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Abstract

We develop an optimal control framework for infinite-dimensional systems with in-
equality state constraints, extending the Pontryagin Maximum Principle to diffusion-
driven dynamics with bounded states. The resulting conditions feature Radon-measure
multipliers that characterize boundary behavior in distributed environments. As an illus-
tration, we apply the framework to a model of land fertility evolving through reversible
pollution and spatial diffusion. We show how discounting shapes optimal consumption,
the activation of state constraints, and long-run spatial patterns. In the homogeneous
case, explicit solutions identify conditions for full restoration or persistent degradation,
while heterogeneous settings generate hybrid finite-horizon and long-run regimes. The
framework provides general analytical tools for dynamic optimization problems with dif-
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1 Introduction

Dynamic optimization with state constraints plays a central role in economic theory, yet
most existing results are confined to finite-dimensional systems or settings without spatial
interactions. Many economic processes, ranging from resource management and technological
diffusion to spatial growth and distributed production, are inherently infinite-dimensional
and subject to strict feasibility limits. Incorporating these constraints into spatiotemporal
models raises fundamental questions: How can optimal control be characterized when the
state evolves according to a partial differential equation? What mathematical tools allow us
to handle inequality constraints in distributed systems? And how do these constraints shape
long-run economic outcomes?

This paper develops a rigorous optimal control framework for infinite-dimensional sys-
tems with ecological or physical bounds, focusing on a model where the state variable evolves
according to a diffusion equation and is subject to upper and lower constraints. Our contri-
bution is methodological: we extend the Pontryagin Maximum Principle to a setting with
spatial diffusion and inequality state constraints, and we derive generalized Kuhn-Tucker
conditions involving Radon measures. These measure-valued multipliers capture the shadow
value of relaxing the state constraint at each point in space and time, providing a transparent
economic interpretation of boundary behavior in distributed systems.

To illustrate the applicability of the framework, we study a model of land fertility and
pollution dynamics in which fertile land is the sole bounded production input. Fertility
evolves according to a reversible pollution process with spatial diffusion, and consumption
is chosen to maximize discounted welfare. This setting, while motivated by environmental
concerns, serves as a natural and tractable example of a broader class of problems in which a
bounded state variable interacts with diffusion and control. The model highlights how time
preferences, spatial heterogeneity, and state constraints jointly determine optimal trajectories
and long-run outcomes.

Classical optimal control theory (Pontryagin, 1962) and its extensions to PDE systems
(Li and Yong, 1991; Fattorini, 1999) provide necessary conditions for unconstrained prob-
lems, but do not address inequality constraints in spatiotemporal models. Recent work in
spatial economics (Boucekkine et al., 2013; 2018; 2021) studies diffusion-driven dynamics but
assumes unbounded inputs. Similarly, sustainability models under discounting (Chichilnisky

et al., 1995; Stern, 2008) abstract from spatial heterogeneity and ecological limits. To our



knowledge, no existing framework combines (i) spatial diffusion, (ii) bounded state variables,
and (iii) rigorous Kuhn-Tucker conditions for infinite-dimensional systems.

Using the new technical tools developed in this paper, we systematically analyze the
optimal control of land fertility and consumption under different discounting regimes. In the
low discount rate case, the system exhibits sustainable dynamics, with a full restoration of
fertile land in the long run. When space is homogeneous, we derive explicit solutions showing
a two-phase structure: an initial growth phase followed by a steady-state regime. In contrast,
high discount rates can lead to resource depletion, boundary behavior, and complex spatial
dynamics, depending on feasibility and critical thresholds.

Our contribution to the literature is threefold. First, we develop a rigorous spatiotem-
poral model of soil pollution and land use that incorporates ecological state constraints and
intertemporal preferences. By extending the Pontryagin Maximum Principle to a setting
with spatial diffusion and inequality constraints, we provide a novel analytical framework for
optimal environmental policy in bounded-resource economies. This complements and extends
the spatial AK literature (e.g., Boucekkine et al., 2013, 2025) by introducing ecological limits
and reversible pollution dynamics.

Second, we characterize optimal policy under different discounting regimes: low, inter-
mediate, and high, and show how time preferences fundamentally alter the long-term spatial
distribution of fertile land. In particular, we demonstrate that under low discounting, full
restoration is achievable at least at some locations, while high discounting leads to persistent
spatial heterogeneity or irreversible degradation. These results connect to and enrich the
literature on sustainability under discounting (e.g., Chichilnisky et al., 1995; Stern, 2008),
offering new insights into the spatial consequences of impatience.

Third, we construct hybrid solutions in which the system transitions from a finite-horizon
control problem to a structured long-run regime. This hybrid structure, governed by adjoint
dynamics and Radon measures, offers a new lens through which to understand transitional
environmental policy. Thus, our results bridge the gap between theoretical optimal control,
spatial economic dynamics, and practical policy design for land restoration and pollution
abatement.

The remaining work is organized as follows: Section 2 formalizes the optimization prob-
lem and develops the extended maximum principle and associated Kuhn-Tucker conditions.
Section 3 illustrates the soil pollution model. Section 4 details the maximum principle and

Kuhn-Tucker conditions for soil pollution cases. Section 5 characterizes optimal solutions



under different discounting regimes. Section 6 provides numerical illustrations and discusses

transitional dynamics. Section 7 concludes with implications for theory and policy.

2 A maximum principle and extended Kuhn-Tucker condition

We present a general version of Pontryagin’s Maximum Principle that fits our model. For

any T > 0, let S = [0,7] x S and denote
Q={yeC(Sr):0<y(t,0) <1 forall (t0)e Sr}. (1)

We consider a more general optimization problem for which the state variable is the solution

to the parabolic partial differential equation

yt — Dygg = ay + bc  for (t,0) € (0,T) x S,
y(0,0) =yo (0) for €S

(2)

where T" > 0 is a constant, y is the state variable, ¢ € B (y) is the control, D is a positive
constant, and a, b, and yo given functions. The system dynamics is subject to the state

constraint

0<y(t,0) <1 for (t,0) € St. (3)

Given the initial state yg, the welfare functional to be maximized is

T
J(yo,C)—/O /Sg(t,e,c(t,é))dﬁdt+h(T,y(T, ), (4)

where the functional i : R x C' (S) — R has a Fréchet derivative with respect to y.

