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Abstract

We develop an optimal control framework for infinite-dimensional systems with in-

equality state constraints, extending the Pontryagin Maximum Principle to diffusion-

driven dynamics with bounded states. The resulting conditions feature Radon-measure

multipliers that characterize boundary behavior in distributed environments. As an illus-

tration, we apply the framework to a model of land fertility evolving through reversible

pollution and spatial diffusion. We show how discounting shapes optimal consumption,

the activation of state constraints, and long-run spatial patterns. In the homogeneous

case, explicit solutions identify conditions for full restoration or persistent degradation,

while heterogeneous settings generate hybrid finite-horizon and long-run regimes. The

framework provides general analytical tools for dynamic optimization problems with dif-

fusion and bounded state variables.
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1 Introduction

Dynamic optimization with state constraints plays a central role in economic theory, yet

most existing results are confined to finite-dimensional systems or settings without spatial

interactions. Many economic processes, ranging from resource management and technological

diffusion to spatial growth and distributed production, are inherently infinite-dimensional

and subject to strict feasibility limits. Incorporating these constraints into spatiotemporal

models raises fundamental questions: How can optimal control be characterized when the

state evolves according to a partial differential equation? What mathematical tools allow us

to handle inequality constraints in distributed systems? And how do these constraints shape

long-run economic outcomes?

This paper develops a rigorous optimal control framework for infinite-dimensional sys-

tems with ecological or physical bounds, focusing on a model where the state variable evolves

according to a diffusion equation and is subject to upper and lower constraints. Our contri-

bution is methodological: we extend the Pontryagin Maximum Principle to a setting with

spatial diffusion and inequality state constraints, and we derive generalized Kuhn-Tucker

conditions involving Radon measures. These measure-valued multipliers capture the shadow

value of relaxing the state constraint at each point in space and time, providing a transparent

economic interpretation of boundary behavior in distributed systems.

To illustrate the applicability of the framework, we study a model of land fertility and

pollution dynamics in which fertile land is the sole bounded production input. Fertility

evolves according to a reversible pollution process with spatial diffusion, and consumption

is chosen to maximize discounted welfare. This setting, while motivated by environmental

concerns, serves as a natural and tractable example of a broader class of problems in which a

bounded state variable interacts with diffusion and control. The model highlights how time

preferences, spatial heterogeneity, and state constraints jointly determine optimal trajectories

and long-run outcomes.

Classical optimal control theory (Pontryagin, 1962) and its extensions to PDE systems

(Li and Yong, 1991; Fattorini, 1999) provide necessary conditions for unconstrained prob-

lems, but do not address inequality constraints in spatiotemporal models. Recent work in

spatial economics (Boucekkine et al., 2013; 2018; 2021) studies diffusion-driven dynamics but

assumes unbounded inputs. Similarly, sustainability models under discounting (Chichilnisky

et al., 1995; Stern, 2008) abstract from spatial heterogeneity and ecological limits. To our
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knowledge, no existing framework combines (i) spatial diffusion, (ii) bounded state variables,

and (iii) rigorous Kuhn-Tucker conditions for infinite-dimensional systems.

Using the new technical tools developed in this paper, we systematically analyze the

optimal control of land fertility and consumption under different discounting regimes. In the

low discount rate case, the system exhibits sustainable dynamics, with a full restoration of

fertile land in the long run. When space is homogeneous, we derive explicit solutions showing

a two-phase structure: an initial growth phase followed by a steady-state regime. In contrast,

high discount rates can lead to resource depletion, boundary behavior, and complex spatial

dynamics, depending on feasibility and critical thresholds.

Our contribution to the literature is threefold. First, we develop a rigorous spatiotem-

poral model of soil pollution and land use that incorporates ecological state constraints and

intertemporal preferences. By extending the Pontryagin Maximum Principle to a setting

with spatial diffusion and inequality constraints, we provide a novel analytical framework for

optimal environmental policy in bounded-resource economies. This complements and extends

the spatial AK literature (e.g., Boucekkine et al., 2013, 2025) by introducing ecological limits

and reversible pollution dynamics.

Second, we characterize optimal policy under different discounting regimes: low, inter-

mediate, and high, and show how time preferences fundamentally alter the long-term spatial

distribution of fertile land. In particular, we demonstrate that under low discounting, full

restoration is achievable at least at some locations, while high discounting leads to persistent

spatial heterogeneity or irreversible degradation. These results connect to and enrich the

literature on sustainability under discounting (e.g., Chichilnisky et al., 1995; Stern, 2008),

offering new insights into the spatial consequences of impatience.

Third, we construct hybrid solutions in which the system transitions from a finite-horizon

control problem to a structured long-run regime. This hybrid structure, governed by adjoint

dynamics and Radon measures, offers a new lens through which to understand transitional

environmental policy. Thus, our results bridge the gap between theoretical optimal control,

spatial economic dynamics, and practical policy design for land restoration and pollution

abatement.

The remaining work is organized as follows: Section 2 formalizes the optimization prob-

lem and develops the extended maximum principle and associated Kuhn-Tucker conditions.

Section 3 illustrates the soil pollution model. Section 4 details the maximum principle and

Kuhn-Tucker conditions for soil pollution cases. Section 5 characterizes optimal solutions

3



under different discounting regimes. Section 6 provides numerical illustrations and discusses

transitional dynamics. Section 7 concludes with implications for theory and policy.

2 A maximum principle and extended Kuhn-Tucker condition

We present a general version of Pontryagin’s Maximum Principle that fits our model. For

any T > 0, let ST = [0, T ]× S and denote

Q = {y ∈ C (ST ) : 0 ≤ y (t, θ) ≤ 1 for all (t, θ) ∈ ST } . (1)

We consider a more general optimization problem for which the state variable is the solution

to the parabolic partial differential equation yt −Dyθθ = ay + bc for (t, θ) ∈ (0, T )× S,

y (0, θ) = y0 (θ) for θ ∈ S
(2)

where T > 0 is a constant, y is the state variable, c ∈ B (y) is the control, D is a positive

constant, and a, b, and y0 given functions. The system dynamics is subject to the state

constraint

0 ≤ y (t, θ) ≤ 1 for (t, θ) ∈ ST . (3)

Given the initial state y0, the welfare functional to be maximized is

J (y0, c) =

∫ T

0

∫
S
g (t, θ, c (t, θ)) dθdt+ h (T, y (T, ·)) , (4)

where the functional h : R+ × C (S) 7−→ R has a Fréchet derivative with respect to y.

Define the Hamiltonian

H (t, θ, y, c, µ, ψ) = µg (t, θ, c) + ψf (t, θ, y, c) in ST × [0, 1]× B (y) ,

where

f (t, θ, y, c) = a (t, θ) y + b (t, θ) c.

We make the following assumptions.

Assumption 1. (1) Functions a, b : ST 7−→ R are continuously differentiable.

(2) Function g : ST × R+ 7−→ R+ is continuously differentiable and for any B > 0 there is
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a constant β such that

|g (t, θ, c)| ≤ β for (t, θ, c) ∈ ST × [0, B]

and h : R+ × [0, 1] 7−→ R+ is continuously differentiable.

A Pontryagin’s maximum principle and extended Kuhn-Tucker conditions for inequality

constraint of the above optimal control problem (4), subject to (2) and (3) can be obtained

by using Ekeland’s variational principle (Theorem 3.2.2 in H. Fattorini, 1999) together with

a spike perturbation.

Theorem 1. Let Assumption 1 hold and let {c∗, y∗} be an optimal pair. Then there exists

a constant ν ≥ 0, a function ψ ∈ Lq
(
0, T ;W 1,q (S)

)
(1 < q < 3/2) and a Radon measure m

such that

ν + |m|M(ST ) > 0, (5)

⟨m, z − y∗⟩ ≤ 0, ∀z ∈ Q, (6)

ψt +Dψθθ = − [a+ bc∗/y∗]ψ − νg∗y −m|(0,T )×S ,

ψ (T, ·) = νhy (T, y
∗ (T, ·)) +m|{T}×S ,

(7)

and

H (t, θ, y∗ (t, θ) , c∗ (t, θ) , ν, ψ (t, θ)) = max
0≤c≤B(y∗)

H (t, θ, y∗ (t, θ) , c, ν, ψ (t, θ)) (8)

where

g∗y = gc (t, θ, c
∗ (t, θ)) c∗ (t, θ) /y∗ (t, θ) .

A proof is given in Appendix ??. Boucekkine et al. (2025) obtained a similar result

but with less constraints than the above Theorem 1. They considered only non-negative

constraints: y (t, θ) ≥ 0 and c ≥ 0, thus without the upper-bound constraints.

Furthermore, it is easy to show that the support of the above Radon measure m checks:

Corollary 1.

supp m ⊂ {(t, θ) ∈ ST : y∗ (t, θ) = 0, 1} . (9)

To see this, let η ∈ C (ST ) have the support supp η ⊂ ST \ {(t, θ) : y∗ (t, θ) = 0, 1}. Then,

there is ε > 0 such that z± := y∗ ± εη ∈ Q. Hence,

±ε ⟨m, η⟩ =
〈
m, z± − y∗

〉
≤ 0.
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This implies ⟨m, η⟩ = 0. This fact plays an important role in the subsequent analysis.

In the current setting, ν is one Lagrange multiplier, which could be zero, and we shall

be more precise when applying this result to the original soil pollution control problem. The

Radon measure, m, plays the role of generalized Kuhn-Tucker multipliers for the inequality

state constraints, and ψ represents the shadow price, or scarcity value, of relaxing the state

constraint at each point in space and time. If m is nonzero at (t, θ), it means that the

constraint y(t, θ) ≤ 1 or y(t, θ) ≥ 0 is binding and relaxing it would improve social welfare.

