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ABSTRACT

Federated Learning (FL) is a powerful distributed computing paradigm, developed for
scenarios where data originates in distribution and cannot be shared due to privacy,
confidentiality, or hardware constraints. Training a machine learning model in such
circumstances was previously limited to training a separate model on each data silo,
without any knowledge of the data available elsewhere. This approach generally leads to
models of lower quality than centralised baselines, trained on a full centralised dataset. By
enabling collaborative learning without sharing raw data, Federated Learning promises to
unlock the more general insights found in larger datasets for the distributed setting. Indeed,
this strategy has already been widely adopted in the industry, including for deployment on
mobile phones and in the finance and health sectors, typically to overcome privacy and
confidentiality constraints. However, theoretical challenges remain, often connected to the
failure of existing federated algorithms to account for the true complexity of real-world
problems. As the capability of machine learning algorithms and hardware grows, so too
does the scope for distributed use cases, requiring the adaptation of the federated paradigm
to such emerging challenges. Multi-objective modelling is a well-recognised approach to
modelling the complexity of the real world with its frequently conflicting requirements.
Despite its broad applicability, this direction of research has received very little attention
to date.

This thesis explores the opportunities and challenges of integrating multi-objective
methods with Federated Learning, with a focus on facilitating multi-objective learning in
federation. In a first contribution, we provide a comprehensive survey of the literature
combining multi-objective and Federated Learning techniques and propose a first systematic
taxonomy of the field. We categorise existing works into this taxonomy and identify open
areas of research, noting that federated multi-objective learning (FMOL) in particular
remains underexplored.

Following this insight, we propose a first novel framework and an algorithm, respectively,
for two distinct FMOL settings. In the first setting, previously unaddressed in the literature,
distributed parties collaborate under the control of a server to find a full spectrum of trade-
off solutions. Our proposed framework, MOFL/D, formalises a general approach based on
decomposition, a well-established strategy from the field of multi-objective optimisation.
In the second setting, participants assign different pre-defined importance preferences to
the objectives of the problem. Each party is interested in finding a single solution that
matches its own preferences, leading to the challenge of aligning models with conflicting
preferences. We propose an algorithm, FedPref, that finds a personalised model for each
participant, modulating collaboration during the learning process based on similarity.

Next, we consider how to validate FMOL algorithms appropriately. We argue that
the currently predominant benchmarking problems fail to represent the true difficulty of
multi-objective learning, lacking inherent conflict between objectives. Consequently, we
propose a new class of accessible, flexible, and scalable benchmarking problems, derived
from the field of fair machine learning (Fair ML), that are known to contain such conflicts.
We demonstrate the instantiation of a range of these Fair ML benchmarks and show their
use on state-of-the-art algorithms.



In a final chapter, we look towards the future, examining the potential of Federated
Learning as a tool in the space domain. We identify a challenging potential use case,
envisioning the use of FL algorithms to establish ad-hoc collaboration between satellites
performing orbital edge computing. We discuss the state of the art in the field of Federated
Learning as relating to this use case, and point out gaps where further research is required.
Aside from algorithmic challenges, one crucial gap is a lack of existing standards to facilitate
the exchange of machine learning models in spacecraft communications. We consider a
potential pathway towards the rapid establishment of such standards.

Key words: Federated Learning, multi-objective learning
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1.1 | MOTIVATION

Machine learning methods can find and encode patterns in the world that are difficult to
recognise or describe for human beings. In recent years, research in the field has progressed
along with improved hardware capabilities and increased compute resources. This synergy
has led to a series of impressive leaps forward — most prominently in the development of
large language models, — in turn driving a rapid acceleration in the deployment of Al tools
across a growing range of use cases and domains.

However, standard ML methods have begun to hit conceptual barriers in certain use cases:
most ML algorithms require large amounts of data to thrive and benefit from inputs that
represent the full diversity of the problem space. However, in many real-world use cases
potential training data is owned by different parties that are unwilling or unable to share
their data. Such restrictions may arise in many different domains, for example:

e When training a model to aid medical personnel in the evaluation of diagnostic imaging
data, multiple hospitals may wish to collaborate to build a more representative sample
base. Patient data is protected by privacy legislation in many locales, so hospitals
are typically unable to share such data with third parties.

e Mobile phone providers may wish to train models to enhance aspects of the user
experience, e.g. by continuously improving predictive keyboard functionalities. Indi-
vidual user data contains sensitive personal information, so should not be collected
systematically outside of the user’s personal device.

e Multiple financial stakeholders may wish to collaborate to build a model that e.g. pre-
dicts the risk of potential customers defaulting on a credit loan. Customer data is
confidential and should not be share across different entities.

e Multiple telecommunications providers may wish to train a lightweight model to
better allocate satellite resources based on expected demand. In this case, resource
limitations form the barrier to sharing training data, as the limited power available
to each satellite cannot usually support extensive additional satellite-to-ground or
satellite-to-satellite transmissions.
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These examples illustrate how a range of different constraints, including privacy, confi-
dentiality, and technological restrictions, may limit how a machine learning model can
be trained using conventional centralised methods. The Federated Learning paradigm
offers a way of overcoming these challenges, by facilitating training in such settings in a
decentralised manner that requires no sharing of raw data. Instead, separate models are
trained locally on each available dataset, and only the resulting model parameters are
exchanged. Though originally designed to mitigate privacy concerns, the method has also
shown great success in other use cases, including communication-restricted settings such
as drone networks [Bri20] or computationally costly settings such as the tuning of large
language models [Che23].

However, as Federated Learning is adopted in increasingly diverse applications and
real-world use cases, new challenges are emerging, many linked to the need to balance
different conflicting requirements: (i) Heterogeneity between participants caused by data
imbalances or differing hardware capabilities can lead to divergent local models that cannot
easily be aggregated without loss of model utility [Kar19]. Designing mitigation strategies
for this raises the problem of fairness — the choice between sacrificing the performance
of some individual clients or that of the global model. (ii) The cost of FL in terms of
communication and computation resources scales with the size of the model and the
number of update messages; yet reducing either may come at the cost of decreasing model
utility [Zhu2la]. (iii) Strategies for mitigating privacy leakage, the problem of exposing
confidential information to potential attackers through client updates, may degrade other
aspects of the federated system in turn. For example, adding noise to client updates may
obscure sensitive information effectively, but reduce model performance as well [Gen24].

All these scenarios can be modelled as multi-objective problems, with each problem-
specific performance metric represented as a separate objective. Under this multi-objective
perspective, problems are solved with explicit consideration for several characteristics,
potentially conflicting, and solutions can represent different optimal trade-offs between
all objectives. As such, the approach can assist users in making informed decisions about
complex FL problems by presenting explicit choices where a single-objective approach
would yield none. Indeed, these general advantages of multi-objective methods have been
recognised across disciplines, and the field of multi-objective optimisation (MOO) has been
thriving for decades [Coe25]. This success opens another interesting avenue of research
in connection with federated learning: deploying FL methods to facilitate multi-objective
learning in distribution, where problems would otherwise be difficult to solve for participants
that cannot share local training data. This has direct applications to many naturally
federated settings: in medical use cases, multi-objective modelling could permit balancing
the likelihood of correct disease identification with the risk of false positives. When training
personalised behaviour on mobile devices, it could give explicit control over the trade-off
between privacy and model performance, and financial prediction tools could be trained to
balance potential risk and reward. Finally, communication satellites predicting expected
traffic might be able to trade off predictive accuracy and resource risk.

Clearly, federated multi-objective methods could make a powerful impact in practice,
giving increased control over and understanding of frequently occurring trade-offs between
different objectives to users, as centralised multi-objective methods have done before.
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1.2 | RESEARCH QUESTIONS

Though research in the field of Federated Learning is advancing rapidly, and multi-objective
optimisation contains a well-established body of literature, the overlap of both fields has been
explored little to date. Nevertheless, the potential of multi-objective techniques to enhance
FL methods has been recognised in principle, and demonstrated in several instances [Hu22a;
Meh22; Zhu22]. The multi-objective modelling approach also retains its well-recognised
advantages when applied to general problems in the distributed setting. However, this
approach raises unique challenges when combined with Federated Learning [Har25b]. These
observations lead to our first research question, concerned with systematically exploring
the patterns and challenges in combining multi-objective and federated learning techniques.

The second research question targets the gap in federated learning methods that can be
used to solve arbitrary multi-objective learning problems. As the following chapters will
show, our study of the first research question reveals a number of distinct scenarios for
federating multi-objective problems, arising from different assumptions about the roles of
clients and server. Several of these scenarios have clear corresponding use cases in the real
world, but have never been tackled before in the literature.

The third research question concerns the validation of federated algorithms designed
to solve multi-objective problems. Representative benchmarks are crucial to accurately
evaluate the performance of proposed algorithms and place them in the context of previous
work in the field. However, the question of benchmark design for federated multi-objective
learning algorithms has not formally been addressed in the literature. Existing work relies
on a single class of problems, transferred from related research on centralised algorithms,
for benchmarking.

In the final research question of this thesis, we take a broader view of the potential
trajectory of our research. Initial application of the Federated Learning paradigm was
largely focused on privacy-related use cases. With recent progress in the development of
smaller and more powerful hardware components, a new application front for FL is opening
up, focused on distributed devices where data sharing is restricted by resource constraints.
One promising use case of this type comes from the aerospace domain. Recent trends in the
design of space missions are moving towards small multi-satellite mission configurations,
with the long-term goal of developing full autonomy. Federated Learning could provide a
resource-efficient solution for on-board machine learning, enabling continuous improvement
for satellites based on real-world data. Our research is focused on examining this use case,
identifying relevant gaps in the current state of the art and discussing potential solution
approaches, including with respect to standardisation efforts.

> Q1 What are the commonalities, differences and challenges in combining multi-
objective methods with federated learning?

> Q2 How can multi-objective learning problems be solved in federation?

> Q3 How can federated multi-objective learning algorithms be validated in a general
way?

> Q4 What other challenges currently hinder the application of FL. methods in complex
real-world use cases, such as the space domain?
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1.3 | THESIS STRUCTURE AND CONTRIBUTIONS

This thesis is structured as follows: In Chapter 2, we address Question 1 by exploring
the existing work in the literature that integrates Federated Learning and multi-objective
techniques. We offer a first clear and systematic overview of the different ways the two fields
can be integrated. We propose a first taxonomy on the use of multi-objective methods in
connection with Federated Learning, providing a targeted survey of the state-of-the-art and
proposing unambiguous labels to categorise contributions. Given the developing nature of
this field, our taxonomy is designed to provide a solid basis for further research, capturing
existing works while identifying gaps and anticipating future additions. Finally, we outline
open challenges and possible directions for further research.

Question 2 is addressed in Chapters 3 and 4. Chapter 3 considers a scenario — not
previously addressed in the literature — where fully cooperative clients wish to solve a
multi-objective problem under the guidance and control of a server. We propose a first
general framework for Federated Multi-objective Learning, based on decomposition, to
compute a Pareto front of solutions across a federated system. This framework addresses
the a posteriori type of multi-objective problem, where user preferences are not known
during the optimisation process. We present an instantiation of the framework and validate
it through experiments on a set of multi-objective benchmarking problems that are extended
from well-known single-objective benchmarks.

In Chapter 4, we tackle a different scenario, assuming now that each client holds an
individual set of personal preferences over the objectives that is unknown to the server.
We identify the novel challenge of preference heterogeneity arising from such a setting, and
propose a first Personalised Federated Learning algorithm to solve it. This algorithm, known

Q1: What are the commonalities, differences and challenges in
combining multi-objective methods with federated learning?

Chapter 2: State of the art and taxonomy

Q2: How can multi-objective learning problems be solved
in federation?

Chapter 3: MOFL/D: A framework for federated
multi-objective learning

Chapter 4: FedPref: personalised federated
multi-objective learning under preference heterogeneity

Q3: How can federated multi-objective learning algorithms
be validated in a general way?

Chapter 5: A new class of benchmarks for federated
multi-objective learning

Q4: What other challenges hinder the application of FL methods
in complex real-world use cases, such as the space domain?

Chapter 6: Towards real-world applications in the
aerospace domain

Figure 1.1: The structure of the main body of this thesis.
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as FedPref, is based on similarity-based clustering and weighted aggregation. We validate
FedPref on a comprehensive set of experiments across different preference distributions,
showing that it is robust and effective in a variety of use cases. Finally, we introduce
the use of multi-objective metrics to evaluate the performance of a FL algorithm under
preference heterogeneity at system level.

Chapter 5 continues on the theme of evaluation by addressing Question 3. The evaluation
of novel methods requires suitable benchmarks that are representative of the problem
setting. In Federated Learning, benchmarks are commonly transferred from centralised
settings without modification. In this chapter, we show that this practice is not sufficient
for FMOL: in one natural setting, where federated clients have heterogeneous preferences
over multiple objectives, the most commonly used class of benchmarks can be solved easily
even by baseline algorithms, in apparent contrast to the difficulty of the problem in the
non-federated setting. Following this insight, we introduce a different, more challenging
class of benchmarking problems, derived from the field of fair machine learning (Fair ML).
These benchmarks are adaptable, easy to implement, permit diverse model architectures
and different (numbers of) objectives, include a range of different well-established datasets,
and do not require special adaptation of the federated algorithm. We run state-of-the-art
algorithms on several instances of our proposed benchmarks, showing their versatility and
applicability to a range of common Federated Multi-Objective Learning scenarios.

Finally, we address Question 4 in Chapter 6, exploring the potential application of
Federated Learning algorithms to multi-satellite missions consisting of small, resource-
limited spacecraft. Federated Learning is a promising distributed computing approach
in this context, allowing multiple satellites to collaborate efficiently in training on-board
machine learning models. Though recent works on the use of Federated Learning in
orbital edge computing have focused largely on homogeneous satellite constellations,
Federated Learning could also be employed to allow heterogeneous satellites to form ad-hoc
collaborations, e.g. in the case of communications satellites operated by different providers.
Such an application presents additional challenges to the Federated Learning paradigm,
arising largely from the heterogeneity of such a system. We offer a systematic review of
these challenges in the context of the cross-provider use case, giving a brief overview of the
state-of-the-art for each, and providing an entry point for deeper exploration of each issue.
In addition, we discuss how standardisation could pave the way for the deployment of such
novel approaches. In particular, we examine the challenges of communicating such models
from ground to space and between spacecraft in a standardized, unambiguous way. We
consider how existing communication protocols and transfer formats could be employed to
achieve this, and suggest where modifications may be necessary.
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Recent works in the literature have begun to combine federated learning (FL) with
multi-objective (MOO) methods to address a wide range of challenges. However, the
broader context of the intersection between MOO and FL has not yet been discussed. This
chapter aims to provide a first such systematic overview, identifying general challenges and
parallels, and formulating a novel taxonomy to classify existing work while highlighting
open directions of research.

Many FL strategies already use (linear) combinations of multiple functions as objectives,
but do not consider the problem from a multi-objective angle. The first works to explicitly
introduce multi-objective methods to Federated Learning aimed to improve federated aggre-
gation and introduce fairness between clients [Hu22b], followed by approaches introducing
other, system-wide aggregation parameters [Meh22]. Another early adoption of MOO
was in hyperparameter optimisation for FL [Zhu20a]. More recently, research has also
begun into supporting the inverse scenario: developing strategies to federate the solving of
multi-objective problems by distributed clients, e.g. [Yan23b|[Har23a]. The contributions
of this chapter can be summarised as follows:
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e We propose a novel taxonomy of algorithms combining MOO methods and FL,
offering a unified terminology for works at the intersection of two previously largely
separate fields with separate naming conventions.

e We present a thorough review of the state of the art, categorising and contrasting
existing works.

e We highlight open questions and offer perspectives on open avenues for future research.

The rest of this chapter is organised as follows: Section 2.1 reviews important notions from
the fields of FL. and MOO. Section 2.2 introduces our taxonomy, discussing in detail each
category and relevant works from the literature.

2.1 | BACKGROUND

In this section, we briefly introduce fundamental concepts from the fields of federated
learning and multi-objective optimisation to provide the necessary background for the
remainder of the survey.

2.1.1 | FEDERATED LEARNING

The Federated Learning [McM17b] paradigm was originally designed to solve arbitrary
(neural network-based) machine learning problems in a difficult distributed setting. This
setting is characterised by (i) the available data originating in distribution, with no control
over the composition of the resulting datasets, and (ii) a restriction on transmitting private
client information, including raw training data, between participants. FL overcomes the
constraint introduced by (ii) by training separate local models in distribution on each
dataset holder, or client, as originating from (i), and aggregating only the resulting models
across clients — see Figure 2.1.

A more detailed general framework of the Federated Learning strategy is presented in
Alg. 1, with colours highlighting the correspondence of code segments to different levels of
the federated system (to be presented in detail in Section 2.1.3). First, the federated system
is initialised with the identity of the server, a list of participating clients, and the definition
of the underlying learning problem to be solved. Additional hyperparameters are passed
depending on the specific algorithm, defining e.g. the architecture of the neural network to
be trained, a client sampling rate, gradient thresholds, or any other parameter required by
the algorithm. Then, the local learning process begins. During each federated training
round, a set of clients is selected for participation. These clients each carry out local
training and return the resulting models to the server. These local models are aggregated
periodically by the server into a single global model incorporating the locally learned
information. The global model is then passed back to the local clients to continue the next
local training round. Expressed formally, the FL process aims to find a global model
that generalises to all available data, i.e.

minimisey f (0, D), (2.1)

where D := UZL D,, with D, the dataset of the i-th client. Imbalances between client
datasets, as can be caused by characteristic (i), represent a significant challenge to the
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Client 1 Client 2 Client n

Figure 2.1: The FL paradigm. During each round, clients perform local model training (1),
then transmit their local models to the server (2) for aggregation into a single global model
(3). The global model is returned to the clients (4) to begin the next training round.

model aggregation step of FL algorithms. Indeed, any type of heterogeneity between clients,
e.g. in terms of hardware capability or feature distribution, may have an adverse impact
on the convergence of the federated model. Mitigating the impact of various types of client
heterogeneity remains an active field of study. Other major research topics in FL include
the reduction of resource consumption — mainly computing and communication cost — and
how to protect against malicious actors. For a comprehensive overview of the state of the
art in the field, we refer to [Kai2la].

Algorithm 1 The general Federated Learning framework.

Input: Server, list of clients, local learning problem.
Parameter: Optional list of hyperparameters.
Output: Global model 6.

1: Initialise system parameters.

2: while stopping condition not satisfied do

3% for all participating clients do

4 while local stopping condition not satisfied do
5 Perform training on local data.

6: end while

T Transmit local model to server.

8: end for

9: Aggregate local models to obtain new global model.
10: Return global model to clients.

11: end while
12: return global model.
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2.1.2 | MULTI-OBJECTIVE OPTIMISATION

Multi-objective optimisation is concerned with solving problems in the presence of more
than one objective. As an example, consider the problem of selecting hyperparameters
for a neural network to simultaneously maximise model utility and minimise the cost of
training. Instead of a single objective f(z), such a multi-objective problem is expressed
as a vector of n objectives f(z) = (f, (), ..., f,(z))T. Note that individual objectives
can conflict, i.e. in general no single solution can optimise all objectives simultaneously.
Instead, MOO methods typically focus on identifying solutions that represent an optimal
trade-off between objectives, where objective values are balanced so that no single objective
can be improved without sacrificing the performance of another. Such trade-off solutions
are known as Pareto-optimal. Pareto optimality can be difficult to determine in practice,
where the optimal values achievable for each objective are unknown, so the weaker notion
of Pareto-dominance is commonly used instead. A solution z is said to Pareto-dominate
another solution y iff it outperforms y in at least one objective while matching or improving
the value of all others. Formally,

z-py < Ffi(x) > f;(y) AVifi(x) = fi(y) (2.2)

for a maximisation problem. Pareto-optimal solutions are not dominated by any others.
The set of such solutions is known as the Pareto front (see Fig. 2.2). Most MOO algorithms
are either designed to find such a Pareto front, or a single solution based on predefined
requirements such as user preferences. A wide range of algorithmic approaches exists for
both variants, tailored to different problem characteristics. In this chapter, we will discuss
relevant MOO strategies as they appear; for a comprehensive overview we refer to [Tal09].
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Figure 2.2: Pareto front and Pareto dominance. Shaded markers represent solutions on the
Pareto front of a bi-objective maximisation problem; x is Pareto-dominated by p; and p,.

2.1.3 | INTEGRATING MULTI-OBJECTIVE METHODS AND FEDERATED
LEARNING

We note that multi-objective methods can be integrated with FL at different levels of
the federated system, each with distinct implications for the algorithmic components
involved. Based on this insight, we propose a three-level view of the federated system
— see Fig. 2.3 and corresponding colours in Alg. 1. Adding multi-objective methods on



12 2 State of the art and taxonomy

top of a federated algorithm necessitates no modification of the underlying federation or
local learning process; an example for such a method is offline hyperparameter tuning
with respect to multiple requirements. On the other hand, introducing multi-objectivity
at the federated level, e.g. for model aggregation on the server, forces adaptation at the
top level as well: any hyperparameter algorithm running on the federated system must
accommodate new parameters introduced by multi-objective methods. Finally, adding
a multi-objective perspective to the lowest level in Fig. 2.3 — the client level — requires
modifications across the entire system: (i) The local learning algorithm on each client
must handle multi-objective problems; (ii) the federated algorithm must aggregate client
submissions, which may include multi-objective gradients or be influenced by heterogeneous
client objectives, and (iii) any hyperparameter must be adjusted once again.

Federated
Learning
Local =0 = ]

learning o\tg):(g;o °<g_>_<g7°'

| O
E 8 8.

Figure 2.3: Relation of major categories of the taxonomy. Multi-objective methods can be
integrated at different levels of the federated system: in the local learning process of clients, at
system-level in the federated algorithm, or outside of the federated system.

2.2 | TAXONOMY: MULTI-OBJECTIVE METHODS IN FL

In this section, we introduce our proposed taxonomy, discussing each category and the
related existing work. The full taxonomy is shown in Fig. 2.4. A first fundamental
distinction is the purpose that multi-objective and federated methods each serve in an
algorithm. We can identify two main broad categories: one where MOO methods are
applied to enhance the functionality of a federated system, and the inverse, where FL is used
in support of solving a general multi-objective problem in distribution. We refer to these
categories as Multi-Objective Federated Learning (MOFL) and Federated Multi-Objective
Learning (FMOL), respectively, to indicate the different chaining of strategies. MOFL
covers the majority of existing research, and is notably precisely equivalent to the top
two layers as shown in Fig. 2.3 and introduced in Section 2.1.3. Works in this section
can accordingly be divided further into top-level and federation-level methods, and will
be discussed as such in the following sections. FMOL, in contrast, corresponds to the
lowest layer in Fig. 2.3, and extends the “standard” FL scenario, where Federated Learning
is used to solve an arbitrary learning problem in distribution, to include multi-objective
learning problems.
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Figure 2.4: Proposed taxonomy. Colours denote the level of the federated system where MO
methods are integrated (see Fig. 2.3 and Sec. 2.1.3). Some categories arise from the unique
properties of the FL setting; these are marked by a shaded corner. Categories in dashed boxes
are currently unexplored in the literature.

2.2.1 |  MULTI-OBJECTIVE FEDERATED LEARNING AT TOP LEVEL

Methods at the top level of a federated system, as defined in Fig. 2.3, are decoupled from
the federated learning and aggregation process and can treat the federated algorithm as
a black-box system. As such, this class of algorithms is arguably the least specific to
the FL context, since modifications at this level require no particular adaptation to the
federated setting. Current work can largely be divided into two major applications: multi-
objective neural architecture search (MO-NAS), focused on optimising the architecture
of a neural network with respect to multiple objectives, and more general multi-objective
hyperparameter tuning, where other hyperparameters of the federated system are tuned.
Both types typically employ population-based multi-objective strategies, known to offer
effective search space exploration.

2.2.1.1 |  OFFLINE HYPERPARAMETER TUNING

Multi-objective hyperparameter tuning can find algorithm parameters for additional re-
quirements beyond the utility of the global model. Depending on the use case, FL systems
may face challenges such as privacy restrictions, resource limitations, or malicious attacks.
This approach allows users to explicitly model such requirements and make informed
choices about the trade-offs inherent to different solutions.

[Kan24b] assert that optimising hyperparameters solely for model performance may expose
the federation to a risk of data leakage. The proposed mitigation approach optimises the
three objectives of model performance, training cost and privacy leakage simultaneously.
This algorithm, derived from NSGA-II [Deb02], a well-known population-based metaheuris-
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tic, is designed to find a Pareto front of possible configurations representing different
trade-offs between these objectives. [Mor24] also introduce a second objective in addition
to the model accuracy, based on the mean amount of data transmitted and received by
clients. This approach is designed to optimise a large number of hyperparameters and
algorithmic choices, including the number of local training steps, the number of bits used to
encode local updates, and whether clients submit gradient or weight updates. All variables
are optimised using a hybrid of NSGA-II and an estimated distribution-based algorithm
(EDA). [Gen24] formulate a similar strategy, also using NSGA-II, but considering the
four objectives of minimising global model error rate, the variance of model accuracy, the
communication cost, and a privacy budget.

2.21.2 |  OFFLINE NEURAL ARCHITECTURE SEARCH

Neural architecture search aims to optimise the structure of a neural network for given
objectives. Federated NAS can be seen as an inherently multi-objective problem [Zhu21al,
as changes to the model structure impact not only the model utility, but also other aspects
of the federated system, such as the communication and training cost. One of the first
works on multi-objective federated neural architecture search [Zhu20a] proposes an offline
federated NAS algorithm that constructs models with the two objectives of minimising
the validation error obtained by the model, and the cost of communicating the model.
Solutions are once again generated using NSGA-II. The same problem is tackled in [Cha22],
but with the use of another type of multi-objective evolutionary algorithm (MOEA) instead
of NSGA-II to improve the exploration of the multi-objective search space.

Federated split learning is a related problem, where partial blocks of the global model are
assigned to clients, with blocks of different size assigned to clients depending on the available
resources. [Yin23] propose to optimise this splitting decision, along with communication
bandwidth and computing resource allocation, as a multi-objective problem, minimising
training time and energy consumption of the system. The proposed algorithm yields a
Pareto front of solutions using a hybrid of NSGA-III and a generative adversarial network
trained to identify configurations generating Pareto-dominated solutions. Research on
offline MO-NAS algorithms for FL is arguably more advanced than other areas of MOFL,
as existing approaches can be applied to the federated setting without change. The main
challenge remains the high computational cost of these methods.

2.2.2 | MULTI-OBJECTIVE FEDERATED LEARNING AT FEDERATION-LEVEL

MOO methods can also be integrated with FL at the server-level to solve challenges
inherent to the FL paradigm — a brief overview of representative works from the literature
is presented in Table 2.1. The majority of existing works focus on one of two design aspects
of a federated system: the aggregation strategy used on the federated server, and the
selection of relevant hyperparameters for the FL algorithm. We discuss both separately,
beginning with multi-objective aggregation.

2.2.2.1 |  MULTI-OBJECTIVE AGGREGATION

The aggregation of local model updates by the server can be modelled as a MOO problem,
permitting the use of more than one criterion for computing the global model. This
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Table 2.1: Comparison of selected MOFL algorithms. Each row lists the level of the federated
system where multi-objective notions are introduced, as well as the method used to solve the
multi-objective problem.

Reference Taxonomy label System level MOO method Objectives

[Hu22b]  Clients as objectives federation-level MGDA Local model utilities

[Ju24] Clients as objectives federation-level dynamic preferences Fairness, conver-
gence

[Meh22]  Multi-criteria aggre- federation-level obj.-contribution Arbitrary system

gation scoring objs.

[Zhu22]  online MO-NAS federation-level NSGA-II Global model utility,
evaluation speed

[Kan24b] offline MO-HPO top-level NSGA-II Model utility, train-
ing cost, privacy
leakage

multi-objective version of federated aggregation can be formulated in general terms as
follows:

m2n9<f1(0>7 afn(e))7T (23)

where 6 is the global model and f; is the loss function of the i-th objective. Solving this
problem typically translates to finding optimal aggregation weights A; to compute the
global model from the local models:

miny s (F1(0), o, Fu(0)).7 with 0 = 3" A6, (2.4)

The literature on FL algorithms with multi-objective aggregation can be categorised based
on the nature of the objectives [Kan24a]. One line of work derives objectives from the
performance of individual clients; the other uses objectives that describe the federation as
a whole. This distinction is significant, as the different mathematical properties of these
variants permit the use of different multi-objective methods. The following sections discuss
both types in detail.

Clients as objectives. 'These algorithms consider the performance of individual clients and
the global model as separate objectives. In client-heterogeneous settings, this approach
can balance the interests of both the clients and the general system. This perspective
enables explicit fairness guarantees for selfish participants, ensuring that the performance
of individual clients is not sacrificed for that of the system in computing the global model.
Crucially, performance criteria in this class of MOFL problems are tied directly to the
client models and thus differentiable with respect to model parameters. As such, they can
be solved efficiently using gradient-based multi-objective algorithms such as the classical
multi-gradient descent algorithm (MGDA) [Dés12], established in the field of MOO.

The FedMGDA+ algorithm [Hu22b] leverages this insight, defining the performance of
each participating client as a separate objective. Using MGDA yields aggregation weights
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for a gradient representing a common direction of descent for all clients, thus guaranteeing
that no client suffers a reduced performance by participating in an aggregation step. An
added constraint on the divergence of aggregation weights serves as protection against false
updates by malicious participants. The FedMC+ algorithm [She25] is also designed to
reconcile individual client updates and the global model in the presence of heterogeneous
data. A secondary objective, minimising conflict between the global and local gradients,
is introduced during the aggregation step and solved by transformation into a convex
optimisation problem. [Cui21] formulate the aggregation step as a parameterised min-max
optimisation problem. Fairness constraints serve to optimise model utility for the single
worst-performing client while ensuring that (i) the utility of all clients improves, and (ii) no
client improves much less than another. The solution obtained from this formulation is
optimised further to guarantee Pareto-stationarity, a prerequisite for local optimality [Ye22].
The three methods have different implications for the ultimate balance of client models.
While both [Hu22b] and [Cui21] (in its pure form) guarantee that all clients improve during
an aggregation step, only the latter considers the magnitude of gradients in the calculation.
Thus, [Cui21] may force a greater balance between clients, to the potential detriment of
overall performance in highly heterogeneous settings. In contrast, [She25] may sacrifice an
outlier for the benefit of the system. Though undesirable to selfish clients, the latter could
offer a defence against intentionally divergent updates submitted by a malicious client.

Multi-criteria aggregation. These algorithms perform aggregation based on multiple met-
rics that describe different characteristics of the federated system, such as the accuracy
of the global model and fairness between clients. Such criteria are not generally differ-
entiable with respect to the model, and thus cannot be optimised using gradient-based
methods [Kan24a]. Solution approaches rely instead on heuristic insights or the formulation
of the aggregation step into a mathematically solvable optimisation problem.

[Meh22] propose an algorithm that can incorporate multiple arbitrary system objectives,
including fairness metrics, on the server. Aggregation is accomplished by assigning weighted
ranking scores to each client for its contribution to optimising each objective, calculated
using a validation dataset possessed by the server. These scores are used to compute
aggregation weights. In contrast, [Ju24] formulate fairness-controlled FL as a dynamic
multi-objective problem, where the optimisation problem consists of a linear combination
of client losses, with weights adjusted dynamically to balance the progress of all component
objectives. This approach yields different trade-off solutions between fairness and conver-
gence depending on the value chosen for a fairness parameter. The idea of optimising a
weighted linear combination of objectives in the federated aggregation step was proposed
before in [Li20b], generalising ideas from [Moh19]; but neither work explicitly acknowledges
a multi-objective view of the problem. Both aggregation strategies have different strengths
and weaknesses. [Meh22] offers transparent server-side evaluation of clients, including
the potential to automatically recognise low-quality or malicious clients. However, the
need for a validation dataset on the server may violate the privacy requirements of clients,
and renders the method vulnerable to data poisoning attacks. Conversely, [Ju24] offers
mathematical fairness guarantees, but little transparency in the aggregation process. In
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addition, this algorithm may be vulnerable to malicious client participation.

2222 |  ONLINE MULTI-OBJECTIVE HYPERPARAMETER OPTIMISATION

Algorithms that use MOO to optimise hyperparameters for the federated system may run
off-line or on-line. In on-line algorithms, the optimisation process is integrated into the
federated algorithm, i.e. parameters are changed during the runtime of the FL process. On-
line candidate generation is typically integrated on the federated server at the aggregation
step, with local training rounds used for evaluation. Existing works on online MO-HPO in
FL can again be divided into hyperparameter tuning and neural architecture search.

Online hyperparameter tuning. The work by [Bad24] performs on-line hyperparameter
optimisation for clients, generating and transmitting new parameters during each aggre-
gation step. These parameters, a fairness constraint regularisation parameter and the
learning rate designed to enforce fairness locally, are recomputed on the server-side by using
multi-objective Bayesian optimisation. Finally, [Ban22] propose a multi-objective on-line
device selection approach to speed up the learning process in the presence of stragglers. The
selection algorithm is designed to maximise the available computing and communication
resources on selected clients, using NSGA-II.

Online neural architecture search. NAS algorithms may be designed run on-line, modifying
during the execution of the federated algorithm the structure of the neural network to
be trained by each client. Such a strategy could significantly reduce the computational
cost of the search, at the price of complicating the training and aggregation process
by introducing dynamic parameters. The only such algorithm currently existing in the
MOFL literature dynamically optimises the accuracy and evaluation speed of federated
model training [Zhu22]. The NSGA-II algorithm is used during each aggregation step to
generate partial samples of the full model to assign to clients for training. On-line MO-NAS
presents a difficult challenge and is currently underexplored in the literature, but could
offer significant efficiency benefits.

2.2.3 | FEDERATED MULTI-OBJECTIVE LEARNING

In federated multi-objective learning, the solving of a multi-objective learning problem
(MOLP) is the ultimate goal, and FL acts as an auxiliary tool to facilitate learning in
distribution. A major challenge compared to the class of MOFL algorithms is that in this
setting, there is no control or information about the compatibility of the objectives involved
in the problem, whereas in MOFL the objectives were designed to suit the federated setting.
Note also that FL techniques have largely been developed for neural networks, so the focus
in this setting is on MO-algorithms that train such models. Compared with the application
of MO techniques to FL algorithms, the federated solving of MOLPs has received very
little attention so far. Here we aim to offer a classification of the few existing works, and
extrapolate the open challenges and problems that remain to be solved. See also Table 2.2
for a representative overview of existing works. On the most fundamental level, algorithms
in this category can be separated by the number of solutions they are designed to find: one
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Table 2.2: Comparison of selected Federated Multi-objective Learning (FMOL) algorithms.
Note that all algorithms are dedicated to handling local multi-objective learning. As noted in
Section 2.1.3, this requires modifications at several levels of the federated system.

Reference Taxonomy label Local MOO method  Global MOO method Objectives
[Yan23b] single-solution successive single- MGDA arbitrary
obj. updates

[Ask24]  single-solution linearised objectives =~ MGDA arbitrary

[Har23a] server-led linearised objectives  offline metaheuristic  arbitrary

[Sen24]  multi-task multi-task layer similarity-based par- arbitrary separable
tial aggregation tasks

[Har24] preference-driven linearised preferences similarity-based aggre- arbitrary
gation-+clustering

single solution to the MOLP, or multiple solutions representing different trade-offs between
the underlying objectives.

2.2.3.1 | METHODS FINDING A SINGLE SOLUTION

FMOL algorithms designed to find a single solution aim to find an arbitrary Pareto-
stationary solution. The advantage of such approaches is a relatively quick convergence,
e.g. by exploiting gradients to locate the nearest solution. The main disadvantage is a
lack of control over which solution out of all possible ones is found, and thus a lack of
choice for potential users. One of the earliest such works [Yan23b] once again extends the
MGDA algorithm to the federated setting, this time with respect to client objectives. Local
training sequentially updates client models with respect to each component objective. Then,
clients submit a gradient vector for aggregation to the server, where MGDA yields optimal
aggregation weights to update the global model. This algorithm is shown to converge to a
Pareto-stationary solution. A subsequent work [Ask24] points out a risk of local drift in this
approach, as well as a high communication load caused by transmitting separate gradient
updates for all objectives. The algorithm proposed to mitigate these issues is also based on
server-side MGDA, but clients reduce communication cost by transmitting a compressed
matrix of all objective gradients. Local drift is avoided via a similar modification: client
updates are computed from a linear combination of all objective gradients rather than a
series of single-objective updates. Tackling a different use case, [Kin24] discuss data-driven
MOO problems, where a federated server attempts to solve a multi-objective problem,
e.g. clustering, using only indirect information from distributed clients. In this unsupervised
setting, no gradient-based strategies are possible; the server instead utilises a MOEA to
solve the problem.

2.2.3.2 |  METHODS FINDING MULTIPLE SOLUTIONS

Federated algorithms designed to find multiple solutions have one of two goals: they either
attempt (1) to find a full Pareto front, i.e. a set of trade-off solutions, or (2) to find a
personalised model for each participant. For both variants, participants may have different
preferences over the same objective functions, or may even be solving entirely disjoint
tasks.
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Finding a Pareto front. Algorithms that aim to find a Pareto front of solutions must
explore a wide range of the search space to identify a diverse spread of trade-off solutions.
In the distributed setting, this may happen at different levels of the federated system:
server-led exploration sees the federated server managing the exploration and constructing
a Pareto front. A first framework for such a scenario has been proposed in [Har23a],
utilising a metaheuristic on the federated server to decompose the multi-objective problem
in into single-objective candidate subproblems. This approach bears similarities to some of
the top-level algorithms discussed in Section 2.2.2.2, in that each candidate is evaluated
separately by a full federated system. Unlike those approaches, however, the full system
is not strictly required for an effective evaluation. Thus, the efficiency of the evaluation
could be improved by the use of an algorithm that can federate candidates with different
objective preferences. To the best of our knowledge, such an algorithm has not yet been
proposed in the literature. Future contributions may be able to leverage client-specific
solution algorithms in combination with server-led Pareto exploration strategies.

In contrast, client-led exploration would have each client attempting to find a Pareto front,
e.g. in cases where the server is untrusted or lacks computing resources. This scenario has,
to the best of our knowledge, not yet been addressed in the literature, but would carry its
own challenges and opportunities inherent to the federated setting, most importantly a
shift of control from server to clients, and the alignment of local Pareto fronts. Possibly
related is the fully-distributed setting, where no server is involved in the training process
and aggregation is decentralised across the client network.

Finding client-specific solutions. Here, the goal of the algorithm is to find a solution for
each client in the system, based on different local requirements. Crucially, and in contrast to
single-solution algorithms, this approach yields a different model for each client, matching
that client’s objectives, instead of finding a global model that generalises over all clients.
This variant is known as Personalised FL, and is typically used in highly heterogeneous
settings where the focus is on individual client performance [Tan23]. Note that this type
of algorithm is arguably unique to the federated setting, arising from its properties that
participants in FL are heterogeneous and may have different, independent interests.

In a preference-driven setting, client heterogeneity is induced by different preference
weights assigned by each client to the same underlying multi-objective problem [Har24].
Formally, the objectives of the i-th client are weighted by that client’s unique preference
weights w':

filz) = O f(z) = (Wi fy (@), o, wh fo (2))" (2.5)

Where objective components are conflicting, learning trajectories of clients could diverge
even on the same underlying model; the PFL approach is intended to embrace this diversity
instead of counteracting it. Only a handful of works so far have considered a personalised
approach to objective heterogeneity. In the first such work [Har24|, client preferences are
assumed to be private, and local training is performed on a weighted linear combination of
the objectives. The challenge in this setting is to aggregate clients whose current training
trajectory is compatible, and separate clients where it is not. As little direct information
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about the mutual compatibility of clients is available on the server, many classical MOO
methods cannot be applied. Instead, the proposed algorithm performs clustering and
weighted aggregation based on the similarity of model updates.

Federated multi-task learning is an edge case scenario where clients solve mutually different
subsets of tasks (i.e. objectives). A number of works in the FL literature, e.g. [Gho20] and
[Hua23], have addressed a simplified setting where each client is assigned a single task!
without acknowledging a multi-objective perspective. To the best of our knowledge, only
one work currently considers the problem where each client is assigned a set of several
tasks [Sen24]. Similarly to other works on FMOL, this task assignment is private. Under
the proposed algorithm, clients jointly train a block of shared model parameters plus a
separate parallel model layer for each task to be solved by the client. Once again, clients
are aggregated based on a model similarity score, computed here based both on the shared
parameters and a matching of task-specific layers.