Define the Hamiltonian

H(t,0,y,c,p,%) = pg (t,0,¢) + 9 f (t,0,y,¢) in Sy x[0,1] x B(y),
where
f(t,0,y,¢)=a(t,0)y+b(t0)c
We make the following assumptions.
Assumption 1. (1) Functions a,b: Sy — R are continuously differentiable.

(2) Function g : Sy x RT —— R* is continuously differentiable and for any B > 0 there is
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a constant 3 such that
lg(t,0,c)| < B for (t,0,c) € Srx |0, B]

and h: RT x [0,1] — R is continuously differentiable.

A Pontryagin’s maximum principle and extended Kuhn-Tucker conditions for inequality
constraint of the above optimal control problem (4), subject to (2) and (3) can be obtained
by using Ekeland’s variational principle (Theorem 3.2.2 in H. Fattorini, 1999) together with

a spike perturbation.

Theorem 1. Let Assumption 1 hold and let {c*,y*} be an optimal pair. Then there exists
a constant v > 0, a function 1 € L1 (O,T; wha (8)) (1 < q<3/2) and a Radon measure m

such that
v+ |m]M(ST) > 0, (5)
<m’Z - y*> < 07 Vz € Qa (6)
Y+ Do = — [a + be* [y*] Y — vgy — m|o,)xs: )
Y(T,) =vhy (T,y* (T,-)) + m|{r)xs;
and

H (10" (160).¢ (1,6), v (1.6) = max H (105" (160).c.v (L0) (3

where

ggj = 9c (ta 0, c* (t’ 0)) c (tv 9) /y* (tv 0) :

A proof is given in Appendix ??7. Boucekkine et al. (2025) obtained a similar result
but with less constraints than the above Theorem 1. They considered only non-negative
constraints: y (¢,0) > 0 and ¢ > 0, thus without the upper-bound constraints.

Furthermore, it is easy to show that the support of the above Radon measure m checks:

Corollary 1.
supp m C {(¢,0) € Sr: y* (t,0) =0,1}. 9)

To see this, let n € C' (Sr) have the support supp n C Sr\ {(¢,0) : y* (¢,0) = 0,1}. Then,

there is € > 0 such that 2% := y* £ en € Q. Hence,

te(m,n) = <m,z:jE —y*) <0.



This implies (m,n) = 0. This fact plays an important role in the subsequent analysis.

In the current setting, v is one Lagrange multiplier, which could be zero, and we shall
be more precise when applying this result to the original soil pollution control problem. The
Radon measure, m, plays the role of generalized Kuhn-Tucker multipliers for the inequality
state constraints, and ¢ represents the shadow price, or scarcity value, of relaxing the state
constraint at each point in space and time. If m is nonzero at (t,6), it means that the
constraint y(¢,0) < 1 or y(t,0) > 0 is binding and relaxing it would improve social welfare.
The inequality (6) for all admissible z is analogous to the complementary slackness condition
and mirrors the Kuhn-Tucker conditions in finite-dimensional optimization, ensuring that
the constraint is only “active” when it binds. Thus, this theorem extends the Pontryagin
framework and the Kuhn-Tucker logic to dynamic, spatially distributed systems with PDE

constraints.

3 A model of soil pollution

Global soil contamination has escalated to a critical level. The Food and Agriculture Orga-
nization (FAO, 2015) estimated that roughly one-third of the world’s soils are moderately to
severely degraded, primarily due to erosion, nutrient imbalance, salinization, and contami-
nation. More recently, the United Nations Convention to Combat Desertification (UNCCD,
2024) reported that up to 40% of the planet’s land is degraded, marked by land abandonment,
biodiversity loss, and declining soil health. The latest FAO assessment (2025) further un-
derscores the severity of the crisis, estimating that 2.1 billion hectares—about 23% of global
land—are affected by soil pollution, driven largely by human activities: agriculture (=~ 80%)
and industrial waste (= 15%). Soil pollution not only undermines agricultural productivity
and food security, but also poses risks to human health through direct contact, exposure
to vapors, or contamination of water supplies. The FAO warns that soil pollution poses
“irreversible risks to food security, biodiversity, and human health.”

Agricultural pollution arises from the excessive use of pesticides and fertilizers, irrigation
with contaminated water, and soil erosion from intensive farming, while industrial pollution
arises from improper waste disposal. Crucially, land is a finite resource and pollution is spa-
tially diffusive, affecting surrounding areas. Yet, soils are remediable through methods such
as phytoremediation (using plants), bioremediation (using microbes), and soil amendments

(adding compost or structural materials).



Given the finiteness of the land, the spatial spread of pollution, and the cost of remedi-
ation, the optimal use of land and pollution abatement provide a perfect illustration of our
infinite-dimensional optimal control problem with inequality constraint.

We consider a closed economy, where the population is distributed according to a given
density N. Following Boucekkine et al. (2013, 2025), we assume that both land and popula-
tion are distributed over the unit circle on the plane, S = {(cos,sin ) € R? : § € [—x, 7]}.

Let fertile land be the only input that is used to produce crops. The production factor
is bounded since land cannot increase beyond the given total land endowment. We fur-
ther assume that land is composed of both fertile and polluted soil, Lr and Lp. That is,
L = Lp(t,0) + Lp(t,0). All locations produce a unique agricultural good using fertile soil,
according to the linear production function Y (¢,0) = B(0)Lp(t,0), where B(#) is the local
production technology in location 8. Hence, a partially polluted location can still produce.

