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The lifetime of a system of connected units under some natural assumptions can
be represented as a random variable Y defined as a weighted lattice polynomial
of random lifetimes of its components. As such, the concept of a random variable
Y defined by a weighted lattice polynomial of (lattice-valued) random variables is
considered in general and in some special cases. The central object of interest is the
cumulative distribution function of Y . In particular, numerous results are obtained
for lattice polynomials and weighted lattice polynomials in the case of independent
arguments and in general. For the general case, the technique consists in considering
the joint probability generating function of “indicator” variables. A connection is
studied between Y and order statistics of the set of arguments.

1. INTRODUCTION

In a system consisting of several interconnected units, its lifetime can often be
expressed in terms of those of the components. Assuming that the system and the
units are of the crisply “on/off” kind, the lifetime of a “serially connected” segment of
units (where all units are needed for functioning) is the minimum of the individual life-
times; for a circuit of parallel units (one unit is sufficient for work), the lifetime is the
maximum of the individual lifetimes. In a complex system in which both connection
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types are involved, the system’s lifetime Y can be expressed as a lattice polynomial
function (combination of minima and maxima) of the component’s lifetimes.

In addition, there might be “collective upper bounds” on lifetimes of certain sub-
sets of units imposed by external conditions (say, physical properties of the assembly)
or even “collective lower bounds” imposed, for instance, by back-up blocks with con-
stant lifetimes. These upper and lower bounds can be easily modeled by incorporating
additional components with constant lifetimes. Indeed, consider a subset with ran-
dom lifetime X and assume that a lower (resp. upper) bound c ∈ R is required on this
lifetime, which then becomes c ∨ X (resp. c ∧ X). This situation can be modeled by
connecting in parallel (resp. series) each component of that subset with a component
of constant lifetime c.

Following the above description, the lifetime of such a system involves the lower
and upper bounds as follows. Denoting by [n] = {1, . . . , n} the set of indexes of the
units and by Xi the random lifetime of the ith unit (i ∈ [n]), we conclude that

Y = p(X1, . . . , Xn),

where p is an n-ary weighted lattice polynomial,1 whose definition is recalled next
(see Marichal [5]). Let L denote an arbitrary bounded distributive lattice with lattice
operations ∧ and ∨ and denote by a and b its bottom and top elements, respectively.
For any α, β ∈ L and any subset S ⊆ [n], let �eα,β

S denote the characteristic vector of
S in {α, β}n, (i.e., the n-tuple whose ith component is β, if i ∈ S, and α, otherwise).
The special case �e 0,1

S will be denoted �εS .

DEFINITION 1: The class of weighted lattice polynomials from Ln to L is defined as
follows:

(1) For any k ∈ [n] and any c ∈ L, the projection (x1, . . . , xn) �→ xk and the
constant function (x1, . . . , xn) �→ c are weighted lattice polynomials from Ln

to L.

(2) If p and q are weighted lattice polynomials from Ln to L, then p ∧ q and p ∨ q
are weighted lattice polynomials from Ln to L.

(3) Every weighted lattice polynomial from Ln to L is constructed by finitely many
applications of rules (1) and (2).

It was proved [5] that any weighted lattice polynomial p : Ln → L can be
expressed in disjunctive normal form:There exists a set function w : 2[n] → L such that

p(�x) =
∨

S⊆[n]

[
w(S) ∧

∧
i∈S

xi

]
. (1)

Moreover, from among all of the possible set functions w : 2[n] → L fulfilling (1),
only one is nondecreasing. It is defined as

w(S) = p(�e a,b
S ), S ⊆ [n]. (2)
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The n-ary weighted lattice polynomial defined by a given nondecreasing set
function w : 2[n] → L will henceforth be denoted pw.

Remark: Weighted lattice polynomials are strongly related to the concept of the dis-
crete Sugeno integral [9,10]. Indeed, as observed in [5], a function f : Ln → L is a
discrete Sugeno integral if and only if it is a weighted lattice polynomial fulfilling
f (�e a,b

∅
) = a and f (�e a,b

[n] ) = b.