2.3 | CONCLUSION AND PERSPECTIVES

In this chapter, we have presented the first comprehensive survey on the use of multi-
objective methods in connection with Federated Learning. In Section 2.2, we have proposed
a novel taxonomy to classify existing works in the literature, based on the three layers of
the federated system. For each category, we have offered a perspective on recent trends,
open challenges and possible approaches. Existing work demonstrates that MOO is a
promising tool to improve transparency and effectiveness of FL techniques when navigating
real-world problems. As in the wider field of FL, further work remains to be done. Open
avenues of research in MOFL include, most prominently, (i) effective defence against
malicious attackers in multi-objective aggregation; (ii) the use of MOO methods specifically
to recognise low-quality clients; (iii) enhancing transparency and control of MO-preferences
for users, e.g. by generating multiple different Pareto-optimal solutions, and (iv) exploring
more sophisticated MOO techniques, e.g. to replace the baseline NSGA-IT algorithm that
is currently used in many of the works discussed here. The area of FMOL, enabling
the federated solving of multi-objective learning problems, remains largely open. Initial
contributions to the field could include, for example, (v) improving the efficiency of server-
led strategies finding a Pareto front; (vi) exploring the effect of preference heterogeneity on
convergence in single- and multi-solution algorithms; (vii) exploring the cumulative effect
of data heterogeneity on FMOL problems; (viii) considering variant FMOL settings, e.g.
where client preferences are not private.

In the following chapters, we discuss our algorithmic contributions to the area of Federated
Multi-objective Learning in more detail, beginning with with the MOFL/D framework.

1 Note that the ‘multi-task’ label is assigned inconsistently in the existing FL literature, referring variously
to clients with heterogeneous datasets or objectives.
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In this chapter, we present a first systematic treatment of the Pareto-based multi-solution
branch of federated multi-objective learning, as defined in the taxonomy in the previous
chapter. Pareto-based approaches typically tackle a federated setting where user (client)
preferences are not yet defined at computing time. In the domain of multi-objective
optimisation, the typical solution approach to such problems is to find a set of optimal
trade-off solutions for a user to choose at a later time. This first general framework
combines elements of federated learning (FL) and multi-objective optimisation (MOO),
specifically multi-objective optimisation with decomposition (MOO/D).

Significant previous research exists on the topic of multi-objective machine learning (MOML)
in the centralised setting, with a large majority of contributions focused on optimising the
hyperparameters of a machine learning algorithm alongside an underlying single-objective
problem[Mor23][Ale19][Stk22]. Other works tackle the extension of specific algorithms to
the multi-objective case, e.g. [Liu21] and [Yan23a]. However, despite the prevalence of such
problems and the existing research on MOML, there appears to be no previous research
on the integration of multi-objective learning into the FL paradigm. Therefore, we begin
this direction of research by formulating a framework that utilises concepts from the field
of MOO itself, to allow a later systematic integration of existing approaches from related

22
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fields.

The problem of multi-objective optimisation has been studied for decades [Sha22]. Problems
can be classified into those where user preferences are known at the time of optimisation,
providing an ordering between objectives, known as a priori problems, and a posteriori
problems, where preferences are unknown. One approach of solving such multi-objective
problems is by decomposition (MOO/D) — a common decomposition method is to scalarise
the set of objectives to obtain a single-objective problem, with different scalarisations
producing different subproblems. Here we choose a linear scalarisation approach.

As discussed in Chapter 2, some previous literature exists on the application of multi-
objective concepts to federated learning. This contribution falls into the taxonomy branch
of federated multi-objective learning, the lesser-studied branch of the taxonomy proposed
there. At the time of publication, the work by H. YANG et al. [Yan23b] was, to the
best of our knowledge, the only other existing work to tackle federated multi-objective
learning in a general way. This work differs from MOFL/D in several important respects:
First, the framework proposed there is a single-solution FMOL approach, designed to
find only a single global solution to the multi-objective problem. In contrast, our work is
a server-led multi-solution approach, generating a Pareto front of solutions representing
different trade-offs between the objectives. This approach allows for the later selection
of solutions based on different priorities without the need to recompute. Second, their
setting assumes that the knowledge of each client is permanently limited to a subset of all
relevant objectives. In our work, we assume that all objectives are known to all clients,
and that clients are capable of modifying their preferences over these objectives. Third,
their framework is based on multi-gradient descent, whereas we rely on a decomposition
approach.

The remainder of this chapter is organised as follows: Section 3.1 introduces the formula-
tion of the MOFL/D framework. In Section 3.2, a possible instantiation of this framework
is demonstrated and its performance is validated on a number of multi-objective variants of
well-established single-objective benchmarks. Section 3.3 contains a summary of this work.

3.1 | DEescripTiON OF THE MOFL/D FRAMEWORK

In this section, we first introduce and formalise relevant concepts from Federated Learning
and multi-objective optimisation; then we present the general MOFL /D framework.

3.1.1 | BACKGROUND

In the FL setting, a set of n training samples P is partitioned into m subsets Py, ... P,,,
with each P; privately owned by a client C;. Each dataset cannot be shared outside of
the client that owns it. Let |P;| = n; be the size of the i-th training set. In this work, we
consider the classical horizontal FL setting as defined in [Yan19], where all clients observe
the same features and client model architectures are homogeneous. Though classical
Federated Learning [McM17b] was formulated to learn a global model # that optimises a
single objective function, here we assume instead that each client is optimising a wvector
of objectives fl In the spirit of the assumptions made in the horizontal FL setting, we

assume that all m clients optimise the same set of objectives; so the equivalent formulation
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of the classical FL problem becomes

i ), where F = i Z

=0 t peP,

(3.1)

P

:|3

Recall that in the absence of a pre-defined hierarchy of objectives, the set of solutions to this
problem is a partially ordered set, as the value of different objectives is not comparable in
terms of overall optimality. In such cases, with preferences unknown during the optimisation
process, a common MOO approach is to find a set of solutions, each representing an optimal
trade-off between objectives. We say that a solution v Pareto dominates another solution
u iff it improves the value of at least one objective while matching or improving all others.
In formal terms, we hold for a maximisation problem:

v, u = Jic fi(v) > filu) AVG s fi(v) > f(u).

The Pareto front PF of a set of solutions S is then defined as the subset of all solutions
that are not Pareto dominated by any other solution:

PF(S)={veS|~-TueS:u>,v}

312 | THE MOFL/D FRAMEWORK

The overall goal of our MOFL/D framework is to find a set M of solution models, using
the federated system, that together approximate the Pareto front of the objective space. In
abstract terms, this may be modelled as shown in Fig. 3.1: A federated system consists of
multiple participants, coordinated by a server, with each participant learning to optimise

Optimisation layer

(1] 1, >

Problem previpus Candidate
solutions subproblems

candidate @ @ E}D
solution C candidate
subproblem

Federated system(s)

server

AN

e ) (Cez )+ (CCm] clients

Figure 3.1: A high-level depiction of the theoretical MOFL/D framework.
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an multi-objective learning problem as defined in Eq. 3.1, using a given scalarisation. An
optimisation layer is added on top and given control of the federated system in order to
manage the overall optimisation process. This optimisation layer carries out three tasks: (i)
decomposing the MOLP into candidate sub-problems by generating scalarisation weights,
(ii) managing the federated system to compute candidate solutions to each scalarisation
provided by the optimisation layer and (iii) maintaining a set of optimal solutions out of
the candidate solutions returned by the federated system.

At the beginning of each round, the optimisation layer generates a set of scalarisation
weights to map the multi-objective problem to single-objective subproblems (step 1 in
Fig. 3.1). The choice of candidate weights is governed by a metaheuristic method, making
inferences from the results of previous optimisation rounds. (Note that this framework
places no restrictions on the choice of multi-objective solver; any suitable method from
conventional MOO may be used as a drop-in replacement.)

To solve the candidate problems generated thus, the optimisation layer invokes the federated
system. A candidate weight is passed to the federated system (step 2 in Fig. 3.1), which
executes a full FL cycle, computing a candidate solution to the scalarised problem (step 3).
Once the federated system converges, the resulting model is passed back to the optimisation
layer (step 4). This process is repeated for all candidates. For the sake of simplicity, we
take a naive approach in this first work, re-initialising the entire federated system for each
subproblem and solving all subproblems in sequence. However, the question of how to use
the federated system more effectively is a natural next step to continue our research.
Finally, the optimisation layer updates the current set of Pareto-optimal solutions discovered
thus far, incorporating the results obtained from this most recent candidate generation.
Depending on the choice of metaheuristic, a separate set of ‘generating solutions’ may also
be maintained and updated at this stage, used to generate new candidate solutions or base
models for initialisation. This optimisation cycle is repeated until a termination condition
defined by the metaheuristic is met.

In addition to this main approach of generating scalar weights, we also propose the
possibility of generating an initial base model for each single-objective problem, used to
warm-start the federated training process. Previous works [Sat19], [Ngu22| have shown
that FL tolerates, and may benefit from, initialisation with a pre-trained model chosen
with sufficient care. We suggest that a base model could be derived from the solution
obtained for a previous subproblem that is ‘sufficiently close’ to the current problem - a
straightforward approach to quantifying problem similarity in this framework is to use the
distance between the respective scalar weights used to generate each subproblem.

3.1.2.1 | PRACTICAL CONSIDERATIONS ON THE FEDERATED SYSTEM

Translating the abstract MOFL/D framework into an implementation requires two practical
choices with respect to the federated system. The first choice is the implementation of
the optimisation layer. In the preceding theoretical discussion of the framework, we have
treated the high-level optimisation aspects of the algorithm as a fully separate layer;
however, we note that in practice the optimisation layer may be integrated with the server
functionality of the FL system. A second point to consider is the evaluation of candidate
solutions. In a classical federated system, training samples are typically only available
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to clients; in this case the final evaluation of any candidate solution would need to be
performed on the client-side. This approach has the advantages of preserving data privacy
and spreading the computational load of evaluation. However, the resulting estimate may
not be representative of the system if the distribution of client data is skewed, and the
self-reporting of solution values places a level of trust in clients that may be exploited by a
malicious participant. Another approach also taken by some previous works, e.g. [Meh22],
is to require a validation dataset to be known to the server; we follow this approach in our
demonstration of the framework.

Algorithm 2 MOFL/D
Input: Number of iterations n,, number of samples n,, number of federated clients n,.
Pareto front PF, + {}
Pareto front models PFM,, < {}
t<0
while ¢t < n; do
W, < generate n, candidate weights
Vi, My < {1{}
for each w € W, do
0f < generate initial candidate model [> Train federated system to completion
to obtain global model

9: 0" < run Fed-Server with %, w
10: ¥ < evaluate 0% for all objectives
11: append 0", v to M,,V,

12: end for

13: PFi 1< PF, UV,

14: PFM, ; < models generating PF,
15: t+—t+1

16: end while

3.2 | EXPERIMENTS

In this section, we demonstrate an experimental validation of our MOFL/D framework
on a number of multi-objective reinforcement learning (MORL) problems. We begin by
providing a brief overview of the state of the art in the field of federated reinforcement
learning; then we detail our choices regarding the instantiation and implementation of the
framework. Finally, we discuss the design of the experiments performed and analyse our
results.

A number of recent works study the application of FL to single-objective reinforcement
learning [Qi21]. Zhuo et al. [Zhu20b] propose an algorithm that learns a secondary model
to approximate the Q-network values of all clients without exposing their true networks.
In [Zha23], multiple clients with different fixed preferences perform federated learning to
obtain a generalised critic for carrying out local actor-critic reinforcement learning. While
this work is one of the few where each client attempts to optimise multiple objectives, the
proposed algorithm does not yield a Pareto front. Each client joining the learning process



3.2 Experiments 27

must train its own actor model from scratch. Furthermore, it is not clear how this approach
to federalising the training would generalise to other types of RL or non-RL algorithms.
Finally, Jin et al. [Jin22] propose two algorithms, QAvg and PAvg, that extend the vanilla
federated averaging (FedAvg)[McM17c| for use with Q-networks and policy networks,
respectively.

321 | MOFL/D INSTANTIATION AND IMPLEMENTATION

Figure 3.2: Illustration of multi-objective reinforcement learning environments used for
validation experiments. Left to right: MO-Lunar Lander, Deterministic Minecart, Deep-Sea
Treasure.

Faced with a lack of standard multi-objective benchmarking problems for this class of
problem, we choose to use a number of multi-objective reinforcement learning (MORL)
environments as our validation problems. We reason that these represent an intuitive class
of multi-objective problems with varying characteristics and complexity, are extensions of
classical RL baselines, and are implemented in a well-documented set of Python libraries
[Fel23], making them easy to reproduce. We choose three standard MORL environments:
MO-Lunar Lander, Deterministic Minecart, and Deep-Sea Treasure, all illustrated in
Fig. 3.2. For the local learning algorithm used by clients to solve these problems, the
existing literature provides a straightforward FL algorithm for single-objective reinforcement
learning problems [Jin22].

Where possible, we make choices that resemble as closely as possible the equivalent baselines
commonly chosen for demonstrations in the respective field of research; otherwise we choose
methods based on their simplicity and ease of reproduction. A comprehensive overview
of instantiation choices and applicable libraries used in the implementation is given in
Table 3.1. The complete set of parameters chosen for all experiments is reported in the
appendix. Noting that few reference parameterisations for MORL algorithms exist in the

Table 3.1: Instantiation and implementation choices for the experimental validation of
MOFL/D.

Component Instantiation Implementation resources

Federated Algorithm  DQNAvg [Jin22] e b
Deep-Sea Treasure (DST) [Vam11]

Learning Problems Deterministic Minecart (DMC) [Abel9] mo-gymnasium [Fel23]
Multi-objective Lunar Lander (MOLL)

Metaheuristic Pareto Simulated Annealing [Czy98] None used
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literature, we have, where available, tested parameterisations for the related single-objective
problems from the rl-baselines3-zoo [Raf20] benchmarking project; however, these did not
always prove suitable to the multi-objective extension of the problem. Where no suitable
parameterisation could be derived from the literature, parameters were tuned manually.

3.2.2 |  EXPERIMENT DESIGN

We focus on investigating the impact of varying parameters of the federated system on
the overall performance of the framework. We run experiments on each environment with
two, three, and five clients in federation. In addition, we run the algorithm with the
same configuration on single-client systems with no communication to obtain a baseline
performance of the non-federated system. We also investigate the impact of the duration of
the local training phase in the federated system, comparing runs with a local training phase
duration of 2000, 5000 and 10000 iterations. Finally, we contrast the performance of the
algorithm on a federated system using pre-trained models and a federated system following
the conventional approach of training models from scratch. We repeat experiments multiple
times for each parameter combination, using different random seeds. All experiments on
two- and three-client systems are repeated ten times, with the number of runs reduced to
five for five-client systems in deference to the high computational cost of these experiments.
Detailed information about the choice of random seeds for all experiments may be found
in the appendix.

A standard method in the field of multi-objective optimisation is to study the subset of
optimal trade-off solutions, or Pareto front, found by the algorithm [Nga05]. Intuitively,
given a set of multi-objective solutions S, a point s lies on the Pareto front iff the value of
one objective in s cannot be improved without reducing that of another.

Many metrics designed to measure characteristics of a multi-objective solution set have been
proposed in the literature, with most focused on quantifying the diversity and convergence
of solutions [Riq15]. The diversity of a solution set describes the distribution of solutions
in space - it is often considered more desirable to find solutions that are different from
one another, in order to present a greater range of options to an end user selecting among
the different possible trade-offs. The notion of convergence refers to the closeness of the
obtained solutions to the underlying ’'true’ Pareto front - the closer the better. A set of
multi-objective solutions is generally considered to be of high quality iff it has both a
high diversity and high convergence — only one of these characteristics is not sufficient, as
illustrated in Fig. 3.3. A set of solutions with high diversity and low convergence may offer
a large selection of trade-off solutions, but all solutions are far removed from optimality.
Conversely, a set of solutions with high convergence and low diversity may contain solutions
that are close to optimal, but fail to cover the range of possible trade-offs. Only a set of
solutions with both high convergence and high diversity yields a full range of near-optimal
trade-off solutions.

In practice, the notions of diversity and convergence are difficult to quantify for the general
case, in part because the ’true’ Pareto front is often unknown; various surrogate metrics
have been proposed in the MOO literature.

We evaluate the performance of our framework using three common multi-objective
metrics [Zit03]: the hypervolume defined by our non-dominated solution set, the sparsity
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Figure 3.3: Illustration of diversity and convergence in a multi-objective context. Left: a
solution set with good convergence and poor diversity; centre: poor convergence and good
diversity; right: good convergence and good diversity. Both objectives are being maximised in
these examples.

of the solution set [Xu20], and the inverted generational distance (IGD) [Coe05], using the
set of all solutions to approximate the true Pareto front.

Hypervolume (7). The hypervolume metric is computed as the combined volume
of the set of hypercubes spanned by the solutions on the Pareto front and a pre-defined
minimal reference point. This metric captures both diversity and convergence: more diverse
solutions on the Pareto front generate hypercubes with less mutual overlap, increasing the
overall hypervolume, while more optimal individual solutions are further removed from the
reference point, leading to a greater volume of their respective hypercubes. However, this
metric suffers from some weaknesses that make it unfit to be used in isolation, e.g. small
numbers of solutions that are near-optimal for a particular trade-off have the potential to
dominate a more diverse set of different solutions. Therefore, a thorough analysis requires
the use of other metrics in combination with the hypervolume metric.

Sparsity (/). The sparsity metric measures the mutual distance between solutions on
the Pareto front; as such, it describes the diversity of a set of solutions. This metric, too, is
limited when used in isolation: aside from not capturing convergence, it is also influenced
by the number of solutions involved. A set of only two relatively close solutions will return
a lower sparsity score than the same set with another, more distant solution added. This
characteristic suggests the use of the cardinality metric to support a sparsity analysis.

Inverted Generational Distance (IGD) (]). This metric quantifies the convergence
in terms of the distance of the Pareto front of the solution set to the 'true’ Pareto front. As
the true Pareto front of a problem is rarely known in practice, it is usually approximated as
the Pareto front obtained when combining all solutions generated during an experimental
campaign.

3.2.3 | SELECTED RESULTS AND DISCUSSION
3.2.3.1 | MAIN EXPERIMENTS

Numerical results are shown in Table 3.2. For all three learning environments, we consis-
tently observe that the MOFL/D algorithm run with a federated system matches, and
for the more complex problems outperforms, the same heuristic run with a non-federated
system. This demonstrates both the general potential of federating the training of multi-
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objective learning problems, and the validity of our framework. In more detailed terms,
we observe a significantly increased hypervolume value along with a decreased sparsity
in the results generated by running MOFL/D on multi-client systems, compared to a
single client, on the two more complex MO-Lunar Lander (MOLL) and Deterministic
Minecart (DMC) environments - see Fig. 3.4 for an example of the observed hypervolume
evolution (Fig. 3.4(a) and associated solutions(Fig. 3.4(b)). The ultimate hypervolume
values obtained for the Deep-Sea Treasure (DST) environment are similar for all federated
systems and the non-federated system; this can likely be explained by the simplicity of the
environment, with its very limited number of optimal solutions.

On the more complex environments we also observe a tendency for systems with a higher
number of clients to find solution sets with greater hypervolume and lower sparsity. The
impact of length of local training phase appears dependent on both the complexity of
problem and number of clients in the federated system, with differing qualitative results
for different environments. Finally, we observe no clear result on the benefits of re-using
results to warm-start new training rounds: the ultimate performance of the system relative
to non-pre-trained models differs across environments, with improvements in some and
reduced performance in other cases.

3.23.2 |  IMPACT OF LOCAL TRAINING PHASE

We observe that the duration of the local training phase during federated learning has
a notable impact on the overall performance of the MOFL /D algorithm. This matches
previous experiences with optimising the performance of federated learning system outside
of a higher-level framework. The optimal choice of the federated learning phase differs
between the three experimental environments we consider, as is to be expected for problems
of differing complexity. For the Lunar Lander environment, the longest tested local training
phase (10000 iterations) ultimately produces the most optimal solution set, whereas shorter
training phases tend to be more successful in the other two, less complex, environments
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Figure 3.4: Impact of different parameters of the federated system on hypervolume develop-
ment for MOFL/D run on the MO-Lunar Lander environment. Experiments run with 10000
local steps per federated round and without pre-trained models.
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Table 3.2: Numerical results of experiments on each benchmarking environment. Hypervolume
and sparsity metrics are reported here; see Table 3.3 for the corresponding values of the IGD
metric. Each entry reports the mean value of the respective metric, with the associated variance
in parentheses. Higher hypervolume values and lower sparsity values, respectively, correspond
to better performance.

Conf. Hypervolume Sparsity
nc/n{/ws DST DMC MOLL DST DMC MOLL
(10°7) (101)
2/2k/T 992.3(2.4) 896.8(33.4) 403.7(8.3) 17.9(3.0) 1.0(0.5) 353.5(634.3)
2/2k/F  970.8(39.9) 932.9(17.9) 404.6(8.2)  21.8(9.0)  1.5(2.9)  50.9(85.1)
2/5k/T 973.6(33.1) 867.6(58.2) 399.7(8.0) 22.3(11.8) 1.5(0.8) 95.6(166.0)
2/5k/F 990.8(3.3)  936.9(11.6) 405.2(11.3)  19.6(3.3)  0.5(0.2)  30.6(23.5)
2/10k/T  990.3(4.5) 854.6(58.1) 405.4(7.5)  19.8(3.9)  1.6(0.8) 141.8(338.8)
2/10k/F  985.8(14.7) 932.0(11.5) 404.0(10.7) 22.1(10.4)  0.5(0.2)  30.7(20.0)
3/2k/T  984.5(12.2) 869.0(60.0) 410.2(15.1) 26.1(12.8)  1.4(0.9) 108.3(247.2)
3/2k/F 986.6(10.7) 940.5(7.1)  405.2(8.3)  24.2(11.4) 0.4(0.1)  52.5(55.1)
3/5k/T 990.8(3.1) 893.6(49.7)  402.9(9.3) 20.0(4.9) 1.1(0.7) 210.1(565.0)
3/5k/F  974.8(40.0) 935.7(9.0)  406.0(6.0)  23.0(12.0) 0.5(0.1)  20.9(7.6)
3/10k/T  987.3(10.7) 819.2(44.8) 407.9(15.0) 22.0(7.6)  2.1(0.6) 104.2(134.0)
3/10k/F  993.9 (1.3) 908.2(39.0) 412.3(11.7) 15.8 (1.2) 0.9(0.6)  51.3(66.0)
5/2k/T  974.8(28.4) 908.0(1.9) 425.0 (6.8) 46.1(46.1)  0.9(0.0)  68.9(104.2)
5/2k/F 988.2(9.1) 941.1 (7.2) 408.1(6.7)  21.3(8.5) 0.4 (0.1)  14.9(5.3)
5/5k/T  985.5(10.7) 890.0(47.1) 420.5(14.0) 27.4(13.9) 1.1(0.7)  57.4(67.1)
5/5k/F 991.4(2.6)  936.5(16.3) 411.2(11.7)  19.0(2.9)  0.5(0.2)  12.9 (1.8)
5/10k/T  989.8(3.8) 886.4(44.8) 413.3(14.1) 22.1(5.8)  1.2(0.6) 207.4(276.3)
5/10k/F  992.1(3.3) 923.1(13.5) 421.4(7.8)  17.8(3.5)  0.7(0.2)  23.2(16.9)
Non-fed. 983.1(39.2) 879.8(73.3) 388.7(8.5) 35.7(116.9) 1.3(0.9) 108.5(147.9)

tested here. An inspection of the solutions obtained e.g. for the Lunar Lander environment
clearly shows the impact of local training phase duration on the diversity of the solution
set - see the projections of the solution sets shown in Figures 3.6(a), 3.6(b). The diversity
of solutions obtained with a shorter local training phase is much lower for this environment,
indicating that the federated system likely converges too quickly to a local optimum to
adequately explore the solution space.

3.2.3.3 | NUMBER OF FEDERATED CLIENTS

We observe that, in general, an increased number of federated clients leads to an increased
performance of the MOFL/D algorithm - see e.g. the hypervolume evolution for the
Deterministic Lunar Lander and Minecart, shown in Figures 3.4(a), 3.7(a); compare
also Table 3.2. While this is not the case for the Deep-Sea Treasure environment (see
Figure 3.7(b), a higher number of clients in this case still matches the performance of other
systems. The lack of improvement for higher numbers of clients is very likely due to the
limited complexity of the problem.
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Table 3.3: Numerical results of experiments on each benchmarking environment. The IGD
metric is reported here; for the corresponding hypervolume and sparsity values see Table 3.2.
Each entry reports the mean value of the respective metric, with the variance in parentheses.
Lower values of the IGD metric correspond to better performance.

Conf. IGD

n./nl/ws DST DMC MOLL
2/2k/T 0.113(0.1)  0.135(0.1)  24.729(2.0)
2/2k/F 0.393(0.5)  0.097(0.1)  24.030(1.7)
2/5k/T 0.399(0.5)  0.257(0.2)  25.017(2.1)
2/5k/F 0.189(0.2)  0.079(0.0)  24.693(1.6)
2/10k/T  0.218(0.2)  0.276(0.2)  23.850(2.4)
2/10k/F  0.287(0.4)  0.098(0.1)  24.290(2.5)
3/2k/T 0.426(0.5)  0.237(0.2)  24.452(4.0)
3/2k/F 0.367(0.5)  0.087(0.0)  23.617(2.1)
3/5k/T 0.189(0.2)  0.169(0.1)  22.834(2.0)
3/5k/F 0.412(0.5)  0.054(0.0)  23.351(1.8)
3/10k/T  0.273(0.3)  0.388(0.1)  23.920(2.5)
3/10k/F  0.024 (0.1) 0.158(0.1)  22.019(1.8)
5/2k/T 0.748(1.0)  0.106(0.0)  22.411(2.7)
5/2k/F 0.271(0.4)  0.054 (0.0)  22.138(1.5)
5/5k/T 0.366(0.4)  0.157(0.2)  22.462(2.5)
5/5k/F 0.151(0.1)  0.088(0.1)  22.780(2.1)
5/10k/T  0.308(0.3)  0.168(0.1)  21.549(2.3)
5/10k/F  0.082(0.1)  0.086(0.0) 20.221 (1.5)
Non-fed. 0.335(1.1)  0.209(0.2)  27.912(2.0)
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Figure 3.5: Hypervolume evolution compared for different durations of the local training
phase in federated training. Experiments run with 3 federated clients and without pre-trained
models.
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Figure 3.7: Hypervolume evolution compared for variable numbers of federated clients.
Experiments run with 2000 local steps per federated round and without pre-trained models.

3.3 | SUMMARY AND OUTLOOK

In this chapter, we have presented MOFL/D, a novel general framework to solve inherently
multi-objective problems in a Federated Learning setting. The framework is designed
to find a Pareto front of solutions for an arbitrary client-level multi-objective problem
under the guidance of a server. Following the theoretical definition in Section 3.1, we have
discussed instantiation choices for the framework and shown one such instantiation in
Section 3.2. Using this instantiation, we have performed experiments on three well-founded
benchmarking problems from the domain of multi-objective reinforcement learning, showing
the validity of our framework and investigating the effect of several variable parameters
related to the federated system.

The following chapter introduces an algorithm designed for a tackle a different multi-
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This chapter presents an algorithm designed to solve a different setting in multi-solution
federated multi-objective learning, where personalised preferences are known and fixed
at computing time. The main challenge that arises from federating such a setting is the
potential for heterogeneous objective preferences between the participating clients. To
the best of our knowledge, there are no earlier works in the literature addressing this
continuous objective-heterogeneous setting in detail. However, our problem is related to
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Figure 4.1: Different preferences lead to different solutions in a yellow submarine searching
for underwater treasure. Left: A strong preference for minimising travel distance. Centre:
Balanced preferences. Right: A strong preference for maximising the value of the treasure
reward. The goal of our work is to allow clients with problems like these to perform FL
effectively, despite their heterogeneous objective preferences.

other types of heterogeneity problems that present themselves in the FL setting, where the
FL algorithm must account for differences between clients, such as data heterogeneity or
hardware heterogeneity. Particularly in the case of data heterogeneity, client models also
tend to develop in different directions — as is to be expected for clients in our objective-
heterogeneous setting — making the comparison with our problem setting an interesting
one. Many varied approaches have been proposed to address this problem [Ye23a]; these
can be broadly divided by their approach to model aggregation [Tan23].

Some works follow the more classical approach of producing a single generalised global
model, with the goal of adapting this model as well as possible to all individual client
datasets simultaneously. One of the first such algorithms was the FedProx framework
[Li18], which relies on regularisation to encourage model adaptation. To accomplish this, a
new proximal term is added to the loss function of each client, penalising divergence of
the local model from the global model. Other regularisation-based algorithms have since
followed, e.g. [Kar20] and [Li2lc], introducing variance reduction and model-contrastive
learning, respectively.

In contrast, the goal of the federated aggregation in the second approach is to learn an
individual model tailored to each client [Tan23]. This strategy is known as Personalised
Federated Learning (PFL). Variants of PFL, in turn, may be separated into those based on
a modified model architecture, such as parameter decoupling or knowledge distillation, and
those based on model similarity-guided aggregation. Of the former approaches, knowledge
distillation strategies can be costly, and the parameter-decoupling strategy may struggle to
adapt to training with different objective functions. Therefore, we choose to place our focus
on the latter approaches, as model similarity-based methods may be lightweight, appear to
have the potential to adapt well to different types of heterogeneity, and require no additional
information about clients. A number of such approaches have been proposed in the literature
in recent years, e.g. [Lon22], [Gho20], [Dua2la]. In this work, we focus on two recent
methods that appear most flexible, and so most likely to transfer well to the preference
heterogeneous setting: the Clustered Federated Learning [Sat19] (CFL) algorithm, and
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Many-Task Federated Learning [Cai23] (MaTFL).The former work, proposing the Clustered
FL [12] (CFL) algorithm, is of particular interest here. It deals with settings where the
underlying data distributions known to participants are not fully compatible, leading
to conflicts in the training of a joint model. To solve this, the idea of CFL is to train
clients together in a classical federation until the global model converges to a stationary
point, allowing clients to learn from each other until mutual conflicts stall the training
process. Then clients are permanently separated into clusters based on the similarity of
model gradients in the stationary point. Our multi-objective preference-heterogeneous
setting is related to the data-incongruity problem tackled by CFL, in that we expect clients
with preferences for conflicting objectives to also produce incompatible models during
training. However, the heterogeneity of clients may be more complex, given the number of
potential objectives and different preference distributions. Therefore, we take inspiration
from the clustering strategy of CFL for our approach, but additionally introduce the
idea of personalising learning inside each cluster. Our aim is to allow a higher degree of
individual exploration for clients at an earlier stage in the training process, without cutting
off cooperation earlier than necessary. We propose FedPref, an algorithmic approach based
on Personalised Federated Learning (PFL), where each federated client learns an individual
model tailored to its needs, and different objective preferences lead to different solutions.
The goal of our algorithm is twofold: first, to optimise individual client performance, as
is common for other PFL approaches. However, we also want our algorithm to perform
well under a multi-objective view of the federated system as a whole, conforming to the
common expectations of multi-objective problem solving. In order to measure our success
at this secondary goal, we introduce a novel analytical view of the federated system itself,
using metrics common in the fields of multi-objective optimisation and multi-objective
learning to assess the diversity and convergence of the set of solutions found by all clients.

The remaining content of this chapter is organised as follows: In Section 4.1, we motivate
the need for a personalised federated learning approach with the aid of an intuitive example.
In Section 4.2, we formalise the problem and introduce the FedPref algorithm designed to
solve it. In Sections 4.3 and 4.4, we evaluate the performance of FedPref experimentally,
first using standard FL metrics and then by applying multi-objective metrics to the
federated system. Finally, Section 4.5 presents a summary of this chapter.

4.1 | MOTIVATION FOR A PERSONALISED APPROACH

In this section, we introduce the need for a personalised solution approach to the preference-
heterogeneous setting in some detail, using an intuitive example to show how a single
generalised solution would not satisfy the typical expectation of a preference-based multi-
objective approach.

Performing federated aggregation with preference-heterogeneous clients can be chal-
lenging, as conflicting objectives may lead to substantially different models. In such a
setting, the classical approach of training a single global model would struggle to satisfy
different preference distributions simultaneously. Besides the technical difficulty of aligning
heterogeneous clients, the non-personalised aggregation approach also fails to respect
the underlying intention behind preference-guided learning. Generally, the idea behind
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modelling a problem with multiple objectives is to allow multiple diverse solutions, with
each representing a different trade-off between the various objectives. A single global
solution, even one delivering high objective values for all involved clients, would not be a
satisfying outcome in this scenario.

For an intuitive example in support of solution diversity, consider the scenario illustrated
in Fig. 4.1. In this toy scenario, several submarines are searching for underwater treasure.
Each has two separate objectives: minimising the diving distance, and maximising the
haul of treasure recovered. We observe that these objectives are conflicting, as more
valuable treasure is located deeper down on the seabed, necessitating a longer dive. In
assigning different preference weights to the two objectives when solving this problem, we
expect to recover different behaviours, as illustrated in the different panels of Fig. 4.1.
In the left-most image, the submarine has a high preference weight placed on the travel-
distance objective, and so travels to the closest treasure. The right-most image shows
the reverse: the submarine has a high preference for finding treasure, and so dives as far
as necessary to reach the most valuable location. This is the learning outcome a user
might expect in assigning preference weights; yet a non-personalised federated learning
algorithm might instead converge to the same solution for all clients, shown in the central
illustration. This represents a “middle ground” between the preference distributions of the
two others, potentially leading to comparable scalarised results for both. However, the
different preference weights have essentially lost their expected meaning: the user has no
perceived control over the learning outcome.

4.2 | THE FEDPREF ALGORITHM

In this section, we define the FedPref algorithm and relevant concepts. We begin by
formally defining the problem setting in Section 4.2.1, followed by an initial sketch of the
algorithm and a definition of the underlying similarity metric in Section 4.2.2. Finally, we
discuss the components of the algorithm in more detail: the weighted aggregation strategy
is described in Section 4.2.3, the clustering strategy in Section 4.2.4, and the full FedPref
algorithm in Section 4.2.5.

4.2.1 | PROBLEM FORMULATION

We want to perform personalised Federated Learning across n clients, each of which has
a learning problem with m distinct objectives f;,---,f,,. There is no general importance
order assigned between objectives, but each client has a personal fixed preference weight
vector across all objectives. See also Fig. 4.2 for an illustration of the problem and the
federated learning process.

Following a classical approach in multi-objective optimisation[Sha22]|, we map this multi-
objective problem to a single-objective problem in order to solve it, so that all clients
learn a linear combination of these same objectives, with the preference weights assigned
as scalars. So client i, with preference distribution w? = (wi, ..., w! )T, is optimising the
objective function

F1(0) = f(w',0) = wi f(0) =Y wif,(0). (4.1)

J
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Figure 4.2: An illustration of the federated system solving a multi-objective problem with
personalisation. In this instance, we want to learn to plan trajectories for drones, under two
potentially conflicting objectives: conserving energy and maximising speed. Each drone assigns
different importance (preference weights) to these objectives. Federated Learning takes place
as follows: (1) Clients (drones) perform local training, using the objective function defined by
their preferences. (2) Clients submit model updates to the server. (3) The server aggregates
these model updates, obtaining personalised models. (4) The server returns the respective
personalised models to the clients.

The preference distribution of each client is unknown to all other participants, including
the federated server. (We can assume without loss of generality that all single-objective
components f; are known to all clients.) Each client i trains a personalised model 6, using
its personal preference weights. A major challenge in this scenario is that the objectives
of federated clients may conflict, and these conflicts can lead to the divergence of client
models at any stage of the training.

4.2.2 | CONCEPT SKETCH AND DEFINITIONS

The fundamental idea of FedPref is to combine a recursive clustering mechanism, similar
to [Sat19], and an adaptive weighted aggregation scheme, both based on a model similarity
metric. The underlying idea behind this combination is to enable effective grouping
and aggregation of clients whose preferences are compatible during the learning process
(provided by the clustering component), while also maintaining the flexibility of training a
personalised model for each client using weighted aggregation. Compare Fig. 4.3 for a visual
representation of the flow between these components. Initially, all participating clients are
grouped together in a single cluster. During every aggregation step, a personalised model
is computed for each client, using adaptive weights computed based on mutual model
similarity between pairs of clients. The mean model of all clients in the cluster serves as
an indicator of the success of the intra-cluster collaboration: the mean model converges if
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Figure 4.3: A schematic representation of the flow between components of the algorithm.

either all clients converge, or if the gradients of personalised client models start developing
in conflicting directions. In this case, we perform a recursive clustering step, splitting the
current cluster in two based on the same mutual model similarity metric that is used for
the weighted aggregation. The learning process is then continued in the same manner
inside the new clusters.

4.2.2.1 |  SIMILARITY METRIC

Before discussing the functionality of each component in detail in the following sections,
we shall formally introduce the modified similarity metric that underpins both components.
The similarity metric in aggregation round ¢ is computed on the basis of model updates

AG; =0, — 05, (4.2)

where étc_l is the cluster-mean model obtained after the previous aggregation step. Using
these gradients, we define the similarity metric sim(:,-) of two models ¢, and ¢, as

. 1 & ,
sim(A0;, Ab;) = 7 zg: cossim(topR(ABY), topR(AQf)), (4.3)

where A! is the (-th layer of Af; and L is the total number of layers per model. The

topR operator is a variant of topk, where k is determined by the dimension of the input

vector and a ratio R € (0,1]. TopR maps a vector ¢ to a vector of the same dimension

where the top k = [dim(¥) - R| elements of ¥ (in absolute terms) are retained and the
remaining elements set to zero. So for topR(¥) = i, we have

{vi, if |v;| in top [R - dim(¥)] absolute elements of .

u; = (4.4)

0, otherwise.
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The cosine similarity cossim(-,-) is defined in the standard way:

N LA
cossim(u, V) = Tl (4.5)

The rationale for this modification lies in the geometric interpretation of the cosine
similarity metric (illustrated in Fig. 4.4): recall that the plain cosine similarity describes the
cosine of the angle between two given vectors, with a value of —1 equivalent to antiparallel
vectors, a value of 0 denoting orthogonal vectors and the maximum value of 1 denoting
parallel vectors. When applied to model gradient updates, this metric can then describe
— quite intuitively — how similarly two models are developing. This insight is leveraged
e.g. in the CFL algorithm [Sat19].

However, we note that complications can arise from this application of the plain metric to
model updates, particularly relating to the potentially high dimensions of models and the
choice of reference point. The former point rests on the observation that in high-dimensional
spaces, the cosine similarity metric is affected by the “curse of dimensionality”, rendering
comparisons of high-dimensional vectors in dense spaces, such as the weights of a neural
network, increasingly difficult. In other works, e.g. [Sat19][Cai23], this is mitigated to
an extent by comparing the individual layers of models instead of the complete flattened
model. However, with the trend towards larger and larger models, we attempt to find a
more general solution by introducing the ‘topR’ filtering of layer-gradients. The intention
of this step is to sparsify the space in which vectors are compared, in the hope of obtaining
more meaningful results.

The latter complication is founded on the need for a reference point in defining the gradient
vectors to be compared. As we want to train personalised models, including for clients
inside the same cluster, models do not begin each local training round with a common
model (as would be the case in e.g. FedAvg, or CFL). Therefore, we need to explicitly
define a model to compare to, ideally one that is both close to each client’s actual model
and whose difference accurately represents the relation of the clients being compared. We
choose the cluster-mean model, obtained after the aggregation of the previous round has
concluded, as this reference point for our algorithm.

To recapitulate, we choose to use this modified metric instead of the more common
direct applications of cosine similarity for two main reasons:

=
cosQol = -1 coso =0 O<cosO<1

Figure 4.4: Geometric interpretation of cosine similarity.
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o We hope to mitigate the “curse of dimensionality” that makes this metric increasingly
meaningless for larger vector dimensions.

e Selecting the subset of the largest weights for each layer allows us to compare the
most impactful, or “important” aspects of the models. This could lead to more
meaningful decisions about which models to aggregate together.