The inequality (6) for all admissible z is analogous to the complementary slackness condition

and mirrors the Kuhn-Tucker conditions in finite-dimensional optimization, ensuring that

the constraint is only “active” when it binds. Thus, this theorem extends the Pontryagin

framework and the Kuhn-Tucker logic to dynamic, spatially distributed systems with PDE

constraints.

3 A model of soil pollution

Global soil contamination has escalated to a critical level. The Food and Agriculture Orga-

nization (FAO, 2015) estimated that roughly one-third of the world’s soils are moderately to

severely degraded, primarily due to erosion, nutrient imbalance, salinization, and contami-

nation. More recently, the United Nations Convention to Combat Desertification (UNCCD,

2024) reported that up to 40% of the planet’s land is degraded, marked by land abandonment,

biodiversity loss, and declining soil health. The latest FAO assessment (2025) further un-

derscores the severity of the crisis, estimating that 2.1 billion hectares—about 23% of global

land—are affected by soil pollution, driven largely by human activities: agriculture (≈ 80%)

and industrial waste (≈ 15%). Soil pollution not only undermines agricultural productivity

and food security, but also poses risks to human health through direct contact, exposure

to vapors, or contamination of water supplies. The FAO warns that soil pollution poses

“irreversible risks to food security, biodiversity, and human health.”

Agricultural pollution arises from the excessive use of pesticides and fertilizers, irrigation

with contaminated water, and soil erosion from intensive farming, while industrial pollution

arises from improper waste disposal. Crucially, land is a finite resource and pollution is spa-

tially diffusive, affecting surrounding areas. Yet, soils are remediable through methods such

as phytoremediation (using plants), bioremediation (using microbes), and soil amendments

(adding compost or structural materials).
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Given the finiteness of the land, the spatial spread of pollution, and the cost of remedi-

ation, the optimal use of land and pollution abatement provide a perfect illustration of our

infinite-dimensional optimal control problem with inequality constraint.

We consider a closed economy, where the population is distributed according to a given

density N . Following Boucekkine et al. (2013, 2025), we assume that both land and popula-

tion are distributed over the unit circle on the plane, S = {(cos θ, sin θ) ∈ R2 : θ ∈ [−π, π]}.

Let fertile land be the only input that is used to produce crops. The production factor

is bounded since land cannot increase beyond the given total land endowment. We fur-

ther assume that land is composed of both fertile and polluted soil, LF and LP . That is,

L = LP (t, θ) + LF (t, θ). All locations produce a unique agricultural good using fertile soil,

according to the linear production function Y (t, θ) = B(θ)LF (t, θ), where B(θ) is the local

production technology in location θ. Hence, a partially polluted location can still produce.

The dynamics of soil pollution at one location is explained by three factors. First, pol-

lution flows according to Fick’s law: pollution diffuses from more polluted locations to less

polluted locations and its flux is proportional to the pollution gradient. Based on this law

the diffusion of soil pollution is captured by D ∂2LP
∂θ2

(t, θ), where D is the diffusion coefficient.

For simplicity reasons, D is assumed both constant in time and homogeneous in space.1

Second, fertile soil deteriorates locally. Indeed, local production generates some pollutant,

which transforms fertile soil into polluted soil. The local effect is measured as ν(θ)Y (t, θ),

where ν(θ) is the local sensitivity of fertile soil to pollution. ν(θ) can be related to more or

less polluting technologies, to different levels of biodiversity, etc. And third, we assume for

simplicity reasons that soil pollution is reversible.2 Letting C(t, θ) denote total consumption

at location θ at time t, the amount invested in abatement at location θ is Y (t, θ)−C(t, θ) ≥ 0.

Let ϕ(θ) be the local pollution abatement efficiency. Then putting together the three factors

behind local pollution, the spatial dynamics of polluted soil can be described as

∂LP

∂t
= D

∂2LP

∂θ2
+ νBLF − ϕ[BLF − C].

1We do not consider any seasonal effect nor heterogeneity in soil porosity, which would lead to study time
and space dependent diffusion coefficients. These more general specifications for the diffusion coefficient could
be analyzed following Boucekkine et al. (2020), but it remains beyond the scope of this paper.

2The existence and outreach of a critical zone for pollution reversibility has been widely studied elsewhere.
See for instance Dupouey et al. (2002), Chartier et al. (2006), Gao et al. (2011) and Le Kama et al. (2014),
among others. Technically speaking, introducing irreversible pollution damages would lead in our context to
impose that above a local pollution threshold concentration, the first partial derivative of fertile soils with
respect to time should be negative, that is ∂LF (t,θ)

∂t
≤ 0.
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Assuming that L is a constant, one can write

∂LF

∂t
(t, θ) = −∂LP

∂t
(t, θ),

∂2LF

∂θ2
= −∂

2LP

∂θ2
,

and writing total consumption C(t, θ) as the product of per capita consumption, c(t, θ), and

the location’s time-independent population N(θ), the evolution of fertile soil becomes



∂LF
∂t = D ∂2LF

∂θ2
+B [ϕ− ν]LF −Nϕc for t > 0, θ ∈ (−π, π) ,

LF (t,−π) = LF (t, π) ,

∂LF
∂θ (t,−π) = ∂LF

∂θ (t, π) ,
for t > 0,

LF (0, θ) = LF,0 (θ) , for θ ∈ (−π, π) .

(10)

In this economy the policy maker aims at maximizing overall welfare, which is measured

as the present value of the spatial aggregate of individuals’ utility. Here, utility depends

solely on consumption per capita, c, and is measured by a constant intertemporal elasticity

of substitution function of parameter σ ∈ R. Knowing that the policy maker discounts time

at a constant rate ρ, her problem is written as

max
c

∫ ∞

0

[∫ π

−π

c(t, θ)1−σ

1− σ
N(θ)dθ

]
e−ρtdt, (11)

subject to (10) and

0 ≤ LF (t, θ) ≤ L, 0 ≤ N (θ) c(t, θ) ≤ B (θ)LF (t, θ) (12)

for any θ ∈ [−π, π], t ≥ 0. The constraint on c comes from the feasibility constraint 0 ≤ C ≤

Y . We assume

Assumption 2. Parameter σ satisfies 0 < σ < 1.

To shorten the notation and with an abuse of notation, we denote by A and N the

expressions B [ϕ− ν] and Nϕ. Next, we normalize variables

l (t, θ) =
LF (t, θ)

L
, l0 (θ) =

LF0 (θ)

L
,
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and rename c (t, θ) /L as c (t, θ), thus the system (10) takes the form

lt = Dlθθ +Al −Nc for t > 0, θ ∈ S,

l (0, θ) = l0 (θ) for θ ∈ S.
(13)

The objective is reduced to

J (l0, c) = max
c(t,θ)

∫ ∞

0

∫
S

c (t, θ)1−σ

1− σ
N (θ) e−ρtdθdt. (14)

The admissible set of controls is

B (l) ≡
{
c ∈M

(
R+ × S;R+

)
, 0 ≤ c ≤ B (θ) l a.e.

}
, (15)

where M (R+ × S;S) is the set of measurable functions in R+ × S with range in S. The

optimization is subject to the state constraint

0 ≤ l (t, θ) ≤ 1 a.e in (0,∞)× S. (16)

4 Maximum principle for soil pollution control

Building on the mathematical foundations laid by Fattorini (1999) and Li and Yong (1991),

we provide in Appendix 2 a general maximum principle for the spatial AK model with state

constraints in the most general case, and its results are summarized in Theorem 1. In order

to apply these new general results to the particular optimization problem (14)–(16), we need

first to rewrite the objective function in (14) as the sum of welfare from 0 to a given time T

and a continuation function h, which depends on the final state of land, l(T, ·). Note that

since we can identify h with welfare from T to ∞, these two writings are equivalent:

max
c∈B

J (l0, c) =

∫ T

0

∫
S

c (t, θ)1−σ

1− σ
N (θ) e−ρtdθdt+ h (T, l (T, ·)) (17)

subject to

lt = Dkθθ +Al −Nc for (t, θ) ∈ ST ,

l (0, θ) = l0 (θ) for θ ∈ S,
(18)

and the state constraints l ∈ Q, where

Q = {y ∈ C (ST ) : 0 ≤ l (t, θ) ≤ 1 for all (t, θ) ∈ ST } . (19)
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Let us denote this problem by (I). It is straightforward to obtain

Proposition 1. Let Assumptions 2 hold, and let h : R+× [0, 1] 7→ R+ be continuously differ-

entiable. Suppose {c∗, l∗} is an optimal pair for the optimal control problem (I) with the state

constraints l ∈ Q. Then, there exists a constant ν ∈ {0, 1}, a function p ∈ Lq
(
0, T ;W 1,q (S)

)
with 1 < q < 3/2, and a Radon measure M such that ν + |M |M(ST ) > 0, ⟨M, z − x∗⟩ ≤ 0 for

any z ∈ Q,

pt +Dpθθ + (A− ρ) p = −M |(0,T )×S ,

p (T, ·) = νeρThl (T, l
∗ (T, ·)) +M |{T}×S

(20)

and the optimal pair, {c∗, l∗}, satisfies c∗ (t, θ) = 0 if ν = 0; and

c∗ (t, θ) = p (t, θ)−1/σ for (t, θ) ∈ ST (21)

if ν = 1.

Proof. See Appendix A.2.

While Theorem 1 in Appendix 2 extends the classical Pontryagin Maximum Principle to

a spatially distributed system with inequality state constraints, Proposition 1 illustrates it

with the ecological limits to land use. The introduction of a Radon measure as a generalized

Kuhn-Tucker multiplier is particularly relevant in environmental economics, where natural

resource stocks are bounded and spatially heterogeneous. In the optimal solution, the adjoint

variable (p) represents the shadow value of fertile land, while the new Radom measure (M)

captures the marginal value of relaxing the constraint on fertile land. In other words, M

measures the welfare increase when at least one location has reached the maximum of fertile

land and the policy maker decides to sacrifice full fertility.

