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1 Introduction

Aggregation functions are generally defined and used to combine several numerical
values into a single one, so that the final result of the aggregation takes into account
all the individual values in a given manner. Such functions are widely used in many
well-known disciplines such as statistics, economics, finance, and computer science.
For general background, see Grabisch et al. [52].

For instance, suppose that several individuals form quantifiable judgements ei-
ther about a measure of an object (weight, length, area, height, volume, importance
or other attributes) or about a ratio of two such measures (how much heavier, longer,
larger, taller, more important, preferable, more meritorious etc. one object is than
another). In order to reach a consensus on these judgements, classical aggregation
functions have been proposed: arithmetic mean, geometric mean, median and many
others.

In multicriteria decision making, values to be aggregated are typically preference
or satisfaction degrees. A preference degree reveals to what extent an alternative
a is preferred to an alternative b, and thus is a relative appraisal. By contrast, a
satisfaction degree expresses to what extent a given alternative is satisfactory with
respect to a given criterion. It is an absolute appraisal.

We assume that the values to be aggregated belong to numerical scales, which
can be of ordinal or cardinal type. On an ordinal scale, numbers have no meaning
other than defining an order relation on the scale; distances or differences between
values cannot be interpreted. On a cardinal scale, distances between values are not
quite arbitrary. There are actually several kinds of cardinal scales. On an interval
scale, where the position of the zero is a matter of convention, values are defined
up to a positive linear transformation i.e. φ(x) = rx + s, with r > 0 and s ∈ R
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(e.g. temperatures expressed on the Celsius scale). On a ratio scale, where a true
zero exists, values are defined up to a similarity transformation i.e. φ(x) = rx, with
r > 0 (e.g. lengths expressed in inches). We will come back on these measurement
aspects in Section 2.2.

Once values are defined we can aggregate them and obtain a new value. This can
be done in many different ways according to what is expected from the aggregation
function, the nature of the values to be aggregated, and which scale types have been
used. Thus, for a given problem, any aggregation function should not be used. In
other terms, the use of a given aggregation function should always be justified.

To help the practitioner choose an appropriate aggregation function in a given
problem, it is useful and even convenient to adopt an axiomatic approach. Such an
approach consists in classifying and choosing aggregation functions according to the
properties they fulfill. Thus, a catalog of “desirable” properties is proposed and,
whenever possible, a description of the family of aggregation functions satisfying a
given set of properties is provided. This is the very principle of axiomatization.

Proposing an interesting axiomatic characterization of an aggregation function
(or a family of aggregation functions) is not an easy task. Mostly, aggregation func-
tions can be characterized by different sets of conditions. Nevertheless the various
possible characterizations are not equally important. Some of them involve purely
technical conditions with no clear interpretation and the result becomes useless.
Others involve conditions that contain the result explicitly and the characterization
becomes trivial. On the contrary, there are characterizations involving only natural
conditions which are easily interpretable. In fact, this is the only case where the
result should be seen as a significant contribution. It improves our understanding of
the function considered and provides strong arguments to justify (or reject) its use
in a given context.

The main aim of this chapter is to present, on an axiomatic basis, the most used
families of aggregation functions in decision making. We shall confine ourselves to
aggregation functions that assign a numerical value to every profile of n values, which
represent objects or alternatives. We will not deal with utility functions which, in
a more general way, make it possible to rank alternatives without assigning precise
values to them. For instance, procedures such as ‘leximin’ or ‘discrimin’ are ranking
procedures, rather than aggregation functions.

The organization of this chapter is as follows. In Section 2 we yield the list
of the main properties that we shall use. This list is divided into three classes:
(1) elementary properties (continuity, symmetry, etc.); (2) properties related to the
scale types used to represent the data; and (3) certain algebraic properties such as
associativity. In Section 3 we present the concept of mean and its various definitions.
Perhaps the most common definition of means is that of quasi-arithmetic means with
a very natural axiomatization due to Kolmogoroff and Nagumo. In Section 4 we
present associative functions, which are at the root of the theory of semi-groups.
These functions permitted to develop the concept of fuzzy connectives such as t-
norms, t-conorms, and uninorms. In Section 5 we present an important branch of
the aggregation function theory, namely Choquet and Sugeno non-additive integrals.
These integrals enable us to generalize the classical aggregation modes, such as the
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weighted arithmetic mean and the median, to functions that take into account the
possible interactions among the considered attributes. Finally, in Sections 6 and 7
we present particular functions designed for aggregating interval scales, ratio scales,
and ordinal scales.

We close this introduction by setting the notation that we will use in this chapter.
In a general manner, we shall denote an aggregation function with n variables by

A : En → R where E is a real interval, bounded or not. E◦ will denote the interior
of E. We shall sometimes consider sequences of functions (A(n) : En → R)n≥1, the
superscript (n) being used only to specify the number of arguments of the function
A(n).

We shall use N to denote the index set {1, . . . , n} and 2N to denote the set of
its subsets. ΠN will be used to denote the set of permutations on N . Finally, for
any S ⊆ N , the characteristic vector of S in {0, 1}n will be denoted 1S.

There is also a rather standard notation for certain aggregation functions. Here
are the most common ones:

• The arithmetic mean is defined as

AM(x) =
1

n

n∑

i=1

xi.

• For any weight vector ω = (ω1, . . . , ωn) ∈ [0, 1]n such that
∑

i ωi = 1, the
weighted arithmetic mean and the ordered weighted averaging function are
defined as

WAMω(x) =
n∑

i=1

ωixi,

OWAω(x) =
n∑

i=1

ωix(i),

respectively, where (·) represents a permutation on N such that x(1) ≤ · · · ≤
x(n).

• For any k ∈ N , the projection and the order statistic associated with the kth
argument are defined as

Pk(x) = xk,

OSk(x) = x(k),

respectively.

• For any S ⊆ N , S 6= ∅, the partial minimum and partial maximum functions
associated with S are defined as

minS(x) = min
i∈S

xi,

maxS(x) = max
i∈S

xi,

respectively.
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In this chapter the min and max operations will often be denoted ∧ and ∨,
respectively.

2 Aggregation properties

As mentioned in the introduction, in order to choose a reasonable or satisfactory
aggregation mode, it is useful to adopt an axiomatic approach and impose that
the aggregation functions fulfill some selected properties. Such properties can be
dictated by the nature of the values to be aggregated. For example, in some mul-
ticriteria evaluation methods, the aim is to assess a global absolute score to an
alternative given a set of partial scores with respect to different criteria. Clearly, it
would be unnatural to give as a global score a value which is lower than the lowest
partial score, or greater than the highest score, so that only internal aggregation
functions (means) are allowed. Another example concerns the aggregation of opin-
ions in voting procedures. If, as usual, the voters are anonymous, the aggregation
function must be symmetric.

In this section we present some properties that could be desirable or not depend-
ing upon the considered problem. Of course, all these properties are not required
with the same strength, and do not pertain to the same purpose. Some of them are
imperative conditions whose violation leads to obviously counterintuitive aggrega-
tion modes. Others are technical conditions that simply facilitate the representation
or the calculation of the aggregation function. There are also facultative conditions
that naturally apply in special circumstances but are not to be universally accepted.

2.1 Elementary mathematical properties

Definition 2.1 A : En → R is symmetric if, for any π ∈ ΠN , we have

A(x1, . . . , xn) = A(xπ(1), . . . , xπ(n)) (x ∈ En).

The symmetry property essentially implies that the indexing (ordering) of the
arguments does not matter. This is required when combining criteria of equal im-
portance or the opinions of anonymous experts.

Definition 2.2 A : En → R is continuous if it is continuous in the usual sense.

One of the advantages of a continuous aggregation function is that it does not
present any chaotic reaction to a small change of the arguments.

Definition 2.3 A : En → R is

• nondecreasing if, for any x, x′ ∈ En, we have

x ≤ x′ ⇒ A(x) ≤ A(x′),
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• strictly increasing if it is nondecreasing and if, for any x, x′ ∈ En, we have

x ≤ x′ et x 6= x′ ⇒ A(x) < A(x′),

• unanimously increasing if it is nondecreasing and if, for any x, x′ ∈ En, we
have

x < x′ ⇒ A(x) < A(x′).

An increasing aggregation function presents a non-negative response to any in-
crease of the arguments. In other terms, increasing a partial value cannot decrease
the result. This function is strictly increasing if, moreover, it presents a positive
reaction to any increase of at least one argument. Finally, a unanimously in-
creasing function is increasing and presents a positive response whenever all the
arguments strictly increase. For instance we observe that on [0, 1]n, the maxi-
mum function A(x) = max xi is unanimously increasing whereas the bounded sum
A(x) = min(

∑n
i=1 xi, 1) is not.

Definition 2.4 A : En → R is idempotent if A(x, . . . , x) = x for all x ∈ E.

Definition 2.5 A : [a, b]n → R is weakly idempotent if A(a, . . . , a) = a and
A(b, . . . , b) = b.

In a variety of applications, it is desirable that the aggregation functions satisfy
the idempotency property, i.e. if all xi are identical, A(x1, . . . , xn) restitutes the
common value.

Definition 2.6 A : En → R is

• conjunctive if A(x) ≤ min xi for all x ∈ En,

• disjunctive if max xi ≤ A(x) for all x ∈ En,

• internal if min xi ≤ A(x) ≤ max xi for all x ∈ En.

Conjunctive functions combine values as if they were related by a logical AND
operator. That is, the result of aggregation can be high only if all the values are high.
t-norms are suitable functions for doing conjunctive aggregation (see Section 4.5).
At the opposite, disjunctive functions combine values as an OR operator, so that the
result of aggregation is high if at least one value is high. The best known disjunctive
functions are t-conorms.

Between these two extreme situations are the internal functions, located between
the minimum and the maximum of the arguments. In this kind of functions, a bad
(resp. good) score on one criterion can be compensated by a good (resp. bad) one on
another criterion, so that the result of aggregation will be medium. By definition,
means are internal functions (see Section 3).
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2.2 Stability properties related to scale types

Depending on the kind of scale which is used, allowed operations on values are re-
stricted. For example, aggregation on ordinal scales should be limited to operations
involving comparisons only, such as medians and order statistics.