Assuming that L ⊆ R = [−∞, ∞] and that the lifetime Xi of every unit i ∈ [n] is
L-valued, the lifetime of the system, with possible collective lower or upper bounds,
is then given by

Y = pw(X1, . . . , Xn),

where pw is a weighted lattice polynomial from Ln to L.
In those terms, Pr[Y > y] is the probability that by the time y the system is still

on (i.e., the system reliability at time y). This probability is, in turn, determined by the
pattern of units that are on at the time y (i.e., by the indicators of events Xi > y).

In this article we investigate the cumulative distribution function (c.d.f.) of Y in
case of general dependent arguments (see Section 2). Our results generalize both the
case of independent arguments, which was studied in Marichal [6], and the special
situation where no constant lifetimes are considered (the weighted lattice polynomial is
merely a lattice polynomial), which was investigated by Marichal [4] for independent
arguments and then by Dukhovny [2] for general dependent arguments.

We also investigate the special case in which the weighted lattice polynomial is
a symmetric function and the case in which, at any time, the reliability of any group
depends only on the number of units in the group (see Section 3).

2. CUMULATIVE DISTRIBUTION FUNCTION INTHE GENERAL CASE

We assume throughout that L ⊆ R, which implies that L is totally ordered. For an
L-valued random variable X , one can introduce a supplementary variable

χ(x) = Ind(X > x) ∈ {0, 1}.
For a set of L-valued random variables Xi, i ∈ [n], we consider a vector of
(synchronous) indicator variables

�χ(x) = (χ1(x), . . . , χn(x)),

where

χi(x) = Ind(Xi > x), i ∈ [n].
For any �κ ∈ {0, 1}n, let S�κ denote the subset of [n] whose characteristic vector in {0, 1}n

is �κ (i.e., such that �εS�κ = �κ).
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We have the following fundamental lemma.

LEMMA 2: Let pw : Ln → L be a weighted lattice polynomial and Y = pw(X1, . . . , Xn).
Then

Ind(Y > y) = Ind(w(S �χ(y)) > y), y ∈ L.

PROOF: The proof mainly lies on the distributive property of Ind(·) with respect to
disjunction and conjunction: For any events A and B,

Ind(A ∨ B) = Ind(A) ∨ Ind(B),

Ind(A ∧ B) = Ind(A) ∧ Ind(B).

By (1), we obtain

Ind(Y > y) = Ind(pw(X1, . . . , Xn) > y)

=
∨

S⊆[n]

(
Ind(w(S) > y) ∧

∧
i∈S

Ind(Xi > y)
)

= πωy( �χ(y)),

where πωy : {0, 1}n → {0, 1} is the weighted lattice polynomial defined by the
nondecreasing set function ωy : 2[n] → {0, 1} fulfilling

ωy(S) = Ind(w(S) > y), S ⊆ [n].
Finally, since �χ(y) ∈ {0, 1}n, by (2) we have

πωy( �χ(y)) = ωy(S �χ(y)) = Ind(w(S �χ(y)) > y). �

Remark: Interestingly enough, we have observed in the proof of Lemma 2 that the
identity Y = pw(X1, . . . , Xn) has its binary counterpart in terms of indicator variables,
namely

χY (y) = πωy(χ1(y), . . . , χn(y)), y ∈ L,

where χY (y) = Ind(Y > y).

We now state our main result.

THEOREM 3: Let Y = pw(X1, . . . , Xn) and denote its c.d.f. by FY (y). Then, for any
y ∈ L,

1 − FY (y) =
∑

�κ∈{0,1}n

Ind(w(S�κ) > y) Pr( �χ(y) = �κ), (3)

or, equivalently,

1 − FY (y) =
∑
S⊆[n]

Ind(w(S) > y) Pr( �χ(y) = �εS). (4)
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PROOF: By Lemma 2, we have

1 − FY (y) = E(Ind(Y > y)) = E(Ind(w(S �χ(y)) > y))

=
∑

�κ∈{0,1}n

E(Ind(w(S�κ) > y)) Pr( �χ(y) = �κ)

=
∑

�κ∈{0,1}n

Ind(w(S�κ) > y) Pr( �χ(y) = �κ).
�

Also, since

Ind(w(S�κ) > y) = 1 − Ind(w(S�κ) � y),

and
∑

�κ Pr( �χ(y) = �κ) = 1, one can present (3) as

FY (y) =
∑

�κ∈{0,1}n

Ind(w(S�κ) � y) Pr( �χ(y) = �κ).