Notice that if the output and objective functions are smooth enough and the solution does

not hit the bounds (i.e., the state constraints are inactive), then the co-state variable, i.e., the

shadow value, p, may be continuously differentiable. However, so far, there is no guarantee

that the state constraints are always inactive. Furthermore, we will indeed demonstrate that

the constraints are binding depending on the circumstance. Therefore, the adjoint variable,

can only be defined in the space given in the proposition.

Since the introduction of Radon measures in optimal control problems is new in this field,
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let us describe how one can characterize M . Let Ω be the interior of the set

Ω = {(t, θ) ∈ (0,∞)× S : l∗ (t, θ) = 1} .

We first observe that by (18), c∗ (t, θ) = A (θ) in Ω. Thus, by (21),

p (t, θ) = A (θ)−σN (θ)σ in Ω

and by (20)

M = −{ψt + L [ψ]} = − (L − ρ)
[
A−σNσ

]
,

where L is the linear operator defined in H2 (S) by

L [u] (θ) := Du′′(θ) +A (θ)u(θ). (22)

To further perform a mathematical analysis to problem (I), let us introduce the necessary

minimum definitions of eigenvalues and eigenfunctions of the linear operators L defined in

(22) and M defined by

M [u] (θ) = Du′′ (θ) + [A (θ)−N (θ)B (θ)]u (θ) (23)

for u ∈ H2 (S). A function φ defined on S, regular and non-identically zero, is an eigenfunc-

tion of L, with associated eigenvalue λ ∈ R if L [φ] = λφ. It can be proven that there exists

a countable set of eigenvalues {λn}n≥0, which can be ordered as a decreasing sequence. The

first eigenvalue of L, λ0, is positive and with multiplicity 1, all other eigenvalues have either

multiplicity 1 or 2.3 The eigenfunction associated to λ0, φ0, is strictly positive on the unit

circle.4 Let µ0 denote the largest (principal) eigenvalue of M. It can be shown that µ0 < λ0

and an eigenfunction ϕ0 associated with µ0 is strictly positive. On the other hand, µ0 can be

negative.

The next proposition shows that the constraint l (t, θ) ≥ 0 is not binding:

Proposition 2. Suppose {c∗, l∗} is an optimal pair, then l∗ (t, θ) > 0 for all (t, θ). Further-

3The multiplicity of an eigenvalue is the number of times it appears in the sequence {λn}n≥0.
4For further details see Coddinton and Levinson (1955) or Brown et al. (2013).
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more, there is an ε > 0 such that

∫
S
l∗ (t, θ) dθ ≥ εeµ0t > 0 for all t > 0.

Proof. See Appendix A.3.

Since the constraint l (t, θ) ≥ 0 is not binding, from Corollary 1 of Theorem 1 in the

Appendix, we can conclude that

supp M ⊂ {(t, θ) ∈ ST : l∗ (t, θ) = 1} . (24)

Proposition 2 shows that the lower bound on fertile land is never binding in the optimal

solution, implying that full degradation (i.e., complete pollution) is socially suboptimal. This

result aligns with the intuition that even under high pressure for consumption, a forward-

looking planner will preserve some fertility to maintain future production capacity.

This finding resonates with the literature on renewable resource management (e.g., Das-

gupta and Heal, 1979), where extinction or full depletion is typically avoided under rational

planning. In our spatial setting, the result also reflects the self-reinforcing nature of remedia-

tion: as long as some fertile land remains, diffusion and abatement can restore degraded areas.

The exponential growth of aggregate fertility further supports the idea that patient, coordi-

nated policy can reverse environmental degradation, even in the presence of local pollution

spillovers.

5 Optimal solutions

The optimal solution to the policy maker problem (I) depends on the discount rate and we

can fully characterize it in some cases. In all others, we can at least describe the long-run

optimal behavior of fertile land. For simplicity of exposition, we divide the spectrum of values

for ρ ∈ [0, 1], in three categories: low, mildly high and high.

5.1 Small time discount.

The time discount is said to be small if

0 < ρ < λ0. (25)

12



In this case we prove

Proposition 3. Let Assumption 2 hold. Suppose that (25) holds and that {c∗, l∗} is an

optimal pair such that

0 < c∗ (t, θ) < B (θ) l∗ (t, θ) for all t > 0, θ ∈ S, (26)

that is, there is no time and nowhere at which the decision maker consumes all that is pro-

duced. Then, l∗ (t, θ) = 1 for some θ ∈ S. In other words, fertile land reaches its maximum

level somewhere in some time.

Proof. See Appendix A.4.

Hence, when future welfare is sufficiently valued, the optimal policy leads to full restora-

tion of fertile land in at least some locations. In this case, consumption is moderated to

allow for environmental recovery. This behavior is consistent with the “green golden rule” in

Chichilnisky et al. (1995), where sustainability is achieved by balancing current utility with

future resource availability. The spatial dimension we introduce here adds a new layer: even

if fertility restoration is not full nor uniform, achieving it somewhere prevents the collapse

of the entire system. Worth to note, these results echo the concept of “ecological resilience”

(Holling, 1973), where partial recovery can stabilize the broader system.

In the special case where the system is spatially homogeneous, more precise results can

be obtained. Indeed, if A is a constant, the eigenvalues of L are

λn = A−Dn2 for n = 0, 1, 2, . . . (27)

with the corresponding normalized eigenfunctions:

φ0 (θ) =
1√
2π
, φn,1 (θ) =

cosnθ√
π
, φn,2 (θ) =

sinnθ√
π

for n ≥ 1. (28)

In particular, λ0 = A.

We have the following long-run outcomes:

Proposition 4. Let the assumptions of Proposition 3 hold. If A, B and N are constants in

S, then the unique steady state is l̄ (θ) = 1 and c̄ (θ) = A/N in S. As a result, if an optimal
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pair {c∗, l∗} converges as t→ ∞, then

lim
t→∞

l∗ (t, θ) = 1, lim
t→∞

c∗ (t, θ) = A/N. (29)

Proof. See Appendix A.5.

As in the economy made of a unique location, Proposition 4 proves that a spatially

homogeneous economy made of patient agents converges to a steady state with full restoration

of fertile land. This mirrors the golden rule in AK-type growth models, where the economy

reaches a balanced growth path with maximal sustainable consumption. This result will allow

to evaluate the impact of spatial heterogeneity: deviations from full fertility will reflect the

cost of uneven land quality, localized pollution, and differential abatement efficiency.

The transitional period. Arguably, the above two propositions are obtained under the

assumption that an optimal pair (c∗, l∗) exists, but provide no information on how to obtain

this optimal pair. We show next that the entire optimal trajectory can be computed when

the optimal solution leads to full fertility in finite time everywhere, i.e., there is T > 0 such

that l∗ (t, θ) = 1 for all t ≥ T , θ ∈ S. Let us compute c∗ and l∗ for 0 < t < T as follows.

Since A (θ) /N (θ) < B (θ) and l∗ (t, θ) = 1, it follows that

A (θ)

N (θ)
= argmax

0≤c≤B(k∗)

{
νe−ρt

1− σ
c (t, θ)1−σ − c (t, θ) e−ρtp (t, θ)

}
.

It is clear that ν > 0. Since ν is either 0 or 1, it must be ν = 1. This leads to

A (θ) /N (θ) = p (t, θ)−1/σ , or p (t, θ) = A (θ)−σN (θ)σ in R+ × S.

Hence, {c∗, k∗} in ST can be found by solving the coupled system

pt + (L − ρ) [p] =

 −M if p−1/σ < Bl∗,

NB
{
p− [Bk∗]−σ}−M if p−1/σ ≥ Bl∗,

in ST ,

p (T, θ) = A (θ)−σN (θ)σ in S,

and

l∗t − L [l∗] =

 −Np−1/σ if p−1/σ < Bl∗,

−NBl∗ if p−1/σ ≥ Bl∗,
in ST ,

l∗ (0, θ) = l0 (θ) in S.
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Proposition 3 ensures that, provided that the policy maker is sufficiently patient and pri-

oritizes aggregate social welfare, excessive consumption can be avoided at all times. Conse-

quently, there will be at least some regions where fertile land reaches its maximum productive

capacity. Furthermore, Proposition 4 shows that in the long run, and at least in the spatially

homogeneous case, fertile land can be fully restored in all areas.

5.2 Large time discount.

We consider next the case where the discount rate is relatively large

ρ > λ0 (> 0) . (30)

Let us first construct a special pair {ĉ, k̂} for problem (13)–(14) with

ĉ (t, θ) = ĉ0φ0 (θ)
−1/σ ert for (t, θ) ∈ (0,∞) (31)

where r = λ0−ρ
σ < 0,

ĉ0 =
(λ0 − r) ⟨k0, φ0⟩〈
Nφ0

−1/σ, φ0

〉 , (32)

and where l̂ solves

l̂t −Dl̂θθ = Al̂ −Nĉ (t, θ) in (0,∞)× S,

l̂ (0, θ) = l0 (θ) in S.
(33)

This pair describes a monotonically decreasing trajectory for c at all locations, consumption

is forever heterogeneous and it decreases at the same rate everywhere. Note that {ĉ, l̂} may

not be feasible, or even less be optimal, since the control constraint ĉ ∈ B(l̂) and the state

constraint (16) may fail. However, the next proposition shows that when the optimal pair

{c∗, l∗} satisfies the strict control and state constraints, that is, if

0 < c∗ (t, θ) < B (θ) l∗ (t, θ) , 0 < l∗ (t, θ) < 1 in (0,∞)× S, (34)

then it coincides with {ĉ, l̂}.

Proposition 5. Let Assumption 2 hold. Suppose that (30) holds and that the pair {ĉ, l̂}

defined by (31)–(33) is feasible. If {c∗, l∗} is an optimal pair such that (34) holds, then

{c∗, l∗} = {ĉ, l̂}.