We will show in Section 4.3 that, when compared to the use of the pure cosine similarity
metric without weight selection, the use of this metric does indeed lead to improved results
in our validation experiments.

423 | WEIGHTED AGGREGATION

The weighted aggregation — described in the pseudocode in Alg. 3 and illustrated in Fig. 4.5
— is carried out by the server for each separate cluster. For each cluster, the weighted
aggregation phase begins with computing the similarity matrix of all clients contained in
the cluster. The similarity metric (defined in Equation 4.3) returns a value between —1,
representing the lowest possible mutual similarity, and +1, representing the highest possible
similarity. These values are then clipped to a minimum lower similarity bound s,,,;,, — given
to the algorithm as a parameter during initialisation — and subsequently normalised to the
range [0,1] (see line 5 in Alg. 3). This step can be used to enforce a minimum similarity
required for aggregation, as it essentially excludes all clients whose similarity to another
client is lower than the given threshold from the aggregation with that client. Following
this precomputing of similarity values, the actual personalised aggregation takes place: to
compute the new personalised model for each client, the row corresponding to this client in
the similarity matrix is taken as aggregation weight vector, normalised once more so that
the sum of weights adds up to one, and finally used to compute the weighted average of all
client models — see lines 9 and 10 in Alg. 3. This aggregation is carried out for each client
inside the cluster; then the resulting personalised models are returned to the respective
clients.

Figure 4.5: A weighted aggregation step inside a single cluster. Left: personalised client
updates are computed using aggregation weights based on client similarity relative to the
cluster-mean. Right: The updated cluster-mean is computed.
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Algorithm 3 Weighted aggregation
: Clist of ¢ clients in cluster
: W+ (0)°xc > Init aggregation-weight matrix
: for i € C' do
for j € C'do
w;;  (sim(A0;,A0;) — 8,,4,) /(1 — 5
end for
end for
for i € C'do
W; < w;/|w]
01’ — ZCGC ﬁ)icec
end for
: return (6,]c € C)

© PP w Y

—_
e

Figure 4.6: A recursive clustering step. Left: A cluster with cluster-mean at the beginning of
an aggregation round. Centre: Clients inside the cluster are split into two clusters based on
pairwise similarity relative to cluster-mean. Right: The resulting two clusters with respective
cluster-means.

4.24 |  RECURSIVE CLUSTERING

The clustering procedure, illustrated in Fig. 4.6, is performed whenever a cluster is found
to have converged during an aggregation round, i.e. where the clients inside the cluster no
longer benefit from federated collaboration — the exact convergence criterion is discussed
in Section 4.2.5. The purpose of this procedure is to separate the clients contained in the
cluster into two new sub-clusters in such a way that clients whose models are developing
similarly are grouped together to continue learning from each other, and clients that are
developing in different directions are separated. This bipartitioning is based on the same
similarity metric (Equation 4.3) as is used for the weighted aggregation. In principle, any
suitable clustering algorithm can be utilised to perform the clustering itself; in this work,
we choose to use spectral clustering [Dam18], as it tends to produce well-balanced clusters,
performs well for low numbers of clusters, and an implementation is readily available in
common libraries. The clustering procedure is performed no more than once per cluster
per aggregation round.
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Algorithm 4 Clustering

Require: |Af| < e [> Cluster-avg model change < ¢
1: C'list of ¢ clients in cluster
2: § + (0)cxe > Init similarity matrix
3: for i € C'do
4 for j € Cdo
5: A, A0, 051 — 6,051 — 0,
6 S;; « sim(A0;,A0,)
7 end for
8: end for
9: Cy,Cy < SpectralClustering(C,S,2) > Bipartition C

10: return C4,C,

425 | FULL ALGORITHM

The complete algorithm combines the weighted aggregation and clustering components, as
detailed in Alg. 5 and conceptually in Fig. 4.3. In every round, all local models are trained
for a fixed number of steps. Once all models for a given cluster C' have been reported
to the server, the aggregation phase begins. As a first step, the clustering criterion is
checked: the difference of the cluster-mean model Af of the most recent local updates
to the cluster-mean model éﬁ;l following the latest aggregation round is computed (see
lines 7 — 8 in Alg. 5). If the magnitude of this change is less than a given convergence
threshold ¢, we assume that the models of clients inside the cluster are diverging. We
therefore trigger the clustering process to bipartition the current cluster C into two new
clusters C; and C,. We then carry out weighted aggregation according to Alg. 3 on the
new clusters, before updating the server-side record of current clusters.

If the clustering criterion is not met, aggregation continues in the preexisting cluster:
weighted aggregation is carried out in this cluster, and client-membership of this cluster is
recorded unchanged.

In one full server-side aggregation step, this procedure is executed for every cluster, with
personal aggregated models returned to the clients of each cluster after aggregation has
concluded. The algorithm terminates after 7" such aggregation rounds. Note that even if
clients are still part of a larger cluster after T'— 1 aggregation rounds, the last aggregation
step can be skipped after the final local training round, to allow clients a degree of local
fine-tuning (see line 23 in the algorithm). We call this fine-tuning variant of the algorithm
FedPref+FT, and the version without a fine-tuning step FedPref-FT.
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Algorithm 5 NewFL-Server

1 C+{[1,..,n]} > Initial cluster
2: 609,...,0% < Initialise client models
3: fortel,.., T —1do
4: 1y, 0, < Train local models
5 for C €C do
6: gtemp A {}
7: Gtc__l — 1_/|C’\ ZCEC gLt
s Ao 0" —1/[01T, 0.
9: if |Af.-| < e then B [> Cluster converged
10: C,,Cy + Clustering(05*,[0.|c € C))
1. 0, 00, {011 € C1} {0tc € Cu}
12: Htcl — WeightedAggregation(qtchl,0’01)
13: 9"’02 — WeightedAggregation(@tcTzl,9’02)
14: Ctemp A Ctemp U {017 02}
15: else
16: 0« {0.]c € C} B
17: 0L, < Weighted Aggregation(657, 07,)
18: Ctemp A Ctamp U {C}
19: end if
20: end for
21: C  Cremp
22: end for
23: 01, ...,0,, < Train local models > Optional fine-tuning, replacing last aggregation
round
43 | CLIENT-LEVEL EVALUATION

In this section, we present a thorough experimental evaluation of our algorithm. We
begin by introducing the general design of our experiments in Section 4.3.1, describing
the problems and baselines we have selected for evaluation. In Section 4.3.2, we show and
discuss the first part of our main validation experiments, evaluating the performance of
our algorithm with a focus on average client performance under objective heterogeneity.
Following this section, we introduce a multi-objective view of this problem setting in
Section 4.4, giving a brief overview of common metrics, and analysing the performance
of our algorithm with respect to these metrics. These experiments are supplemented by
studies of specific characteristics of the FedPref algorithm: in Section 4.3.3, we perform
an ablation study, comparing the individual performance of the clustering and weighted
aggregation components with the combined algorithm; in Section 4.3.4, we analyse the
sensitivity of the algorithm to two crucial parameters, and in Section 4.3.5 we evaluate the
clustering strategy.
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Figure 4.7: Sample illustrations of multi-objective solution spaces of different environments.
Left to right: MO-Lunar Lander, Deterministic Minecart, Deep-Sea Treasure, MO-Halfcheetah
and MO-LLcont. environments. For MO-LL, DMC, and MO-LLcont., results have dimension
4,3 and 4, respectively, and are here projected into a coordinate plane.

4.3.1 | IMPLEMENTATION AND SETUP

We implement our experimental framework using the PyTorch package in the Python
programming language. The code of our implementation is publicly available!. We evaluate
our framework on a number of multi-objective reinforcement learning problems, as this class
of problems represents a natural type of multi-objective problem well-suited to application
and possesses a number of well-defined benchmarks [Fel23]. We run our experiments on
five such MORL environments (illustrated in Figure 4.8): Deep-Sea Treasure [Vaml1]
(DST), Deterministic Minecart [Abel9] (DMC) and the multi-objective extension (MO-LL)
of OpenAl’s Lunar Lander gym environment, using a classical DQN algorithm [Mnil5]
to solve the scalarised RL problem on each client; and the multi-objective extensions of
the halfcheetah (MO-HC) and the continuous variant of the Lunar Lander environment
(MO-LLc.), using the DDPG algorithm. These five selected environments represent multi-
objective problems with different characteristics: the Deep-Sea Treasure environment is
relatively small and has a finite number of optimal solutions. The MO-Lunar Lander
environment is more complex and has a large number of optimal or near-optimal solutions
closely aligned in the solution space. Conversely, the Deterministic Minecart environment
has a sparse reward space, leading to a very low number of optimal solutions, which are
mutually distant in the solution space. The MO-Halfcheetah and Continuous Lunar Lander
environments, finally, produce continuous rewards and so require a different RL algorithm
to be solved, allowing us to examine the effectiveness of the FedPref algorithm across

1 https://gitlab.com/maria.hartmann/FedPref
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different types of models. These differences, illustrated also in Fig. 4.7, present different
challenges for federated aggregation.

The performance metric we report is the reward obtained by each client, according to its
respective preference distribution. On all environments except MO-Halfcheetah, we run
federated systems of 20 clients each; due to the higher complexity of the MO-Halfcheetah
environment, we limit the number of clients to 10 in this case.

Figure 4.8: Illustration of multi-objective reinforcement learning environments used for
validation experiments. Left to right: MO-Lunar Lander, Deterministic Minecart, Deep-Sea
Treasure, MO-Halfcheetah and Continuous MO-Lunar Lander.

43.2 | COMPARISON TO BASELINES
4.3.2.1 | EXPERIMENTS

We compare our algorithm both to the classical baselines and to several algorithms
developed to deal with other types of heterogeneity. As baselines, we run the same local
learning algorithms with no communication between clients (no-communication) and the
classical federated averaging (FedAvg) algorithm, aggregating all clients while disregarding
heterogeneity. To the best of our knowledge, no previous algorithms that target this type
of heterogeneity have been proposed in the literature; we therefore validate our approach
against three additional algorithms from related fields that appear most relevant to our
setting: FedProx [Lil8], Many-Task Federated Learning [Cai23] (MaTFL) and Clustered
Federated Learning [Sat19] (CFL). FedProx is a classical approach to the heterogeneity
problem, commonly used as a baseline in data-heterogeneous settings. The underlying
strategy appears intuitively to have the potential to transfer to the preference-heterogeneous
setting, so we choose to retain this baseline. The MaTFL and CFL algorithms are chosen
for the similarity of their approaches with the weighted aggregation and the clustering
component of our algorithm, respectively; they also represent the two fields of Multi-Task
Federated Learning and data-heterogeneous FL that we identified earlier in this chapter as
most closely related to our problem setting. In addition to the standard versions of these
algorithms from the literature, we also consider variants of the non-personalised algorithms
that introduce a “fine-tuning” phase at the end of model training [Wan19]. Fine-tuning is
a common strategy to allow a degree of personalisation between clients using an otherwise
centralised training strategy. Following [Wan19], clients that perform fine-tuning end the
training process with a single local training round instead of aggregating a global model.
We label these variants as FedAvg+FT, FedProx+FT, CFL+FT, and FedPref+FT. We
tune the hyperparameters for all algorithms via an initial grid search on a set of preferences
sampled from a Dirichlet distribution. For each algorithm and environment, we select
the best-performing hyperparameter configuration from this search. The details of this
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parameter search and the local configurations of clients for each RL problem may be
obtained from the supplementary material. Following the parameter tuning, we run all
algorithms repeatedly, with client preference weights generated according to three different
distributions: sampled from a Dirichlet distribution, sampled from a Gaussian distribution
or weights generated to be equally spaced in the weight simplex. We report the results for
all algorithms and distributions in Table 4.1.

43.2.2 | ANALYSIS

We report the numerical results obtained for all algorithms and distributions in Table 4.1.
In the remainder of this section, we discuss and contrast these results separately by
preference distribution, from the most “extreme” preference differences between clients —
the equidistant distribution — over the Dirichlet distribution to the Gaussian distribution,
where client preferences are most similar.

Equidistantly distributed preference weights.
Under the equidistant distribution of preference weights across clients, we observe that
variants of the FedPref algorithm outperform all other algorithms quite significantly on
four out of five environments. On the MO-Halfcheetah environment, the FedPref+FT
algorithm not only yields the highest average client reward of 3168.13, but it also has
a notably lower variance than all other algorithms. Similarly, on the Continuous MO-
Lunar Lander environment, FedPref-FT achieves a markedly higher average client reward
score than all those compared. For the MO-LL environment, clients participating in the
FedPref+FT algorithm obtain an average scalarised reward of 29.47, far ahead of the
second-highest result of 18.49 achieved by another algorithm on the same environment.
Indeed, the latter result is not accomplished by any federated algorithm, but by the baseline
of non-communicating clients, with the remaining federated algorithms achieving much
lower scores down to the lowest mean result of —94.06, returned by the CFL algorithm.
Results for the Deep-Sea Treasure follow a similar pattern, while for the Deterministic
Minecart environment no federated algorithm outperforms the result of the non-federated
baseline. These results serve to underscore the difficulty of this heterogeneous distribution.

The case of equidistant preference weights likely represents the most “extreme” scenario
among our experiments, where individual client objectives have on average the greatest
mutual differences. In general, we would expect this to also map to greater differences in
the models that match the preferences of each client, resulting in an advantage for those
algorithms training personalised models. This is indeed illustrated in our results, reported
in rows 11-20 of Table 4.1, as all variants of the FedProx and FedAvg algorithms perform
notably worse in this scenario than for the other two types of preference distributions.
This pattern persists across all experimental environments trained locally using the DQN
algorithm (i.e. MO-LL, DMC and DST). More surprisingly, we also observe a poor perfor-
mance by the CFL algorithm on these environments in this setting - further investigation,
reported in the appendix, shows that CFL [Sat19] tends to yield highly unbalanced clusters
in our experiments. As clusters in CFL train a single global model, this can lead to many
clients with less personalised models, combined with a small number of clients that are
separated early from the collaborative cluster — for this type of preference distribution, it
is likely the large cluster that leads to a crucial lack of diversity. In other environments,
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the clustering step of CFL is not triggered at all.

On the MO-Halfcheetah and Continuous MO-Lunar Lander environments, CFL and the
two non-PFL algorithms perform notably better in comparison, though still worse than
the FedPref algorithm. Indeed, in this scenario it becomes particularly important for any
personalised algorithm to be able to accurately judge the compatibility of models, and to
separate non-compatible models. This appears to be a strength of our algorithm: FedPref
not only outperforms all others by a significant margin in four out of five environments.
In the fifth environment - the Deterministic Minecart - none of the algorithms tested in
our experiments perform better than the non-federated baseline. This might be the result
of the high sparsity of the reward space, combined with the greater difference in client
objectives, that make it difficult to group clients for aggregation.

With respect to the fine-tuning variants, we observe that the addition of a fine-tuning
step does not generally lead to improved performances for the compared algorithms. A
notable exception is the MO-LL environment, where the algorithms performing non-
personalised aggregation deliver notably poor results without fine-tuning, with a drastic
relative improvement with the addition of a fine-tuning step. However, the overall results
in these cases are still markedly low. It appears that these algorithms fail to converge
to a meaningful common solution across clients of such high preference diversity. In this
context, disengaging from the federation naturally leads to improved local results.

Uniformly distributed preference weights.

In terms of expected client similarity, the Dirichlet preference distribution represents a
“middle ground” between the other two types of distribution explored in this chapter.
Preference weights are sampled uniformly at random from the weight simplex. Our
results, reported in rows 1-10 of Table 4.1, show variants of the FedPref algorithm again
outperforming all others on four out of five experimental environments. Compared to the
results obtained under the equidistant preference distribution, some of the gains of the
FedPref algorithm over those compared, though still existent, are less drastic, particularly
on the relatively dense solution space of the MO-HC and MO-LL environments: on MO-
LL, e.g. the FedProx algorithm yields a mean scalarised client reward of 31.2, relatively
close to the top result of 37.27 achieved by the FedPref-FT algorithm. For the MO-
LLc. environment, which appears to have an even higher localised density than MO-LL, the
FedAvg algorithm even outperforms the FedPref algorithm under this distribution. However,
the difference in favour of FedPref remains larger for the Deep-Sea Treasure environment,
likely due to its discrete solution set: Here, the FedPref+FT variant of our algorithm
obtains a mean scalarised client reward of 4.41, still followed by the no-communication
baseline with an average reward of —0.43. The ranking of algorithmic results is similar on
the Deterministic Minecart environment, though less decisive. It appears that the lower
density of (optimal) solutions available in the latter two environments, combined with
the intermediate objective heterogeneity of this setting, continues to present a difficult
challenge to the federated algorithms from the literature.

The addition of a fine-tuning step again yields lower mean client scores for all algorithms
performing non-personalised aggregation. In most cases, the results for the fine-tuned
variant of an algorithm are markedly worse than for the same algorithm without fine-tuning.
We theorise that over the course of the federated training process, clients in the federated
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system have learned to converge to a mutually beneficial, globally optimal “compromise”
solution. This compromise, however, is quite fragile, as all individual clients operate under
different preferences, i.e. different loss functions, and the distance between client-optimal
solutions and the global model appears too great to overcome during fine-tuning. The
difference in performance between fine-tuning and non-fine-tuning variants is less great for
the FedPref algorithm, most likely because diverse clients are separated more successfully
at an earlier stage of the training process.

Gaussian-distributed preference weights.

Finally, in the setting where weight preferences are drawn from a Gaussian distribution,
three different algorithms achieve the top scores for different environments (see results in
row 21-30 of Table 4.1): Results on the Deep-Sea Treasure environment remain dominated
by both variants of the FedPref algorithm, with no other federated algorithm outperforming
the non-federated baseline. Similarly, FedPref-F'T outperforms all others on the MO-LL and
MO-Halfcheetah environments. For the compared algorithms, the addition of a fine-tuning
step to the various algorithms has a similarly negative effect as in the experiments under a
Dirichlet preference distribution.

Under the Gaussian distribution, clients are more likely to have more similar preferences,
potentially supporting more similar models. In this case, plain (equally-weighted) aggrega-
tion appears to do well, with the CFL algorithm delivering the second-best performance
on the MO-LL environment. The two non-PFL algorithms also perform notably better
under this preference distribution than in the other two settings - in fact, in this case the
plain FedAvg algorithm outperforms all others in the DMC environment, and the FedProx
algorithm achieves the top result in the Continuous MO-Lunar Lander environment. The
former result may in part be owing to the sparse solution space of the problem, with the
clients in federation jointly converging on a single local optimum; but it is nonetheless part
of a wider trend. In contrast to the very different performance of the compared algorithms
on some environments, FedPref appears to adapt quite well to this setting, delivering the
best performance in two environments and the second-best in two others.

In general, these results indicate that the FedPref algorithm is capable of adapting to a
range of different preference distributions and problem types, outperforming all compared
algorithms in the majority of experiments. In almost all cases where our algorithm does
not deliver the best performance, it is outperformed by only one other, and by different
algorithms for different problems. Furthermore, these results are preserved across different
local training algorithms and different model architectures. This shows the high flexibility
and robustness of our algorithm, making it a good overall choice in the general case, where
the distribution of preference weights of the characteristics of the learning problem may be
unknown.

433 | ABLATION STUDY

We perform an ablation study of our algorithm, comparing the performance of the full
algorithm with that of its individual components, i.e. performing only the weighted aggre-
gation strategy or only the clustering strategy, respectively. For all three configurations, we
also consider variants that perform a single round of fine-tuning at the end of the training
process. The hyperparameters of all versions remain fixed to the values obtained for our
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Table 4.1: Experimental results comparing our proposed FedPref algorithm to MaTFL, CFL,
FedProx, FedAvg and individual learning without cooperation.

MO-LL(1) ~ DMC(t)  DST(1) MO-HC(1) MO-LLc.(1)
No comm.  14.32 013.3 —2.5260.9 —0.43 01.8  2440.30 ¢511.3 11.95 012.6
FedAvg 30.52 014.7 —3.20 03.4 —16.50 624.7 2234.06 01202.9 34.19 o11.4
FedAvg+FT 4.31 611.0  —5.41 00.9 —36.40 010.0 2901.84 ¢798.1 16.29 66.3
FedProx 31.20 016.9 —3.34 ¢3.6 —11.05 022.1 2172.35 ¢1231.2 32.45 011.2
Dirichler FedProxtFT 3.21 011.3  —5.44 00.6 —34.52 7.2 3017.22 9795.3 13.82 912.5
CFL 31.18 ¢17.8 —2.76 60.9 —12.90 ¢21.8 2835.50 0817.7 26.90 ¢12.5
CFL+FT  10.09 013.2 —3.82 02.1 —35.14 ¢10.2 2864.62 0871.0 19.81 7.6
MaTFL 7.82 69.9 —4.39 62.2 —6.32 03.6  1596.59 0558.9 10.98 ¢7.3
FedPref+FT 32.22 ¢11.3 —2.42 01.6 4.41 o1.7 2080.26 0784.4 32.17 67.0
FedPref-FT 37.27 ¢11.9 -1.90 01.2 1.21 ¢3.4 3104.59 6742.3 32.91 09.8
No comm.  18.49 ¢10.5 -1.70 01.5 0.68 o'1.9 2265.67 0440.5 22.49 66.9
FedAvg —55.64 046.9 —6.77 ¢0.3 —17.87 026.2 1952.42 0321.4 28.04 06.8
FedAvg+FT —16.95 05.6 —6.24 00.4 —36.01 ¢3.1 3023.42 0204.2 6.42 08.1
FedProx —73.98 045.3 —6.75 00.2 —23.23 626.8 1948.46 0532.2 27.75 ¢11.5
Equidist, TeAProcHFT —9.69 04.9  —6.08 004 —36.17 02.6 3019.46 6206.9 1.01 08.2
CFL —94.06 030.8 —2.74 60.5 —34.62 623.5 2831.28 0304.4 25.97 c4.6
CFL+FT  4.70 05.6 —2.35 60.7 —37.17 62.9 3097.66 0282.7 11.71 ¢10.4
MaTFL 11.99 6.5  —4.03 01.2 —6.16 02.8  1643.90 0239.3 19.20 5.6
FedPref+FT 29.47 63.5  —2.21 01.7 2.78 02.5 3168.13 0145.7 36.52 4.8
FedPref-FT 29.26 04.2  —2.35 ¢1.8 2.26 02.2 3044.61 6239.9 45.28 011.8
No comm.  15.33 013.4 —3.61 62.2 1.13 ¢0.9 2575.39 ¢790.7 17.08 65.9
FedAvg 31.53 013.1 -2.47 03.3 —13.32 025.6 2028.17 ¢1282.5 33.15 011.3
FedAvg+FT 14.99 69.7  —3.87 02.1 —37.42 05.5 2758.24 ¢1081.8 19.37 08.5
FedProx 32.75 ¢13.0 —2.94 03.1 —2.07 ¢16.0 2042.50 ¢1183.2 33.31 07.3
Coussian FedPTOX+FT 14.61 010.1  —4.41 01.7 —37.15 09.1 273212 0940.0 19.72 8.0
CFL 37.73 011.5 —4.00 01.8 —24.82 ¢27.5 2635.25 0812.3 25.56 ¢8.0
CFL+FT  18.30 69.2  —3.71 01.6 —33.75 08.3 2852.83 ¢776.1 16.41 08.5
MaTFL 6.48 09.4 —5.04 01.1 —6.24 63.4  1355.33 0489.7 13.36 07.1
FedPref+FT 36.43 67.3  —2.53 01.8 2.87 02.6 2786.28 0888.8 33.06 06.7

FedPref-FT 38.90 ¢8.8 —2.86 01.5 2.88 03.4 2923.27 0897.0 33.18 07.7

algorithm in previous experiments. The results, reported in Table 4.2, show different
outcomes for the different types of problems we study. The effect of fine-tuning, too,
appears to vary for different environments.

For the Deterministic Minecart environment with its very sparse reward space, we observe
that the Clustering+FT component performs better individually than combined — the
Clustering+FT component achieves the highest average scalarised client reward of —1.53,
whereas the combined components yield a mean reward of —1.90 without fine-tuning.
In this case, it is likely that the individual clients’ preferences ultimately lead to very
different optimal models, with less benefit obtained from extensive cooperation between
different models. Separating clients early enough during the training process would then
be crucial, before a “compromise” model emerges that differs greatly from individually
optimal models. Otherwise, such a consensus model might be so different from the optimal
fit for an individual clients’ preferences that the latter becomes too hard to recover in
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training even if clients are separated at a later stage.

As a side remark, we note that this hypothesis is also supported when comparing the
results for the FedProx and FedAvg algorithm, discussed in Section 4.3.2, Table 4.1, for
this environment. The approach behind these two algorithms forces a high level of collabo-
ration between the clients, and does not lead to high overall results for this environment
when preferences are sufficiently different. Even fine-tuning does not generally deliver
improvements, likely because the at the end of training, the global consensus model is too
far distant from locally optimal models to reach.

Returning to the ablation study, we suggest that the clustering component without weighted
aggregation likely succeeds more quickly in separating very different models early during
the training process, with the cluster-mean model converging more definitively. This
separation appears not fully effective, as seen by the poor performance of the clustering
component without fine-tuning; yet it succeeds in enabling the training of models that are
sufficiently diverse that a single fine-tuning round can ameliorate these problems. The
weighted-aggregation component in isolation and the full FedPref algorithm appear slightly
less successful at separating diverse clients early during training, leading to consensus
models that do not improve with fine-tuning. In spite of this, variants of all three versions
succeed in outperforming the compared approaches under the Dirichlet distribution — see
Table 4.1.

Interestingly, the success of the individual clustering component over the FedPref algo-
rithm is reversed on DST, the other environment with a sparser solution space. Here, the
combination of clustering and weighted aggregation appears to encourage effective separa-
tion. In contrast, we observe significantly improved results for the combination of both
components over each component individually for the MO-LL and MO-HC environments,
both when comparing fine-tuning variants and between non-fine-tuning variants. For the
MO-Halfcheetah environment, we observe rather similar average client performances for
variants of all three configurations, with the FedPref-FT algorithm outperforming the other
configurations. Once again, fine-tuning slightly decreases performance for the clustering
component and the combined components, indicating that perhaps in these cases some
clients might have benefited from earlier separation. However, this effect is not strong
here. The results for the Continuous MO-Lunar Lander show a quite similar pattern to the
MO-LL environment, with the main difference being the relatively weaker performance of
FedPref-FT. In this case, the Clustering-FL component outperforms both FedPref variants.
We draw three general impressions from the ablation study:

e A variant of the FedPref algorithm performs better than its individual components
on three out of five environments, and results near to the highest score in the other
two cases.

e The success of each component appears related to the characteristics of the problem
being solved.

e The effect of a fine-tuning step may serve as a useful indicator of the effectiveness of
diverse clients’ cooperation within the FedPref algorithm.
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Table 4.2: Experimental results comparing the mean reward achieved by the individual
components of our algorithm.

MO-LL DMC DST MO-HC MO-LLec.
Clustering only + FT 27.27 013.9 -1.53 ¢0.8 0.95 03.8 2940.45 0982.4 28.24 09.7
Clustering only - FT 34.21 016.7 —4.27 7.1 0.55 3.1 3049.63 0683.1 34.58 015.4

Weighted agg. only + FT 17.70 09.8 —2.20 ¢0.9 —31.24 08.5 3044.93 ¢821.6 26.12 09.3
Weighted agg. only - FT 32.54 ¢21.1 —2.08 ¢1.1 —21.83 ¢13.6 2425.13 01490.2 34.36 c15.1
FedPref+FT (combined) 32.22 ¢12.0 —2.42 ¢1.7 4.41 01.8 2980.26 0826.8 32.17 07.4
FedPref-FT (combined) 37.27 ¢12.5 —1.90 1.2 1.21 03.6 3104.59 0782.5 32.91 ¢10.4
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Figure 4.9: Impact of the choice of topR parameter on average reward obtained by clients.
Left to right: results for MO-Lunar Lander, Deterministic Minecart, Deep-Sea Treasure, MO-
Halfcheetah and Continuous MO-Lunar Lander environments.

434 |  IMPACT OF TOPR PARAMETER AND SIMILARITY BOUND

We study the performance impact of the choice of two hyperparameters that are integral
to our algorithm: the parameter R for the topR operator, and the lower similarity bound
used in computing aggregation weights. The parameter R describes the proportion of
each model layer to be used by our metric in calculating similarity (see Equations 4.4
and 4.3, respectively, for the definitions of the topR operator and our similarity metric).
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Figure 4.10: Impact of the choice of minimum-similarity threshold on average reward obtained

by clients. Left to right: results for MO-Lunar Lander, Deterministic Minecart, Deep-Sea
Treasure, MO-Halfcheetah and Continuous MO-Lunar Lander environments.
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For an intuition on the meaning of R, consider that R describes the proportion of model
parameters to be compared when rating the similarity of two clients. The higher R is, the
more parameters are taken into account; for R = 1, all model parameters are compared,
recovering the “normal” cosine similarity metric. The minimum similarity bound is used
during the weighted aggregation step to include only models exceeding a given similarity
value in the aggregation.

The results nevertheless support the use of this modified similarity metric: the use of a
well-tuned topR parameter is shown to improve performance compared to the standard
metric that is recovered with R = 0 in four out of five studied environments, in some cases
quite significantly. For the MO-LL environment, the highest mean scalarised client reward
of 33.18 is obtained for R = 0.2, representing an improvement of approximately 7.6% over
the result of 30.84 for R = 0; the most successful configuration on the MO-LLc. environment
leads to a circa 4.2% higher mean reward. For the DST environment, the improvement is
even greater: from 2.52 for R = 0 to 3.76 for R = 0.8, an increase of roughly 49%.

The relative improvement for the MO-HC environment is somewhat lower, but it does
exist: a topR parameter of 0.4 shows roughly a 2.6% improvement over the plain metric,
from 2967.83 to 3043.55. From these observations, we conclude that a modification of the
plain cosine similarity metric for quantifying model similarity does have promise; however,
the high variance we observe during the sensitivity across all environments indicates that
the stability of such a metric leaves room for improvement.

The results for the minimum-similarity threshold (see Fig. 4.10) show commonalities across
all five environments, suggesting that thresholds lower than 0 are remarkably beneficial
to the learning outcome of our algorithm: the relative improvement in mean scalarised
client reward between a similarity threshold of 0 and the optimal discovered value ranges
from 13% for the MO-LLc. environment with threshold —0.4 to a full 296.8% improvement
for the DST environment with threshold —0.6. Indeed, it appears that this pattern is in
general quite stable, so fixing the minimum-similarity threshold to —1 even without tuning
this parameter is likely to lead to good results.

Though counter-intuitive at first glance, given the geometric interpretation of cosine
similarity, this outcome is quite reasonable in the context of our algorithm. Firstly, we note
that the purpose of our algorithm’s clustering strategy is to group those nodes into clusters
that can benefit from collaboration. Hence, improved results for a lower minimum-similarity
threshold indicate that this grouping is successful, as even relatively dissimilar clients
inside the same cluster improve with collaboration. Secondly, the fact that clients train
personalised and therefore different models means that some dissimilarity is induced by
definition of the metric, through the choice of the cluster-mean model as a reference point
in computing the cosine similarity.

4.3.5 | VALIDATION OF CLUSTERING STRATEGY

We validate the clustering strategy on all three environments by running FedPref on several
artificially constructed configurations where multiple clients share the same preferences.
We construct two types of configurations: one where preferences are distributed among
equal numbers of clients each (4 distinct preference weights, with each preference weight
held by 5 clients), and one where the number of clients varies for each preference (4 distinct
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preference weights, held by 2,3,6 and 9 clients, respectively). We observe how well the
clustering algorithm groups similar clients, and we study how the similarity between clients
develops during training. Due to scope constraints, we present only one such configuration
here; visualisations of other configurations are included in the supplementary material.
Fig. 4.11 shows client similarity values at selected steps of the training process on the
MO-Lunar Lander environment under the balanced preference distribution. (Note that,
for ease of visualisation, clients with the same preference weight are grouped together
by index.) The evolution of client clusters over the duration of the training process is
visualised in Fig. 4.12. In this illustration, clients with the same preferences are represented
as boxes of the same colour; boxes that form a connected bar represent a cluster. Note that
the relative positioning of boxes does not necessarily correspond to client index. We see in
the visualisation that client models initially develop individually, but varying preference
similarity is already reflected in the model similarity computed by our metric. At the
earliest visualised stage (after five aggregation steps; left-most image in Fig. 4.11), all
clients are still grouped together in a single cluster. Nevertheless, the weighted aggregation
strategy gives individual models the freedom to develop separately, yet also appears to be
successful in encouraging the aggregation of clients with the same objectives.

In the second image, at an intermediate stage of the training process, a split into multiple
clusters has occurred. The grouping of clients with the same preferences is preserved
across experimental runs, but multiple groups of such clients continue to collaborate at this
training stage, with different groups clustered together in different experimental runs. In
the instance visualised here, clients 1 —5 and 11 — 15 are all contained in the same cluster.
In the final image, close to the end of the training phase, we observe that the similarity of
the models obtained by clients with the same preferences is very high, while the similarity
to other models appears lower than before. This indicates that these clients have been
separated into individual clusters, and that the personalised models within these clusters
are converging; Fig. 4.12 confirms this impression. In this visualisation of clustering states,
we see that all sets of clients with the same preferences have been separated correctly by
the end of aggregation round 16.
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Figure 4.11: Mutual client similarity at different stages during a single experimental run on
the MO-LL environment. Left to right: client similarities after aggregation round 5, 14 and 26
of 28, respectively.
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Figure 4.12: Cluster states at different training stages during a single experimental run on
the MO-LL environment. Clients with the same preferences are represented as boxes of the
same colour.

44 | A DIFFERENT POINT OF VIEW: MULTI-OBJECTIVE
EVALUATION

Up to this point, we have considered the preference heterogeneity problem only from the
traditional client-level FL viewpoint, with the sole aim of optimising the performance of
each client according to its preferences. However, we note that a system-level view is also
particularly relevant in this preference-heterogeneous setting, and should be considered
in judging the performance of any algorithm designed to solve it. Recall that in this
setting, clients are solving a problem with multiple objectives, with each client’s preferences
describing the relative importance of each objective. The general aim of modelling a
problem with multiple objectives is to capture the inherent complexity of the real world,
allowing for the consideration of different, potentially conflicting influences. In solving
the problem for different preference weights, the assumption is that these preferences will
be met in a meaningful way, i.e. that different preference distributions will in fact lead
to substantially different trade-off solutions. Any algorithmic approach that fails to do
so arguably largely invalidates the premise for using multiple objectives in the first place.
Our algorithm endeavours to meet this underlying expectation, allowing client models to
diverge even while aggregating related models.

To evaluate this aspect of algorithmic performance, we propose to use standard multi-
objective metrics from the field of multi-objective optimisation (MOO) to evaluate the set
of solutions generated by all federated clients under the different preference distributions.
In this chapter, we focus on four common state-of-the-art metrics. Three of these metrics
were previously introduces in Chapter 3: the hypervolume [Zit99], sparsity [Xu20] and
inverted generational distance (IGD) [Coe05]. In addition to these metrics, we also report
the cardinality of solutions in this chapter. Cardinality is the number of solutions in a
given set that lie on the Pareto front.Recall that these metrics quantify different properties
of the solution set: sparsity measures the diversity of the solution set, IGD the convergence,
and the hypervolume metric a combination of both. A desirable set of solutions would
have low sparsity and IGD values and a high hypervolume.

In the remainder of this section, we demonstrate the evaluation of our experiments using
these metrics and discuss the results.
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4.4.1 |  EXPERIMENTAL EVALUATION USING MULTI-OBJECTIVE METRICS

We re-evaluate the same experiments presented and discussed in Section 4.3 under multi-
objective aspects. To the best of our knowledge, the performance of federated algorithms
under multi-objective aspects has not been discussed before; hence there are no obvious
additional baselines to consider for comparison. We note that in this setting, a main
challenge for federated system can be expected to lie in the need for solution diversity, as
client models trained in federation need to achieve some level of convergence to effectively
exchange information. Indeed, the classical FL baseline of a system of clients without
communication continues to provide a relevant challenge here, as non-cooperating clients
might be expected to achieve a high diversity of solutions by default. The four multi-
objective metrics are reported in Table 4.3 (Hypervolume), Table 4.5 (IGD), Table 4.4
(sparsity) and Table 4.6 (cardinality).

Equidistantly distributed preference weights. We first observe that a variant
of the FedPref algorithm generates or matches the highest cardinality, i.e. the number
of solution on the Pareto front, in three out of five experimental environments. For
example, in the Deep-Sea Treasure environment, the mean cardinality achieved by FedPref
is 8.0, meaning that of the 20 clients per federated system, on average 8 clients find
a distinct optimal trade-off solution. This stands in marked contrast to the non-PFL
algorithms and CFL, which find only 1 and 1.2 such solutions, respectively, or < 4.0 and
2.2 for the corresponding fine-tuned variants. These algorithms achieve higher cardinalities
in environments with more dense solution spaces, most notably MO-LL and MO-LLec.
However, these higher cardinalities are likely caused mainly by statistical differences in
model evaluations. The fine-tuning variants of these algorithms also yield higher cardinality
scores in many cases, as might be expected; yet these remain generally lower than the
highest scores. In the Deterministic Minecart environment, the mean cardinality of 3.2
obtained by the FedPref+FT algorithm is only beaten by the value of 3.3 of the CFL+FT
algorithm and the non-federated baseline, and only by a small margin. These results match
our observations of the success of each algorithm when considering average scalarised client
performance in Section 4.3.

The corresponding hypervolume results support the overall impression given by the

examination of cardinality values: higher cardinality values correspond to the higher
hypervolume values achieved for each experimental environment, though the overall ranking
does not translate exactly. For example, in the MO-Halfcheetah environment, where
the FedPref-FT and FedProx+FT algorithms obtain cardinality values of 6.9 and 7.0,
respectively, the FedPref-FT algorithm nevertheless yields a higher average hypervolume,
indicating that a solution set with higher diversity or convergence was found. A comparison
of sparsity and IGD results suggests the former explanation.
Another notable exception to this observed correlation between high cardinality and high
hypervolume occurs when comparing algorithms with their fine-tuning variants. Although
the fine-tuning step generally appears to yield more distinct optimal solutions, this does
not always translate to equally great improvements in hypervolume. This is likely because
new solutions obtained by fine-tuning do not diverge too far from others.

Uniformly distributed preference weights. On average, more than half of all
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federated clients solving the MO-LL, MO-HC and MO-LLc. environments with a variant
of the FedPref algorithm find a distinct optimal trade-off solution in all experimental
configurations. For the DST environment, which has only 10 discrete solutions in total,
the FedPref+FT algorithm consistently leads to the identification of more than 70% of
possible solutions. As for the previous distribution, a variant of FedPref achieves the
highest cardinality for the MO-LL, DST, and MO-LLc. environments, including the highest
overall cardinality of 13.7 for the MO-Lunar Lander. On the other two environments,
the number of trade-off solutions found for FedPref is again only slightly lower than
the highest achieved by any algorithm. The effects of adding a fine-tuning step to the
various algorithms appear similar to the those discussed for the equidistant preference
distribution. Similarly to previous observations, the number of optimal trade-off solutions
found appears to translate well to higher observed hypervolume values, with a variant
of FedPref accomplishing the highest rank in the same three environments as for the
cardinality. This indicates that the set of solutions found by the federated system executing
FedPref does have a high level of diversity, and that the comparably high sparsity values we
observe for these same configurations are likely due to greater spread of optimal solutions.
As a final observation, we note that in many cases, the FedPref algorithm yields more
distinct optimal trade-off solutions than the non-federated baseline, suggesting that PFL
can assist in effectively exploring the solution space and finding an even more diverse
solution set than non-collaborative clients.

Gaussian-distributed preference weights. For this distribution, finding a diverse
set of solutions appears to present a particular challenge, probably because preferences
are more likely to be more similar here, allowing clients to jointly exploit local optima
more successfully. With respect to the cardinality metric, we observe a similar pattern as
before, with a variant of the FedPref algorithm again obtaining or matching the highest
cardinality values in three out of five environments, and nearing the highest value in all
others. However, the hypervolume results are less decisive here than for the other two
distributions: FedPref does reach the highest hypervolume value on only three out of five
environments. However, on the MO-HC environment, the highest hypervolume score is
reached by the non-federated baseline, with FedPref following in second place, and this
ranking is only just reversed on the DST environment. It is likely that in this preference
distribution setting, the federated clients succeed more readily in collaborating, leading
to higher individual results, as seen in the analysis in Section4.3.2. The down-side of this
enhanced collaboration could be a loss of diversity, as indicated by the slightly higher
hypervolume values accomplished by the non-federated baseline, where clients do not
collaborate at all, in this case. Nonetheless, consideration of the corresponding sparsity
and IGD values shows that variants of FedPref yield lower results than the non-federated
baseline for both metrics. This indicates that the set of results found by FedPref is overall
more evenly distributed.