The dynamics of soil pollution at one location is explained by three factors. First, pol-
lution flows according to Fick’s law: pollution diffuses from more polluted locations to less
polluted locations and its flux is proportional to the pollution gradient. Based on this law

the diffusion of soil pollution is captured by Dag%(t, ), where D is the diffusion coefficient.

For simplicity reasons, D is assumed both constant in time and homogeneous in space.!
Second, fertile soil deteriorates locally. Indeed, local production generates some pollutant,
which transforms fertile soil into polluted soil. The local effect is measured as v(0)Y (¢,0),
where v(0) is the local sensitivity of fertile soil to pollution. v(6) can be related to more or
less polluting technologies, to different levels of biodiversity, etc. And third, we assume for
simplicity reasons that soil pollution is reversible.? Letting C(t,#) denote total consumption
at location 6 at time ¢, the amount invested in abatement at location 0 is Y (¢,0)—C(t,6) > 0.

Let ¢(0) be the local pollution abatement efficiency. Then putting together the three factors

behind local pollution, the spatial dynamics of polluted soil can be described as

OLp _ 0*Lp
ot =D 902 +I/BLF—¢)[BLF—C}.

'We do not consider any seasonal effect nor heterogeneity in soil porosity, which would lead to study time
and space dependent diffusion coefficients. These more general specifications for the diffusion coefficient could
be analyzed following Boucekkine et al. (2020), but it remains beyond the scope of this paper.

2The existence and outreach of a critical zone for pollution reversibility has been widely studied elsewhere.
See for instance Dupouey et al. (2002), Chartier et al. (2006), Gao et al. (2011) and Le Kama et al. (2014),
among others. Technically speaking, introducing irreversible pollution damages would lead in our context to
impose that above a local pollution threshold concentration, the first partial derivative of fertile soils with
respect to time should be negative, that is w <0.




Assuming that L is a constant, one can write

OLr dLp O’Lp  9%Lp

T B0 =g B0 T = g

and writing total consumption C(t,6) as the product of per capita consumption, ¢(t,#), and

the location’s time-independent population N(6), the evolution of fertile soil becomes

OLp — pOLe 4 B[y —v] Ly — Noc fort >0, ¢ (—m,m),

Lp (tv —71') =Lp (ta 7T)a for t > 0 (10)
OLr (t,—m) = %Lr (t,m),

LF(O,Q) = LF70 (0), for 6 € (—71',71') .

In this economy the policy maker aims at maximizing overall welfare, which is measured
as the present value of the spatial aggregate of individuals’ utility. Here, utility depends
solely on consumption per capita, ¢, and is measured by a constant intertemporal elasticity
of substitution function of parameter ¢ € R. Knowing that the policy maker discounts time
at a constant rate p, her problem is written as

max /000 [/_7; C(tl’ﬁ)laaN(G)dH e Pldt, (11)

subject to (10) and

for any 6 € [—m, 7], t > 0. The constraint on ¢ comes from the feasibility constraint 0 < C' <
Y. We assume

Assumption 2. Parameter o satisfies 0 < o < 1.

To shorten the notation and with an abuse of notation, we denote by A and N the

expressions B [¢ — v] and N¢. Next, we normalize variables

Ly (t7 9)
L )

1(t,0) =



and rename c(t,60) /L as c(t,0), thus the system (10) takes the form

lt = Dlgg + Al — Nc fort >0, 0eS,
1(0,0) =1y (0) for 6 € S.

(13)

The objective is reduced to

J (lo,¢) = N (0) e *tdbdt. 14
(lo, %&%/ / 1_0 (0)e (14)

The admissible set of controls is
)={ce M [R*xS8R"), 0<c<B@#)l ae.}, (15)

where M (R x S;9) is the set of measurable functions in R™ x S with range in S. The

optimization is subject to the state constraint

0<1I(t,0) <1 a.e in (0,00) x S. (16)

4 Maximum principle for soil pollution control

Building on the mathematical foundations laid by Fattorini (1999) and Li and Yong (1991),
we provide in Appendix 2 a general maximum principle for the spatial AK model with state
constraints in the most general case, and its results are summarized in Theorem 1. In order
to apply these new general results to the particular optimization problem (14)—(16), we need
first to rewrite the objective function in (14) as the sum of welfare from 0 to a given time T
and a continuation function h, which depends on the final state of land, (T, -). Note that

since we can identify h with welfare from T' to co, these two writings are equivalent:

max J (I ) / / SN () e tdpdn +h (71T, ) (17)
-0
subject to
lt = Dkgg + Al — Nc for (t,60) € S, (18)
1(0,0) =1 (0) for 0 € S,
and the state constraints [ € (), where
Q={yeC(Sr):0<1(t,0) <1 forall (¢t,0) e Sr}. (19)



Let us denote this problem by (I). It is straightforward to obtain

Proposition 1. Let Assumptions 2 hold, and let h : RT x [0,1] — RT be continuously differ-
entiable. Suppose {c*,l*} is an optimal pair for the optimal control problem (I) with the state
constraints | € Q. Then, there exists a constant v € {0,1}, a function p € L? (O, T, Wha (S))
with 1 < ¢ < 3/2, and a Radon measure M such that v + |M‘M(ST) >0, (M,z—2x*) <0 for

any z € Q,
pt + Dpgg + (A — p)p = —M|(0,1)x5> (20)
p (Ta ) = VepThl (Ta r (Ta )) + M|{T}><S
and the optimal pair, {c*,1*}, satisfies ¢* (t,0) =0 if v = 0; and
(6O =pt,0) Y for (t,0) € Sy (21)
ifv=1.
Proof. See Appendix A.2. O

While Theorem 1 in Appendix 2 extends the classical Pontryagin Maximum Principle to
a spatially distributed system with inequality state constraints, Proposition 1 illustrates it
with the ecological limits to land use. The introduction of a Radon measure as a generalized
Kuhn-Tucker multiplier is particularly relevant in environmental economics, where natural
resource stocks are bounded and spatially heterogeneous. In the optimal solution, the adjoint
variable (p) represents the shadow value of fertile land, while the new Radom measure (M)
captures the marginal value of relaxing the constraint on fertile land. In other words, M
measures the welfare increase when at least one location has reached the maximum of fertile
land and the policy maker decides to sacrifice full fertility.