The formulas of Theorem 3 are quite remarkable. They show that the vector of
binary status indicators �χ(y) at the time y is the only thing needed to determine the
status of the whole system. Moreover, the “dot product” nature of these formulas has,
as it will be seen, a special significance.

Remark: It is noteworthy that an alternative form of (4), namely

1 − FY (y) =
∑
S⊆[n]

Ind(w(S) > y) Pr

⎛
⎝ ∨

i∈[n]\S

Xi � y <
∧
i∈S

Xi

⎞
⎠ ,

was already found through a direct use of the disjunctive normal form (1) of pw (see
proof of Theorem 1 in Marichal [6]).

In the general case when the random arguments are dependent, the probability
parts of (3) and (4) can be treated using the technique of probability generating func-
tions (p.g.f.s). For a random variable X with a c.d.f. F(x), we introduce the p.g.f. of
its indicator χ(x):

G(z, x) = E(zχ(x))

= Pr[χ(x) = 0] + z Pr[χ(x) = 1]
= F(x) + z[1 − F(x)], |z| � 1.

For a set of (generally dependent) random variables X1, . . . , Xn, we denote the
joint p.g.f. of their indicator variables �χ(x) by

G(�z, x) = E(�z �χ(x)) = E

(
n∏

i=1

zχi(x)
i

)
, |zi| � 1, i ∈ [n].
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By definition,

G(�z, x) =
∑

�κ∈{0,1}n

Pr( �χ(x) = �κ) �z �κ =
∑
S⊆[n]

Pr( �χ(x) = �εS)
∏
i∈S

zi. (5)

Since G(�z, x) is a multilinear polynomial in z1, . . . , zn, we immediately obtain2

Pr( �χ(x) = �κ) = ∂(�κ)

∂�z G(�z, x)
∣∣∣�z=�0

,

which, with (3), enables one to compute FY (y) whenever G(�z, y) can be provided.
As a corollary, we immediately retrieve the known expression of FY (y) in the

special case when X1, . . . , Xn are independent (see Marichal [6]).

COROLLARY 4: When X1, . . . , Xn are independent random variables with c.d.f.s Fi(x),
i ∈ [n], we have

1 − FY (y) =
∑

�κ∈{0,1}n

Ind(w(S�κ) > y)
n∏

i=1

Fi(y)
1−κi [1 − Fi(y)]κi .

PROOF: By independence, we immediately have

G(�z, y) =
n∏

i=1

[Fi(y) + zi(1 − Fi(y))]

and, hence,

∂(�κ)

∂�z G(�z, y)
∣∣∣�z=�0

=
n∏

i=1

Fi(y)
1−κi [1 − Fi(y)]κi .

�

Remark: The assumptions of Corollary 4 can be slightly relaxed while keeping a
product form for Pr( �χ(x) = �κ). In fact, assuming that the arguments are dependent
but their synchronous indicators χ1(x), . . . , χn(x) are independent for any fixed x,
we get

Pr( �χ(x) = �κ) =
n∏

i=1

Pr[χi(x) = 0]1−κi Pr[χi(x) = 1]κi .

Similarly, in the case when all Xi = Z + Yi, Z and all Yi being independent (random
shift), the p.d.f. formula is the one for the independent arguments case convoluted
with the density function of Z .

An alternative approach for computing Pr( �χ(x) = �εS) is given in the following
proposition, where F(�x) denotes the joint c.d.f. of X1, . . . , Xn.
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PROPOSITION 5: For any fixed x ∈ L, the set function S �→ Pr( �χ(x) = �εS) is the Möbius
transform of the set function S �→ G(�εS , x) and we have

G(�εS , x) = F(�e x,b
S ), S ⊆ [n].

PROOF: Let x ∈ L. By (5), we have

G(�εS , x) =
∑
T⊆S

Pr( �χ(x) = �εT ),

which establishes the first part of the result. From this latter identity, we obtain

G(�εS , x) =
∑
T⊆S

Pr(Xi � x ∀i ∈ [n] \ T and Xi > x ∀i ∈ T)

= Pr(Xi � x ∀i ∈ [n] \ S),

which proves the second part. �

The result in Proposition 5 yields an explicit form of G(�z, x) in terms of F(�e x,b
S ),

namely

G(�z, x) =
∑
S⊆[n]

F(�e x,b
S )

∏
i∈S

zi

∏
i∈[n]\S

(1 − zi).