In conclusion, in analysing multi-objective metrics across all five environments, we
observe that the FedPref algorithm leads most consistently of all federated algorithms to a
diverse set of good trade-off solutions. A general challenge from a multi-objective viewpoint
is the lack of solution diversity brought on by the aggregation of client models. This is
most evident in the results of the FedAvg and FedProx algorithms, which find generally low
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numbers of distinct optimal trade-off solutions, even with the addition of a fine-tuning phase.
Despite the relatively high mean scalarised reward we have observed in the client-level
evaluation of the previous section, these results are arguably not very satisfactory from a
multi-objective point of view of the system. The compared personalised FL algorithms,
CFL and MaTFL, generally perform somewhat better, with variants of CFL in particular
achieving a relatively high solution diversity at times. This behaviour may stem from
the unbalanced clustering strategy of CFL, which we have previously remarked upon in
Section 4.3.2. However, unlike for FedPref, the performance of CFL is not consistent across
preference distributions and environments. As with the client-level evaluation, FedPref
proves to be the most adaptable federated algorithm of all those evaluated, both with
respect to different types of preference heterogeneity and multi-objective problems with
different characteristics.

4.4.2 |  ABLATION STUDY - MULTI-OBJECTIVE PERFORMANCE

In this section, we briefly revisit our previously discussed ablation study under multi-
objective aspects. The corresponding multi-objective metric results are shown in Table 4.7.
For four out of five experimental environments, the results quite clearly indicate that a
variant of the FedPref algorithm yields a better performance under multi-objective aspects
than either of its components in isolation. For the MO-LLc. environment, the optimal
values for three out of four metrics are obtained by the FedPref algorithm. For each of the
MO-LL, DMC, and MO-LLc. environments, a variant of the combined algorithm achieves
or matches both the highest hypervolume and cardinality, and in both cases also the lowest
IGD value. In combination, these results indicate that the solution sets obtained by the
respective federated systems do accomplish the highest diversity and convergence, and that
the elevated sparsity in these cases is simply a consequence of the overall wider distribution
of solutions. Results for the DST algorithm give a similar impression.

The results for the MO-HC environment follow a slightly different pattern: FedPref-FT

yields the highest hypervolume value in this case, but the best scores for the remaining
metrics are obtained by variants of the Weighted aggregation component. It appears that
this component in isolation achieves a higher convergence than the FedPref algorithm, at
the cost of a reduction in the diversity of solutions.
Finally, we note that the addition of a fine-tuning step at the end of the local training
phase generally does not greatly impact the multi-objective results in most cases. While
variants with fine-tuning tend to produce higher cardinalities (i.e. more optimal trade-off
solutions), this does not generally translate to improved results in the other metrics. A
brief fine-tuning phase is likely not sufficient to significantly increase the diversity of the
solution set; new trade-off solutions discovered during fine-tuning would tend to be very
similar to each other.
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Table 4.3: Hypervolume(T) metric for multi-objective solutions obtained by our proposed
FedPref algorithm, compared to MaTFL, CFL, FedProx, FedAvg and individual learning
without cooperation. Where indicated in the header, both the main value and the standard

deviation value have been divided by the given power.

MO-LL (-107) DMC DST (-10%) MO-HC (-10%) MO-LLc. (-107)
No comm. 175.54 o7.1 198.01 028.2 204.47 020.1 429.78 045.7 77.20 010.9
FedAvg 176.53 ¢7.6 90.12 060.3 88.89 ¢72.6 242.72 067.5 91.20 o5.1
FedAvg+FT 169.13 020.8 142.99 013.9 134.48 ¢53.6 410.93 023.2 94.55 09.7
FedProx 172.67 013.5 90.13 060.3 103.10 067.5 235.33 065.8 90.11 06.4
Dirichlet FedProx+FT 169.05 024.5 151.93 ¢18.1 147.67 053.5 419.97 ¢19.0 92.10 07.8
CFL 178.41 014.8 209.29 015.7 131.44 074.3 406.33 037.1 94.76 9.7
CFL+FT 173.04 014.4 206.50 024.3 172.20 026.7 395.06 039.6 92.26 7.8
MaTFL 163.81 014.6 86.38 036.7 214.25 018.3 299.03 049.5 80.16 o7.8
FedPref+FT 193.94 7.5 202.79 ¢29.7 220.36 010.3 421.43 ¢39.5 100.04 ¢5.5
FedPref-FT 201.97 ¢7.0 203.74 013.2 218.04 018.3 435.87 036.5 101.57 08.8
No comm. 156.00 025.3 204.43 013.2 216.56 013.8 424.79 053.5 53.73 013.0
FedAvg 69.10 048.6 29.80 00.2 89.88 073.3 235.81 031.0 78.96 09.6
FedAvg+FT 85.78 021.2 138.32 040.9 157.36 03.6 426.24 025.8 54.83 013.5
FedProx 46.44 038.5 29.85 00.1 74.04 074.0 247.38 032.7 77.25 010.9
Equidist. FedProx+FT 96.54 013.4 137.51 015.4 161.75 023.9 426.88 ¢31.8 50.86 c14.5
CFL 29.76 028.3 183.64 033.4 45.29 069.0 414.97 ¢31.5 80.58 017.8
CFL+FT 130.92 011.9 202.94 014.0 171.12 024.4 427.94 039.4 65.00 016.8
MaTFL 150.15 025.9 79.08 ¢36.0 200.99 025.8 290.91 041.9 58.93 012.8
FedPref+FT 166.37 019.1 197.45 027.6 222.37 08.5 442.63 018.4 74.28 05.8
FedPref-FT 182.90 011.4 199.28 ¢8.4 225.23 04.9 441.17 027.3 101.04 ¢6.7
No comm. 176.61 011.7 201.23 011.8 221.37 08.1 453.61 043.9 83.10 7.6
FedAvg 178.50 08.2 92.04 ¢58.6 99.25 065.4 220.48 095.6 90.14 ¢6.3
FedAvg+FT 177.79 013.2 126.71 043.0 149.97 058.5 402.24 ¢39.8 98.86 04.4
FedProx 181.00 010.7 69.89 053.2 133.89 044.7 222.09 083.4 89.06 06.6
Gaussian FedProx+FT 174.14 011.5 133.09 ¢31.0 143.09 015.2 398.41 041.5 96.28 04.8
CFL 187.52 6.2  204.03 023.4 97.56 082.0 413.57 028.5 91.74 05.2
CFL+FT 181.28 ¢7.8 215.13 013.3 159.97 019.9 437.62 027.5 92.08 ¢10.9
MaTFL 167.94 016.8 101.00 046.9 201.87 027.8 280.87 045.7 76.94 012.2
FedPref+FT 197.28 08.4 195.67 0¢38.2 215.89 ¢10.1 420.45 c47.7 101.23 ¢7.9
FedPref-FT  202.06 04.9 203.88 013.4 221.44 010.7 450.20 ¢25.0 100.21 7.0
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Table 4.4: Sparsity(]) metric for multi-objective solutions obtained by our proposed FedPref
algorithm, compared to MaTFL, CFL, FedProx, FedAvg and individual learning without
cooperation. Lower sparsity means that the mutual distance between solutions obtained by
the algorithm is lower. The metric has zero-value by definition if there is only one solution on
the Pareto front.

MO-LL (-102) DMC DST MO-HC (-10%*) MO-LLc. (-10%)
No comm. 68.97 094.1 2.00 00.8 27.60 08.6 488.85 0318.4 246.92 095.3
FedAvg 3.29 02.5 0.00 0.0 0.00 ¢0.0 7.75 018.7 27.71 ¢20.0
FedAvg+FT 64.07 ¢60.6 0.01 00.0 9.42 06.5  296.29 0104.7 477.85 0302.2
FedProx 2.43 01.6 0.00 ¢0.0 0.00 0.0 2.62 05.1 31.37 027.2
Dirichlet FedProx+FT 59.04 ¢47.5 0.23 00.4 16.70 016.0 278.82 ¢134.1 338.70 0269.5
CFL 1.47 1.0 1.03 0.5 34.29 072.5 341.84 0208.5 221.40 093.5
CFL+FT 85.21 0135.7 0.94 00.2 42.52 071.0 333.20 0145.3 334.66 0298.9
MaTFL 25.65 013.2 1.46 1.5 57.06 029.0 380.86 0398.7 247.25 ¢194.1
FedPref+FT 19.35 08.6 1.83 01.0 28.00 07.6 408.45 0167.6 194.61 088.7
FedPref-FT 19.38 0¢17.0 1.88 00.8 33.07 ¢7.9 517.10 0377.2 92.45 068.8
No comm. 200.89 0307.6 2.63 02.1 25.12 05.2 301.92 ¢126.3 513.09 0189.3
FedAvg 8.74 3.5 0.00 00.0 0.00 c0.0 3.43 07.9 31.79 09.5
FedAvg+FT 384.42 0162.3 0.47 ¢1.3 10.25 03.0 250.54 ¢79.1 991.11 0659.6
FedProx 5.31 1.9 0.00 ¢0.0 0.00 ¢0.0 33.23 060.2 24.54 025.5
Equidist. FedProx+FT 278.97 0159.3 0.02 00.1 17.59 ¢17.6 288.65 0144.8 814.88 0382.5
CFL 4.29 02.6 1.66 0.8 0.44 00.9 338.76 0139.4 512.27 ¢391.4
CFL+FT 626.89 0420.1 1.77 ¢0.7 20.79 ¢37.7 288.57 099.2 606.37 0383.7
MaTFL 121.98 ¢111.8 1.12 01.4 43.09 014.6 402.82 ¢327.8 630.16 0304.6
FedPref+FT 53.02 029.8 2.04 00.7 24.42 ¢5.1 336.65 099.4 728.32 ¢775.4
FedPref-FT 25.82 ¢11.3 2.35 00.5 23.85 04.8 337.47 0127.0 263.87 ¢179.2
No comm. 66.56 0105.2 2.03 00.7 33.23 010.8 490.86 0415.2 207.62 0154.5
FedAvg 1.87 0.7 0.00 0.0 0.00 ¢0.0 2.46 5.4 21.98 09.1
FedAvg+FT 86.31 087.5 0.12 00.3 32.64 053.0 225.45 0107.7 257.47 0164.4
FedProx 2.70 02.2 0.00 ¢0.0 0.00 ¢0.0 0.74 1.1 20.03 012.0
Gaussian FedProx+FT 82.10 ¢84.1 0.03 00.1 12.41 03.3 238.79 ¢124.2 266.19 ¢179.9
CFL 0.95 ¢0.9 1.28 01.1 29.23 087.0 443.66 0323.8 164.09 065.1
CFL+FT 24.34 011.2 0.86 00.1 25.57 072.5 247.99 0152.1 256.48 0201.6
MaTFL 132.91 ¢126.5 1.68 01.4 40.85 ¢17.0 327.88 0182.6 212.49 ¢91.3
FedPref+FT 21.57 011.8 1.76 ¢0.9 25.18 3.7 284.49 0141.6 259.21 0167.8
FedPref-FT  23.70 020.4 1.88 00.8 27.61 015.6 260.01 ¢108.0 123.25 060.7
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Table 4.5: Inverted Generational Distance (IGD, |) metric for multi-objective solutions
obtained by our proposed FedPref algorithm, compared to MaTFL, CFL, FedProx, FedAvg
and individual learning without cooperation. Lower IGD means that the obtained solution set
is closer to the “true” set of trade-off solutions.

MO-LL DMC DST MO-HC MO-LLec.
No comm. 45.42 c4.4 0.41 00.2 1.42 c1.0 851.67 0307.4 55.43 08.1
FedAvg 85.13 013.0 10.01 09.4 41.19 041.5 2737.53 0684.5 68.28 06.3
FedAvg+FT 57.25 ¢9.9 0.81 00.2 14.52 025.9 733.68 0210.4 60.43 014.2
FedProx 93.19 015.5 9.99 09.3 32.71 038.8 2773.36 0738.3 68.54 06.2
Dirichlet FedProx+FT 60.71 011.8 0.73 00.2 13.47 026.2 731.80 0259.4 57.40 08.5
CFL 106.68 015.7 0.22 00.1 23.57 034.2 804.38 0470.8 47.25 05.3
CFL+FT 51.05 06.2 0.19 ¢0.1 6.30 00.9 733.44 6213.2 51.04 03.6
MaTFL 44.64 04.9 1.01 00.2 1.93 060.8 973.75 0207.4 51.04 5.0
FedPref+FT 39.22 03.0 0.38 00.2 0.77 00.3 738.36 0183.2 47.86 06.7
FedPref-FT 47.24 7.5 0.37 00.2 1.09 00.9 770.74 06286.1 51.38 08.1
No comm. 57.24 09.4 0.40 00.2 0.81 00.4 539.53 0141.6 76.47 014.9
FedAvg 236.25 0115.2 19.38 00.2 41.13 041.5 2463.58 0263.7 76.65 06.5
FedAvg+FT 138.72 ¢29.5 2.63 05.5 4.83 0¢0.3 469.81 o77.6 73.82 015.0
FedProx 299.47 0121.7 19.33 60.1 49.63 042.3 2311.35 0574.5 83.29 ¢7.9
Equidistant FedProx+FT 121.49 016.4 0.91 00.3 4.91 01.2 542.68 0188.4 81.91 013.5
CFL 383.86 099.7 0.40 00.2 66.43 039.0 504.73 ¢131.9 57.72 ¢10.2
CFL+FT 87.04 08.7 0.35 ¢0.1 6.19 0.7 480.66 051.6 70.09 012.5
MaTFL 58.39 04.3 1.04 00.2 2.16 ol1.1 931.54 0291.1 65.97 cl11.4
FedPref+FT 50.17 03.2 0.42 00.2 0.59 00.3 536.04 096.4 58.35 04.3
FedPref-FT  48.80 06.8 0.46 00.1 0.48 00.2 540.33 0193.3 45.68 03.7
No comm. 42.80 03.4 0.39 ¢0.2 0.97 ¢0.5 663.02 0294.8 52.37 04.2
FedAvg 88.64 09.6 8.23 09.2 32.90 038.7 2853.54 0604.7 72.67 04.9
FedAvg+FT 56.38 011.2 0.89 00.3 13.71 026.1 817.40 0354.0 53.55 05.5
FedProx 86.44 017.1 10.17 9.3 15.74 025.4 2721.86 0595.6 69.02 07.5
Gaussian FedProx+FT 55.36 5.9 0.86 00.3 6.16 cl1.4 816.10 0236.0 53.48 07.8
CFL 105.42 012.4 0.27 00.2 40.89 041.7 694.61 0258.5 48.59 06.8
CFL+FT 47.16 c4.6 0.17 ¢0.1 6.59 00.6 925.00 0816.9 50.40 05.3
MaTFL 48.34 06.7 0.95 00.2 2.07 cl.4 919.70 0126.0 55.94 07.2

FedPref+FT 39.60 03.4 0.37 ¢0.3 0.71 00.3 637.25 0241.1 46.50 7.4
FedPref-FT 42.34 04.0 0.36 00.2 0.76 00.5 690.35 0361.6 50.02 09.0
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Table 4.6: Cardinality (1) metric for multi-objective solutions obtained by our proposed
FedPref algorithm, compared to MaTFL, CFL, FedProx, FedAvg and individual learning
without cooperation. Higher cardinality means that a higher number of distinct trade-off
solutions was found.

MO-LL DMC DST MO-HC  MO-LLc.
No comm. 12.20 1.2 3.30 00.8 6.70 01.1 5.40 00.8 11.60 ¢3.0
FedAvg 8.30 02.8 1.00 ¢0.0 1.00 0.0 2.90 o1.1 9.60 ¢2.2
FedAvg+FT 10.20 ¢1.3 1.10 ¢0.3 3.00 1.6 6.50 01.3 9.40 02.2
FedProx 9.30 02.4 1.00 0.0 1.00 0.0 2.90 0.5 10.20 02.6
Dirichlet FedProx+FT 10.70 62.0 1.40 0.5 3.40 ¢0.9 6.80 01.3 9.20 02.1
CFL 7.90 1.8 3.60 0.7 2.00 1.3 6.00 0.9 12.00 ¢2.9
CFL+FT 10.10 1.9 3.60 ¢0.7 1.90 00.7 6.00 o1.1 11.20 02.2
MaTFL 11.20 1.6 1.50 60.5 5.70 ¢0.9 5.00 ¢1.2 12.10 o1.1
FedPref+FT 13.70 01.8 3.40 ¢0.7 7.40 ¢1.0 5.80 01.2 12.50 02.1
FedPref-FT 13.30 03.1 3.30 ¢0.5 6.80 01.1 5.90 01.3 12.70 02.7
No comm. 9.30 1.3 3.30 00.5 7.40 01.0 6.40 o1.1 10.80 ol1.5
FedAvg 9.30 3.4 1.00 ¢0.0 1.00 0.0 2.90 c1.1 8.70 02.4
FedAvg+FT 7.20 01.5 1.20 ¢0.4 4.00 00.4 6.80 01.2 9.90 01.4
FedProx 9.90 ¢3.2 1.00 0.0 1.00 0.0 2.70 ¢0.9 9.40 02.9
1. FedProx+FT 8.40 61.9 1.10 ¢0.3 3.80 ¢0.9 7.00 ¢1.2 10.60 02.1
Equidistant
CFL 8.20 01.6 3.00 00.6 1.20 00.4 6.50 ¢0.8 12.00 02.5
CFL+FT 9.50 02.2 3.30 00.5 2.20 00.4 6.80 ¢0.7 10.00 02.1
MaTFL 9.00 ¢1.7 1.40 00.5 5.40 60.8 5.40 01.4 9.70 1.6
FedPref+FT 10.70 ¢1.3 3.20 ¢0.6 7.80 ¢1.0 6.50 ¢0.7 12.30 01.7
FedPref-FT 10.70 01.5 3.10 ¢0.3 8.00 0.8 6.90 ¢1.0 10.00 02.5
No comm. 12.20 01.5 3.20 00.4 7.10 00.7 6.10 01.2 12.00 3.3
FedAvg 7.60 1.5 1.00 0.0 1.00 60.0 3.00 60.4 9.40 02.8
FedAvg+FT 10.10 02.4 1.20 ¢0.4 3.40 1.1 6.70 0.6 8.90 ¢3.7
FedProx 9.10 03.4 1.00 ¢0.0 1.00 00.0 3.90 01.4 11.90 02.6
Gaussian FedProx+FT 10.80 ¢1.8 1.10 ¢0.3 3.00 ¢1.0 6.80 ¢1.3 10.00 ¢3.0
CFL 6.90 ¢3.0 3.40 00.8 1.20 00.4 5.50 1.6 11.80 02.6
CFL+FT 12.00 ¢2.5 3.90 0.3 1.80 00.6 6.70 01.3 11.20 02.3
MaTFL 11.70 1.7 1.70 60.6 5.80 ¢1.2 5.10 1.1 11.90 02.1

FedPref+FT 12.60 ¢2.0 3.30 00.8 7.10 ¢0.5 6.30 01.1 11.80 02.4
FedPref-FT 12.50 02.2 3.30 ¢0.5 7.80 ¢1.3 7.00 1.1 10.70 01.5
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Table 4.7: Experimental results comparing multi-objective metrics obtained by the individual
components of our algorithm.

Hypervolume 1 Cardinality T Sparsity | IGD |
MO-LL 187.16 ¢11.1(-107) 13.70 02.1 17.12 ¢6.5(-102) 42.12 4.3
Cluster- DMC 174.08 016.7 2.60 00.5 1.17 00.2 0.37 0.1
. DST 211.92 024.9(-101) 7.20 01.2 28.99 o11.5 1.47 01.2
ing+1"T MO-HC 417.69 ¢51.5(-10%) 5.90 ¢1.1  434.17 ¢175.2(-10*) 819.40 5270.3
MO-LLc. 97.95 06.4(-107)  12.20 ¢3.1  242.55 ¢153.5(-101) 50.27 5.8
MO-LL  194.61 o7.6(-107) 11.70 02.9  19.35 014.5(-102) 49.28 011.5
DMC 166.12 ¢30.5 2.70 00.8 1.46 00.8 0.43 00.2
Clustering-FT DST 222.85 0'4.9(-101) 6.80 1.3 43.30 033.4 0.99 00.8
MO-HC 411.80 041.3(-10%) 6.00 01.4 500.84 0373.0(-10*) 810.57 0276.1
MO-LLc. 97.22 ¢10.6(-107)  11.30 02.8  158.75 0185.1(-10') 54.90 56.7
MO-LL 175.09 ¢14.6(-107) 12.40 01.9 77.43 ¢95.1(-102)  50.04 6.2
. DMC 145.41 028.5 2.30 0.5 8.63 018.2 0.74 0.2
Weighted DST 180.06 027.7(-10') 4.10 01.3  21.83 023.5 4.02 01.5
age.+FT MO-HC 426.41 620.7(-10%) 6.60 01.2  269.32 0107.9(-10%) 679.38 0205.9
MO-LLc. 98.90 04.7(-107) 10.40 02.0 285.12 0145.8(-10') 50.11 04.2
MO-LL 186.64 ¢13.9(-107) 8.80 02.7  5.86 07.2(-10%) 75.88 016.7
Weighted DMC 59.68 029.9 1.10 00.3 0.18 ¢0.5 1.11 00.2
DST 157.11 022.6(-10') 2.20 01.2 12.85 014.2 5.98 01.8
age-F'T MO-HC 300.40 0110.3(-10%) 7.20 01.2  202.30 0:311.4(-10%) 1461.76 ¢522.8
MO-LLc. 93.47 07.7(-107) 9.40 3.5 51.86 045.9(-101) 64.97 04.9
MO-LL 193.94 0'7.5(~1O7) 13.70 1.8 19.35 0'8.6(-102) 39.22 ¢3.0
DMC 202.79 029.7 3.40 ¢0.7 1.83 ¢1.0 0.38 0.2
FedPref+FT DST 220.36 ¢10.3(-10') 7.40 01.0 28.00 7.6 0.77 0.3
MO-HC 421.43 0’39.5(~1O4) 5.80 1.2 408.45 0167.6(~104) 738.36 0183.2
MO-LLc. 100.04 ¢5.5(-107)  12.50 02.1 194.61 088.7(-10') 47.86 06.7
MO-LL  201.97 07.0(-107)  13.30 03.1  19.38 ¢17.0(-102)  47.24 ¢7.5
DMC 203.74 013.2 3.30 0.5 1.88 00.8 0.37 ¢0.2
FedPref-FT DST 218.04 ¢18.3(-10') 6.80 o1.1 33.07 07.9 1.09 ¢0.9
MO-HC 435.87 036.5(-10%) 5.90 ¢1.3 517.10 0377.2(-10%) 770.74 0286.1
MO-LLc. 101.57 0'8.8(-107) 12.70 02.7 92.45 068.8(-10%) 51.38 08.1
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45 | SUMMARY AND OUTLOOK

In this chapter, we have discussed a first preference-based multi-solution algorithm for
federated multi-objective learning. In Section 4.1, we have presented the concept of
preference heterogeneity and the motivation for choosing a personalised design for the
federated algorithm. This algorithm, based on a combination of similarity-based recursive
clustering and weighted aggregation, was discussed in Section 4.2. This algorithm preserves
the privacy of clients: it is capable of functioning using only the respective client model
updates; no further information about client objectives is required.

We have validated the performance of our algorithm on multiple and varied problems and
preference distributions, comparing it to classical benchmarks as well as other heterogeneity-
mitigating algorithms. We have analysed the results from two different points of view:
First, we have considered the traditional client-centric view in Section 4.3, demonstrating
that our algorithm outperforms the alternatives in many cases in terms of mean client
performance, and represents a reliable choice in all others. Further experiments were
carried out to study the characteristics of the algorithm.

In addition, we have discussed a multi-objective view of the federated system in Sec-
tion 4.4, analysing the performance of the FedPref algorithm under multi-objective aspects.
Our results show that, while the algorithm does not currently explicitly enforce multi-
objective characteristics, it nevertheless performs well on several common multi-objective
metrics. These results, too, persist across different types of problems and heterogeneity
distributions, in contrast to the compared algorithms.

In the following chapter, we discuss the construction of additional benchmarking problems
for the federated multi-objective setting to validate FMOL algorithms on more commonly
used types of problems.
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Progress in FMOL critically depends on benchmarks that represent genuine conflicts
between objectives. Existing benchmarks are primarily based on multi-task classification
problems, where tasks can often be optimised jointly without inherent conflict, as we
demonstrate in this chapter. As a result, they fail to represent the full spectrum of
difficulty in multi-objective problems, limiting their utility for evaluating FMOL algorithms.
Federated Multi-objective Learning has only recently emerged as a dedicated direction of
research, with relatively few works exploring general solution algorithms [Ask24; Har25a;
Yan23b]. To the best of our knowledge, the benchmarking of FMOL algorithms has not
yet been explicitly addressed in the literature. In the absence of dedicated benchmarks, a
common practice in the Federated Learning domain is to re-purpose existing ones from
the centralised setting. In this vein, several works on FMOL [Ask24; Yan23b] employ
Multi-Task datasets, originally designed for benchmarking centralised multi-task learning
(MTL) and multi-objective learning algorithms, to evaluate their methods.

One of the most commonly used datasets, both in federated and non-federated settings,
is Multi-MNIST [Senl8]. Multi-MNIST is constructed by combining two overlapping
MNIST digits at an offset into a single image and concatenating the associated labels
into an ordered sequence. The two tasks consist of classifying the left-most and right-
most digit, respectively. Similar datasets constructed analogously include Multi-Fashion
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[Lin19], combining two Fashion-MNIST images; Fashion-MNIST [Lin19], combining samples
from MNIST and Fashion-MNIST, respectively; and CIFAR-MNIST [Cho20], combining
CIFAR10 and MNIST images. In addition to such newly constructed datasets, pre-existing
multi-label classification benchmarks such as the CelebA dataset [Liul5] have also been used.
In such works, straightforward learning approaches demonstrated an apparent trade-off
between tasks.

A handful of works use other types of multi-objective problems for validation. KINOSHITA
et al. [Kin24] focus on solving unsupervised multi-objective optimisation problems such
as clustering, which does not readily extend to general FL scenarios. HARTMANN et al.
[Har25a] use existing multi-objective reinforcement learning (MORL) benchmarks. While
these represent problems that have definite, intuitively verifiable inherent trade-offs, se-
quential learning problems remain understudied in FL and thus should not be considered
generally representative of the problem space.

Finally, some works also confront domain-specific or otherwise more narrowly defined prob-
lems that are multi-objective, without considering the general applicability. Fair federated
learning is a line of research focused on ensuring fairness both between clients [Hu22a;
Ju24], and in the resulting model [Meh22]. Though this abstraction is not remarked upon,
the latter problem is multi-objective, as fairness and accuracy are known to conflict on
biased datasets. None of these domain-specific problems present an immediately compelling
alternative to the established MTL problems for general benchmarking purposes. However,
we argue in the next section that the sole reliance on MTL problems is nevertheless
suboptimal, as this class of benchmarks is likely not representative of the full difficulty of
FMOL.

This chapter makes three key contributions:

e« Benchmark analysis: We show that widely used multi-task benchmarks fail to
exhibit the expected trade-offs under federated settings, even when applying simple
methods such as FedAvg.

e Fairness-based benchmarks: To address this limitation, we introduce an alterna-
tive class of FMOL benchmarks built upon well-established fairness metrics from the
fair ML literature. These benchmarks naturally encode conflicting objectives while
remaining simple and flexible to construct and apply.

e Empirical validation: Through experiments with both baseline and state-of-
the-art FMOL algorithms, we demonstrate that fairness-based benchmarks reveal
genuine multi-objective behaviour, thereby providing a more meaningful test-bed for
algorithmic evaluation.

51 | MUuLTI-TASK BENCHMARKS IN FEDERATION

In this section, we demonstrate the observation that served as the motivation for this work:
that in certain natural settings, solving multi-task problems in federation appears to reduce
or remove the conflict between individual tasks, simplifying the problem considerably from a
multi-objective perspective. Conceptually, the difficulty of solving multi-objective problems
arises from conflict between the individual objectives, where optimising one objective
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Figure 5.1: Results for non-federated (left) and with federated experiments (right) on
Multi-MNIST with heterogeneous fixed preferences. Non-federated results show an apparent
trade-off between the two objectives, but federated results do not. Federated results outperform
non-federated ones, despite the forced collaboration between clients with different objective
preferences.

reduces the utility of another. To accurately assess the performance of multi-objective
algorithms, benchmarking problems should reflect this challenge. In some domains, the
inherent conflict between objectives is immediately obvious. For example, a route planning
algorithm for an autonomous vehicle may be expected to both minimise fuel usage and
minimise the travel time to a given destination. Both objectives cannot generally be satisfied
at the same time, as travelling faster consumes more fuel. In other domains, however,
determining whether conflict between objectives is inherent or not is much more difficult.
This is the case for the classification problems that are most often considered in FL. In
multi-task benchmarks, non-federated experiments have shown a trade-off between the two
objectives when assigning different fixed preferences to each, indicating that improvement
in one objective harms the other. Yet it is not immediately clear that this is caused by
an inherent conflict between the objectives. The model architecture used to solve such
problems typically consists of a shared block, followed by individual model segments for each
task. Given this architecture, and the independent nature of the two parallel classification
tasks, there is no apparent reason why a sufficiently expressive network should not be able
to separate the tasks and so satisfy both. Indeed, we speculate that the observed trade-off
behaviour may be a limitation of the learning algorithm caused by a lack of exploration of
the parameter space, not a characteristic of the underlying learning problem. While the
general absence of a conflict in MTL benchmarking datasets is difficult to prove, we give a
motivating example that shows the apparent collapse of the Multi-MNIST benchmark in a
particular federated use case: the preference-heterogeneous setting.

Preference heterogeneity has not yet received much attention in the literature, but is
nonetheless a natural setting. It may occur in any use case where clients are self-interested:
when training personalised user recommender systems, foundation models on proprietary
data across multiple enterprises, or on-line route planners on autonomous vehicles. In
this setting, each participating client has its own preferences regarding the importance of
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individual objectives. On problems with conflicting objectives, we would expect this to
cause complications in the federated aggregation step: diverging local training trajectories
may be difficult to reconcile. However, we observe a different result: In our experiments, the
non-federated baseline does reproduce a set of trade-off solutions, or Pareto front, but the
FedAvg algorithm yields better results with far less apparent trade-off. FedAvg is not known
for handling heterogeneity well; yet this type of heterogeneity on this problem appears to
improve the output significantly, removing conflict between objectives. We speculate that
federated preference heterogeneity has the same effect as intentionally varying preference
weights during the learning process, an approach that is employed intentionally in the
design of more sophisticated algorithms solving (non-federated) MTL. A notable example
is [Sen18], where such an algorithm generates a (single, arbitrary) solution that dominates
a Pareto front generated with fixed weights — similar to what we observe here. From these
considerations, we conclude that standard MTL benchmarks may not be a challenging
benchmark for FMOL algorithms. While the general absence of a conflict in this and other
MTL benchmarking datasets is difficult to prove, we consider this argument compelling
enough to propose the use of additional classes of benchmarks in combination with MTL
datasets. In the remainder of this chapter, we propose a different class of multi-objective
(multi-criteria) problems as benchmarks and, using these problems, demonstrate that MOO
remains a challenge in federation.

5.2 | DESIGNING ALTERNATIVE BENCHMARKS — GROUP
FAIRNESS

Based on the observations outlined in the previous section, we argue that more challenging
benchmarking problems are needed to comprehensively evaluate the performance of FMOL
algorithms. To address this need, we introduce a new class of benchmarks constructed
by adapting established problems from the field of fair machine learning into generally
applicable problem formulations. This section first outlines key concepts in fair machine
learning before detailing our proposed benchmarks.

5.2.1 | BACKGROUND: FAIRNESS IN MACHINE LEARNING

Many real-world datasets, particularly those involving demographic data, are known to
contain imbalances that reflect underlying cultural or societal biases. Examples include
racial disparities in criminal sentencing decisions, gender-based differences in income deter-
mination, and age-related biases in health records. Training prediction models on such
datasets risks propagating these biases, leading to discriminatory behaviour in automated
decision-making systems. A well-known example is the COMPAS dataset used for re-
cidivism prediction, which has been shown to systematically discriminate against Black
defendants [Ang22].

Bias mitigation has been extensively studied, with existing approaches typically categorised
into three families: debiasing the underlying dataset (pre-processing), preventing the learn-
ing of biases during training (in-processing), and modifying the output of the trained model
to enhance fairness (post-processing) [Meh21]. Of particular interest here are in-processing
methods that can formulate the learning process as a multi-objective problem, introducing
fairness as additional objectives. This formulation serves as the foundation for our proposed
benchmarks.
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Fairness in machine learning has been formalised through various metrics, often formulated
with respect to a binary sensitive attribute, quantifying disparities in predicted outcomes
between subpopulations [Meh21]. A classifier is considered perfectly fair if outcomes
are statistically indistinguishable across these groups. Such group fairness metrics in-
clude demographic parity [Dwol2; Kusl7], equality of opportunity [Harl6], and equalised
odds [Har16].

Demographic parity (DP) requires the overall probability of a positive classification
outcome, such as loan approval, to be equal between the in-group and the out-group. Let
X be the set of input data, Y the set of labels and S the labels of sensitive attributes. In
formal terms, a classifier satisfies demographic parity if, across all predictions,

P(j=1s=0) = P(j = 1|s = 1), (5.1)

where 3 is the binary predicted outcome, and s € S is the sensitive attribute.
Equality of opportunity (EO) demands equal probabilities of true positive outcomes
between groups, i.e.

PG=1ls=0y=1)=P@G=1]s=1y=1), (5:2)

where y € Yis the ground-truth label of a given sample.
Equalised odds (EOD) requires equal probabilities of true positive as well as false positive
outcomes across groups:
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For practical use as a fairness score on classification data, these definitions can be refor-
mulated as the stochastic difference between the left- and right-hand side of the equation,
e.g. for DP, we formalize the Difference of Demographic Parity (DDP) as follows:

DDP(X,Y, S, f) = —

> [f(z) > 0.5] - > [f(z) > 0.5], (5.4)
Trs=0 zeX Ms=1 zeX
s=0 s=1
where f: X — [0,1] is the predictor, [f(z) — 0,1] is the binary classification decision and
n,_, is the number of samples with sensitive attribute value s € {0,1}. The existence of
fairness impossibility is a well-known result in fair machine learning, stating that certain
fairness concepts, including demographic parity, cannot be jointly optimised with error-
based metrics on biased datasets. A full overview of existing fairness metrics, together
with a comprehensive discussion of theoretical and empirical incompatibility results, can

be found in [Pes22].

5.2.2 | FORMULATION OF BENCHMARKING PROBLEM

Using these well-established metrics, we construct straightforward additional benchmarks
for FL. We focus on ease of implementation and evaluation, discarding more subtle design
choices in favour of simplicity.
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5.2.2.1 | OBJECTIVES

The stochastic formulation of the fairness metrics described above is not differentiable,
and as such not well-suited for direct use as a loss function in stochastic gradient descent.
Various relaxation approaches have been proposed, e.g. [Cel19; Loh20], often in combination
with specific solution algorithms such as constraint-based optimization. Two other works,
focused specifically on fair federated learning, side-step the problem by using fairness
metrics only as a secondary scoring mechanism[Meh22] or optimization constraint [Cui21].
None of these formulations generalises readily into an abstract multi-objective problem that
admits different solution approaches, such as stochastic multi-gradient descent. Instead,
we propose to use a recently introduced relaxation method that yields a differentiable
approximation of the metric [Pad21], directly usable as a loss function. The hyperbolic
tangent relaxation is straightforwardly applicable to most standard group fairness metrics,
including those presented here, is model-agnostic, and can be be used for multiple metrics
simultaneously. This gives us scalability, allowing the design of many-objective problems,
and flexibility in choosing the local learning approach. Under the tanh relaxation, the
prediction f(z): X — [0,1] of the classifier is relaxed to

f(z) = tanh(c - max(0,2f(x) —1))/2+4 0.5, (5.5)

where ¢ € R regulates the trade-off between the precision of the approximation and the
behaviour of the gradient!. The relaxed prediction is then used in place of the binary
result in computing the chosen fairness metric, e.g. for the DDP metric:

Z fla Z fla (5.6)

L OzEX L 11:6X

DDP(X,Y,S, f) =

We use the relaxed gap metric for one or more fairness metrics as individual objectives in a
multi-objective problem, combined with the accuracy objective. (For the accuracy objective,
an appropriate loss function for the learning problem is used.) Note that many fairness
benchmarking datasets have more than one potentially sensitive attribute, e.g. gender and
race, with attributes mutually independent. This provides a straightforward avenue for
the construction of problems with more than two objectives. Similarly, multiple different
fairness metrics can be applied simultaneously as separate objectives, with various group
fairness metrics known to mutually conflict [Cas22].

Another benefit of this fairness formulation is flexibility w.r.t. the local learning strategy.
Some FMOL algorithms specify a local learning algorithm, e.g. multi-gradient descent
[Ask24; Yan23b]; others that are based on model similarity, e.g. [Har25a], do not. This
formulation of the fairness problem is equally accessible to all these algorithms, and
even allows the testing of algorithms not specific to the setting, e.g. the FedAvg baseline
algorithm [McM17d].

5.2.2.2 | DATASETS

A great number of different benchmarking datasets in varying size and shape exist in the
domain of fair machine learning. All such datasets that contain sensitive attributes can

1 This definition differs slightly from that given in the reference paper, which was based on predictions in
the range of [-1, 1].
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Table 5.1: Selection of common benchmarking datasets in the fair machine learning domain,
all usable with our proposed formulation as drop-in benchmarks for FMOL algorithms.

Dataset Description Sensitive attrs.
Adult Income [Bec96]  Demographic data, predicting binary income class Gender, Race
Law School [Wig98] Demographic and academic data, predicting bar passage Gender, Race
Credit Default [Yeh09] Demographic and financial data, predicting credit card default Gender, Age
Compas [Ang22] Demographic and criminal history data, predicting recidivism Race

CelebA [Denl9; Liul5] Multi-label image classification of faces Gender
H[eélgigle} Health [Gol11] Demographic and health data, predicting hospitalization Age

be used with the loss functions defined here. The vast majority is based on real-world
data collected for other purposes, with underlying biases identified by later research. This
is an advantage for benchmarking, as datasets represent tangible and realistic use cases,
many with obvious relevance to the federated setting. Though this real-world origin can
also present challenges, such as flawed or incomplete data, many frequently used datasets
are available in cleaned form. We list a selection of commonly used datasets in Table 5.1.
For a more comprehensive overview of datasets we refer to the appendix of the survey by
PESSACH et al. [Pes22]; a second survey [Le 22] contains a particularly detailed description
of several datasets.
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Figure 5.2: Results of different algorithms on a selection of benchmark problems for accuracy
and equality of opportunity (top row) and accuracy and demographic parity (bottom row). All
clients were assigned the same preferences during a run, with 10 runs performed on preferences
from (0., 1.0) to (0.9,0.1), modified by steps of (+0.1,—0.1). Each point represents the mean
client output for a single run, with the Pareto fronts across all runs reported for each algorithm.
All reported fairness metrics are inverted for ease of visualization, such that 1 corresponds to

perfect fairness.

53 | EXPERIMENTS
We demonstrate the validity and usability of the proposed class of fairness benchmarks by
constructing ten bi-objective example problems, combining three different fairness datasets
with a total of five sensitive attributes with two different fairness metrics. We select three
common and readily available fairness benchmarking datasets:

e UCIT Adult: Data extracted from the 1994 US Census database. Using demographic
information to predict whether a person’s income exceeds $50,000 per year. The
sensitive attributes used in our experiments are gender and race (binarised into white
and not white).
Law School: Data on US law students between 1991-1997. Using demographic

information and earlier test scores to predict whether a candidate passes the bar.

Sensitive attributes used are binarised race and gender.