A scale of measurement is a mapping which assigns real numbers to objects
being measured. The type of a scale, as defined by Stevens [101, 102], is defined by
a class of admissible transformations, transformations that lead from one acceptable
scale to another. For instance, we call a scale a ratio scale if the class of admissible
transformations consists of the similarities φ(x) = rx, with r > 0. In this case,
the scale value is determined up to choice of a unit. Mass is an example of a
ratio scale. The transformation from kilograms into pounds, for example, involves
the admissible transformation φ(x) = 2.2x. Length (inches, centimeters) and time
intervals (years, seconds) are two other examples of ratio scales. We call a scale
an interval scale if the class of admissible transformations consists of the positive
linear transformations φ(x) = rx + s, with r > 0 and s ∈ R. The scale value is then
determined up to choices of unit and zero point. Temperature (except where there
is an absolute zero) defines an interval scale. Thus, transformation from Centigrade
into Fahrenheit involves the admissible transformation φ(x) = 9x/5 + 32. We call
a scale an ordinal scale if the class of admissible transformations consists of the
strictly increasing bijections φ(x). Here the scale value is determined only up to
order. For example, the scale of air quality being used in a number of cities is an
ordinal scale. It assigns a number 1 to unhealthy air, 2 to unsatisfactory air, 3 to
acceptable air, 4 to good air, and 5 to excellent air. We could just as well use the
numbers 1, 7, 8, 15, 23, or the numbers 1.2, 6.5, 8.7, 205.6, 750, or any numbers
that preserve the order. Definitions of other scale types can be found in the book
by Roberts [92] on measurement theory, see also Roberts [93, 94]. The reader will
find further details on measurement in Chapter 18 of the present volume.

A statement using scales of measurement is said to be meaningful if the truth
or falsity of the statement is invariant when every scale is replaced by another
acceptable version of it [92, p. 59]. For example, a ranking method is meaningful
if the ranking of alternatives induced by the aggregation does not depend on scale
transformation.

In 1959, Luce [62] observed that the general form of a functional relationship
between variables is greatly restricted if we know the scale type of the variables.
These restrictions are discovered by formulating a functional equation from knowl-
edge of the admissible transformations. Luce’s method is based on the principle of
theory construction, which states that an admissible transformation of the indepen-
dent variables may lead to an admissible transformation of the dependent variable.
For example, suppose that f(a) = A(f1(a), . . . , fn(a)), where f and f1, . . . , fn are all
ratio scales, with the units chosen independently. Then, by the principle of theory
construction, we obtain the functional equation

A(r1x1, . . . , rnxr) = R(r1, . . . , rn)A(x1, . . . , xn),

ri > 0, R(r1, . . . , rn) > 0.
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Aczél et al. [9] showed that the solutions of this equation are given by

A(x) = a
n∏

i=1

gi(xi), with a > 0, gi > 0,

and
gi(xiyi) = gi(xi)gi(yi).

In this section we present some functional equations related to certain scale types.
The interested reader can find more details in Aczél et al. [8, 9] and a good survey
in Roberts [94].

Definition 2.7 A : Rn → R is

• meaningful for the same input-output ratio scales if, for any r > 0, we have

A(rx1, . . . , rxn) = rA(x1, . . . , xn) (x ∈ Rn),

• meaningful for the same input ratio scales if, for any r > 0, there exists Rr > 0
such that

A(rx1, . . . , rxn) = RrA(x1, . . . , xn) (x ∈ Rn),

• meaningful for the same input-output interval scales if, for any r > 0 and
s ∈ R, we have

A(rx1 + s, . . . , rxn + s) = rA(x1, . . . , xn) + s (x ∈ Rn),

• meaningful for the same input interval scales if, for any r > 0 and s ∈ R,
there exist Rr,s > 0 and Sr,s ∈ R such that

A(rx1 + s, . . . , rxn + s) = Rr,sA(x1, . . . , xn) + Sr,s (x ∈ Rn),

• meaningful for the same input-output ordinal scales if, for any strictly increas-
ing bijection φ : R→ R, we have

A(φ(x1), . . . , φ(xn)) = φ(A(x1, . . . , xn)) (x ∈ Rn),

• meaningful for the same input ordinal scales if, for any strictly increasing
bijection φ : R → R, there exists a strictly increasing function ψφ : R → R
such that

A(φ(x1), . . . , φ(xn)) = ψφ(A(x1, . . . , xn)) (x ∈ Rn).
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2.3 Algebraic properties

The following properties concern the aggregation procedures that can be decomposed
into partial aggregations, that is, procedures for which it is possible to partition
the set of attributes into disjoint subgroups, build the partial aggregation for each
subgroup, and then combine these partial results to get the global value. This
condition may take several forms. Maybe one of the strongest is associativity. Other
weaker formulations will also be presented: decomposability and bisymmetry.

We first present associativity for two variable functions.

Definition 2.8 A : E2 → E is associative if, for any x ∈ E3, we have

A(A(x1, x2), x3) = A(x1, A(x2, x3)).

A large number of papers deal with the associativity functional equation. For a
list of references see Aczél [4, §6.2].

This property can be extended to sequences of functions as follows.

Definition 2.9 The sequence (A(n) : Rn → R)n≥1 is associative if A(1)(x) = x for
all x ∈ E and

A(n)(x1, . . . , xk, xk+1, . . . , xn) = A(n)(A(k)(x1, . . . , xk), A
(n−k)(xk+1, . . . , xn))

for all x ∈ En and all k, n ∈ N such that 1 ≤ k ≤ n.

Implicit in the assumption of associativity is a consistent way of going unambigu-
ously from the aggregation of n elements to n + 1 elements, i.e., if M is associative

A(n+1)(x1, . . . , xn+1) = A(2)(A(n)(x1, . . . , xn), xn+1),

for all n ∈ N \ {0}.
Let us turn to the decomposability property. For this purpose, we introduce the

following notation: For any k ∈ N \ {0} and any x ∈ R, we set k · x = x, . . . , x (k
times). For example,

A(3 · x, 2 · y) = A(x, x, x, y, y).

Definition 2.10 The sequence (A(n) : Rn → R)n≥1 is decomposable if A(1)(x) = x
for all x ∈ E and

A(n)(x1, . . . , xk, xk+1, . . . , xn) = A(n)(k·A(k)(x1, . . . , xk), (n−k)·A(n−k)(xk+1, . . . , xn))

for all x ∈ En and all k, n ∈ N such that 1 ≤ k ≤ n.

Here the definition is the same as for associativity, except that the partial aggre-
gations are duplicated by the number of aggregated values.

Introduced first in Bemporad [14, p. 87] in a characterization of the arithmetic
mean, decomposability has been used by Kolmogoroff [60] and Nagumo [84] to char-
acterize the quasi-arithmetic means. More recently, Marichal et Roubens [72] pro-
posed calling this property “decomposability” in order to avoid confusion with clas-
sical associativity.

The bisymmetry property, which extends associativity and symmetry simulta-
neously, is defined for n-variables functions as follows.
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Definition 2.11 A : En → E is bisymmetric if

A(A(x11, . . . , x1n), . . . , A(xn1, . . . , xnn))

= A(A(x11, . . . , xn1), . . . , A(x1n, . . . , xnn))

for all square matrix (xij) ∈ En×n.

For 2-variable functions, this property has been investigated from the algebraic
point of view by using it mostly in structures without the property of associativity;
see Aczél [4, §6.4] and Aczél and Dhombres [6, Chapter 17].

For a sequence of functions, this property becomes as described in the following
definition.

Definition 2.12 The sequence (A(n) : Rn → R)n≥1 is bisymmetric if A(1)(x) = x
for all x ∈ E and

A(p)(A(n)(x11, . . . , x1n), . . . , A(n)(xn1, . . . , xpn))

= A(n)(A(p)(x11, . . . , xp1), . . . , A
(p)(x1n, . . . , xpn))

for all n, p ∈ N \ {0} and all matrix (xij) ∈ Ep×n.

3 Means

It would be very unnatural to propose a chapter on aggregation functions without
dealing somehow with means. Already discovered and studied by the ancient Greeks
(see for instance Antoine [12, Chapter 3]) the concept of mean has given rise today
to a very wide field of investigation with a huge variety of applications. Actually,
a tremendous amount of literature on the properties of several means (such as the
arithmetic mean, the geometric mean, etc.) has already been produced, especially
since the 19th century, and is still developing today. For a good overview, see the
expository paper by Frosini [44] and the remarkable monograph by Bullen et al. [18].

The first modern definition of mean was probably due to Cauchy [19] who con-
sidered in 1821 a mean as an internal (Definition 2.6) function.

The concept of mean as a numerical equalizer is usually ascribed to Chisini [20,
p. 108], who provided the following definition:

Let y = g(x1, . . . , xn) be a function of n independent variables x1, . . . , xn

representing homogeneous quantities. A mean of x1, . . . , xn with respect
to the function g is a number M such that, if each of x1, . . . , xn is replaced
with M , the function value is unchanged, that is,

g(M, . . . , M) = g(x1, . . . , xn).

When g is considered as the sum, the product, the sum of squares, the sum of
inverses, or the sum of exponentials, the solution of Chisini’s equation corresponds
to the arithmetic mean, the geometric mean, the quadratic mean, the harmonic
mean, and the exponential mean, respectively.
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Unfortunately, as noted by de Finetti [26, p. 378] in 1931, Chisini’s definition is
so general that it does not even imply that the “mean” (provided there exists a real
and unique solution to Chisini’s equation) fulfills Cauchy’s internality property.

The following quote from Ricci [91, p. 39] could be considered as another possible
criticism to Chisini’s view.

... when all values become equal, the mean equals any of them too. The
inverse proposition is not true. If a function of several variables takes
their common value when all variables coincide, this is not sufficient
evidence for calling it a mean. For example, the function

g(x1, x2, . . . , xn) = xn + (xn − x1) + (xn − x2) + · · ·+ (xn − xn−1)

equals xn when x1 = · · · = xn, but it is even greater than xn as long as
xn is greater than every other variable.

In 1930, Kolmogoroff [60] and Nagumo [84] considered that the mean should be
more than just a Cauchy mean or a numerical equalizer. They defined a mean value
to be a decomposable sequence of continuous, symmetric, strictly increasing (in each
variable), and idempotent real functions

M (1)(x1) = x1,M
(2)(x1, x2), . . . , M

(n)(x1, . . . , xn), . . . .

They proved, independently of each other, that these conditions are necessary and
sufficient for the quasi-arithmeticity of the mean, that is, for the existence of a
continuous strictly monotonic function f such that M (n) may be written in the form

M (n)(x1, . . . , xn) = f−1
[ 1

n

n∑

i=1

f(xi)
]

(1)

for all n ∈ N \ {0}.
The quasi-arithmetic means (1) comprise most of the algebraic means of common

use; see Table 1. However, some means, such as the median, do not belong to this
family.

The above properties defining a mean value seem to be natural enough. For
instance, one can readily see that, for increasing means, the idempotency property
is equivalent to Cauchy’s internality, and both are accepted by all statisticians as
requisites for means.