Moreover, combining Proposition 5 and the Möbius inversion formula, it follows
immediately that

Pr( �χ(x) = �εS) =
∑
T⊆S

(−1)|S|−|T | G(�εT , x)

=
∑
T⊆S

(−1)|S|−|T | F(�e x,b
T ). (6)

Remark: We have observed that since G(�z, y) is a multilinear polynomial, it is com-
pletely determined by the 2n values G(�εS , y) = F(�e y,b

S ), S ⊆ [n].Thus, the computation
of FY (y) does not require the complete knowledge of the joint c.d.f. F(�x), but only of
the values F(�e y,b

S ) for all y ∈ L and all S ⊆ [n].

3. SELECTED SPECIAL CASES

In this final section we consider three special cases that have a natural interpretation
in terms of eligible applications:

1. The weighted lattice polynomial is a lattice polynomial (there are no lower or
upper bounds).
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2. The weighted lattice polynomial is a symmetric function (the system lifetime
is a symmetric function of the component lifetimes).

3. The synchronous indicator variables are exchangeable (at any time, the
reliability of any group depends only on the number of units in the group).

For any binary vector �κ ∈ {0, 1}n, we set |�κ| = ∑n
i=1 κi.

3.1. Lattice Polynomials

An important special case arises when the lifetime of a system is obtained as a lattice
polynomial of units’ lifetimes. Recall that lattice polynomials are defined as follows
(see [5]):

DEFINITION 6: The class of lattice polynomials from Ln to L is defined as follows:

(1) For any k ∈ [n], the projection (x1, . . . , xn) �→ xk is a lattice polynomial from
Ln to L.

(2) If p and q are lattice polynomials from Ln to L, then p ∧ q and p ∨ q are lattice
polynomials from Ln to L.

(3) Every lattice polynomial from Ln to L is constructed by finitely many
applications of rules (1) and (2).

Thus, a lattice polynomial from Ln to L is nothing else than a weighted lattice
polynomial pw : Ln → L with a set function w : 2[n] → {a, b} fulfilling w(∅) = a and
w([n]) = b (see [5]). In this case, for any y ∈ L, we obtain

Ind(w(S) > y) = Ind(pw(�e a,b
S ) > y)

= Ind(pw(�e a,b
S ) = b) Ind(b > y)

= πω(�εS) Ind(b > y), (7)

where πω : {0, 1}n → {0, 1} is the (weighted) lattice polynomial defined by the
nondecreasing set function ω : 2[n] → {0, 1} fulfilling

ω(S) = Ind(pw(�e a,b
S ) = b), S ⊆ [n].

Remark: Clearly, πω is exactly the weighted lattice polynomial πωy introduced in the
proof of Lemma 2 computed for the case of lattice polynomials. Moreover, it has the
same disjunctive normal form as pw.

Since Pr( �χ(b) = �κ) = 0 except when �κ = �0, we obtain the following corollary
(see Dukhovny [2]).
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COROLLARY 7: Under the assumptions of Theorem 3 and assuming further that pw is
a lattice polynomial, we have

1 − FY (y) =
∑

�κ∈{0,1}n

πω(�κ) Pr( �χ(y) = �κ) (8)

in the case of generally dependent argument and, in the case of independence,

1 − FY (y) =
∑

�κ∈{0,1}n

πω(�κ)

n∏
i=1

Fi(y)
1−κi [1 − Fi(y)]κi .

3.2. Symmetric Weighted Lattice Polynomials

Considering a system with collective upper or lower bounds on subset lifetimes, an
important special case arises when the corresponding weighted lattice polynomial is
a symmetric function (i.e., invariant under permutation of its variables).

Prominent instances of symmetric weighted lattice polynomials are given by the
so-called order statistic functions, whose definition is recalled next; see, for instance,
Ovchinnikov [7].

DEFINITION 8: For any k ∈ [n], the kth order statistic function is the lattice polynomial
fk : Ln → L defined as

fk(�x) = x(k) =
∨

S⊆[n]
|S|=n−k+1

∧
i∈S

xi.