Proof. See Appendix A.6.
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As in the previous subsection, we start by studying the asymptotic behavior of the optimal

solution and then, the transitional period.

Proposition 6. Suppose the assumptions of Proposition 5 are satisfied and {ĉ, l̂} is feasible.

Then

lim
t→∞

l̂ (t, θ) e−rt = κ (θ) (35)

where

κ (θ) = ⟨l0, φ0⟩φ0 (θ) +
∑
j≥1

∑
i

ĉ0
λj − r

〈
Nφ

−1/σ
0 , φj,i

〉
φj,i (θ) (36)

if λj ̸= r for all j, and

κ (θ) = ⟨l0, φ0⟩φ0 (θ) +

2∑
i=1

⟨l0, φm,i⟩φm,i (θ)

+
∑
j ̸=m

∑
i

ĉ0
λj − r

〈
Nφ

−1/σ
0 , φj,i

〉
φj,i (θ)

(37)

if there is m such that λm = r and

〈
Nφ

−1/σ
0 , φm,i

〉
= 0 for i = 1, 2.

Proof. See Appendix A.7.

Hence, under high discounting, fertile land converges to a spatially structured distribution.

This result echoes the insights from spatial growth models such as Boucekkine et al. (2013),

where long-run spatial patterns emerge with time from initial heterogeneity. Also note that

this later result aligns with the idea that impatient societies may underinvest in remediation,

leading to persistent inequality in land productivity. This is reminiscent of the literature on

spatial poverty traps (e.g., Redding and Rossi-Hansberg, 2017), where local disadvantages

are perpetuated due to insufficient forward-looking investment.

Corollary 2. In the case where A is a constant function,

lim
t→∞

l̂ (t, θ) e−rt =
1

2π

∫
S
l0 (ξ) dξ (38)

if r ̸= λj for all j, and

lim
t→∞

l̂ (t, θ) e−rt =
1

2π

∫
S
l0 (ξ) dξ +

1

π

∫
S
l0 (ξ)

[
1

2
+ cos (m (θ − ξ))

]
dξ (39)
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if there is an m ≥ 1 such that r = λm.

Proof. See Appendix A.8.

The Corollary 2 shows the different spatial pattern of fertility in the long run in the case

where A is spatially uniform and {ĉ, l̂} is feasible. When A is constant, then λ0 = A and we

can discuss two particular cases. When

A < ρ < (1− σ)A+ σD, (40)

then r > λ1. In this case, we are in case (38) so that the detrended fertile land, l̂ (t, θ) e−rt

converges to a constant and the initial spatial variation of the fertility vanishes with time.

On the other hand, if

A < ρ = (1− σ)A+ σD, (41)

which is equivalent to r = λ1, then according to (39), detrended fertile land converges in

general to a non-constant function if l0 is not constant, and initial fertility inequality will

generally persist forever.

Finally, let us consider the case of extreme high impatience, where

ρ > λ0 − σµ0 = (1− σ)A+ σD. (42)

Proposition 7. Let Assumption 2 and (42) hold. Then, {ĉ, l̂} is not an optimal pair for the

optimal control problem (13), (14) with ĉ ∈ B(l̂). In addition, any optimal pair {c∗, l∗} has

the feature that c∗ (t, θ) = B (θ) l∗ (t, θ) for some (t, θ).

Proof. See Appendix A.9.

Proposition 7 demonstrates that when the discount rate exceeds a critical threshold (here

ρ > λ0−σµ0 ), the constructed pair (ĉ, l̂) is no longer optimal, implying that full consumption

occurs at some points.

This finding resonates with the classic debate on the social discount rate in climate eco-

nomics (see Stern, 2008; Dasgupta, 2008), where high discounting undermines sustainability.

In our model, the binding of the consumption constraint reflects a shift from an interior

solution to a corner solution. Hence under high discounting, the optimal policy may in-

volve full consumption of production, aggressive exploitation of fertile land, and limited or

no abatement.
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Transitional period. In the case of high discounting, the pair {ĉ, l̂} is not feasible in the

long run, which means that along the optimal trajectory there will be times and locations

with full consumption, and the associated zero abatement. However, even if full consumption

happens in at least one location during some time, we can prove that there exists a solution

which will converge at time T to an structured solution {c∗, l∗} with positive abatement and

fertile land everywhere, and this despite the lack of abatement in some locations before that.

Let us define this solution:

0 < c∗ (t, θ) < B (θ) l∗ (t, θ) , 0 < l∗ (t, θ) < 1 in (T,∞)× S (43)

for some T > 0. In this case, by a time-translation, {c∗, l∗} = {ĉT , l̂T } where

ĉT (t, θ) = ĉ
−1/σ
T,0 φ0 (θ)

−1/σ er(t−T ) for t ≥ T, θ ∈ S (44)

with

ĉT,0 =
(λ0 − r) ⟨l∗ (T, ·) , φ0⟩〈

Nφ0
−1/σ, φ0

〉 (45)

and l̂T is the solution to the initial value problem

lt −Dxθθ = Al −NĉT (t, θ) in (T,∞)× S,

l (T, θ) = l∗ (T, θ) in S
(46)

provided that {ĉT , l̂T } is feasible in (T,∞)× S.

In this case, the solution {c∗, l∗} in the initial period 0 < t < T can be solved by a

finite-horizon optimal control problem. Specifically, we prove

Proposition 8. Let Assumptions 2 and 1 hold. Suppose that ρ > λ0 and that {c∗, l∗} is an

optimal pair such that (43) for some T > 0 holds. Suppose also
{
ĉT , l̂T

}
defined by (44)–(46)

is feasible in (T,∞)× S. Then p (t, θ) satisfies the terminal value problem

pt + (L − ρ) [p] = −M |(0,T )×S for (t, θ) ∈ ST ,

p (T, θ) = ĉ−σ
T,0φ0 (θ) for θ ∈ S

(47)

where M is a Radon measure such that and ⟨M, z − l∗⟩ ≤ 0 for any z ∈ Q, and v∗ satisfies

c∗ (t, θ) = argmax
0≤c≤B(l∗)

{
c (t, θ)1−σ

1− σ
− c (t, θ) p (t, θ)

}
.
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Finally, l∗ in ST is the solution of (18) with c = c∗.

Proof. See Appendix A.10.

Proposition 8 introduces a hybrid regime where the system transitions from a finite-

horizon control problem to a structured long-run regime. This mirrors the concept of “policy

switching” in dynamic economic models, where optimal strategies evolve over time in re-

sponse to changing feasibility conditions. The use of a Radon measure to capture binding

constraints during the initial phase is particularly novel, extending the Kuhn-Tucker logic to

spatiotemporal systems.

Economically, this result suggests that even under high discounting, a well-designed policy

can steer the system toward sustainability, provided that initial sacrifices are made. This

echoes the literature on transitional dynamics in environmental economics (e.g., Acemoglu

et al., 2012), where short-term costs are justified by long-term gains. Our model formalizes

this intuition by showing how the adjoint system governs the optimal trajectory, and how

the decision maker’s patience (or lack thereof) determines whether the system converges to

a viable regime.

5.3 Summary of different time discount

Discount
Regime

Key
Conditions

Optimal
Behavior

Long-Run
Outcome

Analytical
Tractability

Low 0 < ρ < λ0 Policymaker avoids
excessive
consumption; the
optimal path
remains interior.

Fertile land reaches
full capacity at
some locations; full
restoration in the
homogeneous case.

Analytical solution
is difficult; explicit
solution possible in
the homogeneous
case.

Intermediate
(feasible
after T)

ρ > λ0, after
T > 0

Initial phase
governed by
finite-horizon
control, followed by
a transition to a
structured regime.

Detrended fertility
converges to a
stable spatial
distribution.

Hybrid approach
combining
finite-horizon
analysis with an
explicit long-run
solution.

High ρ > λ0 − σµ0 Full consumption
occurs at some
points; the
constructed pair
{ĉ, k̂} is not
optima.l

No convergence to a
structured regime;
the optimal path
exhibits boundary
behavior.

Explicit analytical
solution is not
feasible; the
optimal path must
be computed
numerically.

Table 1: Comparison of optimal behavior across discount rate regimes.

Table 1 synthesizes the core findings of our analysis, highlighting how the discount rate

fundamentally shapes the trajectory and feasibility of optimal land use and consumption
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strategies. In the low discount rate regime, patient policymaking enables interior solutions

that avoid excessive consumption and allow for full or partial restoration of fertile land. This

regime supports long-term sustainability, especially in homogeneous settings where explicit

solutions are attainable.

The intermediate regime, where feasibility is achieved only after a finite time, introduces a

hybrid structure: an initial adjustment phase governed by finite-horizon control, followed by

convergence to a structured long-run regime. This underscores the importance of transitional

dynamics and the role of initial conditions in shaping outcomes.

In contrast, the high discount rate regime reveals the limits of sustainability. Here, short-

term optimization may lead to boundary behavior, including full resource exploitation in

some regions. The constructed benchmark pair becomes infeasible, and numerical methods

are required to characterize the optimal path. This regime illustrates the risk of irreversible

degradation when time preferences heavily favor the present.

6 Numerical experiments

We develop next some numerical exercises to illustrate our results and shed light on some of

the remaining open questions. In particular, we illustrate how taking into account that the

economy operates with bounded production factors does change the optimal dynamics of the

economy.

We choose choose the following parameter values

A Technological level 0.04

B Maximum consumption coefficient 0.12

σ Household preference 0.5

D Diffusion coefficient 0.1

N Population density 1.0

Table 2: Parameter values.

We also choose

l0 =

 0 if − π/2 < x < π/2,

1 elsewhere.