Notice that if the output and objective functions are smooth enough and the solution does
not hit the bounds (i.e., the state constraints are inactive), then the co-state variable, i.e., the
shadow value, p, may be continuously differentiable. However, so far, there is no guarantee
that the state constraints are always inactive. Furthermore, we will indeed demonstrate that
the constraints are binding depending on the circumstance. Therefore, the adjoint variable,
can only be defined in the space given in the proposition.

Since the introduction of Radon measures in optimal control problems is new in this field,

10



let us describe how one can characterize M. Let € be the interior of the set

Q={(t,0) € (0,00) x S:1"(t,0) =1}.
We first observe that by (18), ¢* (¢,0) = A(#) in Q. Thus, by (21),
p(t,0) =A0)"7 N (6)° in Q

and by (20)
M=—{yy+ LW} =—(L—p) [ATN],

where L is the linear operator defined in H? (S) by
L[u] (0) := Du"(0) + A(0) u(6). (22)

To further perform a mathematical analysis to problem (I), let us introduce the necessary
minimum definitions of eigenvalues and eigenfunctions of the linear operators £ defined in

(22) and M defined by
Mu] (6) = Du" (6) +[A(0) — N (6) B (6)] u.(6) (23)

for u € H?(S). A function ¢ defined on S, regular and non-identically zero, is an eigenfunc-
tion of £, with associated eigenvalue A € R if £ [p] = Ap. It can be proven that there exists
a countable set of eigenvalues {\;,},>0, which can be ordered as a decreasing sequence. The
first eigenvalue of L, A\, is positive and with multiplicity 1, all other eigenvalues have either
multiplicity 1 or 2.3 The eigenfunction associated to Ay, ¢, is strictly positive on the unit
circle.* Let po denote the largest (principal) eigenvalue of M. It can be shown that g < Ao
and an eigenfunction ¢g associated with pg is strictly positive. On the other hand, po can be
negative.

The next proposition shows that the constraint I (¢,6) > 0 is not binding:

Proposition 2. Suppose {c*,1*} is an optimal pair, then I* (t,0) > 0 for all (t,0). Further-

3The multiplicity of an eigenvalue is the number of times it appears in the sequence {An}n>o0.
“For further details see Coddinton and Levinson (1955) or Brown et al. (2013).
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more, there is an € > 0 such that
/ I* (t,0) df > eett >0 for allt > 0.
S

Proof. See Appendix A.3. O

Since the constraint [ (¢,0) > 0 is not binding, from Corollary 1 of Theorem 1 in the

Appendix, we can conclude that
supp M C {(t,0) € Sy : 1" (t,0) = 1}. (24)

Proposition 2 shows that the lower bound on fertile land is never binding in the optimal
solution, implying that full degradation (i.e., complete pollution) is socially suboptimal. This
result aligns with the intuition that even under high pressure for consumption, a forward-
looking planner will preserve some fertility to maintain future production capacity.

This finding resonates with the literature on renewable resource management (e.g., Das-
gupta and Heal, 1979), where extinction or full depletion is typically avoided under rational
planning. In our spatial setting, the result also reflects the self-reinforcing nature of remedia-
tion: as long as some fertile land remains, diffusion and abatement can restore degraded areas.
The exponential growth of aggregate fertility further supports the idea that patient, coordi-
nated policy can reverse environmental degradation, even in the presence of local pollution

spillovers.

5 Optimal solutions

The optimal solution to the policy maker problem (I) depends on the discount rate and we
can fully characterize it in some cases. In all others, we can at least describe the long-run
optimal behavior of fertile land. For simplicity of exposition, we divide the spectrum of values

for p € [0,1], in three categories: low, mildly high and high.

5.1 Small time discount.

The time discount is said to be small if

0<p< Ao (25)

12



In this case we prove

Proposition 3. Let Assumption 2 hold. Suppose that (25) holds and that {c*,1*} is an

optimal pair such that
0<c*(t,0) < B(0)I"(t,0) forallt >0, 6€S, (26)

that is, there is no time and nowhere at which the decision maker consumes all that is pro-
duced. Then, I* (t,0) = 1 for some 6 € S. In other words, fertile land reaches its mazimum

level somewhere in some time.
Proof. See Appendix A.4. O

Hence, when future welfare is sufficiently valued, the optimal policy leads to full restora-
tion of fertile land in at least some locations. In this case, consumption is moderated to
allow for environmental recovery. This behavior is consistent with the “green golden rule” in
Chichilnisky et al. (1995), where sustainability is achieved by balancing current utility with
future resource availability. The spatial dimension we introduce here adds a new layer: even
if fertility restoration is not full nor uniform, achieving it somewhere prevents the collapse
of the entire system. Worth to note, these results echo the concept of “ecological resilience”
(Holling, 1973), where partial recovery can stabilize the broader system.

In the special case where the system is spatially homogeneous, more precise results can

be obtained. Indeed, if A is a constant, the eigenvalues of L are
An = A — Dn? forn=0,1,2,... (27)

with the corresponding normalized eigenfunctions:

1 cos nf sin nd

wo(0) = —=, ¢n1(0)= T n2(0) = 7

forn > 1. (28)

In particular, Ay = A.