Credit Card Default: predicting from personal information and credit card history
whether a bank customer will default on their next credit card payment. The sensitive
attribute is the gender of the customer.

We use accuracy as one objective metric, and either the difference of demographic parity
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(DDP) or difference of equality of opportunity (DEO) as fairness metric to construct two
distinct bi-objective problems on each dataset-attribute combination, defining the fairness
loss as described in the previous section and the accuracy loss as binary cross-entropy with
logits.

On these benchmarks, we run four representative FL algorithms: FedProx, CFL, FedCMOO,
and FedPref. FedProx is a standard baseline algorithm performing centralised aggregation,
with some tolerance for client heterogeneity [Li20a]. CFL is a clustering-based algorithm
that generates personalised client models [Sat19]. Though originally designed for settings
with incompatible client data, the adaptive clustering strategy may be applicable for
multi-objective heterogeneity as well. FedCMOO is a recent algorithm designed specifically
for federated multi-objective learning [Ask24]. We implement the FedCMOO-Pref variant,
equipped to handle homogeneous objective preferences. In contrast, FedPref, another
recent FMOL algorithm, is intended specifically for federating preference-heterogeneous
clients [Har25a]. Finally, we also run the standard non-federated baseline. All algorithms
are tuned via grid search, with details reported in the appendix.

We test two natural and distinct scenarios for federating multi-objective problems. First,
we solve a multi-objective problem in collaboration between clients that all share the
same objective preferences. Then, we run the setting where all clients have individual,
heterogeneous objective preferences. The experiments reported here are run on systems of
10 clients; the appendix includes further experiments on up to 50 clients.

5.3.1 | HOMOGENEOUS PREFERENCES

This setting corresponds to the multi-objective equivalent of the most common focus in
FL, where clients collaborate to train a single global model that generalises over all data
available in distribution. To explore the multi-objective performance of algorithms on
this benchmark, we generate a set of 10 equally-spaced preference weights. We run each
benchmarking problem 10 times, once for each preference weight, and report the mean
client results for each run. Following standard practice from multi-objective optimization,
we compute the Pareto front of solutions per algorithm, and report the hypervolume metric
for each. We also show the minimum and maximum values found for each objective and
algorithm in the appendix, illustrating the spread of results.

Fig. 5.2 shows the Pareto fronts obtained for six of the benchmarking problems — three
optimising the DEO fairness metric, and three the DDP metric, with the corresponding
hypervolume values reported in Tables 5.2 and 5.3. A trade-off between the accuracy
and fairness objective is readily apparent in all six plots, with different performances
by the tested algorithms on different datasets. Nevertheless, some general observations
can be noted: in almost all cases, all federated algorithms outperform the non-federated
baseline. (An exception is the DDP metric on the Law School dataset, where the single
solution reported for the baseline is most likely an outlier that did not converge. Statistical
noise is a challenge for these datasets that is discussed in more detail at the end of this
section.) The FedProx algorithm performs relatively well in this setting, indicating that,
at least in the absence of objective heterogeneity, the basic algorithm is capable of finding
some appropriate trade-off solutions. The other federated algorithms all show mixed
performances: in Fig. 5.2(a) and Fig. 5.2(c), FedCMOO notably explores sections of the
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Pareto front discovered by no other algorithm. A similar tendency, though less successful,
appears in the Adult dataset with the DDP metric (Fig. 5.2(d)). The increased exploration
range may be explained by the design of FedCMOO, which adaptively adjusts the initial
objective preferences during the training process. The FedPref algorithm discovers at least
one Pareto-dominant solution in five cases, but appears occasionally very limited in its
exploration of the Pareto front (see e.g. Fig. 5.2(a) and 5.2(e)). It is possible that the
clustering mechanism of the algorithm is counterproductive in this homogeneous setting,
where no obvious groupings of clients exist. A similar issue may be limiting the performance
of the CFL algorithm by separating clients where no inherent incompatibility exists. Finally,
it should be noted that these results may not represent the true potential of each algorithm.
In a thorough multi-objective evaluation of the algorithms, a heuristic would normally
be employed to search the space of preference weights to generate a balanced Pareto
front. In this work, intended mainly to demonstrate the usability of the proposed class
of benchmarks, the exploration was instead restricted to a predefined set of preference
weights.

5.3.2 | HETEROGENEOUS PREFERENCES

This second setting represents a use case with high heterogeneity, where each client in the
federation has individual preferences. Such a setting is commonly connected to Personalised
Federated Learning (PFL) approaches, where the focus of the algorithm is shifted from
generalised global performance to individual client performance. Instead of generating a
single global model, the traditional aggregation approach is modified to yield a separate
personalised model for each client, fitted to that client’s unique characteristics.

We run the same selection of algorithms as in the previous experiments. As some of these
algorithms are not designed to generate personalised client models, we have included the
option of a single fine-tuning step at the end of the training phase in the hyperparameter
tuning. 10 preference sets were generated uniformly at random and submitted to each
algorithm. We visualise the results in Fig.5.3 and report the corresponding hypervolumes
in Tables 5.4 and 5.5, with additional results, including for a greater number of clients,
reported in the appendix. Unlike in the homogeneous setting, we do not average the results
for each run, but instead consider the individual client solutions. Due to space limitations,
the min-max analysis is once again included in the appendix.

We observe that the FedProx algorithm performs notably worse in the heterogeneous
setting, particularly in experiments with the DEO metric — see e.g. its performance on the
Adult dataset (Fig. 5.3(a)), where it is outperformed even by the non-federated baseline.
This is consistent with our expectation that algorithms with centralized aggregation would
struggle in preference-heterogeneous settings with conflicting objectives. The FedCMOO
algorithm, too, is not designed for this setting, and perhaps has difficulties in reconciling
incompatible clients. FedPref and CFL, the personalized algorithms, both do better in
this setting. For both the homogeneous and the heterogeneous setting, we also observe
that the behaviour observed on the different datasets is quite consistent as the number of
clients increases, as seen in the additional results reported in the appendix. Finally, we
note that the DDP metric generally appears more difficult to solve than the DEO metric,
with fewer points discovered on the Pareto front, and a tendency for those points to be
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extreme. The trade-off between DDP and accuracy may be more difficult to regulate, or
learning trajectories diverge earlier, allowing less time for collaboration between clients.
This hypothesis may explain why even the more successful FL algorithms struggle to
outperform the non-federated baseline in Fig. 5.3, and why there is relatively little diversity
in the Pareto fronts discovered in the homogeneous setting in Fig.5.2.
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Figure 5.3: Results of different algorithms on a selection of benchmark problems for accuracy
and equality of opportunity (top row) and accuracy and demographic parity (bottom row).
Clients were assigned heterogeneous preferences during each run, generated uniformly at
random but the same across algorithms. Each point represents the output of a single client,
with the Pareto fronts across all runs reported for each algorithm. All reported fairness metrics
are inverted for ease of visualization, such that 1 corresponds to perfect fairness.

Table 5.2: Hypervolumes of global performance results for accuracy and DEO on homogeneous
preferences. Higher is better (Fairness metrics are inverted, as in the results figures). Only
results from the algorithm-specific Pareto front are reported (see also Fig. 5.2)

Accuracy - DEO
Data - Sensitive Attr. | FedProx CFL  FedCMOO FedPref no comm.
Adult - Gender 0.701 0.687 0.676 0.696 0.678
Adult - Race 0.735 0.719 0.730 0.726 0.721
Law School - Gender 0.882 0.821 0.919 0.836 0.796
Law School - Race 0.703 0.742 0.689 0.744 0.667
Default - Gender 0.707 0.675 0.724 0.720 0.680

Finally, a comparison of the visualised Pareto fronts with the corresponding hypervolume
and min-max values reveals an interesting insight: while the potential values of the objective
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Table 5.3: Hypervolumes of global performance results for accuracy and DDP on homogeneous
preferences. Higher is better (Fairness metrics are inverted, as in the results figures). Only

results from the algorithm-specific Pareto front are reported (see also Fig. 5.2)

Accuracy - DDP

Data - Sensitive Attr. | FedProx CFL FedCMOO  FedPref no comm.
Adult - Gender 0.763 0.788 0.754 0.761 0.805
Adult - Race 0.799 0.792 0.764 0.793 0.796
Law School - Gender 0.946 0.938 0.920 0.938 0.944
Law School - Race 0.911 0.944 0.945 0.928 0.940
Default - Gender 0.764 0.769 0.651 0.760 0.765

metrics cover the same interval, in practice the trade-off between the objectives plays
out in different magnitudes on the two axes. Hence e.g. the highest overall hypervolume
on the Adult dataset with gender as the sensitive attribute in Table 5.5 is achieved by
the no-communication baseline, even though it does not appear obviously superior in the
illustration in Fig. 5.3(d). This imbalanced magnitude of metrics presents a challenge that

is often encountered in the real world. As such, there is use in evaluating the ability of

algorithms to cope with such problems, where the magnitude of objective gradients may

differ.

Table 5.4: Hypervolumes of global performance results for accuracy and DEO on heterogeneous
preferences. Higher is better (Fairness metrics are inverted, as in the results figures). Only

results from the algorithm-specific Pareto front are reported (see also Fig. 5.3).

Accuracy - DEO

Data - Sensitive Attr. FedProx  CFL FedCMOO  FedPref no comm.
Adult - Gender 0.703 0.767 0.681 0.772 0.734
Adult - Race 0.715 0.794 0.732 0.796 0.802
Law School - Gender 0.942 0.946 0.896 0.939 0.940
Law School - Race 0.931 0.941 0.829 0.929 0.909
Default - Gender 0.722 0.745 0.745 0.742 0.736

Table 5.5: Hypervolumes of global performance results for accuracy and DDP on heterogeneous
preferences. Higher is better (Fairness metrics are inverted, as in the results figures). Only

results from the algorithm-specific Pareto front are reported (see also Fig. 5.3).

Accuracy - DDP

Data - Sensitive Attr. FedProx CFL FedCMOO FedPref no comm.
Adult - Gender 0.814 0.816 0.766 0.811 0.822
Adult - Race 0.822 0.818 0.773 0.830 0.823
Law School - Gender 0.947 0.947 0.914 0.947 0.948
Law School - Race 0.949 0.949 0.949 0.949 0.949
Default - Gender 0.750 0.780 0.722 0.786 0.793
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5.3.3 | PRACTICAL CONSIDERATIONS

Our implementation of these experiments will be available on git!. Deploying this class of
benchmarks in other existing implementations of federated algorithms requires minimal
modifications in principle. Many fairness datasets are widely available and, as with those
used here, can often be accessed directly through common machine learning libraries such
as PyTorch. The local learning process does not generally need adjustment beyond the
addition of the fairness loss functions and evaluation metrics, which are lightweight and
easily portable. Tuning local learning parameters to explore diverse trade-offs can be
challenging; we provide notes on parameter selection and implementation details in the
appendix.

54 | SUMMARY

In this chapter, we have introduced a new class of benchmarks for evaluating Federated
Multi-objective Learning algorithms, addressing the limitations of existing multi-task
benchmarks that often lack genuine objective conflicts in federated settings. Conflicts
between utility and fairness, as well as between different fairness metrics, are well-established
in the domain of Fair Machine Learning. Our experiments confirm that our proposed
fairness-based benchmarks are versatile, simple to implement, and capable of exposing
meaningful trade-offs between objectives across various FL scenarios.

Rather than advocating for a complete replacement of current benchmarks, we argue for
their diversification to better reflect the challenges of FMOL. Future work should investigate
improved data partitioning strategies to reduce noise in fairness datasets and better control
client heterogeneity.Finally, our findings suggest that heterogeneous client preferences
may, paradoxically, facilitate optimization by improving parameter space exploration in
multi-task FL. Understanding and exploiting this effect could open new directions for
distributed multi-task and multi-objective learning.

1 The code is not yet publicly available, as this work remains under double-blind review at a conference.
It will be published alongside the paper.






6

‘ TOWARDS REAL-WORLD

APPLICATIONS IN THE AEROSPACE
DOMAIN

CONTENTS

6.1 State of the art and application challenges . . . . . . . .. .. ... .. .... 84
6.1.1 Orbital edge computing and federated learning . . . . ... ... ... 84
6.1.2 Heterogeneity challenges of cross-provider FL. . . . . . ... ... ... 85
6.1.3 Other considerations . . . . . .. .. .. .. .. ... ... ....... 87
6.1.3.1 Fairness between participants . . . . . . . ... ... ... ... 87

6.1.3.2 Protecting against malicious participants . . . . . .. ... .. 87

6.1.3.3 Standardisation . .. . ... ... ... .. ... ... ..., 88

6.2 Standardising space communication protocols for federated learning . . . . . 88
6.2.1 The role of standardisation . . . . . .. . ... ... ... ........ 89
6.2.2 First case study: ground-to-satellite model transfer . . . . .. .. ... 89
6.2.2.1 Model transfer formats . . . .. ... ... ... ... ..... 90

6.2.2.2 Existing solutions: PhiSat-1. . . . . ... ... ... ... ... 92

6.2.2.3 Integration with CCSDS: proposed communications stack . . . 92

6.2.3 Second case study: Federated Learning across satellites . . . . . . . .. 94
6.2.3.1 Federated Learning Protocol . . . ... ... ... ... .... 94

6.2.3.2 Communication of model updates . . . .. .. ... ... ... 94

6.3 SUMMATY . . . . . v v v e e e e e e e 98

With advances in hardware and software capabilities, distributed satellite mission con-
figurations are progressively replacing the classical paradigm of individual monolithic
spacecraft. As even small satellites become capable of generating, storing and processing
increasingly large amounts of data through various on-board sensors, downlink capacity is
emerging as a major bottleneck in processing the gathered information. To manage this
problem, there is an ongoing drive towards shifting data processing onto satellites[Izz22] —
this strategy is referred to as Orbital Edge Computing (OEC)[Den20]. The overarching
idea of OEC is to leverage on-board computing capabilities of each satellite to process
locally gathered data, reducing the size and amount of required transmissions and speeding
up evaluation and decision-making. This could, for example, enable networks of Earth
observation satellites to rapidly identify and flag potential wildfires, or allow communication
satellites to autonomously adjust capacity based on changing demand patterns.
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In addition to isolated on-board learning approaches on single satellites, another promising
line of research proposes deploying Federated Learning [McM17a] (FL) across multiple
satellites. This could permit the joint training of on-board machine learning models across
the data gathered by multiple satellites while supporting a limited communication bud-
get [Jab23]. Under a FL scheme, each satellite would perform on-board machine learning
on the data it collects, training a local model — step (1) in Fig. 6.1. These models would
be shared periodically among participants (5) or with a ground-based server (2), allowing
them to be aggregated into a more accurate global model (3) on which to continue training.
Aggregation could take place with the aid of a parameter server on the ground or in
orbit, or in a fully distributed manner between satellites. Fundamental advantages of this
approach include a vastly reduced communication cost compared to the transmission of
raw data, and the inherent privacy advantages of compartmentalising data on satellites.

Current literature on the use of Federated Learning in Orbital Edge Computing is focused
primarily on a single use case: using Federated Learning in a single, dedicated constellation
of satellites. However, another natural scenario appears largely unstudied: the potential
for satellites from different missions and providers to form (ad-hoc) cross-provider collab-
orations. This scenario is interesting in itself as a near-term use case, while also being
representative of the challenges that may be encountered in the design of more complex
future missions. Satellite swarm-based deep space exploration, federated spacecraft designs,
or distributed autonomous space debris mitigation systems could all benefit from effective
collaborative learning techniques. The remainder of this chapter is divided into two parts:

Figure 6.1: In Federated Learning, each satellite performs on-board machine learning to train
a local model (1). Ounly these models are transmitted via satellite link to a server (2), here
based on the ground, where multiple local models are aggregated into a single global model
(3). This global model is transmitted back to the satellites (4) to continue the learning process.
If necessary, satellites can act as relays for one another (5).

In Section 6.1, we first offer an initial exploration of the conceptual challenges associated
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with this representative use case. We identify the characteristics of the problem, present a
brief survey of the state of the art for each, connecting existing research from the application
domain and the theoretical field, then discuss how existing approaches might fare in this
scenario. We conclude with a gap analysis. Section 6.2 is dedicated to exploring how
standardisation could support such use cases — another aspect critical to the deployment of
novel technologies in the space domain. We examine the problem in two steps, beginning
with the simple transmission of a pre-trained machine learning model from ground to
satellite, then considering the repeated exchange of models as required by a federated
learning algorithm.

6.1 | STATE OF THE ART AND APPLICATION CHALLENGES

With the proliferation of private and commercial missions, an ever-increasing number of
satellites with different capabilities and overlapping interests are active in Earth orbit.
Enabling an ad-hoc collaboration between satellites of providers with compatible interests
could serve to enhance the performance of all sides at a comparatively low communication
cost. In this section, we analyse the current state of the art in research relating to this
use case of cross-provider FL. As this use case has not yet been addressed explicitly, we
divide our analysis into different thematic sections. We begin by considering the research
closest to application, considering orbital edge computing (OEC) and Federated learning
(FL) schemes tailored to use on satellites. Following this, we discuss cross-provider FL,
an OEC use case that has, to the best of our knowledge, not been addressed to date. We
explore related research from the field of FL that could be applicable for this use case,
particularly works addressing the handling of different types of heterogeneity, and discuss
their applicability.

6.1.1 |  ORBITAL EDGE COMPUTING AND FEDERATED LEARNING

Federated Learning could offer a flexible framework for satellites to collaborate on on-board
information processing[1zz22][Che22] while limiting communication cost and preserving
data privacy. Various works modify the FL paradigm for the use case of LEO constellations,
mainly focusing on adapted communication schedules to handle the intermittent connectivity
of satellites. These approaches can broadly be divided by their proposed placement of a
parameter server.

Initial works focused on the use of a ground-based server, offering a higher resource
capacity than a satellite performing the same function; the drawback is a communi-
cation bottleneck caused by the intermittent connectivity of satellites. The FedSpace
algorithm [So22] attempts to overcome this constraint by performing semi-asynchronous
federated aggregation, exploiting knowledge about clients’ orbital periods to calculate
an aggregation schedule that yields an optimal trade-off between satellite idleness and
model staleness. The FedGSM algorithm|[Wu23] similarly makes use of known connectivity
intervals to extrapolate model updates.

Conversely, FedISL[Raz22], a synchronous FL scheme for a dense LEO constellation,
hinges on the strategic placement of a server in medium Earth orbit (MEO); with conver-
gence speed further enhanced by the use of intra-plane inter-satellite links. This concept is
extended in [Raz24] with the grouping of satellites sharing the same orbit to speed up aggre-



6.1 State of the art and application challenges 85

gation. Similarly, the synchronous FedHAP [Elm22b] algorithm is based on the deployment
of multiple high-altitude aerial platforms to accelerate aggregation; AsyncFLEO [Elm22a]
rests on the same premise, but is capable of asynchronous aggregation. The DSFL[Wu22]
algorithm side-steps the challenge of server placement by performing fully decentralised
aggregation. Finally, in their work on semi-supervised FL, Ostman et al. [Ost23] compare
a decentralised aggregation strategy with two scenarios where a relay satellite and a set of
ground stations, respectively, act as the aggregation server. All three variants are shown
to achieve comparable accuracy performances with similar total training time and power
consumption.

Note that none of the works presented in this section consider heterogeneity challenges
in great depth; several works, e.g. [So22|[Raz24], claim that any suitable FL algorithm
could be utilised as a drop-in component. In the following section, we assess the additional
characteristics that might be required of an algorithm to mitigate heterogeneity in the
cross-provider use case.

6.1.2 | HETEROGENEITY CHALLENGES OF CROSS-PROVIDER FL

Satellite communication problems represent a natural example of a use case with heteroge-
neous participants. Machine learning has the potential to assist with various SatComm-
related problems[Fou21], and collaboration between satellites could help solve these prob-
lems with greater accuracy and reliability. Many such satellites by different service providers
are in operation today, with different hardware, different orbits and different underlying
purposes, but nevertheless carrying out related functions. Compared to performing FL on
single-mission satellite constellations, this application scenario presents unique challenges
induced by the heterogeneity of satellites. Various types of heterogeneity are known to
present a challenge to FL algorithms[Kai21b]. These include data heterogeneity, feature
heterogeneity, device heterogeneity, and preference heterogeneity. In this section, we discuss
the state-of-the-art approaches for each of these types, highlighting how each has been
addressed for the OEC use case and, where missing, how existing solutions might transfer
to this use case.

Data heterogeneity. This type of heterogeneity, where data is imbalanced across
participants, is discussed extensively in the literature[Kai2la], as it occurs naturally in most
real-world settings. In our use case, heterogeneous distributions of data across satellites
are quite likely, with the extent dependent in part on the precise setting. For example,
satellites gathering Earth observation images might collect significantly different samples
based on their orbital planes, while for SatComm data might differ based on the role of
the satellite or the associated service provider. The general issue of data heterogeneity
is discussed in most FL variants proposed for the OEC use case, e.g. [Wu22], [Wu23|;
however, their effectiveness is seldom demonstrated beyond preliminary benchmarking
experiments. Therefore, it appears worthwhile to also consider the state of the art in
the general field of FL. A taxonomy of variants of data heterogeneity is presented in
[Ye23b], along with a comprehensive survey of current mitigation approaches. According
to [Ye23b], these can be broadly divided into data-level, model-level and server-level inter-
ventions. Data-level approaches involve modifying the underlying training data to balance
heterogeneity, e.g. by preprocessing [Li21a][Xu23], generating supplemental data using
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Generative Adversarial Networks [Goo20], or transmitting information about data between
clients [Yoo21]. However, these strategies often place a significant additional computing
or communication burden on the clients, rendering them unattractive use on satellites.
Selected model- and server-level strategies appear more promising, as they either require
little additional computation cost, or can be carried out on the server-side. Notably, these
include model regularisation [Kim22], knowledge distillation [Zhu21b], and personalised
federated learning (PFL) approaches [Tan23] such as client clustering|Gho22al[Dua21la],
parameter decoupling [Aril9] and model interpolation [Han20].

It is difficult to single out an optimal approach for the general version of our use case,
where the data distribution pattern is unknown. The most promising approach would likely
be an adaptive solution that modifies the aggregation approach during runtime based on
observed metrics, e.g. clustering participants by similarity [Gho22b][Dua21b] or assigning
importance weights for aggregation [Han20]. For mission architectures involving a powerful
ground-based parameter server, more complex knowledge distillation-based approaches
may also be an option.

Finally, we note that if the nature of the data distribution is known, such as in Earth
observation imaging missions, this could be exploited to the advantage of the algorithm,
e.g. by grouping participants known to collect similar data, or conversely by exchanging
small sets of selected samples to balance highly different datasets.

Device heterogeneity. Aside from the communication challenges induced by orbital
trajectories, satellites in the cross-provider setting would alsohave hardware differences,
leading to different levels of sensor noise and training datasets of varying quality, and
impacting computational speeds and capabilities. This is a common problem in the general
field of FL [Ye23b]; standard approaches include adaptively assigning different weight con-
tributions [Ma22] or model architectures [Dia20] to participants; possibly also reducing the
consideration of lower-quality participants in selecting clients for aggregation [Li21b]|[Nis19].
It appears likely that such strategies would transfer well to the present use case, without a
need for major modifications.

Feature heterogeneity. This setting corresponds to the collaboration of satellites
with different types of sensors, collecting different types of data and potentially requiring
different model architectures for on-board processing. Effectively integrating different
features and models into a coherent federated model training process presents a difficult
problem; to the best of our knowledge, it has not yet been tackled in research on OEC.
Indeed, the general problem of performing FL in such a setting, known as Vertical Federated
Learning (VFL) [Yan19], remains largely unsolved beyond highly constrained artificial
scenarios or costly compensation approaches [Liu24]. This present lack of solutions renders
the application of FL to the real-world satellite use case infeasible. The only approach that
appears viable at present would involve feature distillation on a ground-station parameter
server — a computationally expensive solution that does not yield workable models for the
federated participants, and so would benefit only the server-side [Liu24]. Beyond this niche
variant, the currently most feasible approach would likely be to separate participants by
features, eliminating this type of heterogeneity.

Preference heterogeneity. This is a novel type of heterogeneity that, as of now, has
seen little recognition in the field of federated learning; yet it appears highly relevant
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to the present use case. Preference heterogeneity arises when participants are solving
problems with multiple objectives, e.g. minimising communication cost while also minimising
connection latency in a satellite communication network. In such multi-objective problems,
different optimal solutions are generally possible, representing different trade-offs between
the individual objectives. In practice, some trade-offs may be more desirable than others,
e.g. conserving energy by limiting communication for severely resource-constrained satellites,
or minimising connection latency to boost service to certain geographical areas. This can
be controlled by assigning importance weights to each objective when solving the learning
problem. We call participants with different importance weights preference-heterogeneous.

At present, little research has been devoted to performing Federated Learning under
preference heterogeneity; the closest related works consider federated multi-task learn-
ing [Smil8], where participants have fully separate objectives, and federated multi-objective
learning [Yan23b]|[Har23b] without allowance for different preferences.

6.1.3 | OTHER CONSIDERATIONS
6.1.3.1 | TFAIRNESS BETWEEN PARTICIPANTS

In addition to the technical considerations of the previous section, this cross-provider use
case also differs from the single-provider variant in the assumptions made about participants’
intentions. Satellites designed to collaborate with each other as part of a single mission
can generally be assumed to act altruistically in federation, i.e. towards the benefit of
the larger system. In the cross-provider setting, however, no such assumption should be
made, as has been noted e.g. in [Raz24]. Instead, we assume that participants may act
‘selfishly’, valuing their own success over that of the federated system. This could for
example occur if satellites contribute low-quality updates, leading to an overall degradation
of the global model and benefiting from the collaboration at the cost of others. Similarly, a
participant could limit the frequency of its contributions to conserve communication budget
or maintain privacy, to the detriment of others in the federation, while still receiving global
model updates. A successful cross-provider collaboration scheme should guard against such
exploitation. These fairness considerations have yet to be addressed in works targeting the
OEC use case; a full survey on the state of the art of general FL. approaches, not focused
on this use case, is provided in [Shi24]. The same work gives a detailed account of the
different definitions of fairness and underlying assumptions; the choice of an appropriate
mitigation approach for the present depends on these characteristics.

6.1.3.2 | PROTECTING AGAINST MALICIOUS PARTICIPANTS

This is a more extreme case of the challenges discussed in the previous section — here
participants intentionally attempt to sabotage the performance of the federated system
through their participation, e.g. through submitting intentionally false model updates
(known as model poisoning attacks). A thorough overview of possible attack vectors and
approaches for guarding against such attacks is given in [Kai2la] and more recently [Rod23],
suggesting e.g. the assignment of confidence scores [Munl9], filtering outliers [Yinl18], or
normalising model updates before aggregation [Sun19]. A number of these solutions appear
to transfer well to the cross-provider OEC use case, given a trustworthy server, with the
selection of approach dependent on the particular parameters of the system and the results
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of a risk analysis.

6.1.3.3 | STANDARDISATION

Along with the algorithmic approaches towards preventing misuse of the collaboration,
standardisation likely has an important role to play in the deployment of FL to the present
use case involving multiple providers. This could for example include a requirement for
certification of machine learning pipelines in accordance with certain quality standards to
obtain access to such federated exchange schemes, to decrease the likelihood of interference
by malicious or poorly engineered participants. A review of standards relating to the
trustworthiness of machine learning for space applications suggests that such standards
largely have yet to be defined [Rei23al; a recently published handbook provides a first
glimpse of such considerations [ECS23].

Finally, we note another crucial challenge of this particular use case: the need for a
unified communication protocol between participants, capable of negotiating the parameters
of the FL scheme and able to transmit machine learning models unambiguously, without
interpretation errors caused by differences in hardware or software. For ad-hoc collaboration,
standardised communication formats are of critical importance, both to negotiate the
parameters of the FL protocol during the initialisation phase, and to transmit model
updates without error. There appears to be no existing solution, as most works in the
literature tend to assume a group of satellites collaborating as part of a single unified
mission. In the remainder of this chapter, we discuss this standardisation gap in more
detail, and offer an initial exploration of how existing standards may serve as a basis for
developing standardisation that supports the deployment of machine learning models in
such contexts.

6.2 | STANDARDISING SPACE COMMUNICATION PROTOCOLS FOR
FEDERATED LEARNING

This section is dedicated to examining how standardisation could support the communica-
tion aspect of deploying novel machine learning systems, such as Federated Learning, onto
satellites. Standards should enable a stable transfer of models from ground to satellite and
between satellites and ensure compatibility with existing space communication protocols.
We focus our analysis on two broad use cases: In a first step, we consider the general
problem of transmitting a single complete machine learning model from a ground station
to a satellite. This corresponds to a scenario, illustrated in Fig. 6.2, where the training of a
machine learning model is carried out on the ground, using previously collected raw sensor
data from the satellites or a synthetic approximation as the underlying training data. The
trained model is then deployed from the ground station onto the satellite. The capability
to successfully carry out this procedure deploying and running a machine learning model
on a single spacecraft is a fundamental stepping stone on the path towards the integration
of more complex machine learning pipelines into space missions.

In the second part of our analysis, we consider one such more complex scenario building
on the first: enabling on-board machine learning in distribution across multiple satellites,
using the Federated Learning (FL) paradigm. Under this paradigm, each satellite trains an
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on-board machine learning model, periodically exchanging information about the resulting
models with other satellites to enhance the learning process — see Fig. 6.3 for an illustration.
This scenario necessitates an extension of the communication standard required for the
first case.

6.2.1 | THE ROLE OF STANDARDISATION

Standardisation is an important tool to codify insights and advances in technical research,
building a solid foundation for further progress and preventing errors in the implementation
of novel technologies. This is of immense importance in the aerospace domain, and
particularly so for spaceflight missions, where failure is punished swiftly and harshly by
the uncompromising environment of space. Clear standards could help in every part of the
development pipeline: to ensure compliance and interoperability during the design phase,
to establish rigorous and clear expectations for performance, permit later integration of
independently developed components, allow correct performance during deployment and
systematic troubleshooting in case errors do occur.

Beyond ensuring the effective deployment of existing technologies, standardisation is
also a crucial tool to assist in the safe exploitation of new technologies, such as Artificial
Intelligence and Machine Learning in the spaceflight domain. However, the standardisation
of machine learning presents a particular challenge, as the state of the art in the domain
is progressing at such a swift pace that it is difficult to identify and formalise enduring
characteristics of the technology. Compared to traditional systems, research on machine
learning is evolving rapidly, requiring standards that are both flexible and robust. At
the same time, these new developments in machine learning are adopted at a much more
accelerated rate than technological changes have historically been embraced by the industry,
further increasing the urgency of standardisation development.

To support the utilisation of machine learning models on-board spacecraft, standards
for the development and deployment of such models are required, including qualifying
and quantifying the trustworthiness characteristics of systems [Rei23b]. Once the quality
and trustworthiness of a model can be established, the next great challenge is the cross-
device communication of such a model in practice. In the aerospace domain in particular,
standardising communications protocols is of crucial importance: without well-defined
communications protocols, all other aspects of a spaceflight mission are at risk. Standards
can prevent known problems and even enhance the flexibility of a mission, allowing
interactions that were not necessarily planned during the design phase of the mission,
enabling compatibility between independently developed systems. With the current drive
towards multi-satellite missions and the diversification of stakeholders, this aspect gains
importance, as it becomes more feasible and desirable for different satellites to collaborate.

6.2.2 | FIRST CASE STUDY: GROUND-TO-SATELLITE MODEL TRANSFER

In this case study, we explore how a machine learning model may be deployed from
the ground onto a satellite, outlining concrete approaches taken in existing missions and
discussing how these relate to current standardisation efforts. Given the subject of this work,
our discussion will mainly focus on the network aspects of potential solutions, i.e. how a
machine learning model can be encoded for transmission, and how the resulting information
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Figure 6.2: The scenario of the first case study. We consider how to facilitate the communica-
tion of the machine learning model from the ground to the satellite, taking place in the last
step.

is transmitted.

The deployment of machine learning models on-board spacecraft is still in its initial
stages; we therefore approach our analysis from two sides. We begin by considering existing
standards and methods for encoding and communicating machine learning models in the
general case. Then, we discuss the solutions chosen for the ®-sat-1 (PhiSat-1) mission
[Giu22], a recent proof-of-concept mission where a machine learning model was successfully
deployed onto a satellite. Finally, we examine how a model transfer procedure could be
integrated into existing space communication standards formulated by the Consultative
Committee for Space Data Systems (CCSDS).

6.2.2.1 | MODEL TRANSFER FORMATS

Historically, machine learning models have been developed, trained, and deployed in fairly
self-contained pipelines, each designed for a specific purpose and for the needs of a specific
stakeholder. In practice, this has caused different programming frameworks fit for different
purposes to proliferate, with no particular requirement for mutual compatibility. Not only
do these frameworks encode and store models in different formats; they also translate
to different behaviours upon hardware deployment. In effect, this means that models
containing apparently the same abstract structures might deliver substantially different
results when deployed by different frameworks.

With the recent move towards collaborative machine learning strategies and the increasing
interest in deploying machine learning models across edge devices, the need for aligning
different frameworks has become apparent. The absence of a unified standard introduces
risks such as interoperability issues, increased development costs, and the potential for
mission-critical failures. Given the entrenched differences in machine learning frameworks,
the most straightforward way of facilitating alignment would be to establish a unified model
transfer format, designed to allow models to be communicated unambiguously between
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Figure 6.3: The scenario of the second case study. We consider how to facilitate the
communication of the machine learning model between ground and satellites, taking place
throughout the training process.

frameworks.

To date, no such unified model transfer format has been defined by an independent
standardisation body. Outside of the formal standardisation domain, two main competing
model transfer formats currently exist: the Neural Network Exchange Format (NNEF,
[Gro25]), and the Open Neural Network Exchange format (ONNX, [com25]). Neither
of the two formats can be considered an officially recognized standard as defined by
Regulation (EU) No 1025/2012[Coul2], since both are being maintained by different
industrial stakeholder consortia. Several additional tools of more limited scope exist,
designed either to support specific providers, such as Intel’s OpenVino tool[Int25], or to
convert between specific frameworks on the application level.

For this study, we are most interested in a general solution that is applicable across a
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variety of hardware configurations; hence we place our focus for this work on the capabilities
of the NNEF and ONNX formats. In particular, we consider how such a general solution
could be integrated into the existing framework of related standardisation in the relevant
domains.

Closer investigation reveals that the ONNX format relies on the serialisation of the
computational graph, including parameter values, that corresponds to a neural network
into a binary format for transfer. In contrast, the Neural Network Exchange Format,
maintained by the Khronos NNEF Working Group, consists of a description of the complete
computational graph corresponding to the structure of the given neural network, expressed
in a human-readable syntax, and the numerical parameters associated with the network. A
number of common machine learning tools support the import and export of models in
NNEF format. Of the two formats, NNEF appears to be preferred by domain experts for
potential application to the aerospace domain, as seen e.g. in [Gau23], due to its relatively
well-documented syntax and semantics.

6.2.2.2 | EXISTING SOLUTIONS: PHISAT-1

Particularly of note for inspiration from the application domain is the PhiSat-1 (and
PhiSat-2) mission, launched as a proof-of-concept mission by the European Space Agency
(ESA). The purpose of this mission was to provide a first technology demonstration of
running Artificial Intelligence methods for Earth observation on-board a nanosatellite,
including the development and deployment pipeline, hardware capability, and analysis of
the results. To date, this is the only European mission to demonstrate the deployment of
a pre-trained artificial Intelligence model for Earth observation onto a satellite in space.
This mission design matches our scenario; hence it is useful to consider how it was realised
— both from a standardisation perspective, and as a demonstration that the technology is
feasible or will soon be ready for deployment, making the timing of these standardisation
efforts crucial.

The PhiSat-1 mission makes use of the proprietary OpenVino tool, developed specifically
for Intel hardware, to facilitate the transfer of the pre-trained model onto the satellite.
This choice does not generalise well in terms of standardisation, as it does not cover
hardware components built by other providers. From a standardisation perspective, we are
in contrast interested in building a more universal, hardware-agnostic standard solution.

Beyond the model transfer format, we note that the general communication with the
satellite and software deployment was facilitated using the Nanosatellite MO Framework
(NMF), which implements common CCSDS standards to facilitate communication [Coel7].
This could be of interest for further investigation into the pairing of a general model transfer
format with common CCSDS standards, and the network stack could perhaps even serve
as another instantiation example in addition to our case study.

6.2.2.3 | INTEGRATION WITH CCSDS: PROPOSED COMMUNICATIONS STACK

The Consultative Committee for Space Data Systems (CCSDS) defines a large number
of communication specifications for use in space applications. Some CCSDS standards
have been adopted as European standards within the CEN/CLC JTC 5 committee and
as international standards within ISO/TC 20/SC 13. Given their widespread use, it is
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worthwhile to consider if and how the domain-agnostic model transfer formats discussed in
the previous section could be integrated into this protocol stack.

For the present use case, this appears to be quite uncomplicated: CCSDS protocols
are classified following the standard Open Systems Interconnection (OSI) networking
model[Int94]. The transfer of a machine learning model from ground to a satellite using a
model transfer format, as discussed in this chapter, could likely be encapsulated in the
application layer, using a communication stack of existing CCSDS protocols. A possible
instance of such a network stack is proposed in Table 6.1, with brief citations of the related
CCSDS standards to support the respective choices. This table is primarily intended to
serve as an illustration; the specific choice of instantiation should be dependent on mission
configuration.

Table 6.1: Example instantiation of a network stack that may be used to transmit encoded
machine learning models to satellites.

OSI Layer Example Protocol Comment
Application CFDP + Lossless Data “CFDP is designed to meet the
Compression needs of space missions to trans-

fer files. It is a file transfer protocol,
but it also provides services typically
found in the Transport Layer, that is,
complete, in-order, and without du-
plicate data delivery.”[Spa23, p. 3-10]
The Lossless Data Compression stan-
dard “guarantees full reconstruction
of the original data without incur-
ring any distortion in the process.

It is intended to be used together
with the Space Packet Protocol or
CFDP.”[Spa23, p. 3-11]

Transport SCPS-TP

Network Bundle Protocol (BP)

Data Link Unified Space Link Proto- USLP has “a function for retrans-
col (USLP) mitting lost or corrupted data to

ensure delivery of data in sequence
without gaps or duplication over a
space link.” [Spa23, p. 3-2]
Physical CCSDS Recommended See [Spa21].
Standard for Radio Fre-
quency and Modulation
Systems

In the next section, we will discuss a more complex use case building on the scenario
discussed here.
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6.2.3 | SECOND CASE STUDY: FEDERATED LEARNING ACROSS SATELLITES

In this section, we discuss the extension of communication protocols required to enable
collaborative on-board machine learning across satellites. The small size and limited
resources of modern nanosatellites require the collaboration of multiple satellites to enhance
on-board computing capabilities, allowing resources and information to be shared across
spacecraft.

6.2.3.1 | FEDERATED LEARNING PROTOCOL

Given the wide variety of existing Federated Learning algorithms, any standardised de-
ployment of FL. would need to begin with a clear and unambiguous communication of
the specific characteristics of the algorithm being deployed. The exchange of models,
which can exploit one of the formats discussed in Section 6.2.2, is only one of the aspects
needed for the successful implementation of an FL. communication scheme. We suggest the
development of a dedicated Federated Learning protocol to set up and facilitate any ad-hoc
collaboration between multiple satellites under the Federated Learning paradigm. No such
protocol currently exists. In this section, we provide a first overview of the challenges to
be solved by such a communication protocol by suggesting a list of characteristics that
it should address. This list is intended to serve as a starting point; it is by no means
exhaustive. Our proposals for parameters that should be included in this protocol are
split into two subsets: the set of client parameters, shown in Table 6.2, which define the
behaviour of participants in the client role of the federated learning system, and the set of
server parameters, shown in Table 6.3, which specify the behaviour of the federated server.

6.2.3.2 | COMMUNICATION OF MODEL UPDATES

Once the initial parameters of the federated learning scheme have been established, models
must be transmitted periodically to and from the clients during the training process. In
this section, we consider how these model transfer messages might be realised.

The simplest solution in terms of standardisation effort would be to transmit the complete
model for each update, using a model transfer format as established in the previous section.
However, this would involve a significant needless expenditure of energy, as most common
federated learning schemes do not modify the underlying architecture of the machine
learning model during the learning process. If the underlying model structure remains
fixed, the format of model updates could then be reduced to updating only those aspects
of the model that do change, i.e. the scalar weights assigned to the nodes of a neural
network. As the reduction of communication cost is a crucial challenge in the design of
energy-efficient space missions, this possibility bears further consideration.