The decomposability property of means is rather natural. Under idempotency,
this condition becomes equivalent to

M (k)(x1, . . . , xk) = M (k)(x′1, . . . , x
′
k)

⇓
M (n)(x1, . . . , xk, xk+1, . . . , xn) = M (n)(x′1, . . . , x

′
k, xk+1, . . . , xn)

which states that the mean does not change when altering some values without
modifying their partial mean.

10



f(x) M (n)(x1, . . . , xn) name

x 1
n

n∑
i=1

xi arithmetic

x2
(

1
n

n∑
i=1

x2
i

)1/2
quadratic

log x
( n∏

i=1
xi

)1/n
geometric

x−1 1

1
n

n∑
i=1

1
xi

harmonic

xα (α ∈ R \ {0})
(

1
n

n∑
i=1

xα
i

)1/α
root-mean-power

eα x (α ∈ R \ {0}) 1
α

ln
(

1
n

n∑
i=1

eα xi

)
exponential

Table 1: Examples of quasi-arithmetic means

The purpose of this section is not to present a state of the art of all the known
results in this vast realm of means. Instead, we just skim the surface of the subject
by pointing out characterization results for the most-often used and best-known
families of means.

The medians and, more generally, the order statistics (which are particular means
designed to aggregate ordinal values) will be briefly presented in Section 7.

3.1 Quasi-arithmetic means

As we just mentioned, quasi-arithmetic means were introduced from a very natu-
ral axiomatization. In this section, we investigate those means both as n-variable
functions and as sequences of functions. Results on this class of means can also be
found in Bullen et al. [18, Chapitre 4].

It was proved by Aczél [2] (see also [4, §6.4] and [6, Chapter 17]) that the quasi-
arithmetic means are the only symmetric, continuous, strictly increasing, idempo-
tent, real functions M : En → E which satisfy the bisymmetry condition. The
statement of this result is formulated as follows.

Theorem 3.1 M : En → E is a symmetric, continuous, strictly increasing, idem-
potent, and bisymmetric function if and only if there exists a continuous and strictly
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monotonic function f : E → R such that

M(x) = f−1
[ 1

n

n∑

i=1

f(xi)
]

(x ∈ En). (2)

The quasi-arithmetic means (2) are internal aggregation functions and cover a
wide spectrum of means including arithmetic, quadratic, geometric, harmonic; see
Table 1.

The function f occurring in equation (2) is called a generator of M . It was
also proved that f is determined up to a linear transformation: With f(x), every
function

g(x) = rf(x) + s (r, s ∈ R, r 6= 0)

belongs to the same M , but no other function.
In addition to Aczél’s result, we also recall Kolmogoroff-Nagumo’s result.

Theorem 3.2 The sequence (M (n) : En → E)n≥1 is a decomposable sequence of
symmetric, continuous, strictly increasing, and idempotent functions if and only if
there is a continuous and strictly monotonic function f : E → R such that

M (n)(x) = f−1
[ 1

n

n∑

i=1

f(xi)
]

(x ∈ En).

Nagumo [84] investigated some subfamilies of the class of quasi-arithmetic means.
He proved the following result (see also [5, §4] and [6, Chapitre 15]).

Proposition 3.1 Assume E = ]0,∞[ or a subinterval.
(i) M : En → E is a quasi-arithmetic mean that is meaningful for the same input-
output ratio scales if and only if

• either M is the geometric mean:

M(x) =
( n∏

i=1

xi

) 1
n (x ∈ En),

• or M is a root-mean-power: there exists α ∈ R \ {0} such that

M(x) =
( 1

n

n∑

i=1

xα
i

) 1
α (x ∈ En). (3)

(ii) M : En → E is a quasi-arithmetic mean that is meaningful for the same input-
output interval scales if and only if M is the arithmetic mean.

Let us denote the root-mean-power (3) generated by α ∈ R \ {0} by M(α). It is
well known [13, §16] that, if α1 < α2 then M(α1)(x) ≤ M(α2)(x) for all x ∈ ]0, +∞[n

(equality if and only if all xi are equal).
The family of root-mean-powers was studied by Dujmović [35, 36] and then by

Dyckhoff et Pedrycz [37]. It encompasses most of traditionally known means: the
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arithmetic mean M(1), the harmonic mean M(−1), the quadratic mean M(2), and three
limiting cases: the geometric mean M(0), the minimum M(−∞) and the maximum
M(+∞) (see, e.g., Abramowitz and Stegun [1]).

Let us return to Theorem 3.1. Note that Aczél [2] also investigated the case where
symmetry and idempotency are dropped (see also [4, §6.4] and [6, Chapitre 17]). He
obtained the following result.

Theorem 3.3 (i) M : En → E is a continuous, strictly increasing, idempotent, and
bisymmetric function if and only if there exists a continuous and strictly monotonic
function f : E → R and real numbers ω1, . . . , ωn > 0 fulfilling

∑
i ωi = 1 such that

M(x) = f−1
[ n∑

i=1

ωi f(xi)
]

(x ∈ En). (4)

(ii) M : En → E is a continuous, strictly increasing, and bisymmetric function if
and only if there exists a continuous and strictly monotonic function f : E → R and
real numbers p1, . . . , pn > 0 and q ∈ R such that

M(x) = f−1
[ n∑

i=1

pi f(xi) + q
]

(x ∈ En). (5)

The quasi-linear means (4) and the quasi-linear functions (5) are weighted ag-
gregation functions. The question of uniqueness with respect to f is dealt with in
detail in Aczél [4, §6.4]. Table 2 provides some special cases of quasi-linear means.

f(x) M(x) name of weighted mean

x
n∑

i=1
ωi xi arithmetic

x2
( n∑

i=1
ωi x

2
i

)1/2
quadratic

log x
n∏

i=1
xωi

i geometric

xα (α ∈ R \ {0})
( n∑

i=1
ωi x

α
i

)1/α
root-mean-power

Table 2: Examples of quasi-linear means
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3.2 Lagrangian and Cauchy means

Let us consider the intermediate point M in the classical mean value formula

F (y)− F (x) = F ′(M)(y − x) (x, y ∈ E), (6)

as a function of the variables x, y, with the convention M(x, x) = x, where F :
E → R is a given continuously differentiable and strictly convex or strictly concave
function. Reformulating this definition in terms of integrals instead of derivatives,
we can rewrite (6) as

M(x, y) =





f−1

(
1

y − x

∫ y

x
f(ξ)dξ

)
, if x 6= y,

x, if x = y,

(7)

for x, y ∈ I, where f : E → R is a continuous strictly monotonic function. This
function M(x, y) is called the Lagrangian mean associated with f . See for exam-
ple Berrone and Moro [15] and Bullen et al. [18, p. 343]. The uniqueness of the
generator is the same as for quasi-arithmetic means, that is, defined up to a linear
transformation; see Berrone and Moro [15, Corollary 7] and Matkowski [76, Theorem
1].

Many classical means are Lagrangian. The arithmetic mean and the geometric
means correspond to taking f(x) = x and f(x) = 1/x2, respectively, in (7). The
harmonic mean, however, is not Lagrangian.

In general, some of the most common means are both quasi-arithmetic and La-
grangian. However, there are quasi-arithmetic means, such as the harmonic one,
which are not Lagrangian. Conversely, the logarithmic mean

M(x, y) =





x− y

log x− log y
, for x, y > 0, x 6= y,

x, for x = y > 0,

is an example of a Lagrangian mean (f(x) = 1/x) that is not quasi-arithmetic.
Let us now consider the Cauchy mean value theorem, which asserts that, for any

functions F and g, continuous on an interval [x, y] and differentiable on ]x, y[, there
exists M ∈ ]a, b[ such that

F (y)− F (x)

g(y)− g(x)
=

F ′(M)

g′(M)

If the functions g and f := F ′/g′ are strictly monotonic on ]x, y[, the mean value
M(x, y) is unique and can be written as

M(x, y) =





f−1

(
1

g(y)− g(x)

∫ y

x
f(ξ)dg(ξ)

)
, if x 6= y,

x, if x = y,

for x, y ∈ E. It is then said to be the Cauchy mean associated with the pair (f, g);
see Berrone and Moro [16]. Such a mean is continuous, idempotent, symmetric, and
strictly increasing.
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When g = f (resp. g is the identity function), we retrieve the quasi-arithmetic
(resp. the Lagrangian) mean generated by f . The anti-Lagrangian mean [16] is
obtained when f is the identity function. For example, the harmonic mean is an anti-
Lagrangian mean generated by the function g = 1/x2. The generators of the same
anti-Lagrangian mean are defined up to the same non-zero affine transformation.

4 Associative aggregation functions

Before dealing with associative functions and their axiomatizations, we will need to
introduce some useful concepts. A semigroup (E, A) is a set E with an associative
operation A : E2 → E defined on it. As usual, we assume that E is a real interval,
bounded or not.

An element e ∈ E is
a) an identity for A if A(e, x) = A(x, e) = x for all x ∈ E,
b) a zero (or annihilator) for A if A(e, x) = A(x, e) = e for all x ∈ E,
c) an idempotent for A if A(e, e) = e.

For any semigroup (E,A), it is clear that there is at most one identity and at most
one zero for A in E, and both are idempotents.

We also need to introduce the concept of ordinal sum, well known in the theory
of semigroups (see, e.g., Climescu [22] and Ling [61]).

Definition 4.1 Let K be a totally ordered set and {(Ek, Ak) | k ∈ K} be a collection
of disjoint semigroups indexed by K. Then the ordinal sum of {(Ek, Ak) | k ∈ K} is
the set-theoretic union ∪k∈KEk under the following binary operation:

A(x, y) =
{

Ak(x, y), si ∃ k ∈ K such that x, y ∈ Ek

min(x, y), si ∃ k1, k2 ∈ K, k1 6= k2 such that x ∈ Ek1 and y ∈ Ek2.

The ordinal sum is a semigroup under the above defined operation.

4.1 Strictly increasing functions

Aczél [3] investigated the general continuous, strictly increasing, real solutions on
E2 of the associativity functional equation (2.8). He proved the following result (see
also [4, §6.2]).

Theorem 4.1 Let E be a real interval, bounded or not, which is open on one side.
A : E2 → E is continuous, strictly increasing, and associative if and only if there
exists a continuous and strictly monotonic function f : E → R such that

A(x, y) = f−1[f(x) + f(y)] ((x, y) ∈ E2). (8)

It was also proved that the function f occurring in (8) is determined up to a
multiplicative constant, that is, with f(x) all functions g(x) = r f(x) (r ∈ R \ {0})
belongs to the same A, and only these.
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Moreover, the function f is such that, if e ∈ E then

A(e, e) = e ⇔ f(e) = 0. (9)

By (9) and because of strict monotonicity of f , there is at most one idempotent
for A (which is, actually, the identity) and hence A cannot be idempotent. Therefore,
there is no continuous, strictly increasing, idempotent, and associative function.
However, we can notice that every continuous, strictly increasing, and associative
function is necessarily symmetric. The sum (f(x) = x) and the product (f(x) =
log x) are well-known examples of continuous, strictly increasing, and associative
functions.