We have the following long-run outcomes:

Proposition 4. Let the assumptions of Proposition 3 hold. If A, B and N are constants in
S, then the unique steady state is 1 (§) =1 and ¢(0) = A/N in S. As a result, if an optimal

13



pair {c*,I*} converges as t — oo, then

lim I* (t,0) =1,  lim ¢* (t,0) = A/N. (29)

t—o0 t—0o0
Proof. See Appendix A.5. O

As in the economy made of a unique location, Proposition 4 proves that a spatially
homogeneous economy made of patient agents converges to a steady state with full restoration
of fertile land. This mirrors the golden rule in AK-type growth models, where the economy
reaches a balanced growth path with maximal sustainable consumption. This result will allow
to evaluate the impact of spatial heterogeneity: deviations from full fertility will reflect the

cost of uneven land quality, localized pollution, and differential abatement efficiency.

The transitional period. Arguably, the above two propositions are obtained under the
assumption that an optimal pair (c*,[*) exists, but provide no information on how to obtain
this optimal pair. We show next that the entire optimal trajectory can be computed when
the optimal solution leads to full fertility in finite time everywhere, i.e., there is T' > 0 such
that I* (t,0) =1 for allt > T, 0 € S. Let us compute ¢* and [* for 0 < t < T as follows.
Since A (0) /N () < B (0) and * (t,6) = 1, it follows that
A(0)

——~ = argmax {Ve_ptc(t 0)' 7 —c(t,0) e Pp(t 0)}
(9) 0<c<B(k*) —o ’ ’ '

It is clear that v > 0. Since v is either 0 or 1, it must be v = 1. This leads to
AB)/N@)=p(t,0)" Y7, or p(t,0) =AB) "N (H)° inRF xS.
Hence, {c¢*, k*} in Sy can be found by solving the coupled system

~M if p~1/7 < BI*,
p+(L—p)p] = in Sr,
NB{p— Bk |} - M ifp~ /7 > BI*,

p(T,0)=A(0) "N (0)° inS,

and

—Np~ Yo if p~Vo < BI*,
- L[] = P b in Sr,
—NBI* ifp Yo > Bl

14(0,0) =y (§)  inS.

14



Proposition 3 ensures that, provided that the policy maker is sufficiently patient and pri-
oritizes aggregate social welfare, excessive consumption can be avoided at all times. Conse-
quently, there will be at least some regions where fertile land reaches its maximum productive
capacity. Furthermore, Proposition 4 shows that in the long run, and at least in the spatially
homogeneous case, fertile land can be fully restored in all areas.

5.2 Large time discount.

We consider next the case where the discount rate is relatively large
p>X(>0). (30)

Let us first construct a special pair {&, k} for problem (13)-(14) with
¢(t,0) = éopo (0)"Y7 e for (t,0) € (0,00) (31)

where r = @ <0,
. (Mo —7)(ko,w0)
¢ = —1/c ’
(Ngo=1/7,¢0)

(32)

and where [ solves
l; — Dlgg = Al — Né(t,0) in (0,00) X S,

~

1(0,60) =1, (6) in S.

(33)

This pair describes a monotonically decreasing trajectory for ¢ at all locations, consumption
is forever heterogeneous and it decreases at the same rate everywhere. Note that {¢, f} may
not be feasible, or even less be optimal, since the control constraint ¢ € B(i) and the state
constraint (16) may fail. However, the next proposition shows that when the optimal pair

{c*,1*} satisfies the strict control and state constraints, that is, if
0<c(t,0)<B(O)I"(t,0), 0<I*(t,0) <1 in (0,00) xS, (34)

then it coincides with {¢,1}.

Proposition 5. Let Assumption 2 hold. Suppose that (30) holds and that the pair {¢, Z}
defined by (31)-(33) is feasible. If {c*,1*} is an optimal pair such that (34) holds, then
{c*, 1"} = {&,1}.

Proof. See Appendix A.6. O
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As in the previous subsection, we start by studying the asymptotic behavior of the optimal

solution and then, the transitional period.

Proposition 6. Suppose the assumptions of Proposition 5 are satisfied and {¢, Z} 1s feasible.
Then
lim [ (t,0) e = £ (6) (35)

t—o00

where

K (0) = (lo, ¥o) #o ( +ZZ)\ — < ©0 l/g,sﬁj,i> ©j.i (0) (36)

7>l 3

if \j # 1 forall j, and

2
K’(G) <l()7§00 900 Z lO#sz Pmi (0)
=1

e (37)
JrZZA ~ < >90Jz>90j,i(9)
Jj#Em i
if there is m such that Ay, = r and
<N<p‘1/", gom’i> —0  fori=1,2.
Proof. See Appendix A.7. O

Hence, under high discounting, fertile land converges to a spatially structured distribution.
This result echoes the insights from spatial growth models such as Boucekkine et al. (2013),
where long-run spatial patterns emerge with time from initial heterogeneity. Also note that
this later result aligns with the idea that impatient societies may underinvest in remediation,
leading to persistent inequality in land productivity. This is reminiscent of the literature on
spatial poverty traps (e.g., Redding and Rossi-Hansberg, 2017), where local disadvantages

are perpetuated due to insufficient forward-looking investment.

Corollary 2. In the case where A is a constant function,

lim 1(0) e = o / (38)
if 1 # Xj for all j, and
1 1 1
i i = [h©as+ ! [0 [2+cos<m(e—g>> & (39)
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if there is an m > 1 such that r = A\,,.

Proof. See Appendix A.8. O

The Corollary 2 shows the different spatial pattern of fertility in the long run in the case
where A is spatially uniform and {¢,1} is feasible. When A is constant, then Ag = A and we

can discuss two particular cases. When
A<p<(l—-o0)A+o0oD, (40)

then > A;. In this case, we are in case (38) so that the detrended fertile land, [ (¢,6) e~
converges to a constant and the initial spatial variation of the fertility vanishes with time.
On the other hand, if

A<p=(1—-0)A+0D, (41)

which is equivalent to r = Ay, then according to (39), detrended fertile land converges in
general to a non-constant function if Iy is not constant, and initial fertility inequality will
generally persist forever.