One of the two existing model transfer formats considered in this chapter, the NNEF
format, appears to be suited to this strategy with little modification required. In this format,
model information is encoded in human-understandable semantics, with information about
the model architecture and the parameter weights assigned to this model stored separately.
Retrieving and transferring only the parameter-weight section of the encoded format, and
integrating this partial update into the model on the receiving end, should present little
additional difficulty.

On the other hand, implementing the same strategy with the ONNX transfer format
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appears to be much more complex, as this format encodes all model information in a
single binary file, with no obvious way of isolating the model parameters. Doing so would
likely require more significant modifications to the underlying encoding of the format than
appears practical.
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Table 6.2: Proposed client parameter information that a federated learning communication
protocol should encode.

Name of client
parameter

Description

Comments

System topology

Server identity

Local submission
trigger

Local aggrega-
tion behaviour

Local integration

of global update

Local submission
format

Initial model

Failure handling

Different federated algorithms

use different aggregation control
schemes, e.g. fixed star topology
(one central server), fully decen-
tralised (no server at all), etc.
Identity /address of the server, if it
exists

Defines how model submission is
triggered on the local client: after a
given number of steps, by reaching
a certain training loss, by the server,
etc.

Defines client behaviour after local
model has been submitted, but be-
fore external model update has been
received. Behaviours could include
pausing training until model update
is received, or continuing training.
Defines how a global model update
is processed on the local client, e.g.
replacing the local model, partial
update, etc.

Defines the type and format of local
updates to be submitted by the
client. E.g. weights of full model,
gradient of partial model, etc.
Defines the architecture (or fully
initialised version) of the model to
be trained on the client.

Defines how to detect and handle dif-
ferent failures locally, e.g. time-out
on global updates if server fails, pro-
cedure for handling server changes
or local failures

Needs to be fixed for clients
if (1) clients are required

to contact server, or (2) for
security, to allow clients to

verify server if contacted

Can be reduced to a set of
constraints if the FL scheme
does not require homoge-
neous client models.
Requires detailed specifica-
tion of additional fields
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Table 6.3: Proposed server parameter information that a federated learning communication
protocol should encode.

Name of server
parameter

Description

Comments

Global aggrega-
tion behaviour
Model collection
mechanism

Initial (global)
model

Failure handling

Aggregation strategy to be used on
the server

Defines how models are collected
from the local clients, e.g. through
active collection by the server or
proactive client submission

Defines the expected architecture of
the global model.

Defines how to detect and handle
different failures locally and in

the system, e.g. time-out on local
updates if client fails, procedure
for handling server changes or local
failures

Can be transmitted using
model transfer format dis-
cussed in previous section.
Requires detailed specifica-
tion of additional fields
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6.3 | SUMMARY

In our analysis of the state of the art in Orbital Edge Computing, we have seen that current
works investigating the use of Federated Learning in satellite on-board edge computing
have largely focused on a single scenario: a large constellation of homogeneous satellites
deployed as part of a single mission. We have introduced a different use case, relevant to
the present or near future, where heterogeneous satellites of multiple different providers
could collaborate under a FL scheme to enhance on-board learning. We have elucidated
the unique conceptual challenges of this use case, with a focus on the different types of
heterogeneity and conflicts of interest that might arise.

In Section 6.1, we have provided a broad perspective of the state of the art for each,
discussing both the existing work close to the use case, and the general state of the art
in the theoretical literature. Our brief survey shows that several aspects remain to be
addressed to adequately solve this real-world use case. In particular, there is a need to
further investigate (1) how state-of-the-art solutions can be combined in settings where
multiple types of heterogeneity occur simultaneously; (2) which heterogeneity-mitigating
algorithms could be selected to fit with the use case, and with existing OEC schemes; (3)
how to perform Federated Learning under preference heterogeneity. Finally, we suggest
that any engineering approach should be supported by additional measures reducing the
complexity of the system by providing appropriate constraints, e.g. through the use of
standardisation.

In Section 6.2, we have discussed in more detail how such standards may be constructed:
In a first case study in Section 6.2.2, we have identified a standardisation gap covering
communication protocols for the transmission of machine learning models between ground
and spacecraft, and spacecraft-to-spacecraft. We have discussed existing standardisation
and industry standards addressing the transfer of models in other domain contexts, and
how these existing formats could be encapsulated in existing space communication stan-
dards. Finally, the second case study, discussed in Section 6.2.3, identified a need for
the development of a dedicated communication protocol to facilitate a future use case
where multiple satellites cooperate in training a machine learning model using a Federated
Learning strategy. Suggestions for tackling this standardisation gap in an effective manner
were proposed, including a list of characteristics to consider in defining such a commu-
nication protocol, and how to leverage existing related standards to optimise the size of
communication messages transmitted during the learning process.
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This thesis has considered the integration of Federated Learning with multi-objective
methods, with a focus on laying the foundation for the hereto largely unexplored direction
of Federated Multi-objective Learning. Effective FMOL strategies could help leverage the
twin advantages of Federated Learning, which facilitates machine learning in distributed
settings where collaboration would not otherwise be possible, and multi-objective methods,
which improve the applicability of optimisation methods by reflecting the complexities of
the real world.

7.1 | SUMMARY

In Chapter 2, we have discussed the state of the art and introduced a first taxonomy to
classify existing works that combine Federated Learning and Multi-Objective Optimisation
methods. This taxonomy offers for the first time comprehensive, clear, and unique labels
for different methods in the field, ensuring clarity in future discourse and contributions.
Chapters 3 and 4 contain algorithmic contributions that fill gaps in FMOL: Chapter 3
presents a first framework to formalise Pareto-based Federated Multi-objective Learning,
while Chapter 4 proposes FedPref, an algorithm designed to address a novel setting
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where distributed participants solve the same multi-objective problem under heterogeneous
preferences. Chapter 5 tackles the problem of benchmarking FMOL algorithms, arguing
that current benchmarks are not sufficiently representative of the true difficulty of the
problem space, and proposing a more difficult class of benchmarking problems based on
the domain of Fair Machine Learning. Finally, Chapter 6 offers a view on potential future
applications of the FL approach to the aerospace domain.

7.1.1 | QI1: WHAT ARE THE COMMONALITIES, DIFFERENCES AND CHALLENGES
IN COMBINING MULTI-OBJECTIVE METHODS WITH FEDERATED LEARNING?

We have shown that contributions can be broadly separated into three categories based
on the level of integration of multi-objective techniques in the federated system: top-level
integration for off-line hyperparameter selection, federation-level integration for on-line
control of the behaviour of the federated system as a whole, and client-level integration
to solve arbitrary multi-objective problems in federation. The level of integration has
fundamental consequences not only for its different use cases, but also for the extent and
type of modification that is necessary to the federated algorithm. Building on this insight,
we have proposed a comprehensive taxonomy, surveying and classifying existing works in
the literature and identifying gaps open for future study.

712 | Q2: HOW CAN MULTI-OBJECTIVE LEARNING PROBLEMS BE SOLVED IN
FEDERATION?

We have tackled two different federated multi-objective settings in this work: one where
clients with no fixed preferences collaborate to find a Pareto front of solutions, and another
where clients have individual fixed preferences that are not shared with the server. For the
first scenario, we have proposed a general framework, the first to address this setting, to
solve such problems using decomposition. We have described the general framework and
validated it using a representative instantiation on a series of experimental configurations,
using a set of multi-objective reinforcement learning problems.

For the second scenario, we have identified preference heterogeneity between clients as
a novel, previously unaddressed challenge in Federated Learning. We have proposed
a Personalised Federated Learning algorithm, dubbed FedPref, to collaboratively train
individual models tailored to the specific preferences of each client. This algorithm relies
on similarity-based clustering and weighted aggregation, making it implicitly compatible
with other types of heterogeneity as well. We have evaluated the performance of the
algorithm extensively, showing across five different MORL benchmarking environments
and three different random preference distributions that this algorithm reliably matches
or outperforms other state-of-the-art heterogeneity-mitigating FL algorithms. Following
this validation of the client performance, we have extended our evaluation to the system
level, introducing a multi-objective view of the federation as a whole using classical MOO
metric. Evaluating the diversity and convergence of federated solutions in this way permits
additional insight into the ability of the federated algorithm to honour diverse client
preferences.
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7.1.3 | Q3: HOW CAN FEDERATED MULTI-OBJECTIVE LEARNING ALGORITHMS
BE VALIDATED IN A GENERAL WAY?

To answer this question, we have begun by considering the existing approach of transferring
multi-task benchmarks from the centralised setting. We have argued, and shown a
supporting example, that this class of problems does not generally contain inherent conflict
between the tasks used as individual objectives. As such, these problems do not adequately
represent the main challenge of multi-objective problems. To rectify this issue, we have
proposed a framework for constructing an additional class of benchmarks, derived from
the field of fair machine learning, that permits the use of a number of objectives known to
conflict. Numerous existing benchmarking datasets from the field of fair machine learning
are compatible with this approach. This benchmarking approach is lightweight and can
be used as a drop-in extension of existing FMOL implementations, requiring only simple
additions. We have demonstrated the use of this new class of benchmarks by implementing
ten different instantiations and setting a number of state-of-the-art algorithms to solve
them. The results show that these benchmarks do present a challenge to existing algorithms,
with different algorithms exploring different sections of the Pareto front.

714 | Q4: WHAT OTHER CHALLENGES CURRENTLY HINDER THE
APPLICATION OF FLL METHODS IN COMPLEX REAL-WORLD USE CASES, SUCH AS
THE SPACE DOMAIN?

We have addressed this question by first identifying a plausible near-future use case for
Federated Learning methods in the space domain, taking into account currently existing
mission configurations and observed trends in the field. Based on these considerations,
we have analysed the challenges remaining in principle for the deployment of Federated
Learning on heterogeneous satellites in Earth orbit. We have noted that work remains to
be done to bridge the gap between theory and practical application of Federated Learning.
Of particular interest to the space domain are methods that can handle various types of
heterogeneity and robustness guarantees.

Another crucial aspect, currently lacking, is the development of standards to support
the deployment of such methods. We have analysed two case study scenarios, one on the
transfer of a trained machine learning model from a ground station onto a satellite - close
to the current technological state of nanosatellite missions, such as the PhiSat-1 mission -
and one representing a more ambitious near-future use case where multiple nanosatellites
collaborate to perform on-board machine learning. For the first case study, we observe that
no current dedicated standard exists, but that some existing standards for transferring
machine learning models, developed in the general machine learning community, could
likely be combined with comparatively little additional effort to fit with established CCSDS
communication standards. For the second scenario, we have identified an additional
standardization gap to be overcome: the need for a well-defined protocol allowing ground-
and space-based participants to negotiate their participation in a federated learning system
and establish the joint parameters of this collaboration. Our analysis has yielded a broad
overview of items of interest that would need to be included in the definition of such a
protocol to cover a reasonable range of existing FL approaches. Finally, we have discussed
how our suggested solution for the first use case could be integrated into this second
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scenario, and how messages defined in compliance with the NNEF model transfer format
and passed during the main Federated Learning phase could be reduced effectively to
conserve communication resources.

Ultimately, we have identified an achievable path towards the establishment of communi-
cation standards enabling the transfer of machine learning models in a space context in
compliance with existing standardization, and demonstrated the feasibility of extending
such standardization further to encourage the implementation of innovative distributed
learning solutions.

7.2 | LIMITATIONS AND FUTURE RESEARCH

As the field of federated multi-objective learning is still in its infancy, it remains wide open
to further research. In this section, we briefly discuss the limitations of our work, and
indicate potential avenues for further research.

MOFL/D: A FRAMEWORK FOR FEDERATED MULTI-OBJECTIVE
LEARNING

To the best of our knowledge, this work was the first to consider the general case of multi-
solution federated multi-objective learning and present a systematic approach to solving
it using decomposition. As such, it remains open to further improvement. In particular,
the current approach of using a full federated system with homogeneous client preferences
may not be an optimal use of computing resources. Integrating a preference-heterogeneous
multi-solution FMOL algorithm with the framework could allow for a more efficient
exploration of the candidate space. In addition, this initial work did not explicitly take into
account the potential for data or device heterogeneity between clients. These complications
could presumably be mitigated by either instantiating the framework with federated
algorithms designed to mitigate the given type of heterogeneity, or possibly by modifying
the behaviour of the optimisation layer, including the candidate-generating heuristic or
the client sampling procedure. Finally, potential further work includes investigating other,
more complex possible instantiations and application to different types of multi-objective
problems.

7.2.1 | FEDPREF: PERSONALISED FEDERATED MULTI-OBJECTIVE LEARNING
UNDER PREFERENCE HETEROGENEITY

As this work presents a very first solution tailored to the objective-heterogeneous setting,
several challenges inherent to the federated setting remain to be addressed in future work.
This includes, in particular, scenarios dealing with combined occurrences of different types
of heterogeneity, such as data or hardware heterogeneity combined with the preference
heterogeneity discussed here. In principle, we expect that the model similarity-based design
of our algorithm could adapt without change to a setting that includes data heterogeneity;
heterogeneity induced by differences in client capabilities might require the integration
of additional strategies dedicated to this purpose. Such strategies already exist in the
literature; their integration into the cluster-aggregation step of FedPref appears quite
feasible.
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In addition, we have introduced the multi-objective view of the federated system in this
work. Our experiments demonstrate that it appears to be possible to design a personalised
federated algorithm that achieves both high individual client performance and a diverse set
of client solutions for different preferences. Nevertheless, further study of the implications of
various MOO metrics in this setting would be useful. Furthermore, it would be interesting
to apply this multi-objective analysis to other federated algorithms from the state of the
art.

7.2.2 | A NEW CLASS OF BENCHMARKS FOR FEDERATED MULTI-OBJECTIVE
LEARNING

Fairness datasets are often highly imbalanced with respect to sensitive and classification
labels. In a federated context, this introduces two issues. First, non-converged models
may return deceptively high accuracy and fairness values — in most fairness metrics,
blanket predictions of a fixed value are by definition perfectly fair. Such results should be
excluded in analyses and parameter searches — we describe a simple filtering strategy in the
appendix. Secondly, some variability in client-level results, particularly under heterogeneous
preferences, likely comes from naive random partitioning of data. Future benchmarks
would benefit from splitting strategies that preserve the distribution of all pairs of labels
and sensitive attributes across clients.

7.2.3 | TOWARDS REAL-WORLD APPLICATION IN THE AEROSPACE DOMAIN

As shown by our brief analysis in Chapter 6, work remains to be done for a robust, flexible,
and secure deployment of federated learning on satellites. Key challenges that we have
identified include compensating for different types of heterogeneity between participants,
particularly heterogeneity not based on imbalanced data; ensuring fairness between selfish
participants; and the challenge of protecting against malicious participants effectively
without introducing a significant loss in performance.

Furthermore, the aerospace domain in particular relies fundamentally on standards to
ensure the correct, safe, and trustworthy deployment of novel technologies. Standardis-
ation of networking protocols for transmitting machine learning models and setting up
collaborations between satellites is urgently required. In this work, we have suggested a
potential pathway for the rapid introduction of such standards, but significant additional
work is required to codify these.

73 | CONTRIBUTIONS

This section contains a comprehensive list of contributions produced over the course of this
thesis, separated by category and ordered by year. Peer-reviewed scientific publications
are listed first, followed by contributions to standardisation-related publications, awards,
and outreach work.

PEER-REVIEWED PUBLICATIONS

1. HARTMANN, MARIA, GREGOIRE DANOY, MoHAMMED ALSWAITTI, and
PascaL BOUVRY: ‘A split-training approach to JoVe-FL’. International Confer-
ence on Optimization and Learning. Extended abstract. 2023.



7.3 Contributions 105

HARTMANN, MARIA, GREGOIRE DANOY, MoHAMMED ALSWAITTI, and
PascaL BOUVRY: ‘Efficient On-board Learning for Distributed Mission Config-

urations’. Artificial Intelligence Symposium on Theory, Application and Research
(AISTAR). Extended abstract. 2023.

HARTMANN, MARIA, GREGOIRE DANOY, MOHAMMED ALSWAITTI, and PAS-
CAL BOuvRy: ‘JoVe-FL — A Joint-embedding Vertical Federated Learning Frame-
work’. International Conference on Agents and Artificial Intelligence. 2023.

HARTMANN, MARIA, GREGOIRE DANOY, MOHAMMED ALSWAITTI, and PAS-
CAL BouvRry: ‘MOFL/D: A Federated Multi-objective Learning Framework with
Decomposition’. International Workshop on Federated Learning in the Age of
Foundation Models in Conjunction with NeurIPS 2023. 2023.

HARTMANN, MARIA, GREGOIRE DANOY, and PAscaL. BOUVRY: ‘Hetero-
geneity: An Open Challenge for Federated On-board Machine Learning’. Furopean
Space Agency SPAICE Conference / IAA Conference on Al in and for Space.
2024.

HARTMANN, MARIA, GREGOIRE DANOQY, and PascaL BOUVRY: ‘Introduc-
ing FedPref: Federated Learning Across Heterogeneous Multi-objective Preferences’.
Multi-Objective Decision Making Workshop at ECAI 2024. 2024.

HARTMANN, MARIA, GREGOIRE DANQY, and PascaL. BOUVRY: ‘A New
Class of Benchmarks for Federated Multi-objective Learning’ Under review at
ICLR 2026. 2025.

HARTMANN, MARIA, GREGOIRE DANOY, and PASCAL BOUVRY: ‘FedPref:
Federated Learning Across Heterogeneous Multi-objective Preferences’. ACM
Trans. Model. Perform. Eval. Comput. Syst. (May 2025), vol. 10(2).

HARTMANN, MARIA, GREGOIRE DANOY, and PASCAL BOUVRY: ‘Multi-
objective methods in Federated Learning: A survey and taxonomy’. International
Workshop on Federated Learning with Generative AI In Conjunction with IJCAI
2025 (FedGenAI-1JCAI’25). 2025.

STANDARDISATION-RELATED PUBLICATIONS

1.

REIFF, JEAN-MARIE, JEAN-PHILIPPE HUMBERT, PASCAL BOUVRY, GREGOIRE
DANOY, MOHAMMED ALSWAITTI, MANUEL COMBARRO SIMON, MARIA HART-
MANN, HEDIEH HADDAD, LucAs CICERO, JEAN LANCRENON, NICOLAS DOMEN-
JOUD, LESLIE FOUQUERAY, NATALIA VINOGRADOVA, and RUDDY ENGUEHARD:
Trustworthiness in ICT, Aerospace and Construction Applications. Institut lux-
embourgeois de la normalisation, de 'accréditation, de la sécurité et qualité des
produits et services (ILNAS), 2023.



106

7 Conclusion and Perspectives

HUMBERT, JEAN-PHILIPPE, PASCAL BOUVRY, GREGOIRE DANOY, MOHAMMED
ALSWAITTI, MANUEL COMBARRO SIMON, MARIA HARTMANN, HEDIEH HAD-
DAD, Lucas CICERO, JEAN LANCRENON, NATALIA VINOGRADOVA, and VICTORIA
MLETZAK: Research-driven Standardization Opportunities for ICT, Construction
and Aerospace. Institut luxembourgeois de la normalisation, de I'accréditation, de
la sécurité et qualité des produits et services (ILNAS), 2024.

AWARDS

1.

CEN/CENELEC Standards+Innovation Award - Young Researcher category. Pre-
sented annually to an individual student, under 30 years of age, based on the
work done for academic theses, doctoral dissertations or other university research
project addressing standardisation, following nomination by a national European
standardisation body. 2024.

OUTREACH

1.

10.

‘Swarms of Nano-satellites’. Talk at ILNAS Journée mondiale de la normalisation
(World Standards Day). 2022.

‘Swarms of nano-satellites’ Talk at ILNAS workshop “Space and technical stan-
dardization”. 2022.

‘Federated Learning for Swarms of Nano-Satellites’. Talk at Technoport. 2023.

‘Federated Multi-objective Learning with Decomposition’ Talk at University of
Luxembourg. 2023.

‘Presentation of aerospace section of the white paper “Trustworthiness in ICT,
aerospace and construction applications Scientific research and technical standard-
ization””. Talk at ILNAS Journée mondiale de la normalisation (World Standards
Day). 2023.

‘Round table on cybersecurity in the aerospace domain’. Talk at ILNAS workshop
“Technical Standardization in Space and Cybersecurity”. 2023.

‘A survey of Personalised FL and Federated Multi-objective Learning’. Talk at
2nd Summer School on Federated Machine Learning. 2024.

‘Federated Multi-objective Learning with Heterogeneous Preferences’ Talk at
University of Luxembourg. 2024.

‘Presentation of aerospace section of the white paper “Research-driven Standard-
ization Opportunities for ICT, Construction and Aerospace”’. Talk at ILNAS
Journée mondiale de la normalisation (World Standards Day). 2024.

‘An Introduction to Federated (Multi-objective) Learning’. Virtual talk at ACE
Lab, Johns Hopkins University. 2025.






BIBLIOGRAPHY

[Abel9]

[Alel9]

[Ang22]

[Aril9]

[Ask24]

[Bad24]

[Ban22]

[Bec96]

[Bri20]

[Cai23]

108

ABELS, AXEL, DIEDERIK M. ROIJERS, TOM LENAERTS, ANN NOWE, and
DENIS STECKELMACHER: Dynamic Weights in Multi-Objective Deep Reinforce-
ment Learning. May 13, 2019 (cit. on pp. 27, 47).

ALEXANDROPOULOS, STAMATIOS-AGGELOS, CHRISTOS ARIDAS, SOTIRIS KOT-
SIANTIS, and MICHAEL VRAHATIS: ‘Multi-Objective Evolutionary Optimization
Algorithms for Machine Learning: A Recent Survey’. May 2019: pp. 35-55
(cit. on p. 22).

ANGWIN, JULIA, JEFF LARSON, SURYA MATTU, and LAUREN KIRCHNER:
Machine Bias. ProPublica, 2022. Chap. 6 (cit. on pp. 71, 74).

ARIVAZHAGAN, MANOJ GHUHAN, VINAY AGGARWAL, AADITYA KUMAR
SINGH, and SUNAV CHOUDHARY: Federated Learning with Personalization
Layers. 2019 (cit. on p. 86).

ASKIN, BARIS, PRANAY SHARMA, GAURI JOsHI, and CARLEE JOE-WONG:
Federated Communication-Efficient Multi-Objective Optimization. 2024 (cit. on
pp. 18, 68, 73, 76, 137).

BADAR, MARYAM, SANDIPAN SIKDAR, WOLFGANG NEJDL, and MARCO
FisiCHELLA: ‘FairTrade: Achieving Pareto-Optimal Trade-Offs between Bal-
anced Accuracy and Fairness in Federated Learning’ Proceedings of the AAAI
Conference on Artificial Intelligence (Mar. 2024), vol. 38(10): pp. 10962-10970
(cit. on p. 17).

BANERJEE, SOURASEKHAR, XUAN-SON VU, and MONOWAR BHUYAN: ‘Op-
timized and Adaptive Federated Learning for Straggler-Resilient Device Se-
lection’. 2022 International Joint Conference on Neural Networks (IJCNN).
2022: pp. 1-9 (cit. on p. 17).

BECKER, BARRY and RONNY KoHAVI: Adult. UCI Machine Learning Reposi-
tory. DOI: https://doi.org/10.24432/C5XW20. 1996 (cit. on p. 74).

BRIk, BOUZIANE, ADLEN KSENTINI, and MAHA BOUAZIZ: ‘Federated Learn-
ing for UAVs-Enabled Wireless Networks: Use Cases, Challenges, and Open
Problems’. IEEE Access (2020), vol. 8: pp. 53841-53849 (cit. on p. 3).

Car1, Ruisi, X1AOHAN CHEN, SHIWEI L1U, JAYANTH SRINIVASA, MYUNGJIN
LEE, RAMANA KOMPELLA, and ZHANGYANG WANG: ‘Many-Task Fed-
erated Learning: A New Problem Setting and A Simple Baseline’ 2023
IEEE/CVF Conference on Computer Vision and Pattern Recognition Work-
shops (CVPRW). Vol. 34. Canada: IEEE, June 2023: pp. 5037-5045 (cit. on
pp. 38, 42, 48, 127, 128).



109

[Cas22]

[Cel19]

[Cha22]

[Che23|

[Che22]

[Cho20]

[CoelT]

[Coe25]

[Coe05]

[Coul2]

CASTELNOVO, ALESSANDRO, RICCARDO CRUPI, GRETA GRECO, DANIELE
REGoOLI, ILARIA GIUSEPPINA PENCO, and ANDREA CLAUDIO COSENTINI: ‘A
clarification of the nuances in the fairness metrics landscape’. Scientific reports

(2022), vol. 12(1): p. 4209 (cit. on p. 73).

CELIS, L. EvisaA, LINGX1A0 HUANG, VIJAY KESWANI, and NISHEETH K. VISH-
NoI: ‘Classification with Fairness Constraints: A Meta-Algorithm with Provable
Guarantees’. Proceedings of the Conference on Fairness, Accountability, and
Transparency. FAT* ’19. Atlanta, GA, USA: Association for Computing Ma-
chinery, 2019: pp. 319-328 (cit. on p. 73).

CHAI, ZHENG-YI, CHUAN-DONG YANG, and YA-LUN L1: ‘Communication effi-
ciency optimization in federated learning based on multi-objective evolutionary
algorithm’. Fvolutionary Intelligence (Apr. 2022), vol. 16(3): pp. 1033-1044
(cit. on p. 14).

CHE, TiansHI, JI Liu, YANG ZHOU, JIAXIANG REN, JIWEN ZHOU, VIC-
TOR SHENG, HUATYU DAI, and DEJING DoOU: ‘Federated Learning of Large
Language Models with Parameter-Efficient Prompt Tuning and Adaptive
Optimization’. Proceedings of the 2023 Conference on Empirical Methods in
Natural Language Processing. Ed. by BOUAMOR, HOUDA, JUAN PINO, and
KALIKA BALI. Singapore: Association for Computational Linguistics, Dec.
2023: pp. 7871-7888 (cit. on p. 3).

CHEN, HAao, MING XI1AO, and ZHIBO PANG: ‘Satellite-Based Computing
Networks with Federated Learning’. IEEE Wireless Communications (Feb.
2022), vol. 29(1): pp. 78-84 (cit. on p. 84).

CHOE, YO JOONG, JIYEON HAM, and KYUBYONG PARK: An Empirical Study
of Invariant Risk Minimization. 2020 (cit. on p. 69).

CoELHO, CESAR, SAM COOPER, MARIO MERRI, MEHRAN SARKARATI, and
O1TO KOUDELKA: ‘NanoSat MO Framework: Drill down your nanosatellites
platform using CCSDS Mission Operations services’. Sept. 28, 2017 (cit. on
p. 92).

CoELLO, CARLOS A. COELLO: ‘Multiobjective Optimization’. Handbook of
Heuristics. Ed. by MART{, RAFAEL, PANOS M. PARDALOS, and MAURICIO
G.C. RESENDE. Cham: Springer Nature Switzerland, 2025: pp. 231-257 (cit. on
p. 3).

CoELLO, CARLOS A. COELLO and NARELI CRUZ CORTES: ‘Solving Multiob-
jective Optimization Problems Using an Artificial Immune System’. Genetic
Programming and Evolvable Machines (June 2005), vol. 6(2): pp. 163-190
(cit. on pp. 29, 57).

CounciL oF THE EUROPEAN UNION: Council requlation (EU) no 1025/2012.
https://eur-lex.europa.eu/eli/reg/2012/1025/0j/eng. 2012 (cit. on p. 91).



110

Bibliography

[Cui21]

[Czy98]

[Dam18]

[Deb02]

[Den20]

[Denl9]

[Dés12]

[Dia20]

[Dua2lal

Cuil, SEN, WEISHEN PAN, JIAN LIANG, CHANGSHUI ZHANG, and FEI WANG:
‘Addressing Algorithmic Disparity and Performance Inconsistency in Federated

Learning’. Advances in Neural Information Processing Systems. Vol. 34. Curran
Associates, Inc., 2021: pp. 26091-26102 (cit. on pp. 16, 73).

CzvyzAK, PIOTR and ADREZEJ JASZKIEWICZ: ‘Pareto simulated annealinga
metaheuristic technique for multiple-objective combinatorial optimization’.
Journal of Multi-Criteria Decision Analysis (1998), vol. 7(1): pp. 34-47 (cit.
on p. 27).

DAMLE, ANIL, VICTOR MINDEN, and LEXING YING: ‘Simple, direct and
efficient multi-way spectral clustering’. Information and Inference: A Journal
of the IMA (June 2018), vol. 8(1): pp. 181-203 (cit. on p. 44).

DEB, K., A. PrRAaTAP, S. AGARWAL, and T. MEYARIVAN: ‘A fast and elitist
multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolution-
ary Computation (2002), vol. 6(2): pp. 182-197 (cit. on p. 13).

DENBY, BRADLEY and BRANDON LUCIA: ‘Orbital Edge Computing: Nanosatel-
lite Constellations as a New Class of Computer System’. Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Program-
ming Languages and Operating Systems. ASPLOS 20. ACM, Mar. 2020 (cit. on
p. 82).

DENTON, REMI, BEN HUTCHINSON, MARGARET MITCHELL, TIMNIT GEBRU,
and ANDREW ZALDIVAR: ‘Image Counterfactual Sensitivity Analysis for De-
tecting Unintended Bias’ Proceedings of the CVPR Workshop on Fairness
Accountability Transparency and Ethics in Computer Vision. 2019 (cit. on
p. 74).

DESIDERI, JEAN-ANTOINE: ‘Multiple-gradient descent algorithm (MGDA)
for multiobjective optimization’. Comptes Rendus Mathematique (2012), vol.
350(5): pp. 313-318 (cit. on p. 15).

Diao, ENMAO, JIE DING, and VAHID TAROKH: ‘HeteroFL: Computation and
Communication Efficient Federated Learning for Heterogeneous Clients’. ArXiv
(2020), vol. abs/2010.01264 (cit. on p. 86).

Duan, MoMING, Duo Liu, XINYUAN Ji, RENPING Liu, LIANG LI1ANG, XI-
ANZHANG CHEN, and YUJUAN TAN: ‘FedGroup: Efficient Federated Learning
via Decomposed Similarity-Based Clustering’. 2021 IEEFE Intl Conf on Parallel
& Distributed Processing with Applications, Big Data & Cloud Computing,
Sustainable Computing & Communications, Social Computing & Networking
(ISPA /BDCloud/SocialCom/SustainCom). Los Alamitos, CA, USA: IEEE
Computer Society, Oct. 2021: pp. 228-237 (cit. on pp. 37, 86).



111

[Dua21b]

[Dwol2]

[ECS23]

[Elm22a]

[Elm22b]

[Fel22]

[Fel23]

[Fou21]

[Gau23|

Duan, MoMmING, Duo Liu, XiNYUAN Ji, RENPING Liu, LiaNG LiaNg, XI-
ANZHANG CHEN, and YUJUAN TAN: ‘FedGroup: Efficient Federated Learning
via Decomposed Similarity-Based Clustering’. 2021 IEEE Intl Conf on Parallel
& Distributed Processing with Applications, Big Data € Cloud Computing,
Sustainable Computing € Communications, Social Computing & Networking
(ISPA /BDCloud/SocialCom/SustainCom). 2021 IEEE Intl Conf on Parallel
& Distributed Processing with Applications, Big Data & Cloud Computing,
Sustainable Computing & Communications, Social Computing & Networking
(ISPA/BDCloud/SocialCom/SustainCom). Sept. 2021: pp. 228-237 (cit. on
p. 86).

DwORK, CYNTHIA, MORITZ HARDT, TONIANN PITASSI, OMER REINGOLD,
and RICHARD ZEMEL: ‘Fairness through awareness’. Proceedings of the 3rd
Innovations in Theoretical Computer Science Conference. ITCS "12. Cambridge,
Massachusetts: Association for Computing Machinery, 2012: pp. 214-226 (cit.
on p. 72).

ECSS: ECSS-E-HB-40-02A: Machine Learning Qualification for Space Appli-
cations Handbook. Tech. rep. European Cooperation for Space Standardization
(ECSS), 2023 (cit. on p. 88).

ELMAHALLAWY, MOHAMED and TIE Luo: ‘AsyncFLEO: Asynchronous Feder-
ated Learning for LEO Satellite Constellations with High-Altitude Platforms’.
2022 IEEE International Conference on Big Data (Big Data). IEEE, Dec.
2022 (cit. on p. 85).

ErMAHALLAWY, MOHAMED and TIE Luo: ‘FedHAP: Fast Federated Learning
for LEO Constellations using Collaborative HAPs’. 2022 14th International
Conference on Wireless Communications and Signal Processing (WCSP).
IEEE, Nov. 2022 (cit. on p. 85).

FELTEN, FLORIAN and LucAs N. ALEGRE: MORL-Baselines: Multi-Objective
Reinforcement Learning algorithms implementations. https://github.com/
LucasAlegre/morl-baselines. 2022 (cit. on p. 27).

FELTEN, FLORIAN, LUCAS NUNES ALEGRE, ANN NOWE, ANA L. C. BAzZzAN,
EL GHAZALI TALBI, GREGOIRE DANOY, and BRUNO CASTRO DA SILVA: ‘A
Toolkit for Reliable Benchmarking and Research in Multi-Objective Reinforce-
ment Learning’. en. Proceedings of the 37th Conference on Neural Information
Processing Systems (NeurIPS 2023). 2023 (cit. on pp. 27, 47).

FouraTi, FARES and MOHAMED-SLIM ALOUINI: ‘Artificial intelligence for
satellite communication: A review’. Intelligent and Converged Networks (Sept.
2021), vol. 2(3): pp. 213-243 (cit. on p. 85).

GAUFFRIAU, ADRIEN and CLAIRE PAGETTI: Formal description of ML models
for unambiguous implementation. July 24, 2023 (cit. on p. 92).



112

Bibliography

[Gen24]

[Gho22a]

[Gho22b]

[Gho20]

[Giu22]

[Goll1]

[Go020)]

[Han20]

[Har16]

[Har23a]

GENG, DAOQU, SHOUZHENG WANG, and YIHANG ZHANG: ‘MultiObjective
Federated Averaging Algorithm’ Ezpert Systems (Nov. 2024), vol. (cit. on
pp. 3, 14).

GHOSH, AVISHEK, JICHAN CHUNG, DONG YIN, and KANNAN RAMCHANDRAN:

‘An Efficient Framework for Clustered Federated Learning’. IEEE Transactions
on Information Theory (Dec. 2022), vol. 68(12): pp. 8076-8091 (cit. on p. 86).

GHOSH, AVISHEK, JICHAN CHUNG, DONG YIN, and KANNAN RAMCHANDRAN:
‘An Efficient Framework for Clustered Federated Learning’. IEEE Transactions
on Information Theory (Dec. 2022), vol. 68(12): pp. 8076-8091 (cit. on p. 86).

GHOSH, AVISHEK, JICHAN CHUNG, DONG YIN, and KANNAN RAMCHANDRAN:
‘An efficient framework for clustered federated learning’. Proceedings of the 34th
International Conference on Neural Information Processing Systems. NIPS
’20. Vancouver, BC, Canada: Curran Associates Inc., 2020 (cit. on pp. 20, 37).

GIUFFRIDA, GIANLUCA, LucaA FaNuccl, GABRIELE MEONI, MATEJ BATI,
LEONIE BUCKLEY, AUBREY DUNNE, CHRIS van DIJK, MARCO ESPOSITO,
JOHN HEFELE, NATHAN VERCRUYSSEN, GIANLUCA FURANO, MASSIMILIANO
PASTENA, and JOSEF ASCHBACHER: ‘The -Sat-1 Mission: The First On-Board
Deep Neural Network Demonstrator for Satellite Earth Observation’. IEEE
Transactions on Geoscience and Remote Sensing (2022), vol. 60: pp. 1-14
(cit. on p. 90).

GOLDBLOOM, ANTHONY and BEN HAMNER: Heritage Health Prize. https:
//kaggle.com/competitions/hhp. Kaggle. 2011 (cit. on p. 74).

GOODFELLOW, [AN, JEAN POUGET-ABADIE, MEHDI MIRZA, BING XU, DAVID
WARDE-FARLEY, SHERJIL OZAIR, AARON COURVILLE, and YOSHUA BENGIO:
‘Generative adversarial networks’. Communications of the ACM (Oct. 2020),
vol. 63(11): pp. 139-144 (cit. on p. 86).

HaNzELY, FILIP and PETER RICHTARIK: ‘Federated Learning of a Mixture of
Global and Local Models’ ArXiv (2020), vol. abs/2002.05516 (cit. on p. 86).

HARDT, MORITZ, ERIC PRICE, and NATHAN SREBRO: ‘Equality of opportunity
in supervised learning’. Proceedings of the 30th International Conference on
Neural Information Processing Systems. NIPS’16. Barcelona, Spain: Curran
Associates Inc., 2016: pp. 3323-3331 (cit. on p. 72).

HARTMANN, MARIA, GREGOIRE DANOY, MOHAMMED ALSWAITTI, and PAS-
CAL Bouvry: ‘MOFL/D: A Federated Multi-objective Learning Framework
with Decomposition’. International Workshop on Federated Learning in the
Age of Foundation Models in Conjunction with NeurIPS 2023. 2023 (cit. on
pp. 8, 18, 19).



113

[Har23b]

[Har24]

[Har25al

[Har25b]

[Hu22a|

[Hu22b]

[Hua23|

[Int94]

[1zz22]

HARTMANN, MARIA, GREGOIRE DANOY, MOHAMMED ALSWAITTI, and PAS-
CAL Bouvry: ‘MOFL/D: A Federated Multi-objective Learning Framework
with Decomposition’. International Workshop on Federated Learning in the Age
of Foundation Models in Conjunction with NeurIPS 2023. New Orleans, LA,
USA: International Workshop on Federated Learning in the Age of Foundation
Models in Conjunction with NeurIPS 2023, 2023: pp. 1-13 (cit. on p. 87).

HARTMANN, MARIA, GREGOIRE DANOY, and PASCAL BOUVRY: ‘FedPref:
Federated Learning Across Heterogeneous Multi-objective Preferences’. ACM
Trans. Model. Perform. Eval. Comput. Syst. (Dec. 2024), vol. Just Accepted
(cit. on pp. 18, 19).

HARTMANN, MARIA, GREGOIRE DANOY, and PASCAL BOUVRY: ‘FedPref:
Federated Learning Across Heterogeneous Multi-objective Preferences’. ACM
Trans. Model. Perform. Eval. Comput. Syst. (May 2025), vol. 10(2) (cit. on
pp. 68, 69, 73, 76).

HARTMANN, MARIA, GREGOIRE DANOY, and PASCAL BOUVRY: ‘Multi-
objective methods in Federated Learning: A survey and taxonomy’. Interna-
tional Workshop on Federated Learning with Generative AI In Conjunction
with IJCAI 2025 (FedGenAI-IJCAI’25). 2025 (cit. on p. 4).

Hu, ZEOU, KIARASH SHALOUDEGI, GUOJUN ZHANG, and YAOLIANG YU:
‘Federated Learning Meets Multi-Objective Optimization’ IFEE Transactions
on Network Science and Engineering (July 2022), vol. 9(4). Conference Name:
IEEE Transactions on Network Science and Engineering: pp. 2039-2051 (cit. on
pp. 4, 69).

Hu, ZEOU, KIARASH SHALOUDEGI, GUOJUN ZHANG, and YAOLIANG YU:
‘Federated Learning Meets Multi-Objective Optimization’ IEFEE Transactions
on Network Science and Engineering (July 2022), vol. 9(4): pp. 20392051
(cit. on pp. 8, 15, 16).

HuaNG, ZHI1-AN, YAa0 Hu, Rul Liu, XIAOMING XUE, ZEXUAN ZHU, LINQI
SoNG, and KAy CHEN TAN: ‘Federated Multi-Task Learning for Joint Di-
agnosis of Multiple Mental Disorders on MRI Scans’. IEEE Transactions on
Biomedical Engineering (Apr. 2023), vol. 70(4): pp. 1137-1149 (cit. on p. 20).

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (ISO): ISO/IEC
7498-1:1994. Information technology Open Systems Interconnection Basic
Reference Model: The Basic Model. 1994 (cit. on p. 93).

