure additive. Elle vérifie la propriété classique d’additivité :

flar+2, . xn+2) = flre, .. xn) + f(2, .., 2))

pour tous vecteurs z,x’ € R™. Plus exactement, nous avons les résultats suivant
(voir [62, §4.2.4] et [82])

Proposition 5.6 L%ntégrale de Choquet C,, : R®™ — R est additive si et seulement
s’il existe w € [0,1]™ tel que C, = WAM,,,.

Proposition 5.7 A : R*” — R est non décroissant, signifiant pour les échelles
d’intervalle entrées-sorties et additif si et seulement s’il existe w € [0,1]™ tel que

A= WAM,,.
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La fonction moyenne ordonnée OWA,, a été proposée en 1988 par Yager [107].
Depuis son introduction, cette fonction d’agrégation a été utilisée dans de nom-
breux domaines tels que les réseaux neuronaux, les sytemes de bases de données, les
controleurs de logique floue, et I'aide a la décision multicritere. Un panorama sur
cette fonction peut étre trouvé dans le livre édité [106] ; voir aussi [52].

Le résultat suivant, attribué a Grabisch [49] (voir [67] pour une démonstration
concise), montre que la fonction OWA n’est rien d’autre qu'une intégrale de Choquet
par rapport a une mesure floue cardinale, ¢’est-a-dire qui ne dépend que du cardinal
des sous-ensembles.

Proposition 5.8 Soit u € Fy. Les assertions suivantes sont équivalentes :
i) Pour tous S,S" C N tels que |S| = |S’|, on a u(S) = u(S’).
ii) 1l existe un vecteur de poids w tel que C, = OWA,,.
iii) C, est une fonction symétrique.

La mesure floue p associée a OWA,, est donnée par

n

p(S)= > w (SCN, S+#02).

t=n—s+1

Inversement, les poids associés & OWA,, sont donnés par
Wnos = p(SUT) — u(S) (te N, SCN\i).

La classe des fonctions OWA comprend une sous-famille importante, a savoir :
les statistiques d’ordre

lorsque wy = 1 pour un certain k£ € N. Dans ce cas, on a, pour tout S C N,

1, sis>n—k+1,
mS) = {O, sinon.

Cette sous-famille contient elle-méme le minimum, le maximum, et la médiane.
Des axiomatiques de la classe des fonctions OWA se déduisent immédiatement
de celles de l'intégrale de Choquet et de la Proposition 5.8.

5.3 L’intégrale de Sugeno

L’intégrale de Sugeno [102, 103] a été introduite comme intégrale floue, c’est-a-
dire une intégrale définie a partir d’'une mesure floue. Cette intégrale a ensuite fait
I'objet d’une recherche trés étendue et a été utilisée dans plusieurs domaines (un
panorama peut étre trouvé dans l'article [30] et le volume édité [52]).

Comme pour l'intégrale de Choquet, nous donnons ici la définition de la ver-
sion discrete (finie) de l'intégrale de Sugeno qui n’est rien d’autre qu’'une fonction
d’agrégation de [0, 1]™ dans [0, 1].
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Définition 5.3 Soit € Fn. L'intégrale de Sugeno (discréte) de x € [0,1]" par
rapport a p est définie par

n

\/ o A (A@)],

ou (-) indique une permutation sur N telle que xy < ... < xy. D’autre part,

Auy ={@@),....(n)}, et A1) = 2.

Comme dans la définition de l'intégrale de Choquet, le “coefficient” attaché a
chaque variable x; est fixé uniquement par la permutation (-). Par exemple, si z3 <
T1 < Ty, NOUS avons

Sulwr, w9, w3) = [ws A p({3, 1, 2D)]V [ A p({1, 2]V [22 A p({2})].
De la définition, nous pouvons immédiatement déduire que
Su(x) € {zq,...,x, U{p(S)|S C N} (x €0,1]™).
De plus, comme pour l'intégrale de Choquet, nous avons
Su1s) = u(S)  (SCN),

ce qui montre que 'intégrale de Sugeno est complétement déterminée par ses valeurs
sur les sommets de I'hypercube [0, 1]".