Finally, let us consider the case of extreme high impatience, where
,O>)\0—U,LLO:(1—O‘)A+O'D. (42)

Proposition 7. Let Assumption 2 and (42) hold. Then, {¢, i} is not an optimal pair for the

optimal control problem (13), (14) with ¢ € B(l). In addition, any optimal pair {c*,1*} has
the feature that ¢* (t,0) = B (0)1* (t,0) for some (t,0).

Proof. See Appendix A.9. O

Proposition 7 demonstrates that when the discount rate exceeds a critical threshold (here
p > No—opo ), the constructed pair (¢,1) is no longer optimal, implying that full consumption
occurs at some points.

This finding resonates with the classic debate on the social discount rate in climate eco-
nomics (see Stern, 2008; Dasgupta, 2008), where high discounting undermines sustainability.
In our model, the binding of the consumption constraint reflects a shift from an interior
solution to a corner solution. Hence under high discounting, the optimal policy may in-
volve full consumption of production, aggressive exploitation of fertile land, and limited or

no abatement.
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Transitional period. In the case of high discounting, the pair {é, [} is not feasible in the
long run, which means that along the optimal trajectory there will be times and locations
with full consumption, and the associated zero abatement. However, even if full consumption
happens in at least one location during some time, we can prove that there exists a solution
which will converge at time 7" to an structured solution {c*,*} with positive abatement and
fertile land everywhere, and this despite the lack of abatement in some locations before that.

Let us define this solution:
0<c* (t,0) < B(O)I"(t,0), 0<I*(t,0) <1 in (T,o0) xS (43)

for some T > 0. In this case, by a time-translation, {c¢*,[*} = {ér,Ir} where

ér (t,0) =rg 0o () /7D fort>T, €S (44)
with
. Ao —1){I*(T,"),
tro = DOm0 (L) 0 .
(Ngpo=1/7,¢0)
and 7 is the solution to the initial value problem
lt — Dxgg = Al — Nép (t,0) in (T,00) x S,
¢ 00 7 (t,0) (T, o0) (46)

1(T,0) = 1* (T, 0) in S

provided that {ér, Ip} is feasible in (T, 00) X S.
In this case, the solution {c¢*,l*} in the initial period 0 < ¢t < T can be solved by a

finite-horizon optimal control problem. Specifically, we prove

Proposition 8. Let Assumptions 2 and 1 hold. Suppose that p > \g and that {c*,1*} is an
optimal pair such that (43) for some T > 0 holds. Suppose also {éT, ZT} defined by (44)-(46)
is feasible in (T, o0) x S. Then p (t,0) satisfies the terminal value problem

pt+ (L= p)[pl = —M|or)xs for (t,0) € Sr,
p(T,0) = erepo (0) foreS

(47)

where M is a Radon measure such that and (M,z —1*) <0 for any z € Q, and v* satisfies

l1-0o
c* (t,0) = arg max {c(t,ﬁ) - c(t,ﬁ)p(t,ﬁ)} :

0<c<B(1*) l-o
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Finally, I* in St is the solution of (18) with ¢ = c*.

Proof. See Appendix A.10. O

Proposition 8 introduces a hybrid regime where the system transitions from a finite-
horizon control problem to a structured long-run regime. This mirrors the concept of “policy
switching” in dynamic economic models, where optimal strategies evolve over time in re-
sponse to changing feasibility conditions. The use of a Radon measure to capture binding
constraints during the initial phase is particularly novel, extending the Kuhn-Tucker logic to
spatiotemporal systems.

Economically, this result suggests that even under high discounting, a well-designed policy
can steer the system toward sustainability, provided that initial sacrifices are made. This
echoes the literature on transitional dynamics in environmental economics (e.g., Acemoglu
et al., 2012), where short-term costs are justified by long-term gains. Our model formalizes
this intuition by showing how the adjoint system governs the optimal trajectory, and how
the decision maker’s patience (or lack thereof) determines whether the system converges to

a viable regime.

5.3 Summary of different time discount

Discount Key Optimal Long-Run Analytical

Regime Conditions | Behavior Outcome Tractability

Low 0<p<X Policymaker avoids | Fertile land reaches | Analytical solution
excessive full capacity at is difficult; explicit
consumption; the some locations; full | solution possible in
optimal path restoration in the the homogeneous
remains interior. homogeneous case. case.

Intermediate p > A\, after | Initial phase Detrended fertility Hybrid approach

(feasible T>0 governed by converges to a combining

after T) finite-horizon stable spatial finite-horizon
control, followed by | distribution. analysis with an
a transition to a explicit long-run
structured regime. solution.

High p > Ao —opg | Full consumption No convergence to a | Explicit analytical
occurs at some structured regime; solution is not
points; the the optimal path feasible; the
constructed pair exhibits boundary optimal path must
{¢,k} is not behavior. be computed
optima.l numerically.

Table 1: Comparison of optimal behavior across discount rate regimes.

Table 1 synthesizes the core findings of our analysis, highlighting how the discount rate

fundamentally shapes the trajectory and feasibility of optimal land use and consumption

19



strategies. In the low discount rate regime, patient policymaking enables interior solutions
that avoid excessive consumption and allow for full or partial restoration of fertile land. This
regime supports long-term sustainability, especially in homogeneous settings where explicit
solutions are attainable.

The intermediate regime, where feasibility is achieved only after a finite time, introduces a
hybrid structure: an initial adjustment phase governed by finite-horizon control, followed by
convergence to a structured long-run regime. This underscores the importance of transitional
dynamics and the role of initial conditions in shaping outcomes.

In contrast, the high discount rate regime reveals the limits of sustainability. Here, short-
term optimization may lead to boundary behavior, including full resource exploitation in
some regions. The constructed benchmark pair becomes infeasible, and numerical methods
are required to characterize the optimal path. This regime illustrates the risk of irreversible

degradation when time preferences heavily favor the present.