1zz0, DARIO, GABRIELE MEONI, PABLO GOMEZ, DOMINIK DOLD, and
ALEXANDER ZOECHBAUER: ‘Selected trends in artificial intelligence for space
applications’. Artificial Intelligence for Space: AILJSPACE. CRC Press, 2022:
pp. 21-52 (cit. on pp. 82, 84).



114

Bibliography

[Jab23]

[Jin22]

[Ju24]

[Kai21a]

[Kai21b]

[Kan24a]

[Kan24b]

[Kar20]

[Kar19]

[Kim22]

JABBARPOUR, MOHAMMAD REZA, BAHMAN JAVADI, PHILIP LEONG, RODRIGO
N. CALHEIROS, DAVID BOLAND, and CHRIS BUTLER: ‘Performance Analysis of
Federated Learning in Orbital Edge Computing’. Proceedings of the IEEE/ACM
16th International Conference on Utility and Cloud Computing. UCC 23. ACM,
Dec. 2023 (cit. on p. 83).

JiN, HAO, YANG PENG, WENHAO YANG, SHUSEN WANG, and ZHIHUA ZHANG:
‘Federated Reinforcement Learning with Environment Heterogeneity’. Pro-
ceedings of The 25th International Conference on Artificial Intelligence and
Statistics. International Conference on Artificial Intelligence and Statistics.
ISSN: 2640-3498. PMLR, May 3, 2022: pp. 18-37 (cit. on p. 27).

Ju, L1, TIANRU ZHANG, SALMAN TOOR, and ANDREAS HELLANDER: ‘Acceler-
ating Fair Federated Learning: Adaptive Federated Adam’. IEEE Transactions
on Machine Learning in Communications and Networking (2024), vol. 2:
pp. 1017-1032 (cit. on pp. 15, 16, 69).

KAIROUZ, PETER et al.: ‘Advances and Open Problems in Federated Learning’.
Foundations and Trendsé in Machine Learning (2021), vol. 14(12): pp. 1-210
(cit. on pp. 10, 85, 87).

KAIROUZ, PETER et al.: ‘Advances and Open Problems in Federated Learning’.
Foundations and Trendsd in Machine Learning (2021), vol. 14(12): pp. 1-210
(cit. on p. 85).

KaNG, YAN, HANLIN GU, XINGXING TANG, YUANQIN HE, YUZHU ZHANG,
JINNAN HE, YUXING HAN, LiXIiN FAN, KAT CHEN, and QIANG YANG: ‘Optimiz-
ing Privacy, Utility, and Efficiency in a Constrained Multi-Objective Federated
Learning Framework’. ACM Trans. Intell. Syst. Technol. (Dec. 2024), vol. 15(6)
(cit. on pp. 15, 16).

KANG, YAN, Ziya0o REN, LIXIN FAN, LINGHUA YANG, YONGXIN TONG, and
QIANG YANG: Hyperparameter Optimization for SecureBoost via Constrained
Multi-Objective Federated Learning. Apr. 6, 2024 (cit. on pp. 13, 15).

KARIMIREDDY, SAI PRANEETH, SATYEN KALE, MEHRYAR MOHRI, SASHANK
REDDI, SEBASTIAN STICH, and ANANDA THEERTHA SURESH: ‘SCAFFOLD:
Stochastic Controlled Averaging for Federated Learning’. Proceedings of the
37th International Conference on Machine Learning. Ed. by 111, HAL DAUME
and AARTI SINGH. Vol. 119. Proceedings of Machine Learning Research. PMLR,
July 2020: pp. 5132-5143 (cit. on p. 37).

KARIMIREDDY, SAI PRANEETH, SATYEN KALE, MEHRYAR MOHRI, SASHANK
J. REDDI, SEBASTIAN U. STICH, and ANANDA THEERTHA SURESH: ‘SCAF-
FOLD: Stochastic Controlled Averaging for Federated Learning’. International
Conference on Machine Learning. 2019 (cit. on p. 3).

Kim, JinkYUu, GEEHO KiM, and BOHYUNG HAN: ‘Multi-Level Branched
Regularization for Federated Learning’. ArXiv (2022), vol. abs/2207.06936
(cit. on p. 86).



115

[Kin24]

[Kus17]

[Le 22]

[Li21a]

[Li21b]

[Li21c]

[Lil8]

[Li20a]

[Li20b]

[Lin19]

[Liu21]

KinosHITA, TAKATO, NAOKI MASUYAMA, and YUSUKE NOJIMA: ‘A Federated
Data-driven Multiobjective Evolutionary Algorithm via Continual Learnable
Clustering’. 2024 IEEE Congress on Evolutionary Computation (CEC). IEEE,
June 2024: pp. 1-7 (cit. on pp. 18, 69).

KUSNER, MATT, JOSHUA LOFTUS, CHRIS RUSSELL, and RICARDO SILVA:
‘Counterfactual fairness’ Proceedings of the 31st International Conference on
Neural Information Processing Systems. NIPS’17. Long Beach, California,
USA: Curran Associates Inc., 2017: pp. 40694079 (cit. on p. 72).

LE Quy, TA1l, ARJUN ROY, VASILEIOS I0SIFIDIS, WENBIN ZHANG, and EIRINI
NTOoUTSI: ‘A survey on datasets for fairness-aware machine learning’. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery (2022), vol.
12(3): e1452 (cit. on p. 74).

L1, ANRAN, LAN ZHANG, JUNTAO TAN, YAXUAN QIN, JUNHAO WANG, and
XIANG-YANG Li1: ‘Sample-level Data Selection for Federated Learning’. IEEE
INFOCOM 2021 - IEEE Conference on Computer Communications. IEEE,
May 2021 (cit. on p. 85).

L1, L1, MoMING DUAN, Duo Liu, YU ZHANG, AO REN, XIANZHANG CHEN,
YuJuaN TAN, and CHENGLIANG WANG: ‘FedSAE: A Novel Self-Adaptive
Federated Learning Framework in Heterogeneous Systems’. 2021 International
Joint Conference on Neural Networks (IJCNN). IEEE, July 2021 (cit. on
p. 86).

L1, Q., B. HE, and D. SONG: ‘Model-Contrastive Federated Learning’. 2021
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
Los Alamitos, CA, USA: IEEE Computer Society, June 2021: pp. 10708-10717
(cit. on p. 37).

L1, TiaN, ANIT KUMAR SAHU, MANZIL ZAHEER, MAZIAR SANJABI, AMEET
TALWALKAR, and VIRGINIA SMITH: Federated Optimization in Heterogeneous
Networks. 2018 (cit. on pp. 37, 48, 127, 128).

L1, TiaN, ANIT KUMAR SAHU, MANZIL ZAHEER, MAZIAR SANJABI, AMEET
TALWALKAR, and VIRGINIA SMITH: ‘Federated optimization in heterogeneous
networks’. Proceedings of Machine learning and systems (2020), vol. 2: pp. 429—
450 (cit. on p. 76).

L1, T1AN, MAZIAR SANJABI, AHMAD BEIRAMI, and VIRGINIA SMITH: ‘Fair Re-
source Allocation in Federated Learning’. International Conference on Learning
Representations. 2020 (cit. on p. 16).

Lin, X1, HUI-LING ZHEN, ZHENHUA LI, QING-FU ZHANG, and SAM KWONG:

‘Pareto multi-task learning’. Advances in neural information processing systems
(2019), vol. 32 (cit. on p. 69).

Liu, S. and L. N. VICENTE: ‘The stochastic multi-gradient algorithm for multi-
objective optimization and its application to supervised machine learning’.
Annals of Operations Research (Mar. 17, 2021), vol. (cit. on p. 22).



116

Bibliography

[Liu24]

[Liulb]

[Loh20]

[Lon22]

[Ma22]

[McM17a]

[McM17b)]

[McM17¢]

Liu, YANG, YAN KANG, TIANYUAN ZoOU, YANHONG Pu, YuANQIN HE, XI-
AOZHOU YE, YE OUYANG, YA-QIN ZHANG, and QIANG YANG: ‘Vertical
Federated Learning: Concepts, Advances, and Challenges’. IEEE Transactions
on Knowledge and Data Engineering (2024), vol.: pp. 1-20 (cit. on p. 86).

Liu, Ztwerl, PING LU0, X1A0OGANG WANG, and X1A00U TANG: ‘Deep Learning
Face Attributes in the Wild. Proceedings of International Conference on
Computer Vision (ICCV). Dec. 2015 (cit. on pp. 69, 74).

LoHAUSs, MICHAEL, MICHAEL PERROT, and ULRIKE VON LUXBURG: ‘Too
Relaxed to Be Fair’. Proceedings of the 37th International Conference on
Machine Learning. Ed. by I1I, HAL DAUME and AARTI SINGH. Vol. 119.
Proceedings of Machine Learning Research. PMLR, July 2020: pp. 6360-6369
(cit. on p. 73).

LonG, GuoDOoNG, MING XIE, TAO SHEN, TIANYI ZHOU, XIANZHI WANG,
and JING JIANG: ‘Multi-center federated learning: clients clustering for better
personalization’. World Wide Web (June 2022), vol. 26(1): pp. 481-500 (cit. on
p. 37).

MA, XIAOSONG, JIE ZHANG, SONG GUO, and WENCHAO XU: ‘Layer-wised
Model Aggregation for Personalized Federated Learning’. 2022 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, June
2022 (cit. on p. 86).

McMAHAN, BRENDAN, EIDER MOORE, DANIEL RAMAGE, SETH HAMPSON,
and BLAISE AGUERA y ARCAS: ‘Communication-Efficient Learning of Deep
Networks from Decentralized Data’. Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics, AISTATS 2017, 20-22
April 2017, Fort Lauderdale, FL, USA. Ed. by SINGH, AARTI and XIAOJIN
(JERRY) ZHU. Vol. 54. Proceedings of Machine Learning Research. PMLR,
2017: pp. 1273-1282 (cit. on p. 83).

McMAHAN, BRENDAN, EIDER MOORE, DANIEL RAMAGE, SETH HAMPSON,
and BLAISE AGUERA Y ARCAS: ‘Communication-Efficient Learning of Deep
Networks from Decentralized Data’. Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics. Ed. by SINGH, AARTI and
JERRY ZHU. Vol. 54. Proceedings of Machine Learning Research. PMLR, Apr.
2017: pp. 1273-1282 (cit. on pp. 9, 23).

McMAHAN, BRENDAN, EIDER MOORE, DANIEL RAMAGE, SETH HAMPSON,
and BLAISE AGUERA Y ARCAS: ‘Communication-Efficient Learning of Deep
Networks from Decentralized Data’. Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics. Ed. by SINGH, AARTI and
JERRY ZHU. Vol. 54. Proceedings of Machine Learning Research. PMLR, 2017:
pp. 1273-1282 (cit. on p. 27).



117

[McM17d]

[Meh22]

[Meh21]

[Mil20]

[Mnil5]

[Moh19]

[Mor23]

[Mor24]

[Muiil9)

[Nga05]

McCMAHAN, BRENDAN, EIDER MOORE, DANIEL RAMAGE, SETH HAMPSON,
and BLAISE AGUERA Y ARCAS: ‘Communication-Efficient Learning of Deep
Networks from Decentralized Data’. Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics. Ed. by SINGH, AARTI and
JERRY ZHU. Vol. 54. Proceedings of Machine Learning Research. PMLR, Apr.
2017: pp. 1273-1282 (cit. on p. 73).

MEHRABI, NINAREH, CYPRIEN de LicHY, JOHN McKAY, CyNTHIA HE, and
WiLLiaM CAMPBELL: Towards Multi-Objective Statistically Fair Federated
Learning. Jan. 24, 2022 (cit. on pp. 4, 8, 15, 16, 26, 69, 73).

MEHRABI, NINAREH, FRED MORSTATTER, NRIPSUTA SAXENA, KRISTINA
LERMAN, and ARAM GALSTYAN: ‘A Survey on Bias and Fairness in Machine
Learning’. ACM Comput. Surv. (July 13, 2021), vol. 54(6): 115:1-115:35 (cit. on
pp. 71, 72).

MILOJKOVIC, NIKOLA, DIEGO ANTOGNINI, GIANCARLO BERCGAMIN, BoI
Farrings, and CLAUDIU MUSAT: ‘Multi-Gradient Descent for Multi-Objective
Recommender Systems’. CoRR (2020), vol. abs/2001.00846 (cit. on p. 137).

MNIH, VOLODYMYR et al.: ‘Human-level control through deep reinforcement
learning’. Nature (Feb. 2015), vol. 518(7540): pp. 529-533 (cit. on p. 47).

MOHRI, MEHRYAR, GARY SIVEK, and ANANDA THEERTHA SURESH: ‘Agnos-
tic Federated Learning’ Proceedings of the 36th International Conference on
Machine Learning. Ed. by CHAUDHURI, KAMALIKA and RUSLAN SALAKHUT-
DINOV. Vol. 97. Proceedings of Machine Learning Research. PMLR, June 2019:
pp. 4615-4625 (cit. on p. 16).

MORALES-HERNANDEZ, ALEJANDRO, INNEKE VAN NIEUWENHUYSE, and
SEBASTIAN ROJAS GONZALEZ: ‘A survey on multi-objective hyperparameter

optimization algorithms for machine learning’. Artificial Intelligence Review
(Aug. 1, 2023), vol. 56(8): pp. 8043-8093 (cit. on p. 22).

MORELL, JOSE ANGEL, ZAKARIA ABDELMOIZ DAHI, FRANCISCO CHICANO,
GABRIEL LUQUE, and ENRIQUE ALBA: ‘A multi-objective approach for commu-
nication reduction in federated learning under devices heterogeneity constraints’.
Future Generation Computer Systems (June 2024), vol. 155: pp. 367-383 (cit.
on p. 14).

MuN0z-GONzALEZ, Luis, KENNETH T. Co, and EMIL C. LUPU: ‘Byzantine-
Robust Federated Machine Learning through Adaptive Model Averaging’.
ArXiv (2019), vol. abs/1909.05125 (cit. on p. 87).

NGATCHOU, P., ANAHITA ZAREI, and A. EL-SHARKAWI: ‘Pareto Multi Ob-
jective Optimization’. Proceedings of the 13th International Conference on,
Intelligent Systems Application to Power Systems. Vol. 2005. Dec. 2005: pp. 84—
91 (cit. on p. 28).



118

Bibliography

[Ngu22]

[Nis19]

[Gro25]
[com25]
[Int25]

[Ost23]

[Pad21]

[Pes22]

[Qi21]

[Raf20]

[Raf21]

[Raz22]

NGUYEN, JOHN, JIANYU WANG, KsHITIZ MALIK, MAZIAR SANJABI, and
MiICHAEL RABBAT: ‘Where to Begin? On the Impact of Pre-Training and
Initialization in Federated Learning’ Workshop on Federated Learning: Recent
Advances and New Challenges (in Conjunction with NeurIPS 2022). Nov. 22,
2022 (cit. on p. 25).

NisH10, TAKAYUKI and RYO YONETANI: ‘Client Selection for Federated Learn-
ing with Heterogeneous Resources in Mobile Edge’. ICC 2019 - 2019 IEEFE
International Conference on Communications (ICC). IEEE, May 2019 (cit. on
p. 86).

GRroupP, KHRONOS. https://registry.khronos.org/NNEF. Last accessed 2025-
09-21. 2025 (cit. on p. 91).

COMMUNITY, ONNX. https://onnx.ai/onnx /index.html. Last accessed
2025-09-21. 2025 (cit. on p. 91).

INTEL. https://docs.openvino.ai/2025/index.html. Last accessed 2025-09-22.
2025 (cit. on p. 91).

OsTMAN, JOHAN, PABLO GOMEZ, VINUTHA MAGAL SHREENATH, and
GABRIELE MEONT: Decentralised Semi-supervised Onboard Learning for Scene
Classification in Low-Earth Orbit. 2023 (cit. on p. 85).

PADH, KIRTAN, DIEGO ANTOGNINI, EMMA LEJAL-GLAUDE, BOI FALTINGS,
and CLAUDIU MUSAT: ‘Addressing fairness in classification with a model-
agnostic multi-objective algorithm’. Proceedings of the Thirty-Seventh Confer-
ence on Uncertainty in Artificial Intelligence. Ed. by CAMPOS, CASSIO de and
MARLOES H. MAATHUIS. Vol. 161. Proceedings of Machine Learning Research.
PMLR, July 2021: pp. 600-609 (cit. on pp. 73, 137).

PEssacH, DANA and EREzZ SHMUELL: ‘A Review on Fairness in Machine
Learning’. ACM Comput. Surv. (Feb. 2022), vol. 55(3) (cit. on pp. 72, 74).

Q1, JiaJu, QIHAO ZHOU, LEI LEI, and KAN ZHENG: Federated Reinforcement
Learning: Techniques, Applications, and Open Challenges. Oct. 24, 2021 (cit.
on p. 26).

RAFFIN, ANTONIN: RL Baselines3 Zoo. https://github.com/DLR-RM /rl-
baselines3-zoo. 2020 (cit. on p. 28).

RAFFIN, ANTONIN, ASHLEY HILL, ADAM GLEAVE, ANSST KANERVISTO, MAX-
IMILIAN ERNESTUS, and NOAH DORMANN: ‘Stable-Baselines3: Reliable Rein-
forcement Learning Implementations’. Journal of Machine Learning Research
(2021), vol. 22(268): pp. 1-8 (cit. on p. 27).

RaAzMI, NASRIN, BHO MATTHIESEN, ARMIN DEKORSY, and PETAR POPOVSKI:
‘On-Board Federated Learning for Dense LEO Constellations’ ICC 2022 -
IEEFE International Conference on Communications. IEEE, May 2022 (cit. on
p. 84).



119

[Raz24]

[Rei23a]

[Rei23b]

[Riq15]

[Rod23]

[Sat19]

[Sen24]

[Sen18]

[Sha22]

RaAzmi, NASRIN, BHO MATTHIESEN, ARMIN DEKORSY, and PETAR POPOVSKI:
‘On-board Federated Learning for Satellite Clusters with Inter-Satellite Links’.
IEEE Transactions on Communications (2024), vol.: pp. 1-1 (cit. on pp. 84,
85, 87).

REIFF, JEAN-MARIE, JEAN-PHILIPPE HUMBERT, PASCAL BOUVRY, GRE-
GOIRE DANOY, MOHAMMED ALSWAITTI, MANUEL COMBARRO SIMON, MARIA
HARTMANN, HEDIEH HADDAD, LucAs CICERO, JEAN LANCRENON, NICOLAS
DoMENJOUD, LESLIE FOUQUERAY, NATALIA VINOGRADOVA, and RUDDY EN-
GUEHARD: Trustworthiness in ICT, Aerospace, and Construction applications.
Tech. rep. Luxembourg Institute of Standardisation, Accreditation, Safety,
Quality of Products, and Services (ILNAS), 2023 (cit. on p. 88).

REIFF, JEAN-MARIE, JEAN-PHILIPPE HUMBERT, PASCAL BOUVRY, GRE-
GOIRE DANOY, MOHAMMED ALSWAITTI, MANUEL COMBARRO SIMON, MARIA
HARTMANN, HEDIEH HADDAD, LucAs CICERO, JEAN LANCRENON, NICOLAS
DOMENJOUD, LESLIE FOUQUERAY, NATALIA VINOGRADOVA, and RUDDY EN-
GUEHARD: Trustworthiness in ICT, Aerospace and Construction Applications.
Institut luxembourgeois de la normalisation, de 'accréditation, de la sécurité
et qualité des produits et services (ILNAS), 2023 (cit. on p. 89).

RIQUELME, NERY, CHRISTIAN VON LUCKEN, and BENJAMIN BARAN: ‘Perfor-

mance metrics in multi-objective optimization’. 2015 Latin American Comput-
ing Conference (CLEI). Arequipa, Peru: IEEE, Oct. 2015: pp. 1-11 (cit. on
p. 28).

RODRIGUEZ-BARROSO, NURIA, DANIEL JIMENEZ-LOPEZ, M. VICTORIA
LuzON, FRANCISCO HERRERA, and EUGENIO MARTINEZ-CAMARA: ‘Survey
on federated learning threats: Concepts, taxonomy on attacks and defences,
experimental study and challenges’. Information Fusion (Feb. 2023), vol. 90:
pp. 148-173 (cit. on p. 87).

SATTLER, FELIX, KLAUS-ROBERT MULLER, and WOJCIECH SAMEK: ‘Clus-
tered Federated Learning: Model-Agnostic Distributed Multitask Optimization
Under Privacy Constraints’. IEEE Transactions on Neural Networks and Learn-
ing Systems (2019), vol. 32: pp. 3710-3722 (cit. on pp. 25, 37, 40, 42, 48, 49,
76, 127, 128, 135).

SEN, PrRITAM and CRISTIAN BORCEA: ‘FedMTL: Privacy-Preserving Federated
Multi-Task Learning’. ECAI 2024. 10S Press, Oct. 2024 (cit. on pp. 18, 20).

SENER, OZAN and VLADLEN KOLTUN: ‘Multi-task learning as multi-objective
optimization’. Advances in neural information processing systems (2018), vol.
31 (cit. on pp. 68, 71).

SHARMA, SHUBHKIRTI and VIJAY KUMAR: ‘A Comprehensive Review on
Multi-objective Optimization Techniques: Past, Present and Future’ Archives
of Computational Methods in Engineering (Nov. 1, 2022), vol. 29(7): pp. 5605—
5633 (cit. on pp. 23, 39).



120

Bibliography

[She25]

[Shi24]

[Smilg]

[S022]

[Spa23]

[Spa2l]

[Stik22]

[Sun19]

[Tal09]

[Tan23]

[Vam11]

[Var22]

SHEN, YUHAO, WEI XI, YUNYUN CAl, YUWEI FAN, HE YANG, and JIZHONG
ZHAO: ‘Multi-objective federated learning: Balancing global performance and
individual fairness’. Future Generation Computer Systems (Jan. 2025), vol.
162: p. 107468 (cit. on p. 16).

SHI, YUXIN, HAN YU, and CYRIL LEUNG: ‘Towards Fairness-Aware Federated

Learning’. IEEFE Transactions on Neural Networks and Learning Systems
(2024), vol.: pp. 1-17 (cit. on p. 87).

SMITH, VIRGINIA, CHAO-KAT CHIANG, MAZIAR SANJABI, and AMEET TAL-
WALKAR: Federated Multi-Task Learning. Feb. 27, 2018 (cit. on p. 87).

So, JINHYUN, KEVIN HSIEH, BEHNAZ ARZANI, SHADI NOGHABI, SALMAN
AVESTIMEHR, and RANVEER CHANDRA: FedSpace: An Efficient Federated
Learning Framework at Satellites and Ground Stations. 2022 (cit. on pp. 84,
85).

SPACE DATA SYSTEMS (CCSDS), THE CONSULTATIVE COMMITTEE for:
CCSDS 130.0-G-4: Overview of Space Communications Protocols. Tech. rep.
The Consultative Committee for Space Data Systems (CCSDS), 2023 (cit. on
p. 93).

SPACE DATA SYSTEMS (CCSDS), THE CONSULTATIVE COMMITTEE for:
CCSDS 401.0-B-32: Radio Frequency Modulation Systems - Part 1: Earth

Stations and Spacecraft. Tech. rep. The Consultative Committee for Space
Data Systems (CCSDS), 2021 (cit. on p. 93).

SUKENIK, PETER and CHRISTOPH H. LAMPERT: Generalization In Multi-
Objective Machine Learning. 2022 (cit. on p. 22).

SUN, ZITENG, PETER KAIROUZ, ANANDA THEERTHA SURESH, and H. BREN-
DAN McMAHAN: Can You Really Backdoor Federated Learning? 2019 (cit. on
p. 87).

TALBI, EL-GHAZALL: Metaheuristics: From Design to Implementation. Wiley
Publishing, 2009 (cit. on p. 11).

TAN, ALYSA ZIYING, HAN Yu, LizHEN CuUl, and QIANG YANG: ‘Towards
Personalized Federated Learning’. IEEE Transactions on Neural Networks and
Learning Systems (Dec. 2023), vol. 34(12): pp. 9587-9603 (cit. on pp. 19, 37,
86).

VAMPLEW, PETER, RICHARD DAZELEY, ADAM BERRY, RUSTAM ISSABEKOV,
and EVAN DEKKER: ‘Empirical evaluation methods for multiobjective rein-
forcement learning algorithms’ Machine Learning (July 1, 2011), vol. 84(1):
pp. 51-80 (cit. on pp. 27, 47).

VARRETTE, S., H. CARTIAUX, S. PETER, E. KIEFFER, T. VALETTE, and
A. OLLOH: ‘Management of an Academic HPC & Research Computing Fa-
cility: The ULHPC Experience 2.0". Proc. of the 6th ACM High Performance
Computing and Cluster Technologies Conf. (HPCCT 2022). Fuzhou, China:
Association for Computing Machinery (ACM), 2022 (cit. on p. 124).



121

[Wan19]

[Wig98]

[Wu22]

[Wu23|

[Xu20]

[Xu23]

[Yan23a]

[Yan23b]

[Yan19]

[Ye23al

[Ye23b]

WANG, KANGKANG, RAJIV MATHEWS, CHLOE KIDDON, HUBERT EICHNER,
FRANCGOISE BEAUFAYS, and DANIEL RAMAGE: Federated Evaluation of On-
device Personalization. 2019 (cit. on p. 48).

WicHTMAN, LINDA F: ‘LSAC National Longitudinal Bar Passage Study.’
LSAC Research Report Series (1998), vol. (cit. on p. 74).

Wu, CHENRUI, YIFEI ZHU, and FANGXIN WANG: ‘DSFL: Decentralized Satel-
lite Federated Learning for Energy-Aware LEO Constellation Computing’. 2022
IEEE International Conference on Satellite Computing (Satellite). IEEE, Nov.
2022 (cit. on p. 85).

WU, LINGLING and JINGJING ZHANG: ‘FedGSM: Efficient Federated Learning
for LEO Constellations with Gradient Staleness Mitigation’. 2023 IEEE 24th
International Workshop on Signal Processing Advances in Wireless Communi-
cations (SPAWC). IEEE, Sept. 2023 (cit. on pp. 84, 85).

XU, JIE, YUNSHENG TIAN, PINGCHUAN MA, DANIELA RUS, SHINJIRO SUEDA,
and WOJCIECH MATUSIK: ‘Prediction-Guided Multi-Objective Reinforcement
Learning for Continuous Robot Control’. Proceedings of the 37th Interna-
tional Conference on Machine Learning. Ed. by I1I, HAL DAUME and AARTI
SINGH. Vol. 119. Proceedings of Machine Learning Research. PMLR, July
2020: pp. 1060710616 (cit. on pp. 29, 57).

XU, XIAOLONG, HAOYUAN L1, ZHENG LI, and XIAOKANG ZHOU: ‘Safe: Syn-
ergic Data Filtering for Federated Learning in Cloud-Edge Computing. IEEE
Transactions on Industrial Informatics (Feb. 2023), vol. 19(2): pp. 1655-1665
(cit. on p. 85).

YANG, FANGJIE, HONGLAN HUANG, WEI SHI, YANG MA, YANGHE FENG,
GUANGQUAN CHENG, and ZHONG Li1u: ‘PMDRL: Pareto-front-based multi-
objective deep reinforcement learning’. Journal of Ambient Intelligence and
Humanized Computing (Sept. 1, 2023), vol. 14(9): pp. 12663-12672 (cit. on
p. 22).

YANG, HAIBO, ZHUQING Liu, Jia Liu, CHAOSHENG DONG, and MICHINARI

MomMA: ‘Federated Multi-Objective Learning’. Thirty-seventh Conference on
Neural Information Processing Systems. 2023 (cit. on pp. 8, 18, 23, 68, 73, 87).

YANG, QIANG, YANG Liu, TIANJIAN CHEN, and YONGXIN TONG: ‘Feder-
ated Machine Learning: Concept and Applications’. ACM Trans. Intell. Syst.
Technol. (2019), vol. 10(2) (cit. on pp. 23, 86).

YE, MANG, XIUWEN FaNG, Bo Du, PoNGg C. YUEN, and DACHENG TAoO:
‘Heterogeneous Federated Learning: State-of-the-art and Research Challenges’.
ACM Comput. Surv. (Oct. 2023), vol. 56(3) (cit. on p. 37).

YE, MANG, XITUWEN FANG, Bo Du, Ponc C. YUEN, and DACHENG TAO:
‘Heterogeneous Federated Learning: State-of-the-art and Research Challenges’.
ACM Computing Surveys (Oct. 2023), vol. 56(3): pp. 1-44 (cit. on pp. 85, 86).



122

Bibliography

[Ye22]

[Yeh09]

[Yin23]

[Yin18]

[Yoo21]

[Zha23]

[Zhu20a]

[Zhu22]

[Zhu21a]

[Zhu21b)]

[Zhu20b)]

[Zit99]

YE, Mao and QIANG LIU: ‘Pareto navigation gradient descent: a first-order
algorithm for optimization in pareto set’. Proceedings of the Thirty-FEighth
Conference on Uncertainty in Artificial Intelligence. Ed. by CUSSENS, JAMES
and KUN ZHANG. Vol. 180. Proceedings of Machine Learning Research. PMLR,
Aug. 2022: pp. 2246-2255 (cit. on p. 16).

YEH, [-CHENG and CHE-HUI LIEN: ‘The comparisons of data mining tech-
niques for the predictive accuracy of probability of default of credit card clients’.
Ezpert Syst. Appl. (2009), vol. 36: pp. 2473-2480 (cit. on p. 74).

YIN, BENSHUN, ZHIYONG CHEN, and MEIXIA TAO: ‘Predictive GAN-Powered
Multi-Objective Optimization for Hybrid Federated Split Learning’ IEEFE
Transactions on Communications (Aug. 2023), vol. 71(8): pp. 45644-4560 (cit.
on p. 14).

YiN, DoNG, YUDONG CHEN, RAMCHANDRAN KANNAN, and PETER
BARTLETT: ‘Byzantine-Robust Distributed Learning: Towards Optimal Sta-
tistical Rates’ Proceedings of the 35th International Conference on Machine
Learning. Ed. by Dy, JENNIFER and ANDREAS KRAUSE. Vol. 80. Proceedings
of Machine Learning Research. PMLR, July 2018: pp. 5650-5659 (cit. on
p. 87).

YooN, TEHRIM, SUMIN SHIN, SUNG JU HwANG, and EUNHO YANG: ‘FedMix:

Approximation of Mixup under Mean Augmented Federated Learning’. ArXiv
(2021), vol. abs/2107.00233 (cit. on p. 86).

ZHAO, FANGYUAN, XUEBIN REN, SHUSEN YANG, PENG ZHAO, RUI ZHANG,
and XINXIN XU: ‘Federated multi-objective reinforcement learning’. Informa-
tion Sciences (2023), vol. 624: pp. 811-832 (cit. on p. 26).

Zuu, HANGYU and YAaocHU JIN: ‘Multi-Objective Evolutionary Federated
Learning’ IEEE Transactions on Neural Networks and Learning Systems (Apr.
2020), vol. 31(4): pp. 1310-1322 (cit. on pp. 8, 14).

7ZHU, HANGYU and YAOCHU JIN: ‘Real-Time Federated Evolutionary Neural
Architecture Search’. IEEE Transactions on Evolutionary Computation (2022),
vol. 26(2): pp. 364-378 (cit. on pp. 4, 15, 17).

ZHU, HANGYU, HAOYU ZHANG, and YAOCHU JIN: ‘From federated learning to

federated neural architecture search: a survey’. Complex & Intelligent Systems
(Jan. 2021), vol. 7(2): pp. 639657 (cit. on pp. 3, 14).

ZHU, ZHUANGDI, JUNYUAN HONG, and JIAYU ZHOU: ‘Data-Free Knowledge
Distillation for Heterogeneous Federated Learning’. Proceedings of machine
learning research (July 2021), vol. 139: pp. 12878-12889 (cit. on p. 86).

ZHUO, HANKZ HANKUI, WENFENG FENG, YUFENG LIN, QIAN XU, and QIANG
YANG: Federated Deep Reinforcement Learning. Feb. 9, 2020 (cit. on p. 26).

ZITZLER, E. and L. THIELE: ‘Multiobjective evolutionary algorithms: a com-
parative case study and the strength Pareto approach’. IEEE Transactions on
FEvolutionary Computation (1999), vol. 3(4): pp. 257-271 (cit. on p. 57).



123

[Zit03]

ZITZLER, ECKART, LOTHAR THIELE, MARCO LAUMANNS, C.M. FONSECA,
and VIVIANE FONSECA: ‘Performance Assessment of Multiobjective Optimizers:
An Analysis and Review’. Fvolutionary Computation, IEEE Transactions on

(May 2003), vol. 7: pp. 117-132 (cit. on p. 28).



A ‘ PARAMETERS AND
COMPLEMENTARY RESULTS

Al | MOFL/D: A FRAMEWORK FOR FEDERATED
MULTI-OBJECTIVE LEARNING
A.1.1 | COMPLETE EXPERIMENTAL PARAMETERS

All experiments with two or three clients were repeated 10 times each, with respective
seeds 5,11,17,176,462,488,3011,6543,9347,675234. Experiments with five clients were
repeated only 5 times due to the high computing cost; these experiments were run with
seeds 5,17,488,3011,6543. The number of runs on the non-federated system is matched
to the total number of clients involved in all repetitions of the federated system, so e.g.
2-10 = 20 to compare with a federated system with two clients repeated 10 times. Note
that our implementation uses multi-threading to model individual federated participants;
therefore the experiments are not deterministic and will not reproduce precisely the same
numerical results.

A.1.2 | COMPUTING DETAILS

The experiments presented in this paper were carried out using the HPC facilities of the
University of Luxembourg [Var22] — see https://hpc.uni.lu. The computing time equates to
approximately 1450 hours (i.e., more than 60 days) for a single HPC node. The technical
specifications of a cluster compute node are given in Table A.2

A.1.3 | ADDITIONAL RESULTS
A.1.3.1 | USING PRE-TRAINED MODELS

The experiments do not offer conclusive results for or against the use of pre-trained models,
obtained earlier in the optimisation process, to initialise new federated learning runs.

In some cases, e.g. in the results for the Deep-Sea Treasure environment and the Lunar
Lander environment shown in Fig. A.1(b) and Fig. A.2(a), respectively, the results of the
algorithm run with pre-trained models seem to match or at times during the optimisation
process even outperform the algorithm run without pre-trained models. Also notable
in some cases, e.g. in the results shown for the DST environment, is the significantly
reduced variance of the hypervolume obtained by the system with pre-trained models in
the initial stages of convergence, as well as the slightly faster increase of the hypervolume.
However, when comparing the corresponding values of the sparsity metric in Table 3.2, it
becomes apparent that these are significantly higher when pre-trained models are used.
This indicates that this instantiation of the algorithm tends to find more solutions that are
in close proximity to ones already discovered, leading to a high number of solutions, but
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Table A.1: The full set of hyperparameters for all experiments presented in this paper. Left
to right: Deep-Sea Treasure (DST), Multi-objective Lunar Lander (MO-LL) and Deterministic

Minecart (DMC).

Parameter name MO-LL DMC
Metaheuristic (Pareto Simulated Annealing)

Iterations 25 25
Samples per round 10 10
Federated Learning (FedAvg)

Total iterations 10° 1.5-10°
Tterations/local round (2/5/10) - 103 (2/5/10) - 103 (2/5/10) - 103
Number of clients 2/3/5 2/3/5
Reinforcement Learning (DQN)

Train frequency 4 32
Gradient steps —1 32
Gamma 0.99 0.99
Exploration fraction 0.12 0.8
Exploration final episode 0.1 5-1072
Target update interval 250 750
Buffer size 5-10% 5-10%
Batch size 64 64
Learning rate 6.3-1074 2-1074
Network [256,256] [256,256]
Reference point (—200, —200, —200, —200) (—1,—1,—200)

Table A.2: Hardware specifications of the cluster nodes employed for experiments.

CPU
RAM

2 AMD Epyc ROME 7H12 @ 2.6 GHz [64c/280W]
256GB

with low diversity. This observation also serves to explain the reduced performance on the
Deterministic Minecart environment, as optimal solutions in this environment are sparse.
Therefore, any attempt to exploit the neighbourhood of a previous solution is less likely to

be successful.
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Figure A.1: Hypervolume evolution compared for experiments run with and without pre-
trained models. The duration of the local training phase in federation was fixed at 5000
iterations; the number of federated clients was fixed at 3.
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Figure A.2: Results for experiments run on the Lunar Lander environment with and without
pre-trained models. The duration of the local training phase in federation was fixed at 10000
iterations; the number of federated clients was 3.

A.2 | FEDPREF: SOLVING FEDERATED MULTI-OBJECTIVE
LEARNING UNDER PREFERENCE HETEROGENEITY

A.2.1 | DETAILS OF EXPERIMENT CONFIGURATIONS

A.2.1.1 | HYPERPARAMETER TUNING

We perform an initial hyperparameter search for all algorithms and environments, with all
evaluated parameter values listed in Table A.5. Each configuration was run five times and
five different randomly-generated preference distributions. For all environments except the
MO-Halfcheetah environment, all experiments were performed with 20 simulated clients per
system. Due to the comparably high computational cost of training on the MO-Halfcheetah
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environment, the number of clients was reduced to 10 clients per system in this case. The
five preference distributions remained fixed across all hyperparameter configurations to
promote the comparability of results. The metric used to assess performance was the mean
linearised reward obtained by the clients using their personalised preference weights. The
parameter values selected as a result of the hyperparameter tuning are given in Table A.3

and A.4.

Table A.3: Complete list of parameter configurations tested during hyperparameter tuning of
DQN algorithms.

MO-LL DMC DST Comment
No comm. - - - - No federated parameters.
FedAvg Local iterations (2,5,10-10% (2,5,10)-10% (5,10,15)-102
FedPro Local iterations (2,5,10-10% (2,5,10)-10% (5,10,15) - 102
¥ Proximal term p 0.01,0.1,1 0.01,0.1,1 0.01,0.1,1 Based on [Lil§]

Local iterations (2,5,10-10% (2,5,10)-10% (5,10,15) - 102
CPL Clustering 2.5,5,7.5 2,3,5 2.5,5,7.5 See #

threshold

Patience 1,2 1,2 1,2 See P
MaTFL Local iterations (2,5,10-103 (2,5,10)-10% (5,10,15) - 102

Voting clients & 5,8, 10 5,8,10 5,8,10 Following [Cai23]

Local iterations (2,5,10-103 (2,5,10) 103 (5,10,15) - 102

Clustering 2.5,5,7.5 2,3,5 2.5,5,7.5 Same as for CFL
Ours

threshold

Patience 1,2 1,2 1,2 Same as for CFL

Min. similarity —1,0 —-1,0 —-1,0 Used during aggregation®

@ Based on max. observed gradient magnitude ,as suggested in [Sat19].

b Rounds below threshold before clustering triggered. Introduced by us to handle slow initial gradient
ramp-up.

¢ See Section 4.2.3 in the main paper for explanation.

A.2.1.2 | MORL ENVIRONMENT PARAMETERS

Where available, the hyperparameters for the three MORL environments used in our
experiments were obtained from published benchmark configurations. Where no such
configurations were available, they were obtained by manual tuning. All modified pa-
rameters are reported below, in Tables A.6, and A.7. Parameters that are not listed can
be assumed to be set to the default setting, as implemented in the DQN and DDPG
algorithms, respectively, of the stable-baselines3 package.

A.213 | COMPUTING RESOURCES

The number of experiments presented in this paper amounts to 4125 individual experimental
runs. This corresponds to a total runtime of approximately 8560 hours on a single node of
the computing cluster available to us.
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Table A.4: Complete list of parameter configurations tested during hyperparameter tuning of
DDPG algorithms.

MO-LLcont. MO-HC Comment

No comm. - - - No federated parameters.
FedAvg Local iterations 5000, 10000, 15000 25000, 37500, 50000
FedProx Local iterations 5000, 10000, 15000 25000, 37500, 50000

Proximal term p 0.01,0.1,1 0.01,0.1,1 Following [Lil8]

Local iterations 5000, 10000, 15000 25000, 37500, 50000

Clustering 10, 15,20 20, 30,40 Based on max. observed
CFL threshold gradient magnitude®

Patience 1,2 1,2 Rounds below threshold

before clustering triggered®

MaTFL Local iterations 5000, 10000, 15000 25000, 37500, 50000

Voting clients &k 5,8,10 3,5,8 Following [Cai23]

Local iterations 5000, 10000, 15000 25000, 37500, 50000

Clustering 10, 15,20 20, 30,40 Same as for CFL
Ours threshold

Patience 1,2 1,2 Same as for CFL

Min. similarity —1,0 —-1,0 Used in computing

aggregation weights®

> As suggested in [Sat19].
P Introduced by us to handle slow initial gradient ramp-up.
¢ See Section 4.2.3 in the main paper for explanation.