According to Ling [61], any semigroup (E, M) satisfying the hypotheses of The-
orem 4.1 is called Aczélian.

Recall that each associative sequence (A(n) : En → E)n≥1 of functions is uniquely
determined by its 2-variable function. We therefore have the following result.

Corollary 4.1 Let E be a real interval, bounded or not, which is open on one side.
(A(n) : En → E)n≥1 is an associative sequence of continuous and strictly increasing
functions if and only if there exists a continuous and strictly monotonic function
f : E → R such that, for all n ∈ N \ {0},

A(n)(x) = f−1
[ n∑

i=1

f(xi)
]

(x ∈ En).

4.2 Archimedean semigroups

Some authors attempted to generalize Theorem 4.1 by relaxing the strict increasing
monotonicity into nondecreasing monotonicity. However it seems that the class of
continuous, nondecreasing, and associative functions has not yet been described.
However, under some additional conditions, results have been obtained.

First, we state a representation theorem attributed very often to Ling [61]. In
fact, her main theorem can be deduced from previously known results on topological
semigroups, see Faucett [38] and Mostert and Shields [80]. Nevertheless, the advan-
tage of Ling’s approach is twofold: it treats two different cases in a unified manner
and establishes elementary proofs.

Theorem 4.2 Let E = [a, b]. A : E2 → E is continuous, nondecreasing, associa-
tive, and

A(b, x) = x (x ∈ E) (10)

A(x, x) < x (x ∈ E◦) (11)

if and only if there exists a continuous strictly decreasing function f : E → [0, +∞],
with f(b) = 0, such that

A(x, y) = f−1[ min(f(x) + f(y), f(a)) ] (x, y ∈ E). (12)
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The requirement that E be closed is not really a restriction. If E is any real
interval, finite or infinite with right endpoint b (b can be +∞), then we can replace
condition (10) with

lim
t→b−

A(t, t) = b, lim
t→b−

A(t, x) = x (x ∈ E).

Any function f solving equation (12) is called an additive generator (or simply
generator) of A. Moreover, we can easily see that any function A of the form (12)
is symmetric and conjunctive.

Condition (10) expresses that b is a left identity for A. It turns out, from (12),
that b acts as an identity and a as a zero. Condition (11) simply expresses that
there are no idempotents for A in ]a, b[. Indeed, by nondecreasing monotonicity and
(10), we always have A(x, x) ≤ A(b, x) = x for all x ∈ [a, b].

Depending on whether f(a) is finite or infinite (recall that f(a) ∈ [0, +∞]),
A takes a well-defined form (see Fodor and Roubens [43, §1.3] and Schweizer and
Sklar [100]):

• f(a) < +∞ if and only if A has zero divisors (i.e. ∃x, y ∈ ]a, b[ such that
A(x, y) = a). In this case, there exists a continuous strictly increasing function
g : [a, b] → [0, 1], with g(a) = 0 and g(b) = 1, such that

A(x, y) = g−1[max(g(x) + g(y)− 1, 0)] (x, y ∈ [a, b]). (13)

To see this, it suffices to set g(x) := 1− f(x)/f(a).

For associative sequences (A(n) : [a, b]n → [a, b])n≥1, (13) becomes

A(n)(x) = g−1
[
max

( n∑

i=1

g(xi)− n + 1, 0
)]

(x ∈ [a, b]n, n ∈ N \ {0}).

• limt→a+ f(x) = +∞ if and only if A is strictly increasing on ]a, b[. In this case,
there exists a continuous strictly increasing function g : [a, b] → [0, 1], with
g(a) = 0 and g(b) = 1, such that

A(x, y) = g−1[g(x) g(y)] (x, y ∈ [a, b]). (14)

To see this, it suffices to set g(x) := exp(−f(x)).

For associative sequences (A(n) : [a, b]n → [a, b])n≥1, (14) becomes

A(n)(x) = g−1
[ n∏

i=1

g(xi)
]

(x ∈ [a, b]n, n ∈ N \ {0}).

Of course, Theorem 4.2 can also be written in a dual form as follows.

Theorem 4.3 Let E = [a, b]. A : E2 → E is continuous, nondecreasing, associa-
tive, and

A(a, x) = x (x ∈ E)

A(x, x) > x (x ∈ E◦)
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if and only if there exists a continuous strictly increasing function f : E → [0, +∞],
with f(a) = 0, such that

A(x, y) = f−1[ min(f(x) + f(y), f(b)) ] (x, y ∈ E). (15)

Again, E can be any real interval, even infinite. Functions A of the form (15) are
symmetric and disjunctive. There are no interior idempotents. The left endpoint a
acts as an identity and the right endpoint b acts as a zero.

Once more, two mutually exclusive cases can be examined:

• f(b) < +∞ if and only if A has zero divisors (i.e. ∃ x, y ∈ ]a, b[ such that
A(x, y) = b). In this case, there exists a continuous strictly increasing function
g : [a, b] → [0, 1], with g(a) = 0 and g(b) = 1, such that

A(x, y) = g−1[min(g(x) + g(y), 1)] (x, y ∈ [a, b]). (16)

To see this, it suffices to set g(x) := f(x)/f(b).

For associative sequences (A(n) : [a, b]n → [a, b])n≥1, (16) becomes

A(n)(x) = g−1
[
min

( n∑

i=1

g(xi), 1
)]

(x ∈ [a, b]n, n ∈ N \ {0}).

• limt→b− f(x) = +∞ if and only if A is strictly increasing on ]a, b[. In this case,
there exists a continuous strictly increasing function g : [a, b] → [0, 1], with
g(a) = 0 and g(b) = 1, such that

A(x, y) = g−1[1− (1− g(x)) (1− g(y))] (x, y ∈ [a, b]), (17)

To see this, it suffices to set g(x) := 1− exp(−f(x)).

For associative sequences (A(n) : [a, b]n → [a, b])n≥1, (17) becomes

A(n)(x) = g−1
[
1−

n∏

i=1

(1− g(xi))
]

(x ∈ [a, b]n, n ∈ N \ {0}).

Any semigroup fulfilling the assumptions of Theorem 4.2 or 4.3 is called Archime-
dean; see Ling [61]. In other words, any semigroup (E, A) is said to be Archimedean
if A is continuous, nondecreasing, associative, one endpoint of E is an identity for
A, and there are no idempotents for A in E◦. We can make a distinction be-
tween conjunctive and disjunctive Archimedean semigroups depending on whether
the identity is the right or left endpoint of E, respectively. An Archimedean semi-
group is called properly Archimedean or Aczélian if every additive generator f is
unbounded; otherwise it is improperly Archimedean.

Ling [61, §6] proved that every Archimedean semigroup is obtainable as a limit
of Aczélian semigroups.
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4.3 A class of nondecreasing and associative functions

We now give a description of the class of functions A : [a, b]2 → [0, 1] that are
continuous, nondecreasing, weakly idempotent, and associative. For all θ ∈ [a, b],
we define Aa,b,θ as the set of continuous, nondecreasing, weakly idempotent, and
associative functions A : [a, b]2 → [0, 1] such that A(a, b) = A(b, a) = θ. The
extreme cases Aa,b,a and Aa,b,b will play an important role in the sequel. The results
proved by the author can be found in [66].

Theorem 4.4 A : [a, b]2 → [0, 1] is continuous, nondecreasing, weakly idempotent,
and associative if and only if there exist α, β ∈ [a, b] and two functions Aa,α∧β,α∧β ∈
Aa,α∧β,α∧β and Aα∨β,b,α∨β ∈ Aα∨β,b,α∨β such that, for all x, y ∈ [a, b],

A(x, y) =





Aa,α∧β,α∧β(x, y), if x, y ∈ [a, α ∧ β]
Aα∨β,b,α∨β(x, y), if x, y ∈ [α ∨ β, b]
(α ∧ x) ∨ (β ∧ y) ∨ (x ∧ y), otherwise.

Now, let us turn to the description of Aa,b,a. Mostert and Shields [80, p. 130,
Theorem B] proved the following

Theorem 4.5 A : [a, b]2 → [a, b] is continuous, associative, and is such that a acts
as a zero and b as an identity if and only if

• either
A(x, y) = min(x, y) (x, y ∈ [a, b]),

• or there exists a continuous strictly decreasing function f : [a, b] → [0, +∞],
with f(b) = 0, such that

A(x, y) = f−1[ min(f(x) + f(y), f(a)) ] (x, y ∈ [a, b]).

(conjunctive Archimedean semigroup)

• or there exist a countable index set K ⊆ N, a family of disjoint open subinter-
vals {]ak, bk[ | k ∈ K} of [a, b] and a family {fk | k ∈ K} of continuous strictly
decreasing function fk : [ak, bk] → [0, +∞], with fk(bk) = 0, such that, for all
x, y ∈ [a, b],

A(x, y) =

{
f−1

k [ min(fk(x) + fk(y), fk(ak)) ], if ∃ k ∈ K such that x, y ∈ [ak, bk]
min(x, y), otherwise.

(ordinal sum of conjunctive Archimedean semigroups and one-point semigroups).

One can show that Aa,b,a is the family of continuous, nondecreasing, and asso-
ciative functions A : [a, b]2 → [a, b] such that a acts as a zero and b as an identity.
Consequently, the description of the family Aa,b,a is also given by Theorem 4.5.
Moreover, it turns out that all functions fulfilling the assumptions of this result are
symmetric, nondecreasing, and conjunctive.

Theorem 4.5 can also be written in a dual form as follows:
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Theorem 4.6 A : [a, b]2 → [a, b] is continuous, associative, and is such that a acts
as an identity and b as a zero if and only if

• either
A(x, y) = max(x, y) (x, y ∈ [a, b]),

• or there exists a continuous strictly increasing function f : [a, b] → [0, +∞],
with f(a) = 0, such that

A(x, y) = f−1[ min(f(x) + f(y), f(b)) ] (x, y ∈ [a, b]).

(disjunctive Archimedean semigroup)

• or there exist a countable index set K ⊆ N, a family of disjoint open subinter-
vals {]ak, bk[ | k ∈ K} of [a, b] and a family {fk | k ∈ K} of continuous strictly
increasing function fk : [ak, bk] → [0, +∞], with fk(ak) = 0, such that, for all
x, y ∈ [a, b],

A(x, y) =

{
f−1

k [ min(fk(x) + fk(y), fk(bk)) ], if ∃ k ∈ K such that x, y ∈ [ak, bk]
max(x, y), otherwise.