Il a aussi été démontré [54, 64, 102] que l'intégrale de Sugeno peut aussi étre mis
sous la forme suivante, qui ne nécessite pas le rangement des variables :

Sua) =\ [T A(A\x)]  (zel0.1).

TCN ieT

Il a aussi été démontré [57] que 'intégrale de Sugeno est une sorte de médiane
pondérée :

S,(x) = médiane[zy, ..., zy, u(Aw@), 1(Ag)), - (Aw))] (x €10,1]").
Par exemple, si x3 < z1 < x4 alors
S, (z1, x2, x3) = médiane[zy, v, 3, (1,2), u(2)].

Le résultat suivant [66] montre que I'intégrale de Sugeno est un concept assez na-
turel et, contrairement a l'intégrale de Choquet, est appropriée pour une agrégation
dans un contexte ordinal.

Proposition 5.9 Toute fonction A : [0,1]" — [0,1] faiblement idempotente et
construite a partir de variables 1, ... ,x, € [0,1], de constantes ry,...,r, € [0,1],
des opérations A = min et V = max, et des parentheses est une intégrale de Sugeno
(et inversement).
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Passons a présent aux axiomatiques de l'intégrale de Sugeno. On peut facile-
ment voir que l'intégrale de Sugeno est une fonction continue, non décroissante,
unanimement croissante, indempotente et interne. Elle vérifie aussi les propriétés de
minitivité comonotone et maxitivité comonotone [25], c’est-a-dire

)
)

pour tous vecteurs comonotones x, z" € [0, 1]". Plus particulierement, elle est faible-
ment minitive et faiblement maxitive, ¢’est-a-dire qu’elle vérifie

flar ANy, o eg ANal) = flag,. . z.) A f(2), ..
fleg vy, ... e, Val) = flay,...,x,)V f(a),..

/
STy,

/
STy,

Y

flarAryo e AT) = f(o,...,x0) AT
flarVvr. .oz, Vr) = f(z,...,z,) VT

pour tout vecteur z € [0,1]" et tout r € [0, 1]. Plus particulierement encore, en
remplacant x par le vecteur booléen 1g¢ dans les deux dernieres équations, on voit
qu’elle est aussi non compensatoire, c’est-a-dire qu’elle vérifie

f(rig) € {f(1s),r} et f(ls+71lns) € {f(1s),7}

pour tout S C N et tout r € [0, 1].

La minitivité comonotone et la maxitivité comonotone ont été justifiées dans le
contexte de l'agrégation de sous-ensembles flous par Ralescu et Ralescu [88]. La non
compensation a été justifiée en aide a la décision face a l'incertain dans [30].

Les principales axiomatiques de 'intégrale de Sugeno en tant que fonction d’agrégation
sont résumées dans le résultat qui suit ; voir [62, 64] :

Théoréme 5.4 Soit A:[0,1]" — [0,1]. Les assertions suivantes sont équivalentes :
— A est non décroissant, idempotent et non compensatoire,
— A est non décroissant, faiblement minitif et faiblement magzitif,
— A est non décroissant, idempotent, minitif comonotone et mazitif comonotone,
— il existe p € Fy tel que A= S,,.

L’intégrale de Sugeno a deux variables peut étre caractérisée d’une fagon tres
naturelle au moyen de la propriété d’associativité. En effet, le Théoreme 4.7 peut se
réécrire comme suit :

Proposition 5.10 A : [0,1]> — [0, 1] est continu, non décroissant, idempotent et
associatif si et seulement sl existe p € F; tel que A =S,,.