6 Numerical experiments

We develop next some numerical exercises to illustrate our results and shed light on some of
the remaining open questions. In particular, we illustrate how taking into account that the
economy operates with bounded production factors does change the optimal dynamics of the
economy.

We choose choose the following parameter values

A Technological level 0.04
B Maximum consumption coefficient 0.12
o Household preference 0.5
D Diffusion coefficient 0.1
N Population density 1.0

Table 2: Parameter values.

We also choose
0 if —7/2<x<7/2,

1 elsewhere.

The choice of the time discount rate has always been a delicate issue in the literature

(see Stern, 2008, or Fleurbaey and Zuber, 2012, among others). We have additionally shown
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throughout the paper that the choice of the time discount rate not only determines quanti-
tatively optimal consumption, but most importantly, it drives the economy dynamics quali-

tatively as well. Under the calibration in Table 2
(1-0)A+4+0D=0.07<0.08=(1—-—0)A+oNB.

Hence, the upper bound of the moderate time discount rate is 7%. In our exercises, we choose
p to be 3%, 5%, and 7%. p = 0.03 satisfies (25) and as such, represents the low discount
regime. The second, p = 0.05, satisfies (40) and is a high intermediate value. Finally, p = 0.07

is a high value for the discount since it satisfies (41).

6.1 Small time discount, p = 3%

In this case, r = ? = 0.02. Figure 1 shows our results for fertile land distribution and
consumption per capita. Our results reveal that when the time discount is small, the optimal
trajectory for consumption allows fertile land to reach the maximum level at all locations in
finite time. Once the maximum level for fertility is reached everywhere, consumption remains

at the level that ensures maximum fertility forever.

Fertile land distribution Per capita consumption

time 0 4 space time 0 4 space

Figure 1: Low discount rate, p = 3%. Left: Fertile land. Right: Consumption per capita.
6.2 Moderate time discount, p = 5%

In this case (30) holds and r = —0.02. When we construct the pair {¢, k} defined by (31)-

(33), we find that fertile land does become negative for some (¢, ). This means that {&, [} is
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not feasible. Instead of using this non feasible solution, we construct a pair {c*,*} with

0.035¢™ if 0.035e™ < BI* (¢,0),
BI* (t,0) elsewhere.

& (t,0) =

Then we obtain I* by solving (13) with ¢ replaced by ¢*. The resulting ¢* is feasible and it
belongs to B (I*). Besides, fertile land is always and everywhere positiive, that is, I* (¢,6) > 0
for all (¢,0). In this case [* decreases exponentially at rate r. Figure 2 shows the evolution

of fertile land and consumption per capita.

time: 0 4 space time 0 .4 space

Figure 2: Moderate time discount rate with p = 5%. Left: Fertile land. Right: Consumption
per capita.

6.3 Large time discount, p = 7%

In this case r = —0.06 = A\;. By Proposition 6, fertile land converges to a spatially heteroge-

neous distribution (see Corollary 2) as shown in Figure 3.

Figure 3: Large time discount rate, p = 7%. Left: Fertile land. Right: Consumption per
capita.
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7 Conclusion

This paper develops a general optimal control framework for diffusion-driven systems with
inequality state constraints. By extending the Pontryagin Maximum Principle to incorporate
Radon-measure multipliers, we provide a rigorous characterization of optimality in infinite-
dimensional environments where the state variable is bounded and evolves according to a
partial differential equation. The resulting necessary conditions unify classical optimal control
with modern tools from functional analysis and offer a transparent interpretation of boundary
behavior in distributed systems.

To illustrate the applicability of the framework, we examined a model in which fertile
land evolves through reversible pollution and spatial diffusion. The example highlights how
discounting governs whether the optimal trajectory remains interior, reaches the upper bound
of the state constraint, or generates persistent spatial heterogeneity. In the homogeneous case,
explicit solutions reveal sharp thresholds separating full restoration from partial degradation,
while heterogeneous settings give rise to hybrid dynamics combining finite-horizon control
with structured long-run regimes.

Although the environmental application provides a concrete setting, the methodological
results apply broadly to dynamic optimization problems with bounded states and diffusion,
including models of spatial growth, technological propagation, epidemiological dynamics, and
renewable resource management. The framework thus offers analytical tools for studying a
wide class of infinite-dimensional control problems where state constraints play a central role.

Future work may extend the analysis to stochastic diffusion, non-reversible state dy-
namics, or strategic interactions in spatial games. These directions would further expand the
scope of the framework and deepen our understanding of constrained dynamics in distributed

economic systems.

A Appendix

A.1 Proof of Theorem 1

Since this Theorem is similar to Proposition 1 in Boucekkine et al. (2025), the proof is also

a simple modification of the corresponding proof.

23



We introduce the new control, v, such that
c(t,0)=v(t0)l(t0).
The control constraint that ¢ € B (kl) is then changed to
0<w(t,0) <B(0). (48)
That is, v € B(1). We denote B (1) by B. With this control, (2) takes the form

Yt — Dygg = [a + bv]y for (¢,0) € (0,T) x S,
y(0,0) =y () foreS

and (4) becomes
T
Tno) = [ [ 9060600y (0.0))dodt + h(T,y (1)
0 S
Define the Hamiltonian
H(t,0,y,v,v,%) =vg(t,0,vy) + P a(t,0)+ b 0)vly  inSrx[0,1] x B.