(ordinal sum of disjunctive Archimedean semigroups and one-point semigroups).

As above, we can see that Aa,b,b is the family of continuous, nondecreasing, and
associative functions A : [a, b]2 → [a, b] such that a acts as an identity and b as a
zero. The description of the family Aa,b,b is thus given by Theorem 4.6. Moreover,
all functions fulfilling the assumptions of this result are symmetric, nondecreasing,
and disjunctive.

Theorems 4.4, 4.5, and 4.6, taken together, give a complete description of the
family of continuous, nondecreasing, weakly idempotent, and associative functions
A : [a, b]2 → [a, b]. Imposing some additional conditions leads to the following
immediate corollaries:

Corollary 4.2 A : [a, b]2 → [a, b] is continuous, strictly increasing, weakly idem-
potent, and associative if and only if there exists a continuous strictly increasing
function g : [a, b] → [0, 1], with g(a) = 0 and g(b) = 1, such that

• either
A(x, y) = g−1[g(x) g(y)] (x, y ∈ [a, b]),

• or
A(x, y) = g−1[g(x) + g(y)− g(x) g(y)] (x, y ∈ [a, b]).

Corollary 4.3 A : [a, b]2 → [a, b] is symmetric, continuous, nondecreasing, weakly
idempotent, and associative if and only if there exist α ∈ [a, b] and two functions
Aa,α,α ∈ Aa,α,α and Aα,b,α ∈ Aα,b,α such that, for all x, y ∈ [a, b],

A(x, y) =





Aa,α,α(x, y), if x, y ∈ [a, α]
Aα,b,α(x, y), if x, y ∈ [α, b]
α, otherwise.
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Corollary 4.4 A : [a, b]2 → [a, b] is continuous, nondecreasing, weakly idempotent,
associative, and has exactly one identity element in [a, b] if and only if A ∈ Aa,b,a ∪
Aa,b,b.

4.4 Internal associative functions

We now investigate the case of internal associative functions, that is, associative
means. As these functions are idempotent, we actually investigate idempotent and
associative functions. Although we have already observed that there are no con-
tinuous, strictly increasing, idempotent, and associative functions, the class of con-
tinuous, nondecreasing, idempotent, and associative functions is nonempty and its
description can be deduced from Theorem 4.4. However, Fodor [42] had already
obtained this description in a more general framework, as follows.

Theorem 4.7 Let E be a real interval, finite or infinite. A : E2 → E is continuous,
nondecreasing, idempotent, and associative if and only if there exist α, β ∈ E such
that

A(x, y) = (α ∧ x) ∨ (β ∧ y) ∨ (x ∧ y) ((x, y) ∈ E2).

Notice that, by distributivity of ∧ and ∨, A can be written also in the equivalent
form:

A(x, y) = (β ∨ x) ∧ (α ∨ y) ∧ (x ∨ y) ((x, y) ∈ E2).

For sequences of associative functions, the statement can be formulated as fol-
lows.

Theorem 4.8 Let E be a real interval, finite or infinite. (A(n) : En → E)n≥1 is an
associative sequence of continuous, nondecreasing, and idempotent functions if and
only if there exist α, β ∈ E such that

A(n)(x) = (α∧x1)∨
( n−1∨

i=2

(α∧β∧xi)
)
∨(β∧xn)∨

( n∧

i=1

xi

)
(x ∈ En, n ∈ N\{0}).

Before Fodor [42], the description of symmetric functions was obtained by Fung
and Fu [45] and in a revisited way by Dubois and Prade [31]. Now, the result can
be formulated as follows.

Theorem 4.9 Let E be a real interval, finite or infinite.
i) A : E2 → E is symmetric, continuous, nondecreasing, idempotent, and associative
if and only if there exists α ∈ E such that

A(x, y) = median(x, y, α) (x, y ∈ E).

ii) (A(n) : En → E)n≥1 is an associative sequence of symmetric, continuous, nonde-
creasing, and associative functions if and only if there exists α ∈ E such that

A(n)(x) = median
( n∧

i=1

xi,
n∨

i=1

xi, α
)

(x ∈ En, n ∈ N \ {0}). (18)
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The previous three theorems show that the idempotency property is seldom
consistent with associativity. For instance, the associative mean (18) is not very
decisive since it leads to the predefined value α as soon as there exist xi ≤ α and
xj ≥ α.

CzogaÃla and Drewniak [23] have examined the case when A has an identity
element e ∈ E, as follows.

Theorem 4.10 Let E be a real interval, finite or infinite.
i) If A : E2 → E is nondecreasing, idempotent, associative, and has an identity
element e ∈ E, then there exists a decreasing function g : E → E, with g(e) = e,
such that, for all x, y ∈ E,

A(x, y) =





x ∧ y, if y < g(x),
x ∨ y, if y > g(x),
x ∧ y or x ∨ y, if y = g(x).

ii) If A : E2 → E is continuous, nondecreasing, idempotent, associative, and has an
identity element e ∈ E, then A = min or max.

4.5 t-norms, t-conorms, and uninorms

In fuzzy set theory, one of the main topics consists in defining fuzzy logical connec-
tives which are appropriate extensions of logical connectives AND, OR, and NOT
in the case when the valuation set is the unit interval [0, 1] rather than {0, 1}.

Fuzzy connectives modelling AND and OR are called triangular norms (t-norms
for short) and triangular conorms (t-conorms) respectively; see Alsina et al. [11] and
Schweizer and Sklar [100].

Definition 4.2 i) A t-norm is a symmetric, nondecreasing, and associative function
T : [0, 1]2 → [0, 1] having 1 as identity.

ii) A t-conorm is a symmetric, nondecreasing, and associative function S :
[0, 1]2 → [0, 1] having 0 as identity.

The investigation of these functions has been made by Schweizer and Sklar [98,
99] and Ling [61]. There is now an abundant literature on this topic; see the book
by Klement et al. [59].

Of course, the family of continuous t-norms is nothing else than the class A0,1,0,
and the family of continuous t-conorms is the class A0,1,1. Both families have been
fully described in this section. Moreover, Corollary 4.4 gives a characterization of
their union.

Corollary 4.5 A : [0, 1]2 → [0, 1] is continuous, nondecreasing, weakly idempotent,
associative, and has exactly one identity in [0, 1] if and only if A is a continuous
t-norm or a continuous t-conorm.
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It is well known that t-norms and t-conorms are extensively used in fuzzy set
theory, especially in modeling fuzzy connectives and implications (see Weber [106]).
Applications to practical problems require the use of, in a sense, the most appropri-
ate t-norms or t-conorms. On this issue, Fodor [40] presented a method to construct
new t-norms from t-norms.

It is worth noting that some properties of t-norms, such as associativity, do not
play any essential role in preference modeling and choice theory. Recently, some
authors [10, 37, 111] have investigated non-associative binary operation on [0, 1] in
different contexts. These operators can be viewed as a generalization of t-norms and
t-conorms in the sense that both are contained in this kind of operations. Moreover,
Fodor [41] defined and investigated the concept of weak t-norms. His results were
usefully applied to the framework of fuzzy strict preference relations.

Further associative functions were recently introduced, namely t-operators [73]
and uninorms [109] (see also [74, 75]), which proved to be useful in expert systems,
neural networks, and fuzzy quantifiers theory.

Definition 4.3 i) A t-operator is a symmetric, nondecreasing, associative function
F : [0, 1]2 → [0, 1], with 0 and 1 as idempotent elements, and such that the sections
x 7→ F (x, 0) and x 7→ F (x, 1) are continuous on [0, 1].

ii) A uninorm is a symmetric, nondecreasing, and associative function U :
[0, 1]2 → [0, 1] having an identity.

It is clear that a uninorm becomes a t-norm (resp. a t-conorm) when the identity
is 1 (resp. 0).

We will not linger on this topic of t-norms, t-conorms, and uninorms. The
interested reader can consult the book by Klement et al. [59]. For more recent
results, we also recommend an article on associative functions by Sander [95].

5 Nonadditive integrals

Many aggregation functions can be seen as nonadditive discrete integrals with re-
spect to nonadditive measures. In this section we introduce Choquet and Sugeno
integrals. The reader can find more details on this topic in Chapter 18 of this
volume.

5.1 Motivations

A significant aspect of aggregation in multicriteria decision making is the differ-
ence in the importance of criteria or attributes, usually modeled by using different
weights. Since these weights must be taken into account during the aggregation
phase, it is necessary to use weighted functions, therefore giving up the symmetry
property. Until recently, the most often used weighted aggregation functions were
averaging functions, such as the quasi-linear means (4).

However, the weighted arithmetic means and, more generally, the quasi-linear
means present some drawbacks. None of these functions are able to model in an
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understandable way an interaction among attributes. Indeed, it is well known in
multiattribute utility theory (MAUT) that these functions lead to mutual preferen-
tial independence among the attributes (see for instance Fishburn and Wakker [39]),
which expresses in some sense the independence of the attributes. Since these func-
tions are not appropriate when interactive attributes are considered, people usually
tend to construct independent attributes, or attributes that are supposed to be so,
causing some bias effect in evaluation.

In order to have a flexible representation of complex interaction phenomena
among attributes or criteria (e.g. positive or negative synergy among some criteria),
it is useful to substitute the weight vector for a nonadditive set function allowing the
definition of a weight not only on each criterion, but also on each subset of criteria.

For this purpose, the use of fuzzy measures have been proposed by Sugeno in
1974 [103] to generalize additive measures. It seems widely accepted that additivity
is not suitable as a required property of set functions in many real situations, due
to the lack of additivity in many facets of human reasoning. To be able to express
human subjectivity, Sugeno proposed replacing the additivity property with a weaker
one: monotonicity. These non-additive monotonic measures are referred to as fuzzy
measures.

We consider a discrete set of n elements N = {1, . . . , n}. Depending on the
application, these elements could be players of a cooperative game, criteria in a
multicriteria decision problem, attributes, experts or voters in an opinion pooling
problem, etc. To emphasize that N has n elements, we will often write Nn.

Definition 5.1 A (discrete) fuzzy measure on N is a set function µ : 2N → [0, 1]
that is monotonic, that is µ(S) ≤ µ(T ) whenever S ⊆ T , and fulfills the boundary
conditions µ(∅) = 0 and µ(N) = 1.

For any S ⊆ N , the coefficient µ(S) can be viewed as the weight, or importance,
or strength of the combination S for the particular decision problem under consider-
ation. Thus, in addition to the usual weights on criteria taken separately, weights on
any combination of criteria are also defined. Monotonicity then means that adding
a new element to a combination cannot decrease its importance. We denote the set
of fuzzy measures on N as FN .