En considérant des suites associatives ou décomposables, nous avons ce qui suit ;
voir [62, p. 113] :

Proposition 5.11 Soit A := (A™ :[0,1]* — [0.1]),>1 une suite de fonctions. Alors
les assertions suivantes sont équivalentes :

— A est une suite associative d’intégrales de Sugeno,

— A est une suite décomposable d’intégrales de Sugeno,
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— A est une suite associative de fonctions continues, non décroissantes et idem-
potentes,
— il existe a, f € [0, 1] tels que

n—1 n

AN (@) = (ana)V( V (@ABAz) )V(BAz)V( A xi)  (z€[0,1]", n e N\{0}).

i=2 =1

De méme que l'intégrale de Choquet inclut deux grandes sous-classes, a savoir
la moyenne arithmétique pondérée et la fonction moyenne ordonnée, I'intégrale de
Sugeno inclut, entre autres choses, les minimum et maximum pondérés et les mini-
mum et maximum ordonnés pondérés. Ces fonctions ont été introduites et étudiées
respectivement dans [33] et [34].

Pour tout vecteur w = (wy,...,w,) € [0,1]" tel que VI ,w; = 1, le maximum
pondéré associé a w est défini par

pmax () = \_n/l(cuZ A ;) (x €0,1]").

Pour tout vecteur w = (w1, ...,wy,) € [0,1]" tel que A, w; = 0, le minimum pondéré
associé a w est défini par

pmin,,(x) = /n\(cuZ V ;) (x €10,1]™).

=1

Les fonctions pmax,, et pmin , peuvent étre caracterisées comme suit ; voir [33,
62, 89| :

Proposition 5.12 Soit u € Fy. Les assertions suivantes sont équivalentes :
— 1 est une mesure de possibilité, c’est-a-dire telle que

p(SUT) = pu(S)vu(T)  (STCN),

— il existe w € [0,1]" tel que S,, = pmax,,,
- ona

Suma vy, ... ,x,Val) =8u(xr, ... x,) VSu(2], ..., x,) (z,2" € [0,1]").

n

Proposition 5.13 Soit p € Fy. Les assertions suivantes sont équivalentes :
— 1 est une mesure de nécessité, c’est-a-dire telle que

w(SNT)=p(S) Ap(T) (5, T CN),

— 4l eziste w € [0, 1]" tel que S, = pmin,,
- ona

S A,y Aal) =S, ) ASu(2, . 2l) (x, 2" €]0,1]").

n
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Pour tout vecteur w = (wy,...,wy,) € [0,1]" tel que Vi, w; = 1, le maximum
ordonné pondéré associé a w est défini par

opmax,(z) = \/ (w; A z(;)) (z €[0,1]™).
i=1
Pour tout vecteur w = (wy, ...,wy,) € [0, 1]" tel que A, w; = 0, le minimum pondéré
associé a w est défini par

opmin(z) = Z\(wz V 23)) (x €0,1]™).

Assez curieusement, la classe des minima ordonnés pondérés coincide avec celle
des maxima ordonnés pondérés et s’identifie aux intégrales de Sugeno symétriques.
Le résultat est le suivant ; voir [49, 62] :

Proposition 5.14 Soit u € Fy. Les assertions suivantes sont équivalentes :
— 1 depend uniquement de la cardinalité des sous-ensembles,
— il existe w € [0,1]" tel que S, = opmax,,,
— il existe w € [0,1]" tel que S,, = opmin,,,
- §,, est une fonction symétrique.

En se servant du fait que l'intégrale de Sugeno est aussi une médiane pondérée,
on peut écrire

opmax(z) = médiane(zy,..., Ty, wWa, ... ,Wy),

opmin,(z) = médiane(zy, ..., Ty, Wi, ., Wh 1)

Une derniere sous-classe intéressante est celle des polyndmes latticiels, qui ne sont
rien d’autre que des intégrales de Sugeno définies a partir de mesures floues prenant
leurs valeurs dans {0, 1}. Nous caractériserons ces fonctions dans la dernieére section.

6 Agrégation sur des échelles de ratio et d’inter-
valles

Dans cette section, nous présentons les familles de fonctions d’agrégation qui sont
signifiantes pour les échelles de ratio et les échelles d’intervalle (voir Définition 2.7).