The choice of the time discount rate has always been a delicate issue in the literature

(see Stern, 2008, or Fleurbaey and Zuber, 2012, among others). We have additionally shown
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throughout the paper that the choice of the time discount rate not only determines quanti-

tatively optimal consumption, but most importantly, it drives the economy dynamics quali-

tatively as well. Under the calibration in Table 2

(1− σ)A+ σD = 0.07 < 0.08 = (1− σ)A+ σNB.

Hence, the upper bound of the moderate time discount rate is 7%. In our exercises, we choose

ρ to be 3%, 5%, and 7%. ρ = 0.03 satisfies (25) and as such, represents the low discount

regime. The second, ρ = 0.05, satisfies (40) and is a high intermediate value. Finally, ρ = 0.07

is a high value for the discount since it satisfies (41).

6.1 Small time discount, ρ = 3%

In this case, r = A−ρ
σ = 0.02. Figure 1 shows our results for fertile land distribution and

consumption per capita. Our results reveal that when the time discount is small, the optimal

trajectory for consumption allows fertile land to reach the maximum level at all locations in

finite time. Once the maximum level for fertility is reached everywhere, consumption remains

at the level that ensures maximum fertility forever.

Figure 1: Low discount rate, ρ = 3%. Left: Fertile land. Right: Consumption per capita.

6.2 Moderate time discount, ρ = 5%

In this case (30) holds and r = −0.02. When we construct the pair {ĉ, k̂} defined by (31)–

(33), we find that fertile land does become negative for some (t, θ). This means that {ĉ, l̂} is
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not feasible. Instead of using this non feasible solution, we construct a pair {c∗, l∗} with

c∗ (t, θ) =

 0.035ert if 0.035ert < Bl∗ (t, θ) ,

Bl∗ (t, θ) elsewhere.

Then we obtain l∗ by solving (13) with c replaced by c∗. The resulting c∗ is feasible and it

belongs to B (l∗). Besides, fertile land is always and everywhere positiive, that is, l∗ (t, θ) > 0

for all (t, θ). In this case l∗ decreases exponentially at rate r. Figure 2 shows the evolution

of fertile land and consumption per capita.

Figure 2: Moderate time discount rate with ρ = 5%. Left: Fertile land. Right: Consumption
per capita.

6.3 Large time discount, ρ = 7%

In this case r = −0.06 = λ1. By Proposition 6, fertile land converges to a spatially heteroge-

neous distribution (see Corollary 2) as shown in Figure 3.

Figure 3: Large time discount rate, ρ = 7%. Left: Fertile land. Right: Consumption per
capita.
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7 Conclusion

This paper develops a general optimal control framework for diffusion-driven systems with

inequality state constraints. By extending the Pontryagin Maximum Principle to incorporate

Radon-measure multipliers, we provide a rigorous characterization of optimality in infinite-

dimensional environments where the state variable is bounded and evolves according to a

partial differential equation. The resulting necessary conditions unify classical optimal control

with modern tools from functional analysis and offer a transparent interpretation of boundary

behavior in distributed systems.

To illustrate the applicability of the framework, we examined a model in which fertile

land evolves through reversible pollution and spatial diffusion. The example highlights how

discounting governs whether the optimal trajectory remains interior, reaches the upper bound

of the state constraint, or generates persistent spatial heterogeneity. In the homogeneous case,

explicit solutions reveal sharp thresholds separating full restoration from partial degradation,

while heterogeneous settings give rise to hybrid dynamics combining finite-horizon control

with structured long-run regimes.

Although the environmental application provides a concrete setting, the methodological

results apply broadly to dynamic optimization problems with bounded states and diffusion,

including models of spatial growth, technological propagation, epidemiological dynamics, and

renewable resource management. The framework thus offers analytical tools for studying a

wide class of infinite-dimensional control problems where state constraints play a central role.

Future work may extend the analysis to stochastic diffusion, non-reversible state dy-

namics, or strategic interactions in spatial games. These directions would further expand the

scope of the framework and deepen our understanding of constrained dynamics in distributed

economic systems.

A Appendix

A.1 Proof of Theorem 1

Since this Theorem is similar to Proposition 1 in Boucekkine et al. (2025), the proof is also

a simple modification of the corresponding proof.
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We introduce the new control, v, such that

c (t, θ) = v (t, θ) l (t, θ) .

The control constraint that c ∈ B (kl) is then changed to

0 ≤ v (t, θ) ≤ B (θ) . (48)

That is, v ∈ B (1). We denote B (1) by B. With this control, (2) takes the form

 yt −Dyθθ = [a+ bv] y for (t, θ) ∈ (0, T )× S,

y (0, θ) = y0 (θ) for θ ∈ S
(49)

and (4) becomes

J (y0, v) =

∫ T

0

∫
S
g (t, θ, v (t, θ) y (t, θ)) dθdt+ h (T, y (T, ·)) .

Define the Hamiltonian

H (t, θ, y, v, ν, ψ) = νg (t, θ, vy) + ψ [a (t, θ) + b (t, θ) v] y in ST × [0, 1]× B.

The main idea is using Ekeland’s variational principle (Theorem 3.2.2 in H. Fattorini,

1999) together with a spike perturbation. For any ε > 0 we define

Fε (v) =
{
[J (v)− J (v∗) + ε]2+ + d0 (y (·; v))2

}1/2
(50)

where y (·; v) is the solution to (2) corresponding to the control v and

d0 (y) = dist (y,Q)|C(ST ) for any y ∈ C (ST ) . (51)

It is clear that d0 (y) = 0 if y ∈ Q. In addition, d0 is the GÃ¢teaux differentiable at every

y ∈ C (ST ) \Q, and its GÃ¢teaux derivative, ∇d0 (y) is the same as the Clarke’s generalized

gradient, which is convex and weak∗-compact. As a result,

|∇d0 (y)|M(ST ) = 1 if y ̸∈ Q (52)
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and for any ξ ∈ ∂d0 (y),

⟨ξ, z − y⟩+ d0 (y) ≤ d0 (z) for any z ∈ C (ST ) ,

where M (ST ) is the set of all Radon measures on ST . Then,

Fε (v
∗) = ε ≤ inf Fε (v) + ε.

This means v∗ is an ε-minimum of Fε, which is bounded below and semi-lower continuous.

Hence, by Ekeland’s variational principle, there exists vε ∈ U such that

Fε (v
ε) ≤ Fε (v

∗) , d (vε, v∗) ≤
√
ε (53)

where

d (u, v) = |{(t, θ) ∈ ST |u (t, θ) ̸= v (t, θ)}| (54)

is the Ekeland distance, and |Ω| for a Lebesgue measurable set Ω represents its measure. In

addition,

Fε (v
ε)− Fε (v) ≤

√
εd (vε, v) for any v ∈ U . (55)

Let yε = y (·; vε). Fix a v ∈ U and an ε > 0. For any δ > 0 and a measurable set Eε
δ ⊂ ST

we construct the perturbation

vεδ (t, θ) =

 vε (t, θ) for (t, θ) ∈ ST \Eε
δ ,

v (t, θ) for (t, θ) ∈ Eε
δ .

(56)

It is clear that vεδ ∈ U . Let yεδ = y (·; vεδ) denote the state corresponding to the perturbation.

We need the following lemma.

Lemma 1. Let Assumption 1 hold and let y0 ∈ Cα (S) for some α ∈ (0, 1). Let {v̄, ȳ} be

a feasible pair and let v ∈ U be fixed. Then, for any δ ∈ (0, 1) there exists a measurable set

Eδ ⊂ ST and the control vδ defined by

vδ (t, θ) =

 v̄ (t, θ) if (t, θ) ∈ ST \Eδ,

v (t, θ) if (t, θ) ∈ Eδ,
(57)
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such that |Eδ| = δ |ST | and the following hold:

y (·, vδ) = ȳ (·) + δz (·) + o (δ) , J (vδ) = J (v̄) + δl + o (δ) (58)

(with the first o (δ) is in space Cα,α/2 (ST ) for some α ∈ (0, 1)) where z and l satisfy

zt −Dzθθ = [a (t, θ) + b (t, θ) v̄ (t, θ)] z + ϕ (t, θ) ,

z (0, θ) = 0

and

l =

∫ T

0

∫
S
[gc (t, θ, ȳ (t, θ) v̄ (t, θ)) v̄ (t, θ) z (t, θ) + γ (t, θ)] dθdt

+

∫
S
hy (T, ȳ (T, θ)) z (T, θ) dθ,

respectively,

ϕ (t, θ) = b (t, θ) ȳ (t, θ) [v (t, θ)− v̄ (t, θ)] ,

γ (t, θ) = g (t, θ, ȳ (t, θ) v (t, θ))− g (t, θ, ȳ (t, θ) v̄ (t, θ)) .

Proof. By the definition of vδ in (57), d (vδ, v̄) ≤ |Eδ|. Let

zδ (t, θ) =
1

δ
[y (t, θ; vδ)− ȳ (t, θ)] in ST .

Then, zδ satisfies

(zδ)t −D (zδ)θθ = bδ (t, θ) zδ (t, θ) +
1

δ
χEδ

(t, θ)ϕ (t, θ) if t ∈ (0, T ) , θ ∈ S,

zδ (0, θ) = 0 if θ ∈ S,

where

bδ (t, θ) =

∫ 1

0
[a (t, θ) + b (t, θ) vδ (t, θ)] ds,

and χEδ
is the characteristic function of Eδ. From the regularity of the parabolic equation

(49) and Assumption 1, we see that bδ and ϕ are uniformly bounded. Hence, by the HÃ¶lder’s

26



estimate there is α ∈ (0, 1) such that

|y (·, vδ)− ȳ|Cα,α/2(ST ) ≤ C |χEδ
|Lp(ST ) → 0 as δ → 0,

where the constant C is independent of Eδ. As a result,

bδ (t, θ) → a (t, θ) + b (t, θ) v̄ (t, θ) in Lp (ST ) as δ → 0

for any p such that 1 ≤ p <∞. Comparing equations for zδ and z we derive

(zδ − z)t −D (zδ − z)θθ = bδ (t, θ) (zδ − z) + {bδ (t, θ)− [a (t, θ) + b (t, θ) v̄ (t, θ)]} z

−
(
1− 1

δ
χEδ

(t, θ)

)
ϕ (t, θ) ,

(zδ − z) (0, θ) = 0.