(For future needs, we also formally define f0 ≡ a and fn+1 ≡ b.)

Remark: A system whose underlying weighted lattice polynomial is the order statistic
function fn−k+1 is called a k-out-of-n system; see, for instance, Rausand and Høyland
[8, §3.10].

The following proposition shows that a weighted lattice polynomial pw : Ln → L
is symmetric if and only if its underlying set function w : 2[n] → {a, b}, as defined in
(2), is cardinality based; that is, such that

|S| = |S′| ⇒ w(S) = w(S′).

Equivalently, there exists a nondecreasing function m : {0, 1, . . . , n} → L such that

w(S) = m(|S|), S ⊆ [n].
The proposition also provides an expression of an arbitrary symmetric weighted

lattice polynomial as a “convolution” of L-valued functions on [n]: m(s) and l(s) =
fs(�x).
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PROPOSITION 9: Consider a weighted lattice polynomial pw : Ln → L. Then the
following assertions are equivalent:

(i) The set function w is cardinality based.

(ii) There exists a nondecreasing function m : {0, 1, . . . , n} → L such that

pw(�x) =
n∨

s=0

[
m(s) ∧ fn−s+1(�x)

]
.

(iii) pw is symmetric.

PROOF: (i) ⇒ (ii) By (1), we have

pw(�x) =
∨

S⊆[n]

[
w(S) ∧

∧
i∈S

xi

]
=

n∨
s=0

m(s) ∧
[ ∨

S⊆[n]
|S|=s

∧
i∈S

xi

]
,

which proves the stated formula.

(ii) ⇒ (iii) Trivial.

(iii) ⇒ (i) Follows immediately from (2). �

Remark: It is noteworthy that Definition 8 and Proposition 9 can also be stated in the
more general case where L is an arbitrary bounded distributive lattice.

For symmetric weighted lattice polynomials, Theorem 3 takes the following form.
For any y ∈ L, set s(y) = min{s, n + 1 : m(s) > y}.

THEOREM 10: Under the assumptions of Theorem 3 and assuming further that the set
function w is cardinality based, we have

1 − FY (y) =
n∑

s=s(y)

Pr(| �χ(y)| = s). (9)

PROOF: When w is cardinality based, the sum in (3) can be rewritten as

1 − FY (y) =
n∑

s=0

Ind(m(s) > y)
∑

�κ∈{0,1}n

|�κ|=s

Pr( �χ(y) = �κ)

=
n∑

s=0

Ind(m(s) > y) Pr(| �χ(y)| = s). (10)

When m(n) � y, we have s(y) = n + 1, and (10) reduces to zero. �
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Obviously, (9) can also be presented as

FY (y) =
s(y)−1∑

s=0

Pr(| �χ(y)| = s). (11)

Both (9) and (11) require the knowledge of Pr(| �χ(y)| = s), which can be
calculated through the following formula.

PROPOSITION 11: For any s ∈ {0, 1, . . . , n}, we have

Pr(| �χ(y)| = s) = 1

s!
ds

dts
G(t�1, y)

∣∣∣
t=0

.

PROOF: From (5) it follows that

G(t�1, y) =
∑

�κ∈{0,1}n

Pr( �χ(y) = �κ)t|�κ|

=
n∑

s=0

[ ∑
�κ∈{0,1}n

|�κ|=s

Pr( �χ(y) = �κ)

]
ts

=
n∑

s=0

Pr(| �χ(y)| = s)ts,

from which the result follows. �

In terms of the joint c.d.f. of X1, . . . , Xn, we also have the following formula.

PROPOSITION 12: For any s ∈ {0, 1, . . . , n}, we have

Pr(| �χ(y)| = s) =
∑

T⊆[n]
|T |�s

(−1)s−|T |
(

n − |T |
s − |T |

)
F(�e y,b

T ). (12)

PROOF: From (6) it follows that

Pr(| �χ(y)| = s) =
∑
S⊆[n]
|S|=s

Pr( �χ(y) = �εS)

=
∑
S⊆[n]
|S|=s

∑
T⊆S

(−1)|S|−|T |F(�e y,b
T )

=
∑

T⊆[n]
|T |�s

F(�e y,b
T )

∑
S⊇T
|S|=s

(−1)|S|−|T |,

where the inner sum reduces to (−1)s−|T |(n−|T |
s−|T |

)
. �
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We now derive an expression of Pr(| �χ(y)| = s) in terms of the c.d.f.s of the order
statistic functions.