Tout d’abord, concernant les échelles de ratio, on a les deux résultats suivants;
voir [6, Chapitre 20], [7, p. 439], et [9, case#2] :

Théoréme 6.1 A :]0,00["— 0, 00[ est signifiant pour les mémes échelles de ratio
entrées-sorties si et seulement st

Alz) :xlF(ﬁ,... @) (z €]0, 0o["),

T ’ I

avec F )0, 00[" ' — 10, 0o[ arbitraire (F = constant sin =1).
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Théoréme 6.2 A :]0,00["— |0, 00[ est signifiant pour les mémes échelles de ratio
entrées si et seulement si

Alz) = g(xl)F(ij, o i’;) (z €]0,00"),

avec F )0, 00["1— )0, oo[ arbitraire (F = constant sin = 1) et g :]0, 0o[—]0, 00| tel
que g(zy) = g(x)g(y) pour tous x,y €10, 00[. g(x) = z¢ si A is continu (c arbitraire).

Concernant les échelles d’intervalle, on a les résultats suivants; voir [9, case#5|
t (62, §3.4.1] :

Théoreme 6.3 A : R" — R est signifiant pour les mémes échelles d’intervalle
entrées-sorties si et seulement si

x1, si S(x)

ot S(x \/Z@ (i — AM(2))? et F: R" — R arbitraire (A(x) =z sin=1).

Théoreme 6.4 A : R" — R est signifiant pour les mémes €échelles d’intervalle
entrées si et seulement si

Alz) = {S(J:) F(xlgf?x(x), L, S/(U\)d(x ) +aAM(z) +b, siS(x) #0,
azy+0, si S(x) =0

ou

g(S(x)) P2 o AW i S(x) #0,

Ale) = {b, 5 S(x) = 0,

ot a,b €R, S(x) = \/ P (x; —AM(2))?, F : R" — R arbitraire (A(x) = ax + b si
n=1), et g: R —]0,00[ tel que g(xy) = g(x)g(y) pour tous x,y € R.

La restriction de ces familles aux fonctions non décroissantes et aux fonctions
strictement croissantes a été discutée dans Aczél et col. [7].

Dans le reste de cette section, nous présentons des axiomatisations de quelques
sous-familles de fonctions qui sont signifiantes pour les mémes échelles d’intervalle
entrées-sorties (ces résultats sont extraits de I’article [69]). Par exemple, nous avons
déja remarqué a la sous-section 5.2 que l'intégrale de Choquet discrete vérifie cette
propriété. Plus généralement, il est évident que toute fonction d’agrégation obtenue
en composant un nombre arbitraire d’intégrales de Choquet discretes est encore si-
gnifiante pour les mémes échelles d’intervalle entrées-sorties. Ces fonctions, appelées
intégrales de Choquet composées ont partiellement été étudiées et font encore au-
jourd’hui I'objet d’une importante recherche ; voir par exemple [84].

Si l’on se restreint aux fonctions bisymétriques, nous avons les résultats suivants :

Proposition 6.1 A : R" — R est non décroissant, signifiant pour les mémes
échelles d’intervalle entrées-sorties et bisymétrique si et seulement si

A € {ming, maxg | S € N} U{WAM,, |w € [0,1]"}.
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Corollaire 6.1 A : R" — R est symétrique, non décroissant, signifiant pour les
memes échelles d’intervalle entrées-sorties et bisymétrique si et seulement si

A € {min, max, AM}.

Proposition 6.2 (A™ : R" — R),>; est une suite bisymétrique de fonctions non
décroissantes et signifiantes pour les mémes échelles d’intervalle entrées-sorties si
et seulement si

~ soit, pour tout n € N\ {0}, il existe S C N,, tel que M™ = ming,

~ ou, pour tout n € N\ {0}, il existe S C N, tel que M™ = maxg,

— ou, pour tout n € N\ {0}, 4l existe w € [0,1]" tel que M™ = WAM,,.

Corollaire 6.2 A := (A™ : R" — R),>; est une suite bisymétrique de fonctions
symétriques, non décroissantes et signifiantes pour les mémes €chelles d’intervalle
entrées-sorties si et seulement si

A= (min("))nzl ou (max(”))nzl ou (AM("))nzl.