Using Lemma 3.2 in B. Hu and J. Yong (1995), we see that |zδ − z|Cα,α/2(ST ) → 0 as δ → 0.

This proves the first relation in (58).

To prove the second relation in (58), we let

lδ =
1

δ
[J (vδ)− J (v̄)]

=
1

δ

{∫ T

0

∫
S
[g (t, θ, y (t, θ) vδ (t, θ))− g (t, θ, ȳ (t, θ) v̄ (t, θ))] dθdt

+ [h (T, y (T, ·, vδ (T, ·)))− h (T, ȳ (T, ·))]} .

By the definition of cδ and (58), it follows that

lδ =

∫ T

0

∫
S

[
βδ (t, θ) zδ (t, θ) +

1

δ
χEδ

(t, θ) γ (t, θ)

]
dθdt

+

∫
S
ηδ (θ) zδ (T, θ) dθ +

1

δ

∫
S
χEδ

(t, θ) γ (t, θ) dθ,

where

βδ (t, θ) =

∫ 1

0
gc (t, θ, ȳ (t, θ) vδ (t, θ)) vδ (t, θ) ds,

ηδ (θ) =

∫ 1

0
hy (T, ȳ (T, θ) + s (y (T, θ, vδ (T, θ))− ȳ (T, θ))) ds.
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It is clear that

βδ (t, θ) → gc (t, θ, ȳ (t, θ) v̄ (t, θ)) v̄ (t, θ) , ηδ (θ) → hy (T, ȳ (T, θ))

as δ → 0.

Comparing equations for lδ and l, we find

lδ − l =

∫ T

0

∫
S
[βδ (t, θ) zδ (t, θ)− gc (t, θ, ȳ (t, θ) v̄ (t, θ)) v̄ (t, θ) z (t, θ)] dθdt

+

∫
S
[ηδ (θ) zδ (T, θ)− hy (T, ȳ (T, θ)) z (T, θ)] dθ

−
∫ T

0

∫
S

(
1− 1

δ
χEδ

(t, θ)

)
γ (t, θ) dθdt.

Using again Lemma 3.2 in B. Hu and J. Yong (1995) and the convergence zδ → z in

Cα,α/2 (ST ), we find lδ − l → 0 as δ → 0.

This completes the proof of the lemma.

Continuation of Proof of the Theorem 1 An application of Lemma 1 leads to

yεδ = yε + δzε + o (δ) , J (vεδ) = J (vε) + δlε + o (δ) , (59)

where zε and z0,ε satisfy equations

zεt −Dzεθθ = [a (t, θ) + b (t, θ) vε (t, θ)] zε (t, θ) + ϕε (t, θ) , (60)

and

lε =

∫ T

0

∫
S
[gc (t, θ, y

ε (t, θ) vε (t, θ)) vε (t, θ) zε (t, θ) + γε (t, θ)] dθdt

+

∫
S
hy (T, y

ε (T, θ)) zε (T, θ) dθ
(61)

respectively, with

ϕε (t, θ) = b (t, θ) yε (t, θ) [v (t, θ)− vε (t, θ)] ,

γε (t, θ) = g (t, θ, yε (t, θ) v (t, θ))− g (t, θ, yε (t, θ) vε (t, θ)) .
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We next choose a Eε
δ so that |Eε

δ | = δ |ST |. By (56), d (vεδ , v
ε) = |Eε

δ |. Hence, by (55)

√
ε |ST | ≥

Fε (v
ε)− Fε (v

ε
δ)

δ

=
1[

Fε (vε) + Fε

(
vεδ
)]
δ

{
[J (vε)− J (v∗) + ε]2+ − [J (vεδ)− J (v∗) + ε]2+

+ [d0 (y
ε)− d0 (y

ε
δ)]} .

Taking δ → 0 and using (59), the right-hand side converges to

[J (vε)− J (v∗) + ε]+
Fε (vε)

lε +

〈
d0 (y

ε) ξε

Fε (vε)
, zε

〉
≡ νεlε + ⟨mε, zε⟩ ,

where

νε =
[J (vε)− J (v∗) + ε]+

Fε (vε)
, mε =

d0 (y
ε) ξε

Fε (vε)

and

ξε (yε) =

 ∇d0 (yε) , if yε ̸∈ Q,

0 if yε ∈ Q.

Hence, by (55),
√
ε |ST | ≥ νεlε + ⟨mε, zε⟩ . (62)

Note that by (52),

|ξε (yε)|C(ST )∗ = 1 if yε ̸∈ Q.

It follows from (50) that µε ≥ 0 and

νε + |mε|C(ST )∗ = 1 for all ε > 0.

Also, by Corollary 1,

⟨mε, z − yε⟩ ≤ −d0 (yε) ≤ 0 for any z ∈ Q. (63)

Next, by (53) and Lemma 1, it follows that

yε = y∗ + δz∗ + o (δ) , J (vε) = J (v∗) + δl∗ + o (δ) , (64)
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where z∗ and l∗ satisfy equations

z∗t −Dz∗θθ = [a (t, θ) + b (t, θ) v∗ (t, θ)] z∗ (t, θ) + ϕ∗ (t, θ) ,

z∗ (0, θ) = 0
(65)

and

l∗ =

∫ T

0

∫
S
[gc (t, θ, y

∗ (t, θ) v∗ (t, θ)) v∗ (t, θ) z∗ (t, θ) + γ∗ (t, θ)] dθdt

+

∫
S
hy (T, y

∗ (T, θ)) z∗ (T, θ) dθ,

respectively, with

ϕ∗ (t, θ) = b (t, θ) y∗ (t, θ) [v (t, θ)− v∗ (t, θ)] ,

γ∗ (t, θ) = g (t, θ, y∗ (t, θ) v (t, θ))− g (t, θ, y∗ (t, θ) v∗ (t, θ)) .

From (64) we see that yε → y∗ in Cα,α/2 (ST ) as ε → 0. Thus, from (60) and (61) we find

zε → z∗ in Cα,α/2 and lε → l∗ in R as ε → 0. Since Q is finite codimensional in C (ST ),

it follows from Lemma 3.2 of X. Li and J. Yong (1991) that the weakly-* limit, (ν,m), of

(νε,mε) as ε→ 0 is positive. Taking ε→ 0 in (63) we find ⟨m, z − y∗⟩ ≤ 0 for any z ∈ Q. In

addition, from (62) we find

νl∗ + ⟨m, z∗⟩ ≤ 0 for any v ∈ B. (66)

We show that the above inequality is equivalent to

0 ≤
∫ T

0

∫
S
{ν [g (t, θ, y∗ (t, θ) v∗ (t, θ))− g (t, θ, y∗ (t, θ) v (t, θ))]

+ ψ (t, θ) b (t, θ) y∗ (t, θ) [v∗ (t, θ)− v (t, θ)]} dθdt

=

∫ T

0

∫
S
[H (t, θ, y∗ (t, θ) , v∗ (t, θ) , ν, ψ (t, θ))

− H (t, θ, y∗ (t, θ) , v (t, θ) , ν, ψ (t, θ))] dθdt

for any v ∈ B. Using (7) and (65), we find

∫ T

0

∫
S
[z∗ψ]t dθdt =

∫ T

0

∫
S
[z∗t ψ + z∗ψt] dθdt

=

∫ T

0

∫
S

[
ψϕ∗ − νz∗g∗y

]
dθdt+ ⟨m, z∗⟩

(0,T )×S
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where

g∗y = gc (t, θ, y
∗ (t, θ) v∗ (t, θ)) v∗ (t, θ) .

On the other hand, since

z∗ (0, θ) = 0, ψ (T, ·) = νhy (T, y
∗ (T, ·)) +m|{T}×S ,

it follows that

∫ T

0

∫
S
[z∗ψ]t dθdt =

∫
S
z∗ (T, θ)ψ (T, θ) dθ

= ν

∫
S
hy (T, y

∗ (T, θ)) z∗ (T, θ) dθ + ⟨m, z∗ (T, ·)⟩S .

As a result,

ν

∫
S
hy (T, y

∗ (T, θ)) z∗ (T, θ) dθ + ⟨m, z∗ (T, ·)⟩S + ν

∫ T

0

∫
S
z∗g∗ydθdt

=

∫ T

0

∫
S
ψ (t, θ)ϕ∗ (t, θ) dθdt− ⟨m, z∗⟩

(0,T )×S
.

(67)

By (66),

ν

∫ T

0

∫
S

[
z∗g∗y + γ∗ (t, θ)

]
dθdt+ ν

∫
S
hy (T, y

∗ (T, θ)) z∗ (T, θ) dθ + ⟨m, z∗⟩ST
≤ 0.

As a result, by (67),

∫ T

0

∫
S
[νγ∗ (t, θ) + ψ (t, θ)ϕ∗ (t, θ)] dtdθ ≤ 0.

This is equivalent to

0 ≤
∫ T

0

∫
S
{ν [g (t, θ, y∗ (t, θ) v∗ (t, θ))− g (t, θ, y∗ (t, θ) v (t, θ))]

+ ψ (t, θ) b (t, θ) y∗ (t, y) [v∗ (t, θ)− v (t, θ)]} dθdt

for any v ∈ B. Since v (t, θ) is arbitrary, (8) follows.