When a fuzzy measure is available on N , it is interesting to have tools capable
of summarizing all the values of a function to a single point, in terms of the un-
derlying fuzzy measure. These tools are the fuzzy integrals, a concept proposed by
Sugeno [103, 104].

Fuzzy integrals are integrals of a real function with respect to a fuzzy measure,
by analogy with Lebesgue integral which is defined with respect to an ordinary (i.e.,
additive) measure. As the integral of a function in a sense represents its average
value, a fuzzy integral can be viewed as a particular case of averaging aggregation
function.

Contrary to the weighted arithmetic means, fuzzy integrals are able to represent a
certain kind of interaction among criteria, ranging from redundancy (negative inter-
action) to synergy (positive interaction). For this reason they have been thoroughly
studied in the context of multicriteria decision problems [48, 50, 51, 53].
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There are several classes of fuzzy integrals, among which the most representative
are the Choquet and Sugeno integrals. In this section we discuss these two integrals
as aggregation functions. In particular, we present axiomatic characterizations for
these integrals. The main difference between them is that the former is suitable for
the aggregation on interval scales, while the latter is designed for aggregating values
on ordinal scales.

5.2 The Choquet integral

The concept of Choquet integral was proposed in capacity theory [21]. Since then,
it was used in various contexts such as nonadditive utility theory [46, 96, 97, 105],
theory of fuzzy measures and integrals [25, 57, 81, 82] (see also the excellent edited
book [53]), but also finance [28] and game theory [29].

Since this integral is viewed here as an n-variable aggregation function, we will
adopt a function-like notation instead of the usual integral form, and the integrand
will be a set of n real values, denoted x = (x1, . . . , xn) ∈ Rn.

Definition 5.2 Let µ ∈ FN . The (discrete) Choquet integral of x ∈ Rn with respect
to µ is defined by

Cµ(x) :=
n∑

i=1

x(i) [µ(A(i))− µ(A(i+1))],

where (·) is a permutation on N such that x(1) ≤ . . . ≤ x(n). Also, A(i) = {(i), . . . , (n)},
and A(n+1) = ∅.

For instance, if x3 ≤ x1 ≤ x2, we have

Cµ(x1, x2, x3) = x3 [µ({3, 1, 2})− µ({1, 2})] + x1 [µ({1, 2})− µ({2})] + x2 µ({2}).
Thus, the Choquet integral is a linear expression, up to a reordering of the

arguments. It is closely related to the Lebesgue integral, since both coincide when
the measure is additive:

Cµ(x) =
n∑

i=1

µ(i) xi (x ∈ Rn).

In this sense, the Choquet integral is a generalization of the Lebesgue integral.
Let us now turn to axiomatizations of the Choquet integral. First of all, as

we can see, this aggregation function fulfills a number of natural properties. It
is continuous, nondecreasing, unanimously increasing, idempotent, internal, and
meaningful for the same input-output interval scales; see for instance Grabisch [50].
It also fulfills the comonotonic additivity property [27, 97], that is,

f(x1 + x′1, . . . , xn + x′n) = f(x1, . . . , xn) + f(x′1, . . . , x
′
n)

for all comonotonic vectors x, x′ ∈ Rn. Two vectors x, x′ ∈ Rn are comonotonic if
there exists a permutation σ on N so that

xσ(1) ≤ · · · ≤ xσ(n) and x′σ(1) ≤ · · · ≤ x′σ(n).
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An interpretation of this property in multicriteria decision making can be found in
Modave et al. [78, 79].

The following result [70, Proposition 4.1] gives a characterization of the 2-variable
Choquet integral in a very natural way.

Proposition 5.1 f : R2 → R is nondecreasing and meaningful for the same input-
output interval scales if and only if there exists µ ∈ F2 such that f = Cµ.

The class of n-variable Choquet integrals has been first characterized by Schmei-
dler [97] by using monotonic additivity; see also [24], [25], [47], and [54, Theorem
8.6]. Note that this result was stated and proved in the continuous case (infinite)
instead of the discrete case.

Theorem 5.1 f : Rn → R is nondecreasing, comonotonic additive, and fulfills
f(1N) = 1 if and only if there exists µ ∈ FN such that f = Cµ.

Since the Choquet integral is defined from a fuzzy measure, it is sometimes
useful to consider, for a given set N , the family of Choquet integrals on N as a set
of functions

{fµ : Rn → R | µ ∈ FN}
or, equivalently, as a function f : Rn ×FN → R.

Let us mention a first characterization of the family of Choquet integrals on N ;
see Groes et al. [56]. For any S ⊆ N , S 6= ∅, denote by µS the fuzzy measure on N
defined by µS(T ) = 1 if T ⊇ S and 0 otherwise.

Theorem 5.2 The class of functions {fµ : Rn → R | µ ∈ FN} fulfills the following
properties:

• for any µ, ν ∈ FN and any λ ∈ R such that λµ + (1− λ)ν ∈ FN , we have

fλµ+(1−λ)ν = λfµ + (1− λ)fν ,

• for any S ⊆ N , we have fµS
= minS,

if and only if fµ = Cµ for all µ ∈ FN .

A second characterization obtained by the author [63, 64], can be stated as
follows.

Theorem 5.3 The class of functions {fµ : Rn → R | µ ∈ FN} fulfills the following
properties:

• any function fµ is a linear expression of µ, that is, there exist 2n functions
gT : Rn → R (T ⊆ N) such that fµ =

∑
T⊆N gT µ(T ) for all µ ∈ FN ,

• for any µ ∈ FN and any S ⊆ N , we have fµ(1S) = µ(S),
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• for any µ ∈ FN , the function fµ is nondecreasing and meaningful for the same
input-output interval scales,

if and only if fµ = Cµ for all µ ∈ FN .

These two characterizations are natural and similar to each other. The linearity
condition proposed in the second characterization is useful if we want to keep the
aggregation model as simple as possible. Technically, this condition is equivalent to
the superposition condition, that is,

fλ1µ+λ2ν = λ1fµ + λ2fν

for all µ, ν ∈ FN and all λ1, λ2 ∈ R such that λ1µ + λ2ν ∈ FN . Of course, linearity
implies the first condition of the first characterization. Moreover, under this linearity
condition, the other conditions are equivalent. In fact, in the proof of the second
characterization [63, 64], the author replaced the condition fµS

= minS with the
three conditions: fµ(1S) = µ(S), nondecreasing monotonicity, and meaningfulness
for the same input-output interval scales of fµ.

We also have the following three results [63, §4.2.3]:

Proposition 5.2 The Choquet integral Cµ : Rn → R is bisymmetric if and only if

Cµ ∈ {minS, maxS | S ⊆ N} ∪ {WAMω | ω ∈ [0, 1]n}.

Proposition 5.3 The sequence of Choquet integrals C := (C(n)

µ(n) : Rn → R)n≥1 is
bisymmetric if and only if

• either, for any n ∈ N \ {0}, there exists S ⊆ Nn such that C(n)

µ(n) = minS,

• or, for any n ∈ N \ {0}, there exists S ⊆ Nn such that C(n)

µ(n) = maxS,

• or, for any n ∈ N \ {0}, there exists ω ∈ [0, 1]n such that C(n)

µ(n) = WAMω.

Proposition 5.4 The sequence of Choquet integrals C := (C(n)

µ(n) : Rn → R)n≥1 is
decomposable if and only if

• either C = (min(n))n≥1,

• or C = (max(n))n≥1,

• or there exists θ ∈ [0, 1] such that, for any n ∈ N\{0}, we have C(n)

µ(n) = WAMω,
with

ωi =
(1− θ)n−iθi−1

∑n
j=1(1− θ)n−jθj−1

(i ∈ Nn).

Proposition 5.5 The sequence of Choquet integrals C := (C(n)

µ(n) : Rn → R)n≥1 is
associative if and only if

C = (min(n))n≥1 or (max(n))n≥1 or (P
(n)
1 )n≥1 or (P (n)

n )n≥1.
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Let us now consider certain special cases of the Choquet integral, namely the
weighted arithmetic means (WAM) and the ordered weighted averaging functions
(OWA).

The weighted arithmetic mean WAMω is a Choquet integral defined from an
additive measure. It fulfills the classical additivity property:

f(x1 + x′1, . . . , xn + x′n) = f(x1, . . . , xn) + f(x′1, . . . , x
′
n)

for all vectors x, x′ ∈ Rn. More exactly, we have the following results (see Marichal [63,
§4.2.4] and Murofushi and Sugeno [83]).

Proposition 5.6 The Choquet integral Cµ : Rn → R is additive if and only if there
exists ω ∈ [0, 1]n such that Cµ = WAMω.

Proposition 5.7 A : Rn → R is nondecreasing, meaningful for the same input-
output interval scales, and additive if and only if there exists ω ∈ [0, 1]n such that
A = WAMω.

The ordered weighted averaging functions OWAω were proposed in 1988 by
Yager [108]. Since their introduction, these aggregation functions have been ap-
plied to many fields as neural networks, data base systems, fuzzy logic controllers,
and group decision making. An overview on these functions can be found in the
book edited by Yager and Kacprzyk [107]; see also Grabisch et al. [53].

The following result, ascribed to Grabisch [49] (see [68] for a concise proof),
shows that the OWA function is nothing other than a Choquet integral with respect
to a cardinality-based fuzzy measure i.e. a fuzzy measure depending only on the
cardinalities of the subsets.

Proposition 5.8 Let µ ∈ FN . The following assertions are equivalent:
i) For any S, S ′ ⊆ N such that |S| = |S ′|, we have µ(S) = µ(S ′).
ii) There exists a weight vector ω such that Cµ = OWAω.
iii) Cµ is a symmetric function.

The fuzzy measure µ associated to an OWAω is given by

µ(S) =
n∑

i=n−s+1

ωi (S ⊆ N, S 6= ∅).

Conversely, the weights associated to OWAω are given by

ωn−s = µ(S ∪ i)− µ(S) (i ∈ N, S ⊆ N \ i).

The class of OWA functions includes an important subfamily, namely the order
statistics

OSk(x) = x(k),

when ωk = 1 for some k ∈ N . In this case, we have, for any S ⊆ N ,

µ(S) =
{

1, if s ≥ n− k + 1,
0, otherwise.

This subfamily itself contains the minimum, the maximum, and the median.
Axiomatizations of the class of OWA functions can be immediately derived from

those of the Choquet integral and from Proposition 5.8.
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5.3 The Sugeno integral

The Sugeno integral [103, 104] was introduced as a fuzzy integral, that is, an integral
defined from a fuzzy measure. This integral has then been thoroughly investigated
and used in many domains (an overview can be found in Dubois et al. [30] and the
volume edited by Grabisch et al. [53]).