Consider the random variable X(k) = fk(X1, . . . , Xn) and its c.d.f. F(k)(y) =
FX(k)

(y). It is easy to see that for the kth order statistic function fk , we have s(y) =
n − k + 1 if y < b and s(y) = n + 1 if y = b. Therefore, from (11) it follows that

F(k)(y) =
n−k∑
s=0

Pr(| �χ(y)| = s) = Pr(| �χ(y)| � n − k), (13)

from which we immediately derive the following formula.3

PROPOSITION 13: For any s ∈ {0, 1, . . . , n}, we have

Pr(| �χ(y)| = s) = F(n−s)(y) − F(n−s+1)(y). (14)

Incidentally, by combining (12) and (13), we get an explicit form of F(k)(y) in
terms of F(�x); see also David and Nagaraja [1, §5.3].

COROLLARY 14: We have

F(k)(y) =
∑
S⊆[n]
|S|�k

(−1)|S|−k

(|S| − 1

k − 1

)
F(�e y,b

[n]\S).

PROOF: Combining (12) and (13), we obtain

F(k)(y) =
n−k∑
s=0

s∑
t=0

∑
T⊆[n]
|T |=t

(−1)s−t

(
n − t

s − t

)
F(�e y,b

T )

=
n−k∑
t=0

∑
T⊆[n]
|T |=t

F(�e y,b
T )

n−k∑
s=t

(−1)s−t

(
n − t

s − t

)
,

where the inner sum reduces to the following classical binomial identity:

n−k−t∑
s=0

(−1)s

(
n − t

s

)
= (−1)n−k−t

(
n − t − 1

k − 1

)
.

Therefore,

F(k)(y) =
∑

T⊆[n]
|T |�n−k

(−1)n−k−|T |
(

n − |T | − 1

k − 1

)
F(�e y,b

T ),

and the result follows from the substitution S = [n] \ T . �
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3.3. Cardinality Symmetry of the Indicator Variables

A case is now considered where the joint c.d.f. of the arguments X1, . . . , Xn is such
that for any x ∈ L, Pr( �χ(x) = �κ) depends only on |�κ|; that is,

|�κ| = |�κ ′| ⇒ Pr( �χ(x) = �κ) = Pr( �χ(x) = �κ ′).

Equivalently, for any x ∈ L, there exists a function gx : {0, 1, . . . , n} → [0, 1] such that

Pr( �χ(x) = �κ) = gx(|�κ|), �κ ∈ {0, 1}n. (15)

In terms of the analogy with system reliability, assumption (15) means that the prob-
ability that a group of units survives beyond x (i.e., the reliability of this group at
time x) depends only on the number of units in the group, which is why we call
assumption (15) “cardinality symmetry.” In view of (6), this assumption is satisfied,
for instance, when X1, . . . , Xn are exchangeable (i.e., when their joint c.d.f. is invari-
ant under any permutation of indexes). However, (15) itself suggests only that the
synchronous indicator variables be exchangeable.

In particular, for independent and identically distributed (i.i.d.) arguments with a
common c.d.f. F(x), we have (see Corollary 4)

Pr( �χ(x) = �κ) = F(x)n−|�κ|[1 − F(x)]|�κ|.

More generally, one can easily see that when the arguments X1, . . . , Xn are obtained
from some i.i.d. random variables Y1, . . . , Yn by a transformation

Xi = f (Yi, �Z), i ∈ [n],
where �Z is a vector of some (random) parameters, assumption (15) still holds true.

COROLLARY 15: Under the assumptions of Theorem 3 and assuming further that the
joint c.d.f. possesses property (15), we have

1 − FY (y) =
n∑

s=0

gy(s)
∑
S⊆[n]
|S|=s

Ind(w(S) > y). (16)

In particular, in the case of lattice polynomials,

1 − FY (y) =
n∑

s=0

gy(s)
∑

�κ∈{0,1}n

|�κ|=s

πω(�κ).