The proof is complete.
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A.2 Proof of Proposition 1

Eq. (7) takes the form

ψt +Dψθθ = − [A−Nc∗/k∗]ψ − µNe−ρt (c∗)1−σ /k∗ −m|(0,T )×S ,

ψ (T, ·) = µhy (T, k
∗ (T, ·)) +m|{T}×S ,

(68)

where c∗ satisfies

µe−ρt

1− σ
c∗ (t, θ)1−σ − c∗ (t, θ)ψ (t, θ)

= max
0≤c≤B(k∗)

{
µe−ρt

1− σ
c (t, θ)1−σ − c (t, θ)ψ (t, θ)

}
.

(69)

Either µ = 0 or µ > 0. In the case where µ = 0, (69) implies that c∗ = 0. Thus, (68) is the

same as (20). If µ > 0, then (69) implies

ψ (t, θ) = µe−ρtc∗ (t, θ)−σ .

Substituting the right-hand side for ψ in the right-hand side of the first equation in (68), we

again obtain

ψt +Dψθθ +Aψ = −m|(0,T )×S . (70)

In addition, from the proof of Proposition 5 we see that either c∗ (t, θ) = 0 for all (t, θ) if

µ = 0 or

c∗ (t, θ) =
[
eρtψ (t, θ)

]−1/σ
for all (t, θ) (71)

if µ > 0 (and therefore is set to be 1). In the former case (26) cannot hold. Thus µ = 1 and

(71) holds.

Let Ω be the interior of the set

Ω = {(t, θ) ∈ (0,∞)× S : k∗ (t, θ) = 1} .

We first observe that by (18), c∗ (t, θ) = A (θ) in Ω. Thus, by (71),

ψ (t, θ) = e−ρtA (θ)−σN (θ)σ in Ω

and by (20)

eρtm = −eρt {ψt + L [ψ]} = ρA−σNσ − L
[
A−σNσ

]
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Let p (t, θ) = eρtψ (t, θ). Then (70) is equivalent to

pt +Dpθθ + (A− ρ) p = −M |(0,T )×S (72)

where

M = eρtm = ρA−σNσ − L
[
A−σNσ

]
. (73)

This leads to the first equation in (20). The second equation in (20) and (21) follows directly

from the second equation of (68) and (71), respectively. .

This completes the proof.

A.3 Proof of Proposition 2

Let k (t, θ) be the solution to the initial-boundary value problem

kt = Dkθθ + (A−NB) k for t > 0, θ ∈ S,

k (0, θ) = k0 (θ) for θ ∈ S
(74)

with a nonnegative nontrivial initial function k0 (θ). By the maximum principle for parabolic

partial differential equations, k (t, θ) > 0 for all (t, θ) ∈ (0,∞)× S.

Since c∗ (t, θ) ≥ B (θ) k∗ (t, θ) for all (t, θ), it follows that k (t, θ) is a lower solution for

(13) with c = c∗. It is easy to see that the solution k̃ of the initial-value problem

k̃t = Dk̃θθ +Ak̃ for t > 0, θ ∈ S,

k̃ (0, θ) = k0 (θ) for θ ∈ S

is an upper solution and k̃ (t, θ) ≥ k (t, θ) for all (t, θ). Hence, by the comparison principle

(cf, C.V. Pao (1992), Chapter 2, Theorem 4.1), k (t, θ) ≤ k∗ (t, θ) ≤ k̃ (t, θ). As a result

k∗ (t, θ) > 0 for all (t, θ). Furthermore, let ϕ0 be a positive eigenfunction of the operator M

corresponding to the principal eigenvalue, µ0. Then∫
S
k∗ (t, θ)ϕ0 (θ) dθ ≥

∫
S
k (t, θ)ϕ0 (θ) dθ = ⟨k (t, ·) , ϕ0⟩ . (75)

Multiplying ϕ0 to the first equation in (74) and integrating over S, we obtain

⟨k (t, ·) , ϕ0⟩′ = ⟨Mk (t, ·) , ϕ0⟩ = µ0 ⟨k (t, ·) , ϕ0⟩ .
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It follows that

⟨k (t, ·) , ϕ0⟩ = ⟨k0, ϕ0⟩ eµ0t.

Hence, by (75), ∫
S
k∗ (t, θ)ϕ0 (θ) dθ ≥ ⟨k0, ϕ0⟩ eµ0t.

Using the positivity and boundedness of ϕ0 on S, the above relation leads to

∫
S
k∗ (t, θ) dθ ≥ ⟨k0, ϕ0⟩

maxθ∈S ϕ0 (θ)
eµ0t.

This completes the proof.

A.4 Proof of Proposition 3

First observe that (26) implies µ = 1 and

p (t, θ) = c∗ (t, θ)−σ for all (t, θ) ∈ (0,∞)× S. (76)

satisfies

pt + (L − ρ) [p] = −M |(0,T )×S (77)

where M is a Radon measure with a support that satisfies (24).

Suppose for contradiction that k∗ (t, θ) < 1 for all (t, θ) ∈ (0,∞) × S. Then M = 0 a.e.

As a result, p satisfies

pt + (L − ρ) [p] = 0

everywhere. Using a Fourier expansion

p (t, θ) = p0 (t)φ0 (θ) +
∑
j≥1

2∑
i=1

pj,i (t)φj,i (θ) (78)

we find

p0 (t) = p0 (0) e
−(λ0−ρ)t,

and

pj,i (t) = pj,i (0) e
−(λj−ρ)t for j ≥ 1, i = 1, 2.

Observe that (76) implies that p (t, θ) > 0 everywhere. Since φj,i changes the sign in S and

λj < λ0 for all j ≥ 1, it follows that the only non-zero term on the right-hand side of (78) is
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p0 (t)φ0 (θ). Therefore, by (76),

c∗ (t, θ) = [p0 (0)φ0 (θ)]
−1/σ ert for all (t, θ) .

Substituting the right-hand side for c in (13), and using Fourier expansions

k (t, θ) =
∑
j,i

kj,i (t)φj,i (θ) , [p0 (0)φ0 (θ)]
−1/σ =

∑
j,i

ηj,iφj,i (θ)

we find

k′j,i (t) = λjkj,i (t)− ηj,ie
rt,

where r = λ0−ρ
σ . Solving the equation we find

kj,i (t) =
ηj,i

λj − r
ert +

[
kj,i (0)−

ηj,i
λj − r

]
eλjt

if λj ̸= r and

kj,i (t) = [kj,i (0)− ηj,it] e
rt

if λj = r. In particular

k0 (t) =
η0

λ0 − r
ert +

[
k̃0 (0)−

η0
λ0 − r

]
eλ0t

if λ0 ̸= r and

k0 (t) = [k0 (0)− η0t] e
rt

if λ0 = r. Since r and λ0 are both positive, k0 (t) is unbounded. Note that k0 (t) = ⟨k (t, ·) , φ0⟩

and φ0 is positive in S, the state constraint 0 ≤ k (t, θ) ≤ 1 implies

0 ≤ k0 (t) ≤
∫
S
φ0 (θ) dθ.

Thus, k0 (t) is bounded. This is a contradiction.

The proof is complete.
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A.5 Proof of Proposition 4

Let
{
k̄ (θ) , c̄ (θ)

}
be a steady state, and let p̄ (θ) = c̄ (θ)−σ. Then, by (13) and (77),

Dk̄′′ (θ) +Ak̄ (θ) = Np̄ (θ)−1/σ ,

Dp̄′′ (θ) + (A− ρ) p̄ (θ) = −M (θ) for θ ∈ S

where

M (θ) =

 (ρ−A)A−σNσ if k̄ (θ) = 1,

0 elsewhere.

Suppose for contradiction that there is an interval I on which k̄ (θ) < 1. It is not possible

that I = S, because if so, p̄ would be a positive eigenfunction of the operator L corresponding

to the eigenvalue ρ. However, the only eigenvalue of L that can have positive eigenfunction

is α > ρ. This is a contradiction. Hence, I is a proper subinterval of S. Without loss

of generality, we may assume that I = (−a, a) is symmetric, with a constant a satisfying

0 < a < π. As a result, k̄ (−a) = k̄ (a) = 1. Also, since k̄ (θ) ≤ 1 for all θ, it follows that

k̄′ (−a) = k̄′ (a) = 0.

We first solve p̄ (θ). Note that M (θ) = 0 in (−a, a), p̄ satisfies

Dp̄′′ (θ) + (A− ρ) p̄ (θ) = 0 in (−a, a) .

Due to the symmetry, p̄ (−θ) = p̄ (θ). Let b denote the common value of p̄ (−a) and p̄ (a).

By computation

p̄ (θ) = b cosωθ in (−a, a)

for some b > 0, where ω =
√
(A− ρ) /D. Solving the differential equation for x̄, we find

k̄ (θ) = c1 cos

√
A

D
θ + c2 sin

√
A

D
θ +Nb−1/σ

∫ θ

0

cos−1/σ (ωξ)√
AD

sin

√
A

D
(θ − ξ) dξ (79)

for some constants c1 and c2. Using the boundary conditions k̄ (−a) = k̄ (a) = 1, we find

c2 = 0. Then, from the conditions k̄′ (−a) = k̄′ (a) = 0 we find

c1 cos

√
A

D
a+Nb−1/σ

∫ a

0

cos−1/σ (ωξ)√
AD

sin

√
A

D
(a− ξ) dξ = 1,

c1 sin

√
A

D
a−Nb−1/σ

∫ a

0

cos−1/σ (ωξ)√
AD

cos

√
A

D
(a− ξ) dξ = 0.