Passons a présent aux suites décomposables et associatives de fonctions d’agrégation.
Nous avons les résultats suivants :

Proposition 6.3 A := (A™ :R" — R),>; est une suite décomposable de fonctions
non décroissantes et signifiantes pour les mémes échelles d’intervalle entrées-sorties
si et seulement si

~ soit A= (min™),>,,

~ ou A = (max™),>1,

— ou il existe 0 € [0,1] tel que, pour tout n € N\ {0}, on a A™ = WAM,,, avec

(1 _ e)n—iei—l
Ww; = —
G (1 —=0@)nigi—t

(1 € Nyp).

Corollaire 6.3 A := (A™ : R" — R),>1 est une suite décomposable de fonctions
symétriques, non décroissantes et signifiantes pour les mémes échelles d’intervalle
entrées-sorties si et seulement si

A= (min("))n21 ou (max("))@l ou (AM(R))nZL

Proposition 6.4 A := (A™ : R" — R),>; est une suite associative de fonctions
non décroissantes et signifiantes pour les mémes échelles d’intervalle entrées-sorties
st et seulement si

n)

A= (min("))nzl ou (max("))nzl ou (Pﬁ"))nzl ou (P;)n>1.

Corollaire 6.4 A := (A®™ : R" — R),>; est une suite associative de fonctions
symétriques, non décroissantes et signifiantes pour les mémes €échelles d’intervalle
entrées-sorties si et seulement si

A= (min™),>; ou (max™),s;.
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7 Agrégation sur des échelles ordinales

Nous terminons notre panorama des fonctions d’agrégation par les fonctions
signifiantes pour les mémes échelles ordinales entrées-sorties.

La description de ces fonctions n’est pas immédiate et nécessite le concept d’en-
semble invariant. Notons ® I’ensemble des bijections strictement croissantes de R.

Définition 7.1 Un sous-ensemble non vide I C R™ is dit invariant si
rel = ¢x)el (¢ € D).

Un tel ensemble est dit minimal s’il ne contient aucun sous-ensemble invariant
propre.

La famille Z de tous les sous-ensembles invariants de R™ fournit une partition de
R™ en classes d’équivalence, ou x,y € R™ sont équivalents s’il existe ¢ € ® tel que
y = ¢(x). En fait, on peut montrer que tout sous-ensemble invariant est de la forme

I={z eR" | zrq) <1+ Dot Ta(n) }

ounr €llyet <€ {<,<}pouri=1,...,n—1

Les fonctions signifiantes pour les mémes échelles ordinales entrées-sorties ont
été étudiées par plusieurs auteurs (68, 71, 76, 87]. La description de ces fonctions est
la suivante [87] :

Théoreme 7.1 A:R" — R est signifiant pour les mémes échelles ordinales entrées-
sorties si et seulement si, pour tout I € T, il existe i € N tel que Al; = Pi|; est la
1eme projection.

Les fonctions signifiantes pour les mémes échelles ordinales entrées ont également
été largement étudiées [68, 70, 85, 86, 109]. La description de ces fonctions est la
suivante [70], on “Im” signifie “Image” :

Théoreme 7.2 A :R" — R est signifiant pour les mémes échelles ordinales entrées
si et seulement si, pour tout I € I, il existe iy € N et une fonction constante ou
strictement monotone gr : P;,(I) — R tels que

A’I =4gro° Pz’;’[a

ou, pour tous I,J € I, soit gy = gy, ou Im(gr) = Im(gy) est un singleton, ou
Im(g;) < Im(gy), ou encore Im(gr) > Im(gy).

Ainsi, nous voyons que les fonctions signifiantes pour les mémes échelles ordinales
entrées-sorties se réduisent a des projections sur chaque sous-ensemble invariant et
les fonctions signifiantes pour les mémes échelles ordinales entrées se réduisent a des
constantes ou des projections transformées sur ces mémes sous-ensembles invariants.

La restriction de ces fonctions aux fonctions non décroissantes et/ou continues
a aussi été étudiée. Pour décrire ces sous-familles, nous avons besoin du concept de
polynome latticiel.
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Définition 7.2 Un polynome latticiel a n variables est une expression impliquant
n variables x1, ..., x, lices par les opérations latticielles A = min et V = max dans
une combinaison arbitraire de parenthéses.