By Proposition 5, we also have

F(�e x,b
S ) =

|S|∑
t=0

(|S|
t

)
gx(t),

which shows that the set function S �→ F(�e x,b
S ) is cardinality based.
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For order statistic functions, we have4

F(k)(y) =
n−k∑
s=0

(
n

s

)
gy(s). (17)

Indeed, based on (13), we have

F(k)(y) = Pr(| �χ(y)| � n − k) =
∑

�κ∈{0,1}n

|�κ|�n−k

gy(|�κ|),

which proves (17).
It turns out that cardinality symmetry is necessary and sufficient for the special

relation between the c.d.f.s of Y and order statistic functions provided in Marichal
[4, Thm. 8] for the case of a lattice polynomial of i.i.d. arguments. Beyond its the-
oretical value, the relation is a simple linear equation and can be used to facilitate
computations.

THEOREM 16: Under the assumptions of Theorem 3, the following relations hold true
for an arbitrary weighted lattice polynomial if and only if the arguments X1, . . . , Xn

possess cardinality symmetry:

1 − FY (y) =
n∑

s=0

ωs [F(n−s)(y) − F(n−s+1)(y)], (18)

ωs = 1(n
s

) ∑
S⊆[n]
|S|=s

Ind(w(S) > y), s = 0, . . . , n. (19)

PROOF:

(⇐) Assuming (15), on the strength of (17),

(
n

s

)
gy(s) = F(n−s)(y) − F(n−s+1)(y), s = 0, . . . , n. (20)

Now, using (20) in (16), we obtain (18) and (19).

(⇒)Assume that (18) and (19) are true for any weighted lattice polynomial and prove
that (15) must hold true.
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Consider the particular case of a lattice polynomial pw. Substituting (7) and
(14) in (18) and (19), we obtain

1 − FY (y) =
n∑

s=0

1(n
s

) ∑
�κ∈{0,1}n

|�κ|=s

πω(�κ)
∑

�κ∈{0,1}n

|�κ|=s

Pr( �χ(y) = �κ). (21)

On the other hand, by (8) we have

1 − FY (y) =
n∑

s=0

∑
�κ∈{0,1}n

|�κ|=s

πω(�κ) Pr( �χ(y) = �κ). (22)

Therefore, the right-hand sides of (21) and (22) coincide for any lattice poly-
nomial pw. In particular, they coincide for the lattice polynomial pw ∧ fk .
Since

(πω ∧ fk)(�κ) = 1 ⇔ πω(�κ) = 1 and |�κ| � n − k + 1,

it follows that

n∑
s=n−κ+1

1(n
s

) ∑
�κ∈{0,1}n

|�κ|=s

πω(�κ)
∑

�κ∈{0,1}n

|�κ|=s

Pr( �χ(y) = �κ)

=
n∑

s=n−k+1

∑
�κ∈{0,1}n

|�κ|=s

πω(�κ) Pr( �χ(y) = �κ), k = 0, . . . , n.

It implies that for any lattice polynomial pw, it must hold true that

1(n
s

) ∑
�κ∈{0,1}n

|�κ|=s

πω(�κ)
∑

�κ∈{0,1}n

|�κ|=s

Pr( �χ(y) = �κ)

=
∑

�κ∈{0,1}n

|�κ|=s

πω(�κ) Pr( �χ(y) = �κ), s = 0, . . . , n. (23)

Fix s ∈ {0, . . . , n} and K ⊆ [n] such that |K| = s. Applying (23) to the lattice
polynomial πω(�κ) = ∧i∈Kκi, it yields that

1(n
s

) ∑
�κ∈{0,1}n

|�κ|=s

Pr( �χ(y) = �κ) = Pr( �χ(y) = �κ ′)

for any �κ ′ ∈ {0, 1}n such that |�κ ′| = s, which completes the proof. �
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Notes

1. In the rest of the article, weighted lattice polynomial functions will be called weighted lattice
polynomials.

2. Note that since G(�z, x) is a multilinear polynomial, its derivatives can be also obtained by using
discrete derivatives (see Grabisch, Marichal, and Roubens [3, §5]).

3. In (13) we formally define F(0)(y) ≡ 1 and F(n+1)(y) ≡ 0.
4. The total probability condition allows to the formally extend (17) to the case k = 0.
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