36



Solving the equations, we find

c1 =

∫ a

0
cos−1/σ (ωξ) cos

√
A

D
(a− ξ) dξ/

∫ a

0
cos−1/σ (ωξ) cos

√
A

D
ξdξ

We show that c1 > 1. It amounts to show that

∫ a

0
cos−1/σ (ωξ) cos

√
A

D
(a− ξ) dξ >

∫ a

0
cos−1/σ (ωξ) cos

√
A

D
ξdξ. (80)

Note that both cos−1/σ (ωξ) and cos
√

A
D (a− ξ) are positive and increasing in (0, a). Let us

use f (ξ) and g (ξ) to denote two positive and strictly increasing functions. It is easy to see

that

[f (ξ)− f (a− ξ)] [g (ξ)− g (a− ξ)] ≥ 0 for ξ ∈ (0, a)

and the strict inequality holds for all ξ ∈ (0, a) except for ξ = a/2. Thus,

∫ a

0
[f (ξ)− f (a− ξ)] [g (ξ)− g (a− ξ)] dξ > 0.

On the other hand, the left-hand side can be written as

∫ a

0
[f (ξ) g (ξ) + f (a− ξ) g (a− ξ)] dξ −

∫ a

0
[f (ξ) g (a− ξ) + f (a− ξ) g (ξ)] dξ. (81)

Using a change of variable, it is easy to verify that

∫ a

0
f (a− ξ) g (a− ξ) dξ =

∫ a

0
f (ξ) g (ξ) dξ,∫ a

0
f (ξ) g (a− ξ) dξ =

∫ a

0
f (a− ξ) g (ξ) dξ.

Thus, by (81) we find ∫ a

0
f (ξ) g (ξ) dξ >

∫ a

0
f (ξ) g (a− ξ) dξ.

Apply the above inequality to the function f (ξ) = cos−1/σ (ωξ) and g (ξ) = cos
√
A/D (a− ξ),

(80) follows.

By (79), k̄ (0) = c1 > 1. This contradicts the constraint k̄ (θ) ≤ 1 in S.

If an optimal pair {k∗, c∗} converges as t → ∞, then the limit must be a steady state.

Thus, (29) must hold.

This completes the proof.
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A.6 Proof of Proposition 5

By (34), M = 0 and 0 < c∗ (t, θ) < B (θ) k∗ (t, θ). Thus, p satisfies

pt + (L − ρ) [p] = 0 in ST

for any T > 0. Since p > 0, it follows that

p (t, θ) = p0 (0) e
−(λ0−ρ)tφ0 (θ) for all (t, θ) .

As a result,

c∗ (t, θ) = p (t, θ)−1/σ = c0φ0 (θ)
−1/σ ert

where c0 = p0 (0)
−1/σ is a constant.

Consider the initial value problem (13) with

c = c∗ ≡ c0φ0 (θ)
−1/σ ert,

i.e.,

kt = L [k]−Nc0φ
−1/σ
0 ert for t > 0, θ ∈ S,

k (0, θ) = k0 (θ) for θ ∈ S.
(82)

Let a0 (t) = ⟨k (t, ·) , φ0⟩. Clearly for k (t, θ) > 0 in (0,∞)× S, it is necessary that a0 (t) > 0

for all t. By multiplying φ0 to the both sides of (82) and integrating the results over S, we

obtain

a′0 = λ0a0 − c0e
rt
〈
Nφ

−1/σ
0 , φ0

〉
for t > 0,

a0 (0) = ⟨k0, φ0⟩ .

The solution is

a0 (t) =
c0

〈
Nφ

−1/σ
0 , φ0

〉
λ0 − r

ert +

⟨k0, φ0⟩ −
c0

〈
Nφ

−1/σ
0 , φ0

〉
λ0 − r

 eλ0t.

Note that since ρ > λ0 ≥ (1− σ)λ0 it follows that

λ0 >
λ0 − ρ

σ
= r.
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Hence, for a0 (t) > 0 for all t, it is necessary that

c0 ≤
(λ0 − r) ⟨k0, φ0⟩〈
Nφ

−1/σ
0 , φ0

〉 ≡ ĉ0

Note that by (14),

J (k0, c
∗) =

c1−σ
0

1− σ

∫ ∞

0
e[−ρ+(1−σ)r]tdt

∫
S
N (θ)φ0 (θ)

1−1/σ dθ

which is increasing in c0. Hence, since
{
ĉ, k̂

}
is feasible, it follows that

c∗ (t, θ) = ĉ0φ0 (θ)
−1/σ ert = ĉ (t, θ) in (0,∞)× S.

This completes the proof.

A.7 Proof of Proposition 6

We use the initial value problem (82) with c0 = ĉ0 using the Fourier series expansion

k̂ (t, θ) = a0 (t)φ0 (θ) +
∑
j≥1

∑
i

aj,i (t)φj,i (θ) .

Substituting the right-hand side for k in (82), we obtain

a′j,i (t) = λjaj,i (t)− ĉ0e
rt
〈
Nφ0

−1/σ, φj,i

〉
, aj,i (0) = ⟨k0, φj,i⟩ .

The solution is

aj,i (t) =
ĉ0

〈
Nφ0

−1/σ, φj,i

〉
λj − r

ert +

[
⟨k0, φj,i⟩ −

ĉ0
〈
Nφ0

−1/σ, φj,i

〉
λj − r

]
eλjt (83)

if λj ̸= r and

aj,i (t) =
[
⟨k0, φj,i⟩ − tĉ0

〈
Nφ0

−1/σ, φj,i

〉]
ert (84)

if λj = r for all integers j and i.

Since
{
ĉ, k̂

}
is feasible, 0 ≤ k̂ (t, θ) ≤ 1 for all (t, θ). In particular,

k̂ (t, θ) e−rt ≡ ⟨k0, φ0⟩φ0 (θ) +
∑
j≥1

∑
i

aj,i (t) e
−rtφj,i (θ) ≥ 0.
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Note that φj,i changes the sign in S for any j ≥ 1, it follows that each aj,i (t) e
−rt is bounded.

Hence, by (83) and (84), λj ̸= r if
〈
Nφ0

−1/σ, φj,i

〉
̸= 0 and

ĉ0
〈
Nφ0

−1/σ, φj,i

〉
λj − r

= ⟨k0, φj,i⟩

if λj > r. As a result,

lim
t→∞

aj,i (t) e
−rt =

ĉ0
〈
Nφ0

−1/σ, φj,i

〉
λj − r

if λj ̸= r for all j and

am,i (t) e
−rt = ⟨k0, φm,i⟩

if λm = r and
〈
Nφ0

−1/σ, φm,i

〉
= 0 for i = 1, 2.

The proof is complete.

A.8 Proof of Corollary 2

Since A is a constant function, the eigenvalues and eigenfunctions are given by (27) and (28),

respectively. In this case,

〈
Nφ

−1/σ
0 , φj,i

〉
= 0 for all j ≥ 1, i = 1, 2.

Hence, (36) become

ȳ (θ) = ⟨l0, φ0⟩φ0 =
1

2π

∫
S
l0 (ξ) dξ

if r ̸= λj for all j. This leads to (38).

In the case where r = λm for some m, by (37) and (28)

ȳ (θ) = ⟨l0, φ0⟩φ0 + ⟨l0, φm,1⟩φm,1 (θ) + ⟨l0, φm,2⟩φm,2

=
1

2π

∫
S
l0 (ξ) dξ +

1

π

∫
S
l0 (ξ) [cosmθ cosmξ + sinmθ sinmξ] dξ.

This leads to (39).

The proof is complete.
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A.9 Proof of Proposition 7

Suppose by contradiction that
{
ĉ, k̂

}
is feasible and ĉ ∈ B

(
k̂
)
. Then ĉ (t, θ) ≤ B (θ) k̂ (t, θ)

for all (t, θ) ∈ [0,∞)× S. This implies that

k̂t ≥ Dk̂θθ + (A−NB) k̂ for all t > 0, θ ∈ S.

Let ϕ0 be a positive eigenfunction of M corresponding to µ0, and let k̃0 (t) =
〈
k̂ (t, ·) , ϕ0

〉
,

we obtain

k̃′0 (t) ≥ η0k̃0, k̃0 (0) =
〈
k̂ (0, ·) , ϕ0

〉
.

Hence,

k̃0 (t) ≥
〈
k̂ (0, ·) , ϕ0

〉
eη0t.

That is ∫
S
k̂ (t, θ)ϕ0 (θ) dθ ≥ eη0t

∫
S
k0 (θ)ϕ0 (θ) dθ. (85)

On the other hand, by (31) and (33), k̂ (t, θ) satisfies

∫
S
k̂ (t, θ)φ0 (θ) dθ = ert

∫
S
k0 (θ)φ0 (θ) dθ.

In view of (85), it follows that

η0 ≤ r =
λ0 − ρ

σ
.

This contradicts (42).

Suppose {c∗, k∗} is an optimal pair such that c∗ (t, θ) < B (θ) k∗ (t, θ) for all (t, θ). Then,

by Proposition 3,
{
ĉ, k̂

}
= {c∗, k∗} is feasible. This is a contradiction.

This completes the proof.

A.10 Proof of Proposition 8

Since, by (43), k∗ < 1 at t = T , it follows that m = 0 at t = T . Also, since
{
ĉT , k̂T

}
is

feasible, by Proposition 3, {c∗, k∗} =
{
ĉT , k̂T

}
in (T,∞)× S. Thus by (44),

c∗ (t, θ) = ĉT (t, θ) ≡ ĉT,0φ0 (θ)
−1/σ er(t−T )
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for (t, θ) ∈ (T,∞)× S. In view of (43) and (70),

c∗ (t, θ) = argmax
0≤c≤B(k∗)

{
µc (t, θ)1−σ

1− σ
− c (t, θ) p (t, θ)

}
=

[
p (t, θ)

µ

]−1/σ

for (t, θ) ∈ (T,∞)× S. Clearly, µ > 0. So we assume µ = 1. Therefore,

p (t, θ) = c∗ (t, θ)−σ = ĉ−σ
T,0φ0 (θ) e

−σr(t−T ) for t > T.

It follows that

p (T, θ) = ĉ−σ
T,0φ0 (θ) .

The result of the proposition then follows from Proposition 5. The statement regarding

k∗ is obviously true. That completes the proof.
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