Par exemple, L(z) = (z1 V 23) A x3 est un polynome latticiel a trois variables.
On peut montrer (voir [17, Chapitre 2, §5]) que tout polynome latticiel de n
variables peut s’écrire sous forme disjonctive comme

L(z) = \/ /\ Z; (x € R"),
SCN ieS
7(5)=1

ott 7 : 2V — {0, 1} est une mesure floue binaire (c’est-a-dire & valeurs 0 ou 1). Nous
noterons I'y la famille de ces mesures floues.

Il a aussi été démontré [66] que la classe des polyndmes latticiels restreints au
domaine [0, 1]" s’identifie & I'intersection entre la famille des intégrales de Choquet
sur [0, 1]" et la famille des intégrales de Sugeno.

Concernant les fonctions non décroissantes, nous avons les descriptions suivantes

68, 70] :

Proposition 7.1 A : R" — R est non décroissant et signifiant pour les mémes
€chelles ordinales entrées-sorties si et seulement sl existe v € I'y tel que A = L.

Proposition 7.2 A : R" — R est non décroissant et signifiant pour les mémes
échelles ordinales entrées si et seulement s’il existe v € I'y et une fonction g : R —
R constante ou strictement croissante tels que A = go L.,.

Il apparait que les fonctions des deux théoremes précédents sont continues, a des
discontinuités pres de la fonction g.
Pour les fonctions continues, nous avons ce qui suit [68] :

Corollaire 7.1 A : R"™ — R est continu et signifiant pour les mémes échelles ordi-
nales entrées-sorties si et seulement s’il existe v € I'y tel que A = L.,.

Corollaire 7.2 A : R" — R est continu et signifiant pour les mémes échelles ordi-
nales entrées si et seulement s’il existe v € I'y et une fonction g : R — R constante
ou strictement monotone et continue tels que A = go L,.

Les polynomes latticiels sont idempotents, mais pas nécessairement symétriques.
En fait, les polynomes latticiels symétriques sont exactement les statistiques d’ordre,
lesquels contiennent la médiane classique. En ajoutant la symétrie et/ou I'idempo-
tence aux résultats précédents, nous avons les corollaires suivants :

Corollaire 7.3 A : R" — R est symétrique, non décroissant (ou continu) et si-

gnifiant pour les mémes échelles ordinales entrées-sorties si et seulement s’il existe

k€ N tel que A = OSy.
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Corollaire 7.4 A :R" — R est idempotent, non décroissant (ou continu) et signi-
fiant pour les mémes échelles ordinales entrées si et seulement s’il existe v € I'y tel
que A= L,.

Corollaire 7.5 A : R" — R est symétrique, non décroissant et signifiant pour les
meémes échelles ordinales entrées si et seulement s’il existe k € N et une fonction
g : R — R constante ou strictement croissante tels que A = g o OSy.

Corollaire 7.6 A : R" — R est symétrique, continu et signifiant pour les mémes
échelles ordinales entrées si et seulement s’il existe k € N et une fonction g : R — R
constante ou strictement monotone et continue tels que A = g o OSy.

8 Conclusion

Danc ce chapitre, nous avons passé en revue les fonctions d’agrégation les plus
classiques qui sont utilisées en aide a la décision. Un classement convenable de
ces fonctions en un catalogue ne peut se faire que via une approche axiomatique
qui consiste a lister une série de propriétés raisonnables et a classer ou mieux, ca-
ractériser, les fonctions d’agrégation en fonction des ces propriétés.

Etant donné le besoin grandissant de définir des agrégateurs appropriés répondants
a des criteres tres précis face a des situations de plus en plus variées, il n’est pas sur-
prenant qu’'un tel catalogue de fonctions d’agrégation, qui est déja tres volumineux,
ne cesse de se remplir et fait aujourd’hui I'objet d’une importante recherche.

Nous avons ici simplement écrémé la surface d’'un domaine qui est en pleine
expansion et qui est de plus en plus représenté dans de nombreuses conférences
internationales comme IFSA, IEEE, IPMU, EUSFLAT, EUROFUSE, FSTA, AGOP,
etc.
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