As for the Choquet integral, we give here the definition of the Sugeno integral
in its discrete (finite) version, which is nothing other than an aggregation function
from [0, 1]n into [0, 1].

Definition 5.3 Let µ ∈ FN . The (discrete) Sugeno integral of x ∈ [0, 1]n with
respect to µ is defined by

Sµ(x) :=
n∨

i=1

[x(i) ∧ µ(A(i))],

where (·) is a permutation on N such that x(1) ≤ . . . ≤ x(n). Also, A(i) = {(i), . . . , (n)},
and A(n+1) = ∅.

Exactly as in the definition of the Choquet integral, the “coefficient” associated
with each variable xi is fixed uniquely by the permutation (·). For instance, if
x3 ≤ x1 ≤ x2, then we have

Sµ(x1, x2, x3) = [x3 ∧ µ({3, 1, 2})] ∨ [x1 ∧ µ({1, 2})] ∨ [x2 ∧ µ({2})].
From the definition, we can immediately deduce that

Sµ(x) ∈ {x1, . . . , xn} ∪ {µ(S) |S ⊆ N} (x ∈ [0, 1]n).

Moreover, similarly to the Choquet integral, we have

Sµ(1S) = µ(S) (S ⊆ N),

which shows the athe Sugeno integral is completely determined par its values at the
vertices of the hypercube [0, 1]n.

It was proved [55, 65, 103] that the Sugeno integral can also be set in the following
form, which does not require the reordering of the variables:

Sµ(x) =
∨

T⊆N

[
µ(T ) ∧ (

∧

i∈T

xi)
]

(x ∈ [0, 1]n).

It was also proved [58] that the Sugeno integral is a kind of weighted median:

Sµ(x) = median[x1, . . . , xn, µ(A(2)), µ(A(3)), . . . , µ(A(n))] (x ∈ [0, 1]n).

For instance, if x3 ≤ x1 ≤ x2, then

Sµ(x1, x2, x3) = median[x1, x2, x3, µ(1, 2), µ(2)].

The following result [67] shows that the Sugeno integral is a rather natural con-
cept and, contrary to the Choquet integral, it is suitable for an aggregation in an
ordinal context.
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Proposition 5.9 Any weakly idempotent function A : [0, 1]n → [0, 1], whose (well-
formed) expression is made up of variables x1, . . . , xn, constants r1, . . . , rm ∈ [0, 1],
lattice operations ∧ = min et ∨ = max, and parentheses is a Sugeno integral (and
conversely).

Let us now turn to axiomatizations of the Sugeno integral. We can easily see
that the Sugeno integral is a continuous, nondecreasing, unanimously increasing,
idempotent, and internal function. It also fulfills the comonotonic minitivity and
comonotonic maxitivity properties [25], that is

f(x1 ∧ x′1, . . . , xn ∧ x′n) = f(x1, . . . , xn) ∧ f(x′1, . . . , x
′
n)

f(x1 ∨ x′1, . . . , xn ∨ x′n) = f(x1, . . . , xn) ∨ f(x′1, . . . , x
′
n)

for all comonotonic vectors x, x′ ∈ [0, 1]n. More specifically, it is weakly minitive
and weakly maxitive, that is, it fulfills

f(x1 ∧ r, . . . , xn ∧ r) = f(x1, . . . , xn) ∧ r

f(x1 ∨ r, . . . , xn ∨ r) = f(x1, . . . , xn) ∨ r

for all vectors x ∈ [0, 1]n and all r ∈ [0, 1]. Even more specifically, by replacing
x with the Boolean vector 1S in these two equations above, one see that it is also
non-compensative, that is, it fulfills

f(r1S) ∈ {f(1S), r} and f(1S + r1N\S) ∈ {f(1S), r}

for all S ⊆ N and all r ∈ [0, 1].
Comonotonic minitivity and maxitivity have been interpreted in the context of

aggregation of fuzzy subsets by Ralescu and Ralescu [89]. Non-compensation has
been interpreted in decision making under uncertainty in Dubois et al. [30].

The main axiomatizations of the Sugeno integral as an aggregation function are
summarized in the following result; see Marichal [63, 65]:

Theorem 5.4 Let A : [0, 1]n → [0, 1]. The following assertions are equivalent:

• A is nondecreasing, idempotent, and non-compensative,

• A is nondecreasing, weakly minitive and weakly maxitive,

• A is nondecreasing, idempotent, comonotonic minitive and maxitive,

• There exists µ ∈ FN such that A = Sµ.

The 2-variable Sugeno integral can be characterized in a very natural way by
means of the associativity property. Indeed, Theorem 4.7 can be rewritten as follows.

Proposition 5.10 A : [0, 1]2 → [0, 1] is continuous, nondecreasing, idempotent,
and associative if and only if there exists µ ∈ F2 such that A = Sµ.
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Considering associative or decomposable sequences, we have the following result;
see Marichal [63, p. 113].

Proposition 5.11 Let A := (A(n) : [0, 1]n → [0.1])n≥1 be a sequence of functions.
Then the following assertions are equivalent:

• A is an associative sequence of Sugeno integrals.

• A is a decomposable sequence of Sugeno integrals.

• A is an associative sequence of continuous, nondecreasing, and idempotent
functions.

• There exist α, β ∈ [0, 1] such that

A(n)(x) = (α∧x1)∨
( n−1∨

i=2

(α∧β∧xi)
)
∨(β∧xn)∨

( n∧

i=1

xi

)
(x ∈ [0, 1]n, n ∈ N\{0}).

Just as the Choquet integral includes two main subclasses, namely the weighted
arithmetic means and the ordered weighted averaging functions, the Sugeno integral
includes the weighted minimum and maximum and the ordered weighted minimum
and maximum. These functions have been introduced and investigated in Dubois
and Prade [33] and Dubois et al. [34], respectively.

For any vector ω = (ω1, . . . , ωn) ∈ [0, 1]n such that
∨n

i=1 ωi = 1, the weighted
maximum associated with ω is defined by

pmaxω(x) =
n∨

i=1

(ωi ∧ xi) (x ∈ [0, 1]n).

For any vector ω = (ω1, . . . , ωn) ∈ [0, 1]n such that
∧n

i=1 ωi = 0, the weighted
minimum associated with ω is defined by

pminω(x) =
n∧

i=1

(ωi ∨ xi) (x ∈ [0, 1]n).

The functions pmaxω and pminω can be characterized as follows; see [33, 63, 90]:

Proposition 5.12 Let µ ∈ FN . The following assertions are equivalent:

• µ is a possibility measure, that is such that

µ(S ∪ T ) = µ(S) ∨ µ(T ) (S, T ⊆ N).

• There exists ω ∈ [0, 1]n such that Sµ = pmaxω.

• Sµ(x1 ∨ x′1, . . . , xn ∨ x′n) = Sµ(x1, . . . , xn) ∨ Sµ(x′1, . . . , x
′
n) (x, x′ ∈ [0, 1]n).

Proposition 5.13 Let µ ∈ FN . The following assertions are equivalent:
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• µ is a necessity measure, that is such that

µ(S ∩ T ) = µ(S) ∧ µ(T ) (S, T ⊆ N).

• There exists ω ∈ [0, 1]n such that Sµ = pminω.

• Sµ(x1 ∧ x′1, . . . , xn ∧ x′n) = Sµ(x1, . . . , xn) ∧ Sµ(x′1, . . . , x
′
n) (x, x′ ∈ [0, 1]n).

For any vector ω = (ω1, . . . , ωn) ∈ [0, 1]n such that
∨n

i=1 ωi = 1, the ordered
weighted maximum associated with ω is defined by

opmaxω(x) =
n∨

i=1

(ωi ∧ x(i)) (x ∈ [0, 1]n).

For any vector ω = (ω1, . . . , ωn) ∈ [0, 1]n such that
∧n

i=1 ωi = 0, the ordered weighted
minimum associated with ω is defined by

opminω(x) =
n∧

i=1

(ωi ∨ x(i)) (x ∈ [0, 1]n).

Surprisingly enough, the class of ordered weighted minima coincides with that of
ordered weighted maxima and identifies with the symmetric Sugeno integrals. The
result can be stated as follows; see [49, 63].

Proposition 5.14 Let µ ∈ FN . The following assertions are equivalent:

• µ depends only of the cardinalities of the subsets.

• There exists ω ∈ [0, 1]n such that Sµ = opmaxω.

• There exists ω ∈ [0, 1]n such that Sµ = opminω.

• Sµ is a symmetric function.

Using the fact that the Sugeno integral is also a weighted median, we can write

opmaxω(x) = median(x1, . . . , xn, ω2, . . . , ωn),

opminω(x) = median(x1, . . . , xn, ω1, . . . , ωn−1).

Another interesting subclass is that of lattice polynomials, which are nothing
other than Sugeno integrals defined from fuzzy measures taking their values in {0, 1}.
We will characterize these functions in the final section.
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6 Aggregation on ratio and interval scales

In this section, we present the families of aggregation functions that are meaningful
for ratio and interval scales (see Definition 2.7). First of all, we have the following
two results concerning ratio scales; see [6, Chapter 20], [7, p. 439], and [9, case #2].

Theorem 6.1 A : ]0,∞[n→ ]0,∞[ is meaningful for the same input-output ratio
scales if and only if

A(x) = x1 F
(x2

x1

, . . . ,
xn

x1

)
(x ∈]0,∞[n),

with F : ]0,∞[n−1→ ]0,∞[ arbitrary (F = constant if n = 1).

Theorem 6.2 A : ]0,∞[n→ ]0,∞[ is meaningful for the same input ratio scales if
and only if

A(x) = g(x1) F
(x2

x1

, . . . ,
xn

x1

)
(x ∈ ]0,∞[n),

with F : ]0,∞[n−1→ ]0,∞[ arbitrary (F = constant if n = 1) and g : ]0,∞[→ ]0,∞[
such that g(xy) = g(x)g(y) for all x, y ∈ ]0,∞[. g(x) = xc if A is continuous (c
arbitrary).

We have the following results regarding interval scales; see [9, case #5] and [63,
§3.4.1].

Theorem 6.3 A : Rn → R is meaningful for the same input-output interval scales
if and only if

A(x) =

{
S(x) F

(
x1−AM(x)

S(x)
, . . . , xn−AM(x)

S(x)

)
+ AM(x), if S(x) 6= 0,

x1, if S(x) = 0,

where S(x) =
√∑n

i=1(xi − AM(x))2 and F : Rn → R arbitrary (A(x) = x if n = 1).