Table A.5: Parameter configurations selected for each algorithm following hyperparameter

tuning.
MO-LL DMC DST MO-HC MO-LLec.
No comm. - - - - - -
FedAvg Number local iterations 5000 5000 500 25000 5000
FedPr Number local iterations 5000 5000 500 25000 5000
eatox Proximal term y 1 1 1 001 001
Number local iterations 10000 2000 1000 25000 5000
CFL Clustering threshold 5 2 5 30 15
Patience 2 2 2 1 2
MaTFL Number local iterations 2000 5000 1000 25000 5000
Number voting clients k£ 10 10 10 8 10
Number local iterations 5000 5000 500 25000 10000
Clustering threshold 5 3 5 30 15
FedPref (ours) Patience 1 2 2 2 2
Minimum similarity —1 0 -1 -1 —1
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Table A.6: Set of parameters used for the local training of the MO-Lunar Lander, Deterministic
Minecart and Deep-Sea Treasure environments, using the DQN algorithm.

Parameter name MO-Lunar Lander Det. Minecart Deep-Sea Treasure
env mo-lunar-lander-v2 minecart-deterministic-v0 deep-sea-treasure-v0
policy MipPolicy MipPolicy MipPolicy
learning_rate 0.00063 0.0002 0.004

batch__size 64 64 128

buffer_ size 50000 50000 10000

learning_ starts 0 50000 1000

gamma 0.99 0.99 0.98

target_ update__interval 250 750 600

train_ freq 4 32 16

gradient__steps —1 32 8

exploration_ fraction 0.12 0.8 0.2
exploration_ final eps 0.1 0.05 0.07

net_arch [256, 256] [256, 256] (256, 256]

Table A.7: Set of parameters used for the local training of the MO-Halfcheetah and MO-Lunar
Lander continuous environment.

Parameter name MO-Halfcheetah MO-Lunar Lander cont.

env mo-halfcheetah-v4  mo-lunar-lander-continuous-v2
noise std 0.1 0.1
policy MipPolicy MlpPolicy
learning_ rate 0.001 0.001
buffer_ size 200000 200000
learning_ starts - 10000
gamma 0.98 0.98
train_ freq 1 1
gradient__steps 1 -
net__arch [400, 300] [400, 300]
A.2.2 | SUPPLEMENTARY EXPERIMENTAL RESULTS

In this section, we include supplementary numerical results and plots that exceeded the
scope of the main body of the thesis.

A.2.2.1 | IMPACT OF TOPR PARAMETER AND SIMILARITY BOUND

This section lists numerical experimental results for the parameter sensitivity analyses
carried out in Chapter 4; these same results are presented there in visual form, with some
numbers quoted. We refer the reader to the relevant section in the main paper for the
analysis and discussion of these results. Table A.9 contains the results for the sensitivity
analysis of the topR parameter; Table A.8 shows the results for the analysis of the minimum
similarity threshold in aggregation. All experiments were carried out with 10 different
random seeds, on preference weights drawn from a Dirichlet distribution. Experiments on
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all environments were run on systems of 20 federated clients, with the exception of the
MO-Halfcheetah environment, which was restricted to systems of 10 clients due to its high
computational cost.

A.2.2.2 | FEDPREF CLUSTERING VALIDATION

In this section, we show and briefly discuss additional results of the clustering validation
experiments.

MO-Lunar Lander. Fig. A.3 shows the similarity of clients at three training stages
during training in the MO-LL environment on an unbalanced preference distribution.
Three groups with distinct similarity are clearly recognisable from the earliest stages of
the training process; these correspond to the sets of clients that have been assigned the
same preferences, with two such sets evidently grouped together. Later stages show the
gradual separation of the different sets, likely through the clustering process. However,
the two client sets that showed a high similarity from the beginning (both contained in
the largest, top-left block in the figure) appear to remain in the same cluster until the
end of the training process, never being separated. This could indicate either that the two
different preference weights assigned to the two sets are naturally compatible during the
training process, or that the FedPref algorithm might sometimes struggle to fully separate
incompatible sets of clients before they converge to a local optimum. The latter could also
be a consequence of the imbalanced distribution of potentially incompatible clients in this
case; perhaps a small number of incompatible clients is ’dominated’ by the remaining large
number of compatible clients in the same cluster.

Det. Minecart. Fig. A.4 and Fig. A.5 show client similarities during training on the
Det. Minecart environment with the balanced and unbalanced distribution of preferences,
respectively. These results also illustrate the challenges of this environment that were
discussed in the main part of the paper: the sparse reward space appears to make it
difficult to reliably discover client similarities during the clustering process. We observe in
both figures that clients never reach high levels of similarity as seen in the results of the
MO-LL environment; it is likely that this also impedes the clustering process, leading to
a suboptimal grouping into clusters. However, some successful collaboration appears to
take place, as evidences by the darker-coloured patches in the middle and right images
in both figures. This matches our experimental conclusions in the main paper, that the

13 5 7 9 11 13 15 17 19 1 3 5 7 9 11 13 15 17 19 5 7 9 11 13 15 17 19

Figure A.3: Mutual client similarity at different stages during a single experimental run
on the MO-LL environment, with unbalanced preference distribution. Left to right: client
similarities after aggregation round 5, 14 and 24 of 28, respectively.
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Table A.8: Numerical results for minimum-similarity sensitivity analysis visualised in the
main part of the paper. All configurations except those on the MO-HC environment were run
with 10 different random seeds across 20 clients per run. Due to the higher computational cost
of solving the MO-HC environment, experiments on this environment were restricted to 10
clients per run, also for 10 runs per configuration.

Threshold MO-LL DMC DST MO-HC MO-LLec.
—1.0 32.22 ¢11.3 —19101.0 4.410l1.7 2980.260784.4 32.1707.0
—0.8 31.74011.3 —2.2901.0 2.4901.7 3038.060784.4 31.3407.0
—0.6 32.09013.0 —2.4201.7 4.63 03.1 3049.70 0741.8 29.0808.3
—0.4 29.65013.2 -1.82 01,5 3.2001.5 2967.620896.8 32.44 015.3
—0.2 27.47011.2 —2.6300.9 2.7302.5 2761.860783.1 30.4109.3
0.0 22.73016.4 —2.4201.2 1.5602.0 2494.440791.0 28.7009.8
0.2 13.24011.7 —2.2401.6 —0.6902.0 2389.850649.7 16.98010.8
0.4 13.5307.1 —3.6100.7  0.9202.3 2477.750603.5 16.84011.7
0.6 14.03011.9 —2.7802.2 0.8501.5 2489.830682.9 14.4609.2
0.8 9.95010.0 —2.7201.5 1.2002.2 2391.18¢369.0 15.08012.4

FedPref algorithm does accomplish some useful collaboration leading to improvement of
client results, but highly sparse solution spaces remain a challenge.

Deep-Sea Treasure. Sample results for the development of client similarity during

training on the Deep-Sea Treasure environment with balanced and unbalanced preference
assignment are shown in Fig. A.6 and Fig. A.7, respectively. In both figures, we observe
that a grouping of clients becomes visible quite early in the learning process. Though this
grouping is not perfect, it does largely correspond to those sets of clients that have been
assigned the same preference. The flaws in the grouping process likely spring from an
early clustering step, where preference similarities were not fully reflected in the respective
model gradients.

MO-Halfcheetah. Uniquely for this environment, experiments were run with a lower
number of clients, due to the high computing cost of solving this problem. For the equal

Table A.9: Numerical results for topR sensitivity analysis visualised in the main part of the
paper. All configurations except those on the MO-HC environment were run with 10 different
random seeds across 20 clients per run. Due to the higher computational cost of solving the
MO-HC environment, experiments on this environment were restricted to 10 clients per run,
also for 10 runs per configuration.

topR  MO-LL DMC DST MO-HC MO-LLc.
0.2 33.18011.1 —-25801.0 2.24 3.0 2909.41 0636.1  30.51 09.3
0.4 30.04 011.1 —3.1801.0 1.89 ¢3.0 3043.55 0636.1 32.71 ¢9.3
0.6 30420133 -2.4401.8 1.3503.8 2995.96 0893.1 32.04 012.5
0.8 31170117 —2.6501.3 3.76 4.0 2968.06 0915.7 33.39 011.3
1.0 30.84 0104 —24901.2 252028 2967.83 0714.8 32.03 010.7
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Figure A.4: Mutual client similarity at different stages during a single experimental run on
the DMC environment, with balanced preference distribution. Left to right: client similarities
after aggregation round 5,15 and 25 of 38, respectively.
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Figure A.5: Mutual client similarity at different stages during a single experimental run on the
DMC environment, with unbalanced preference distribution. Left to right: client similarities
after aggregation round 5, 15 and 25 of 38, respectively.

distribution, systems with 9 clients were constructed, with the same preference weights
given to 3 clients each. For the unequal distribution scenario, 10 clients were run, with
1,4,3, and 2 clients receiving the same preferences, respectively. Sample results are shown
in Fig. A.8 for the balanced distribution, and Fig. A.9 for the unbalanced distribution. For
the results of the balanced distribution, we observe a fairly early tendency for dissimilarity
between the clients, with some similarity grouping already apparent in the leftmost image,
after five aggregation rounds. This early divergence between clients seems to lead in part
to counter-intuitive clustering decisions, so that not all clients with the same similarity are
grouped together. However, we note that, given the results seen in the main part of the

Round 5 Round 15 _ Round 25
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Figure A.6: Mutual client similarity at different stages during a single experimental run on
the DST environment, with balanced preference distribution. Left to right: client similarities
after aggregation round 5,15 and 25 of 28, respectively.
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Figure A.7: Mutual client similarity at different stages during a single experimental run on
the DST environment, with unbalanced preference distribution. Left to right: client similarities
after aggregation round 5,15 and 25 of 28, respectively.

paper, clients do appear to be able to learn together constructively. In the final image, we
observe slightly less sharp dissimilarities between clients, indicating that further clustering
has taken place, and most clients are likely entirely separated from the rest.

For the unbalanced preference distribution, we observe similar results, though interestingly
the resulting clusters seem more appropriate to the underlying distribution structure.
However, this difference could be a result of the particular experiment instances selected
here for visualisation.
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Figure A.8: Mutual client similarity at different stages during a single experimental run on the
MO-HC environment, with balanced preference distribution. Left to right: client similarities
after aggregation round 5,15 and 25 of 30, respectively.
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Figure A.9: Mutual client similarity at different stages during a single experimental run
on the MO-HC environment, with unbalanced preference distribution. Left to right: client
similarities after aggregation round 5,15 and 25 of 30, respectively.

Continuous MO-Lunar Lander. Fig. A.10 and Fig. A.11 show sample similarity
results for clients trained on the Continuous MO-Lunar Lander environment under balanced
and unbalanced preference distributions, respectively. We observe that these results are
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quite similar to those of the MO-LL environment, with near-perfect separation of clients into
groups with the same preferences. For the visualised instance of the balanced distribution,
these groups become visible almost immediately, already clearly recognisable after 5
aggregation rounds. Indeed, it appears that the clustering process fully separates clients
with different preferences almost immediately, with no intermediate step with larger cluster
groups discernible.

For the visualised instance of training on the unbalanced distribution, it takes markedly
longer for clear similarity differences to become visible. This suggests that the clustering
process takes longer to separate clients, either because they do indeed benefit from mutual
collaboration for an extended time, or perhaps, as speculated earlier, because larger groups
of clients with the same preferences dominate the intra-cluster training, skewing the cluster-
mean convergence criterion. However, we note that in the final image, after 25 aggregation
rounds, the separation of clients into clusters again matches the underlying distribution
structure almost perfectly.
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Figure A.10: Mutual client similarity at different stages during a single experimental run on
the DST environment, with balanced preference distribution. Left to right: client similarities
after aggregation round 5, 15 and 25 of 30, respectively.
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Figure A.11: Mutual client similarity at different stages during a single experimental run on
the DST environment, with unbalanced preference distribution. Left to right: client similarities
after aggregation round 5,15 and 25 of 30, respectively.

A.2.2.3 | INVESTIGATING CFL CLUSTERING

In this subsection, we present a brief exploration of the clustering performance of the CFL
algorithm on the experimental problems discussed in this paper. This investigation was
sparked by the observation that the CFL algorithm often performed relatively similarly
to the non-personalised FedAvg algorithm in our validation experiments. In Figures A.12
and A.13, we trace the evolution in the distribution of cluster sizes across aggregation
rounds. In the interest of brevity, we include figures only for preferences generated under a
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Dirichlet distribution; these are broadly representative of the corresponding results for the
other distributions. We make two general observations:

o For some environments (MO-LL and DST), the clustering process is rarely triggered.

o If the clustering process is triggered, it appears to lead to very imbalanced clusters —
often, single-client clusters are created.

Given that the clustering threshold parameters for CFL were selected following a hyperpa-
rameter search of parameter intervals recommended in [Sat19], we suspect that the first
observation is explained by the second: perhaps the imbalanced clustering occurring here
limits the performance of the algorithm sufficiently that the hyperparameter search leads
to the selection of a threshold that is rarely triggered, avoiding clustering altogether. To
explain the poor clustering performance itself, we propose two hypotheses. First, perhaps
the size or training development of the RL models trained in these experiments impacts the
success of the similarity metric computed on these models and so impacts the clustering
process. Second, the greedy clustering algorithm proposed in [Sat19] may not favour the
generation of balanced clusters.
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Dirichlet preferences. MO-LL environment
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Figure A.12: Clustering behaviour of the CFL algorithm across different environments. Left
to right: MO-LL, DMC, DST.
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Figure A.13: Clustering behaviour of the CFL algorithm across different environments. Left
to right: MO-HC, MO-LLcont.

A.3 | A NEW CLASS OF BENCHMARKS FOR FEDERATED
MULTI-OBJECTIVE LEARNING
A.3.1 | MULTI-MNIST EXPERIMENTS

The motivational experiment presented in Section 5.1 contrasts the results generated by
FedAvg and the non-federated baseline when run with the same hyperparameters. Both
variants were run on a minimal federated system of 2 clients, where the two clients are
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assigned a contrasting preference distribution. Ten such configuration were generated, with
preferences set to [(0,1), (1,0)],[(0.1,0.9), (0.9,0.1)], et cetera. Each preference configuration
was run five times.

A.3.2 | EXPERIMENTAL CONFIGURATION

Our model architecture for all experiments consists of a simple neural network with two
hidden layers of size 64 and 32, respectively, using ReLU activation functions. For the
output layer we use a Sigmoid activation function.

A.3.3 | PARAMETER TUNING

We tune all algorithms by grid search, running each configuration for three runs. The
tested parameter values are listed in Table A.10, with values that were ultimately selected
shown in Table A.11 and Table A.12. The same three heterogeneous preference assignments
were tested for each configuration across algorithms, with each set of preferences drawn
uniformly at random from the weight simplex. In evaluating the results of the parameter
search, we observe a Pareto front, with different configurations producing different trade-off
solutions.

A.34 | ADDITIONAL RESULTS

This section contains the experimental results that were discussed in the main paper, but
could not be reported in detail. The remaining plots of Pareto fronts found by different
algorithms on 10 clients are shown in Fig. A.14 and Fig. A.15 for experiments with ho-
mogeneous and heterogeneous preferences, respectively. The corresponding minimum and
maximum values for each metric and experiment can be found in Tables A.13, A.14, A.15,
and A.16.

In addition to the experiments presented in the main section, we have also carried out addi-
tional experiments scaled to federated systems of 50 clients. These results are visualised in
Figs. A.16 and A.17 and Figs. A.18 and A.19 for homogeneous and heterogeneous preferences,
respectively. The corresponding numerical hypervolume values may be found in Tables A.17
and A.20, with the minimum and maximum values reported in Tables A.18, A.19, A.21,
and A.22.

A.3.5 | PRACTICAL REMARKS

In the main paper, we have noted the presence of statistical noise in client results. With
multi-objective analysis in particular, outliers could distort the reported performance of
algorithms, e.g. if identified as points on the Pareto front. Therefore, it may be useful to
account for this noise in multi-objective analysis, e.g. by relaxing the strict Pareto front
to one of rank k as defined in (Deb et al., 2002)!, computed by removing the current
non-dominated solutions from the solution set and computing the Pareto front of the
remainder k times.

In this work, we successfully used a simple filtering rule to remove non-converged
solutions, relying on the fact that perfect fairness is difficult to achieve for non-trivial

1 Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 6(2), 182-197
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Table A.10: Complete list of parameter configurations tested during hyperparameter tuning
of algorithms.

Algorithm Parameter Tested values Comment

no comm Learning rate 5.1074,1073,1072 No federated parameters.
Learning rate 5-107%4,1073,1072

FedProx Num. local iterations 10,25, 50
Proximal term p 0,0.01,0.1 u = 0 recovers standard FedAvg
Finetuning rounds 0,1
Learning rate 5-1074,1073,1072
Num. local iterations 10,25, 50

CFL Clustering threshold 1,2.5,5,7.5
Patience 1,2 Rounds below threshold before

clustering triggered®

Finetuning rounds 0,1
Learning rate 5-107%4,1073,1072

Global learning rate 1.0,1.5,2.0,2.5
Num. local iterations 10, 25,50
Finetuning rounds 0,1

FedCMOO

Learning rate 5-1074,1073,1072
Num. local iterations 10,25, 50
FedPref Clustering threshold 1,2.5,5,7.5 Relative change
Patience 1,2 Rounds below threshold before

clustering triggered®
Finetuning rounds 0,1

2 Introduced by us to handle slow initial gradient ramp-up and noise introduced by client
heterogeneity.

classifiers, and excluding all solutions with a fairness value greater than 1 — e, with value
of € set in the range of 1073.

A common challenge in multi-objective optimization is an imbalance in the magnitude
of different individual objective functions, as observed e.g. in ASKIN et al. [Ask24]. In
settings such as this, where the potential values of the objective function are unbounded,
an optimal mitigation strategy remains an open problem. MILOJKOVIC et al. [Mil20]
suggest normalising objective functions by the initial values obtained for each. We note
this approach tends to favor fairness over accuracy objectives, given that most fairness
metrics produce near-perfect scores for the uniform predictions generated by untrained
models. However, in practice this normalization appears to work quite well for fairness
problems, both in [Pad21] and our own experiments. Other normalization approaches are
possible.

Finally, converging with a high preference for fairness can be difficult, as the perfect
fairness of an untrained model does not give a sufficient impetus for a model to start
learning. Following PADH et al. [Pad21], we mitigate this problem in our experiments by
adding a small fraction of the accuracy loss for regularization, e.g. for DDP loss:

Loss,pp = DDP+ 0.1 - BCELogitsLoss. (A1)
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Table A.11: Parameter configurations selected for each algorithm and problem with the DEO
fairness metric. Left to right: Adult dataset with gender as sensitive attribute, adult - race,
Law School - gender, Law school - race, Default -gender.

Algorithm  Parameter AD-G AD-R LS-G LS-R DFT
no comm Learning rate 5-107* 1073 1073 1073 1073
Learning rate 1073 10731072 1072 1073
FedProx Num. local iterations 50 50 25 25 50
Proximal term p 0 0.01 0 0.01 0
Finetuning rounds 0 0 1 1 0
Learning rate 1072 1072 1072 1072 1072
Num. local iterations 25 50 50 50 25
CFL Clustering threshold 7.5 5 7.5 5 7.5
Patience 1 1 2 2 2
Finetuning rounds 1 1 0 0 1
Learning rate 1072 1072 1073 1072 1072
Global learning rate 2.0 2.5 2.5 1.5 2.5
FedCMOO Num. local iterations 10 50 50 10 25
Finetuning rounds 0 0 0 1 0
Learning rate 1072 102 1072 1072 1073
Num. local iterations 50 25 25 50 50
FedPref Clustering threshold 7.5 2.5 1.0 1.0 1.0
Patience 1 1 2 1 2
Finetuning rounds 0 0 1 1 0
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Table A.12: Parameter configurations selected for each algorithm and problem with the DDP
fairness metric. Left to right: Adult dataset with gender as sensitive attribute, Adult - race,
Law School - gender, Law school - race, Default -gender.

Algorithm  Parameter AD-G AD-R LS-G LS-R DFT
no comm  Learning rate 5-100% 5.107% 1073 1073 5-1074
Learning rate 1072 10721073 1073 1072

FedProx Num. local iterations 25 25 10 10 10
Proximal term p 0 0.1 0 0.1 0.01
Finetuning rounds 1 1 0 0 1
Learning rate 1073 1073 1072 1072 1073
Num. local iterations 25 50 25 50 50

CFL Clustering threshold 1 1 5 7.5 2.5
Patience 2 1 1 2 2
Finetuning rounds 1 0 0 0 1
Learning rate 1072 1072 1072 5-100% 5.107*
Global learning rate 2.0 1.0 1.5 1.0 2.5

FedCMOO Num. local iterations 50 25 50 10 25
Finetuning rounds 0 0 0 0 0
Learning rate 1072 1072 1072 1072 1073
Num. local iterations 50 10 50 50 10

FedPref Clustering threshold 2.5 1.0 5.0 5.0 7.5
Patience 1 2 1 1 1
Finetuning rounds 1 1 1 1

Table A.13: Range of global performance results for accuracy and DEO on 10 clients with
homogeneous preferences. Only results from the algorithm-specific Pareto front are reported
(see also Fig. 5.2 in the main section). All values scaled by 102. All reported fairness metrics
are inverted for ease of visualization, such that 1 corresponds to perfect fairness.

Data FedProx CFL FedCMOO FedPref no comm
Sens. Attr. Acc,DEO Acc,DEO Acc,DEO Acc,DEO Acc,DEO
Adult

Gender min (80.0,80.1) (80.7,80.8) (73.8,77.8) (80.4,80.8) (79.0,79.5)
max (83.7,87.6) (84.7,85.0) (84.2,87.0) (85.6,86.1) (81.7,85.3)
Race min  (79.8,80.0) (80.6,80.8) (70.5,75.7) (80.8,80.8) (77.5,79.6)
max (87.8,91.9) (85.9,88.9) (94.4,96.5) (89.8,89.8) (86.8,90.6)
Law School

Gender min (91.8,93.2) (92.6,92.7) (91.5,93.4) (91.7,93.3) (91.5,91.7)
max (83.4,94.8) (86.8,88.6) (83.1,98.6) (84.2,89.6) (84.8,86.8)
Race min  (92.8,93.5) (92.8,93.0) (91.9,92.4) (92.8,93.2) (91.6,91.7)
max (70.2,75.2) (69.3,79.8) (65.6,74.6) (70.3,79.9) (71.6,72.7)
Default

Gender min (71.4,73.0) (68.5,70.1) (64.3,73.6) (72.1,74.4) (70.0,70.4)
max (91.6,96.8) (94.6,96.2) (94.0,98.6) (93.5,96.9) (93.4,96.5)
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Figure A.14: Results of different algorithms on 10 clients on a selection of benchmark problems
for accuracy and equality of opportunity (top row) and accuracy and demographic parity
(bottom row). All clients were assigned the same preferences during a run, with 10 runs
performed on preferences from (0.,1.0) to (0.9,0.1), modified by steps of (+0.1,—0.1). Each
point represents the mean client output for a single run, with the Pareto fronts across all runs
reported for each algorithm. All reported fairness metrics are inverted for ease of visualization,

such that 1 corresponds to perfect fairness.
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Figure A.15: Results of different algorithms on 10 clients on a selection of benchmark problems
for accuracy and equality of opportunity (top row) and accuracy and demographic parity
(bottom row). Clients were assigned heterogeneous preferences during each run, generated
uniformly at random but the same across algorithms. Each point represents the output of a
single client, with the Pareto fronts across all runs reported for each algorithm. All reported
fairness metrics are inverted for ease of visualization, such that 1 corresponds to perfect fairness.
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Table A.14: Range of global performance results for accuracy and DDP (right) on 10 clients
with homogeneous preferences. Only results from the algorithm-specific Pareto front are
reported (see also Fig. 5.2 in the main section). All values scaled by 102. All reported fairness
metrics are inverted for ease of visualization, such that 1 corresponds to perfect fairness.

Data FedProx CFL FedCMOO FedPref no comm
Sens. Attr. Acc,DDP  Acc,DDP  Acc,DDP Acc,DDP Acc,DDP
Adult

Gender min (71.6,78.5) (77.8,80.3) (62.5,76.1) (66.0,78.1) (25.1,81.5)
max (95.5,97.4) (93.4,98.4) (97.9,99.2) (97.3,97.5) (91.3,99.2)
Race min  (80.0,81.5) (78.5,80.9) (75.1,77.4) (78.1,80.1) (77.7,81.6)
max (95.8,98.0) (95.8,98.0) (95.4,98.8) (97.2,99.1) (90.8,97.7)
Law School

Gdr. min  (91.0,95.0) (94.2,94.2) (90.9,92.5) (93.9,94.1) (94.8,94.8)
max (99.6,99.6) (99.6, 99.6) (99.2,99.5) (99.6,99.6) (99.5,99.5)
Race min  (93.1,93.1) (94.4,94.8) (94.5,94.9) (93.8,94.6) (94.4,94.8)
max (97.9,97.9) (99.0,99.6) (99.2,99.6) (97.9,98.1) (98.9,99.1)
Default

Gender min (76.9,76.9) (77.6,77.6) (65.9,65.9) (55.0,77.2) (52.3,77.4)
max (99.4,99.4) (99.1,99.1) (98.8,98.8) (98.5,98.6) (98.7,98.8)

Table A.15: Range of global performance results for accuracy and DEO with 10 clients on
heterogeneous preferences. Only results from the algorithm-specific Pareto front are reported
(see also Fig. 5.3 in the main section). All values scaled by 102. All reported fairness metrics
are inverted for ease of visualization, such that 1 corresponds to perfect fairness.

FedProx CFL FedCMOO  FedPref

no comin

Ace,DEO  Acec,DEO  Acc,DEO  Acc,DEO  Acc,DEO

Adult

Gender min (80.0, 80.1) (80.7, 80.8) (73.8, 77.8) (80.4, 80.8) (79.0, 79.5)
max (83.7, 87.6) (84.7,85.0) (84.2, 87.0) (85.6, 86.1) (81.7, 85.3)
Race min  (79.8, 80.0) (80.6, 80.8) (70.5, 75.7) (80.8, 80.8) (77.5, 79.6)
max (87.8,91.9) (85.9, 88.9) (94.4, 96.5) (89.8, 89.8) (86.8, 90.6)
Law School

Gender min (91.8, 93.2) (92.6, 92.7) (91.5, 93.4) (91.7, 93.3) (91.5, 91.7)
max (83.4,94.8) (86.8, 88.6) (83.1, 98.6) (84.2, 89.6) (84.8, 86.8)
Race min  (92.8, 93.5) (92.8, 93.0) (91.9, 92.4) (92.8, 93.2) (91.6, 91.7)
max (70.2, 75.2) (69.3, 79.8) (65.6, 74.6) (70.3, 79.9) (71.6, 72.7)
Default

Gender min (71.4, 73.0) (68.5, 70.1) (64.3, 73.6) (72.1, 74.4) (70.0, 70.4)
max (91.6, 96.8) (94.6, 96.2) (94.0, 98.6) (93.5, 96.9) (93.4, 96.5)
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Table A.16: Range of global performance results for accuracy and DDP on 10 clients with
heterogeneous preferences. Only results from the algorithm-specific Pareto front are reported
(see also Fig. 5.3 in the main section). All values scaled by 102. All reported fairness metrics
are inverted for ease of visualization, such that 1 corresponds to perfect fairness.

FedProx

CFL

FedCMOO  FedPref

no comin

Acc,DDP  Acc,DDP  Acc,DDP  Acc,DDP  Acc,DDP

Adult

Gender min (71.6, 78.5) (77.8, 80.3) (62.5, 76.1) (66.0, 78.1) (25.1, 81.5)
max (95.5, 97.4) (93.4, 98.4) (97.9,99.2) (97.3, 97.5) (91.3, 99.2)
Race min  (80.0, 81.5) (78.5,80.9) (75.1, 77.4) (78.1, 80.1) (77.7, 81.6)
max (95.8, 98.0) (95.8, 98.0) (95.4, 98.8) (97.2,99.1) (90.8, 97.7)
Law School

Gender min (91.0, 95.0) (94.2, 94.2) (90.9, 92.5) (93.9, 94.1) (94.8, 94.8)
max (99.6, 99.6) (99.6, 99.6) (99.2, 99.5) (99.6, 99.6) (99.5, 99.5)
Race min  (93.1, 93.1) (94.4, 94.8) (94.5, 94.9) (93.8, 94.6) (94.4, 94.8)
max (97.9, 97.9) (99.0, 99.6) (99.2, 99.6) (97.9, 98.1) (98.9, 99.1)
Default

Gender min (76.9, 76.9) (77.6, 77.6) (65.9, 65.9) (55.0, 77.2) (52.3, 77.4)
max (99.4, 99.4) (99.1, 99.1) (98.8, 98.8) (98.5, 98.6) (98.7, 98.8)

Table A.17: Hypervolumes of global performance results for accuracy and DEO (left) and
accuracy and DDP (right) with 50 clients on homogeneous preferences. Higher is better
(Fairness metrics are inverted, as in the results figures). Only results from the algorithm-

specific Pareto front are reported (see also Fig. A.16 and Fig. A.17)

Data - Accuracy - DEO Accuracy - DDP

Sens. attr. |FProx CFL FCMOO FPref no comm|FProx CFL FCMOO FPref no comm
Adult - G | 0.671 0.691 0.654 0.696 0.663 | 0.776 0.792 0.767 0.769 0.781
Adult - R | 0.707 0.706 0.707 0.703 0.708 | 0.770 0.786 0.740 0.779  0.759
Law - G 0.880 0.907 0.893 0.870 0.799 | 0.939 0.940 0.926 0.941 0.906
Law - R 0.723 0.664 0.702 0.718 0.737 [0.947 0.945 0.944 0.932 0.904
Default - G| 0.759 0.733 0.799 0.746 0.684 | 0.667 0.669 0.627 0.684 0.672
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Figure A.16: Results of different algorithms on 50 clients on a selection of benchmark problems
for accuracy and equality of opportunity (top row) and accuracy and demographic parity
(bottom row). All clients were assigned the same preferences during a run, with 10 runs
performed on preferences from (0.,1.0) to (0.9,0.1), modified by steps of (+0.1,—0.1). Each
point represents the mean client output for a single run, with the Pareto fronts across all runs
reported for each algorithm. All reported fairness metrics are inverted for ease of visualization,
such that 1 corresponds to perfect fairness.
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Figure A.17: Additional results of different algorithms on 50 clients on a selection of benchmark
problems for accuracy and equality of opportunity (top row) and accuracy and demographic
parity (bottom row). All clients were assigned the same preferences during a run, with 10 runs
performed on preferences from (0.,1.0) to (0.9,0.1), modified by steps of (+0.1,—0.1). Each
point represents the mean client output for a single run, with the Pareto fronts across all runs
reported for each algorithm. All reported fairness metrics are inverted for ease of visualization,
such that 1 corresponds to perfect fairness.
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Figure A.18: Results of different algorithms on 50 clients on a selection of benchmark problems
for accuracy and equality of opportunity (top row) and accuracy and demographic parity
(bottom row). Clients were assigned heterogeneous preferences during each run, generated
uniformly at random but the same across algorithms. Each point represents the output of a
single client, with the Pareto fronts across all runs reported for each algorithm. All reported
fairness metrics are inverted for ease of visualization, such that 1 corresponds to perfect fairness.
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Figure A.19: Additional results of different algorithms on 50 clients on a selection of benchmark
problems for accuracy and equality of opportunity (top row) and accuracy and demographic
parity (bottom row). Clients were assigned heterogeneous preferences during each run, generated
uniformly at random but the same across algorithms. Each point represents the output of a
single client, with the Pareto fronts across all runs reported for each algorithm. All reported
fairness metrics are inverted for ease of visualization, such that 1 corresponds to perfect fairness.
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Table A.18: Range of global performance results for accuracy and DEO on 50 clients with
homogeneous preferences. Only results from the algorithm-specific Pareto front are reported
(see also Fig. A.16 and Fig. A.17 in this appendix). All values scaled by 10%. All reported
fairness metrics are inverted for ease of visualization, such that 1 corresponds to perfect fairness.

FedProx CFL FedCMOO FedPref no comm
Acc,DEO Acc,DEO Acc,DEO Acc,DEO Ace,DEO
Adult
Gender min  (80.9, 82.0) (81.0, 81.6) (76.6, 78.0) (81.7, 81.9) (78.6, 79.2)
max (80.3, 81.7) (84.0, 84.7) (80.4, 83.8) (83.2, 85.0) (82.9, 83.7)
Race min (80.9, 81.4) (81.3,81.4) (70.1,75.4) (81.6,82.0) (77.9,79.4)
max (85.0, 86.8) (85.8,86.7) (89.4,93.9) (84.4,85.8) (87.3,89.1)
Law School
Gender min  (94.4, 94.8)  (94.5, 94.8) (93.0, 94.1) (94.5, 94.5) (92.2, 92.3)
max (88.9,92.8) (87.0,95.7) (82.8,94.9) (92.1,92.1) (82.5,86.5)
Race min (94.2,94.6) (94.4, 94.8) (93.1,93.3) (94.2, 94.5) (92.0, 92.3)
max (71.7,76.4) (67.1,70.1) (70.2,75.3) (68.6,76.1) (75.8,79.8)
Default
Gender min  (76.4, 77.8) (75.7,76.8) (79.1,81.2) (77.6,77.8) (72.0,72.0)
max (93.9,97.6) (94.2,95.4) (95.7,98.4) (93.6,95.9) (95.0, 95.0)

Table A.19: Range of global performance results for accuracy and DDP on 50 clients with
homogeneous preferences. Only results from the algorithm-specific Pareto front are reported
(see also Fig. A.16 and Fig. A.17 in this appendix). All values scaled by 10%. All reported
fairness metrics are inverted for ease of visualization, such that 1 corresponds to perfect fairness.

FedProx CFL FedCMOO  FedPref
Acc,DDP  Acc,DDP  Acc,DDP  Acc,DDP  Acc,DDP

no comin

Adult

Gender min (76.1, 78.1) (24.8, 80.8) (64.6, 78.6) (75.8, 78.4) (24.9, 80.8)
max (93.8,99.4) (87.3,99.6) (63.1,98.3) (93.1, 98.1) (85.5, 99.5)
Race min  (76.3, 78.6) (76.1, 79.4) (72.4, 76.3) (76.7, 79.5) (77.7, 79.8)
max (97.1, 98.0) (97.5,99.1) (94.4, 97.1) (96.6, 98.0) (92.4, 95.1)
Law School

Gender min (90.7, 94.2) (94.5, 94.5) (92.9, 92.9) (94.7, 94.7) (91.1, 92.1)
max (98.7,99.6) (99.5,99.5) (99.7,99.7) (99.5, 99.5) (97.8, 98.3)
Race min  (95.0, 95.0) (94.9, 94.9) (95.0, 95.1) (94.3, 94.3) (93.1, 93.3)
max (99.7, 99.7) (99.6, 99.6) (98.1, 99.3) (98.8, 98.8) (95.3, 96.9)
Default

Gender min (53.2, 67.6) (26.0, 67.9) (45.3, 63.9) (61.2, 70.1) (49.0, 68.6)
max (97.3, 98.8) (96.8, 99.5) (97.3, 98.3) (96.0, 97.6) (96.1, 98.3)
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Table A.20: Hypervolumes of global performance results for accuracy and DEO (left) and
accuracy and DDP (right) with 50 clients on heterogeneous preferences. Higher is better
(Fairness metrics are inverted, as in the results figures). Only results from the algorithm-

specific Pareto front are reported (see also Fig. A.18 and Fig. A.19)

Data - Accuracy - DEO Accuracy - DDP

Sens. attr. |FProx CFL FCMOO FPref no comm|FProx CFL FCMOO FPref no comm
Adult - G | 0.669 0.835 0.650 0.826  0.820 0.829 0.821 0.781 0.834 0.824
Adult -R | 0.699 0.835 0.716 0.817 0.820 0.831 0.826 0.749 0.835 0.828
Law - G 0.951 0.948 0.910 0.951 0.948 0.941 0.950 0.921 0.950 0.949
Law - R 0.950 0.935 0.943 0.947 0.947 |0.949 0.948 0.941 0.950 0.950
Default - G| 0.752 0.807 0.793 0.767 0.782 |0.777 0.754 0.753 0.761 0.751

Table A.21: Range of global performance results for accuracy and DEO on 50 clients with
heterogeneous preferences. Only results from the algorithm-specific Pareto front are reported
(see also Fig. A.18 and Fig. A.19 in the appendix). All values scaled by 102. All reported
fairness metrics are inverted for ease of visualization, such that 1 corresponds to perfect fairness.

FedProx CFL FedCMOO FedPref no comm

Acc,DEO Acc,DEO Acc,DEO Acc,DEO Acc,DEO
Adult
Gender min (0.811, 0.787) (0.798, 0.939) (0.757, 0.799) (0.829, 0.912) (0.803, 0.944)
max (0.818, 0.818) (0.839, 0.996) (0.777, 0.837) (0.836, 0.989) (0.823, 0.997)
Race min  (0.811, 0.844) (0.795, 0.848) (0.703, 0.920) (0.818, 0.868) (0.789, 0.982)
max (0.814, 0.859) (0.837, 0.998) (0.763, 0.939) (0.838, 0.976) (0.821, 0.999)
Law School
Gender min (0.951, 0.918) (0.944, 0.988) (0.932, 0.853) (0.945, 0.884) (0.934, 0.987)
max (0.952, 0.999) (0.951, 0.997) (0.941, 0.968) (0.953, 0.998) (0.950, 0.998)
Race min  (0.947, 0.767) (0.939, 0.822) (0.949, 0.734) (0.941, 0.760) (0.943, 0.749)
max (0.952, 0.999) (0.951, 0.983 (0.952, 0.990) (0.953, 0.994) (0.950, 0.998)
Default

Gender min
max

(0.753, 0.945)
(0.779, 0.965)

(0.740, 0.977)
(0.808, 0.999)

(0.776, 0.968)
(0.813, 0.977)

(0.783, 0.947)
(0.785, 0.978)

(0.706, 0.951)
(0.784, 0.999)
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Table A.22: Range of global performance results for accuracy and DDP on 50 clients with
heterogeneous preferences. Only results from the algorithm-specific Pareto front are reported
(see also Fig. A.18 and Fig. A.19 in this appendix). All values scaled by 102. All reported
fairness metrics are inverted for ease of visualization, such that 1 corresponds to perfect fairness.

FedProx CFL FedCMOO FedPref no comm

Acc,DDP Acc,DDP Acc,DDP Acc,DDP Acc,DDP
Adult
Gender min (0.246, 0.960) (0.657, 0.903) (0.527, 0.788) (0.797, 0.935) (0.246, 0.884)
max (0.830, 0.999) (0.824, 0.999) (0.819, 0.971) (0.836, 0.999) (0.828, 0.999)
Race min (0.769, 0.992) (0.791, 0.935) (0.708, 0.902) (0.753, 0.939) (0.763, 0.900)
max (0.832, 0.999) (0.829, 0.997) (0.781, 0.961) (0.837, 0.998) (0.830, 0.999)
Law School
Gender min (0.920, 0.993) (0.894, 0.986) (0.906, 0.997) (0.898, 0.993) (0.922, 0.989)
max (0.943, 0.998) (0.951, 0.999) (0.922, 0.999) (0.951, 0.999) (0.950, 0.999)
Race min (0.950, 0.998) (0.947, 0.994) (0.950, 0.990) (0.921, 0.976) (0.950, 0.979)
max (0.950, 0.998) (0.950, 0.999) (0.950, 0.990) (0.951, 0.999) (0.951, 0.999)
Default

Gender min (0.690, 0.998) (0.678, 0.898) (0.579, 0.958) (0.593, 0.965) (0.566, 0.969)
max (0.778, 0.999) (0.756, 0.999) (0.755, 0.999) (0.762, 0.999) (0.752, 0.999)