Theorem 6.4 A : Rn → R is meaningful for the same input interval scales if and
only if

A(x) =

{
S(x) F

(
x1−AM(x)

S(x)
, . . . , xn−AM(x)

S(x)

)
+ a AM(x) + b, if S(x) 6= 0,

a x1 + b, if S(x) = 0,

or

A(x) =

{
g(S(x)) F

(
x1−AM(x)

S(x)
, . . . , xn−AM(x)

S(x)

)
+ b, if S(x) 6= 0,

b, if S(x) = 0,

where a, b ∈ R, S(x) =
√∑n

i=1(xi − AM(x))2, F : Rn → R arbitrary (A(x) = ax + b

if n = 1), and g : R→ ]0,∞[ such that g(xy) = g(x)g(y) for all x, y ∈ R.
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The restriction of these families to nondecreasing functions and strictly increasing
functions is discussed in Aczél et al. [7].

In the rest of this section, we present axiomatizations of some subfamilies of
functions that are meaningful for the same input-output interval scales (these results
are extracted from Marichal et al. [70]). For instance, we observed in Section 5.2
that the discrete Choquet integral fulfills this property. More generally, it is clear
that any aggregation function obtained by composition of an arbitrary number of
discrete Choquet integrals is again meaningful for the same input-output interval
scales. These functions, called composed Choquet integrals, have been investigated
for instance in Narukawa and Murofushi [85].

If we confine ourselves to bisymmetric functions, we have the following results.

Proposition 6.1 A : Rn → R is nondecreasing, meaningful for the same input-
output interval scales, and bisymmetric if and only if

A ∈ {minS, maxS | S ⊆ N} ∪ {WAMω | ω ∈ [0, 1]n}.

Corollary 6.1 A : Rn → R is symmetric, nondecreasing, meaningful for the same
input-output interval scales, and bisymmetric if and only if

A ∈ {min, max, AM}.

Proposition 6.2 (A(n) : Rn → R)n≥1 is a bisymmetric sequence of nondecreasing
and meaningful functions for the same input-output interval scales if and only if

• either, for any n ∈ N \ {0}, there exists S ⊆ Nn such that M (n) = minS,

• or, for any n ∈ N \ {0}, there exists S ⊆ Nn such that M (n) = maxS,

• or, for any n ∈ N \ {0}, there exists ω ∈ [0, 1]n such that M (n) = WAMω.

Corollary 6.2 A := (A(n) : Rn → R)n≥1 is a bisymmetric sequence of symmetric,
nondecreasing, and meaningful functions for the same input-output interval scales if
and only if

A = (min(n))n≥1 or (max(n))n≥1 or (AM(n))n≥1.

Let us now consider the decomposable and associative sequences of aggregation
functions. We have the following results.

Proposition 6.3 A := (A(n) : Rn → R)n≥1 is a decomposable sequence of nonde-
creasing and meaningful functions for the same input-output interval scales if and
only if

• either A = (min(n))n≥1,

• or A = (max(n))n≥1,
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• or there exists θ ∈ [0, 1] such that, for any n ∈ N\{0}, we have A(n) = WAMω,
with

ωi =
(1− θ)n−iθi−1

∑n
j=1(1− θ)n−jθj−1

(i ∈ Nn).

Corollary 6.3 A := (A(n) : Rn → R)n≥1 is a decomposable sequence of symmetric,
nondecreasing, and meaningful functions for the same input-output interval scales if
and only if

A = (min(n))n≥1 or (max(n))n≥1 or (AM(n))n≥1.

Proposition 6.4 A := (A(n) : Rn → R)n≥1 is an associative sequence of nonde-
creasing and meaningful functions for the same input-output interval scales if and
only if

A = (min(n))n≥1 or (max(n))n≥1 or (P
(n)
1 )n≥1 or (P(n)

n )n≥1.

Corollary 6.4 A := (A(n) : Rn → R)n≥1 is an associative sequence of symmetric,
nondecreasing, and meaningful functions for the same input-output interval scales if
and only if

A = (min(n))n≥1 or (max(n))n≥1.

7 Aggregation on ordinal scales

In this final section, we consider aggregation functions that are meaningful for the
same input-output ordinal scales. Their description is not immediate and requires
the concept of invariant sets. Denote the set of strictly increasing bijections of R by
Φ.

Definition 7.1 A nonempty subset I ⊆ Rn is said to be invariant if

x ∈ I ⇒ φ(x) ∈ I (φ ∈ Φ).

Such a set is said to be minimal if it does not contain any proper invariant subset.

The family I of all invariant subsets of Rn provides a partition of Rn into equiva-
lence classes, where x, y ∈ Rn are equivalent if there exists φ ∈ Φ such that y = φ(x).
In fact, one can show that any invariant subset is of the form

I = {x ∈ Rn | xπ(1) C1 · · · Cn−1 xπ(n)},

where π ∈ ΠN and Ci∈ {<,≤} for i = 1, . . . , n− 1.
The meaningful functions for the same input-output ordinal scales have been

investigated by many authors [69, 72, 77, 88]. They can be described as follows [88].

Theorem 7.1 A : Rn → R is meaningful for the same input-output ordinal scales
if and only if, for any I ∈ I, there exists i ∈ N such that A|I = Pi|I is the ith
projection.
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The meaningful functions for the same input ordinal scales have also been widely
studied [69, 71, 86, 87, 110]. They have been described as follows [71].

Theorem 7.2 A : Rn → R is meaningful for the same input ordinal scales if and
only if, for any I ∈ I, there exists iI ∈ N and a constant or strictly monotone
function gI : PiI (I) → R such that

A|I = gI ◦ PiI |I ,
where, for any I, J ∈ I, either gI = gJ , or ran(gI) = ran(gJ) est un singleton, or
ran(gI) < ran(gJ), or ran(gI) > ran(gJ).

We therefore see that the meaningful functions for the same input-output ordinal
scales reduce to projections on each invariant subset. In addition, the meaningful
functions for the same input ordinal scales reduce to constants or transformed pro-
jections on these invariant subsets.

The restriction of these functions to nondecreasing and/or continuous functions
has also been studied. To describe these subfamilies, we need the concept of lattice
polynomials.

Definition 7.2 A lattice polynomial of n variables is a well-formed expression in-
volving n variables x1, . . . , xn linked by the lattice operations ∧ = min and ∨ = max
in an arbitrary combination of parentheses.

For instance, L(x) = (x1 ∨ x2) ∧ x3 is a 3-variable lattice polynomial.
One can show (see Birkhoff [17, Chapter 2, §5]) that any n-variable lattice poly-

nomial can be written in disjunctive form as

Lγ(x) =
∨

S⊆N
γ(S)=1

∧

i∈S

xi (x ∈ Rn),

where γ : 2N → {0, 1} is a binary fuzzy measure (i.e. with values in {0, 1}). We
denote the family of these fuzzy measures on N by ΓN .

It was also proved [67] that the class of lattice polynomials restricted to the
domain [0, 1]n identifies with the intersection between the family of Choquet integrals
on [0, 1]n and the family of Sugeno integrals.

Regarding nondecreasing functions, we have the following descriptions [69, 71].

Proposition 7.1 A : Rn → R is nondecreasing and meaningful for the same input-
output ordinal scales if and only if there exists γ ∈ ΓN such that A = Lγ.

Proposition 7.2 A : Rn → R is nondecreasing and meaningful for the same input
ordinal scales if and only if there exists γ ∈ ΓN and a constant or strictly monotone
function g : R→ R such that A = g ◦ Lγ.

The functions in the above two theorems are continuous, up to discontinuities of
function g.

Regarding continuous functions, we have the following results [69].
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Corollary 7.1 A : Rn → R is continuous and meaningful for the same input-output
ordinal scales if and only if there exists γ ∈ ΓN such that A = Lγ.

Corollary 7.2 A : Rn → R is continuous and meaningful for the same input ordinal
scales if and only if there exists γ ∈ ΓN and a constant or continuous and strictly
monotone function g : R→ R such that A = g ◦ Lγ.

Lattice polynomials are idempotent, but not necessarily symmetric. Actually,
symmetric lattice polynomials are exactly the order statistics, which include the
classical median. By adding symmetry and/or idempotency to the previous results,
we obtain the following corollaries.

Corollary 7.3 A : Rn → R is symmetric, nondecreasing (or continuous), and
meaningful for the same input-output ordinal scales if and only if there exists k ∈ N
such that A = OSk.

Corollary 7.4 A : Rn → R is idempotent, nondecreasing (or continuous), and
meaningful for the same input ordinal scales if and only if there exists γ ∈ ΓN such
that A = Lγ.

Corollary 7.5 A : Rn → R is symmetric, nondecreasing, and meaningful for the
same input ordinal scales if and only if there exist k ∈ N and a constant or strictly
increasing function g : R→ R such that A = g ◦OSk.

Corollary 7.6 A : Rn → R is symmetric, continuous, and meaningful for the same
input ordinal scales if and only if there exists k ∈ N and a constant or continuous
and strictly monotonic function g : R→ R such that A = g ◦OSk.

8 Conclusion

In this chapter we have discussed the most classical aggregation functions that are
used in decision making. An appropriate classification of these functions into a
catalog can be better done through an axiomatic approach, which consists in list-
ing a series of reasonable properties and classifying or, better, characterizing the
aggregation functions according to these properties.

With knowledge of the increasing need to define suitable aggregation functions
fulfilling very precise conditions in various situations, it is not surprising that such
a catalog of aggregation functions, which is already huge, is constantly growing and
remains an important topic of research. We have only skimmed the surface of a still
growing domain here.
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[57] U. Höhle. Integration with respect to fuzzy measures. In Proc. IFAC Sympo-
sium on Theory and Applications of Digital Control, pages 35–37, New Delhi,
January 1982.

[58] A. Kandel and W. J. Byatt. Fuzzy sets, fuzzy algebra, and fuzzy statistics.
Proc. IEEE, 66(12):1619–1639, December 1978.

[59] E. P. Klement, R. Mesiar, and E. Pap. Triangular norms, volume 8 of Trends
in Logic—Studia Logica Library. Kluwer Academic Publishers, Dordrecht,
2000.

[60] A. N. Kolmogoroff. Sur la notion de la moyenne. (French). Atti Accad. Naz.
Lincei, 12(6):388–391, 1930.

[61] C.-H. Ling. Representation of associative functions. Publ. Math. Debrecen,
12:189–212, 1965.

[62] R. D. Luce. On the possible psychophysical laws. Psych. Rev., 66:81–95, 1959.

41



[63] J.-L. Marichal. Aggregation operators for multicriteria decision aid. PhD the-
sis, Institute of Mathematics, University of Liège, Liège, Belgium, December
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