The main idea is using Ekeland’s variational principle (Theorem 3.2.2 in H. Fattorini,

1999) together with a spike perturbation. For any £ > 0 we define
* 2 2\ /2
Fo(v) = {17 (0) = J (v") + % + do (y (5v))°} (50)
where y (+;v) is the solution to (2) corresponding to the control v and

do (y) = dist (4, Q)lqs,y for any y € C (Sr). (51)

It is clear that do (y) = 0 if y € Q. In addition, dy is the GActeaux differentiable at every
y € C(Sr)\Q, and its GA¢teaux derivative, Vd (y) is the same as the Clarke’s generalized

gradient, which is convex and weak*-compact. As a result,

Vdo (W) sy =1 iy gQ (52)
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and for any & € ddy (y),
(&, z—y) +do(y) <dp(2) for any z € C' (Sr),
where M (Sr) is the set of all Radon measures on Sp. Then,
F. (v*) =e¢ <inf F; (v) +e.

This means v* is an e-minimum of F., which is bounded below and semi-lower continuous.

Hence, by Ekeland’s variational principle, there exists v® € U such that
F(F) <R,  dv) < Ve (53)

where

d(uvv> = |{(t, 0) € ST‘U (t, 9) F v (tve)}‘ (54)

is the Ekeland distance, and |§2| for a Lebesgue measurable set {2 represents its measure. In

addition,
F. (v°) — F. (v) < Ved (v°,v) for any v € U. (55)

Let y* =y (-;0v°). Fixav € Y and an € > 0. For any § > 0 and a measurable set Ef C Sp

we construct the perturbation

ve (t,0) for (¢,0) € Sp\E%,
o (£,6) = (t,0) (t,0) € Sr\E§ (56)
v(t,0) for (t,0) € E.
It is clear that v§ € U. Let y5 = y (-;v5) denote the state corresponding to the perturbation.

We need the following lemma.

Lemma 1. Let Assumption 1 hold and let yo € C*(S) for some o € (0,1). Let {v,y} be
a feasible pair and let v € U be fized. Then, for any § € (0,1) there exists a measurable set
Es C St and the control vs defined by

U (t, 9) if (t,@) € ST\E(;,
v (t7 9) Zf (t79) S E(%
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such that |Es| = 6 |Sp| and the following hold:
y(hvs) =y () +6z()+0(0),  J(vs)=J(v)+dl+0(0) (58)

(with the first 0 (8) is in space C**/? (St) for some o € (0,1)) where z and | satisfy

C Dy = [a(t0)+b(t0)T (L) 2+ 6 (10),
2(0,6) = 0
and
/ /gcteth 5(4,0)) 5 (+,0) = (£,0) +  (t, 0)] ddt
+ [y (5 (1.0) (1.0 a0,
S
respectively,

¢(t,0) = b(t,0)y(t0)[v(t,0)—v(0)],
v(t.0) = g(t,0,y(t0)v(t,0)—g(t,0,5(t0)v(t0)).
Proof. By the definition of vz in (57), d (vs,v) < |Es|. Let

1

25 (t,0) = 5 [y (t,0;v5) — 7 (t,0)] in St.

Then, zs5 satisfies

1 .
(Z(S)t - D (Z6)99 = b(5 (ta 9) 22 (t7 9) + gXE'(g (ta 0) ¢ (tv 0) ift € (07 T) 70 € ‘Sv
25(0,0) = 0 iffesS,

where

1
bs (,0) = /0 (a (4,60) + b (£, 0)vs (1, 0)] ds,

and X, is the characteristic function of Fs. From the regularity of the parabolic equation

(49) and Assumption 1, we see that bs and ¢ are uniformly bounded. Hence, by the HAqlder’s
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estimate there is o € (0, 1) such that

v (- 05) = Ulgaarzisyy < ClXEslos,) =0 asd =0,
where the constant C' is independent of E5. As a result,

bs (t,0) — a(t,0) +b(t,0)v(t,0) in L (Sr) as §d — 0
for any p such that 1 < p < co. Comparing equations for z5 and z we derive

(25 —2), =D (25 — 2)gg = bs(t,0)(zs —2)+{bs (t,0) — [a(t,0) +b(t,0)v(t,0)]} 2
_ <1 _ %XE& (t, 9)) 6 (t,0),
(zs —2)(0,0) = 0.

Using Lemma 3.2 in B. Hu and J. Yong (1995), we see that |25 — z[ca.a/2(s,) — 0 as d = 0.
This proves the first relation in (58).

To prove the second relation in (58), we let

[J (v5) = J (0)]

{/T gteytﬁv(s(tm) ( 9 (t@) (t9))]d0dt
0 JS

1
5
1
5
+ [h(T,y (T, -0 (T'-))) = h (T, 4 (T’ )]} -

By the definition of ¢5 and (58), it follows that

/OT/S [Ba (t,0) zs (t,0) + %XE(; (t,0)~ (t,e)} dOdt

+/S?75 (9)25 (T,@)d@—l—;/‘SXEé (t,@)y(t,&)dﬁ,

where

1

Bs (t,0) = ge (t,0,7 (t,0) vs (t,0)) vs (t,0) ds,

ns (0) = hy (T,y(T,0) + s (y (T,0,vs (T,0)) —y (T,0))) ds.

/01
I
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It is clear that

Bs (t,0) — gc (t,0,y(t,0)v(t,0))v(t,0), ns (0) = hy (T, y(T,6))

as 6 — 0.

Comparing equations for [s and [, we find

T
-1 = / /[ﬂg(t,ﬁ)z(;(t,e)—gc(te 7 (4,0)5 (1,0)) 3 (1, 0) = (t, 0)] ddt
0 S

" / 05 (6) 2 (T, 6) — hy (T, (T 6)) = (T, 6)] do

/ / < 5XE5 W)) (t,0) dbdt.

Using again Lemma 3.2 in B. Hu and J. Yong (1995) and the convergence z5 —

C*/2 (Sr), we find I; — 1 — 0 as § — 0.

This completes the proof of the lemma.
Continuation of Proof of the Theorem 1 An application of Lemma 1 leads to
ys =y +02°+0(d), J (v5) = J (v7) +0lF +0(9),
where 2¢ and 2¢ satisfy equations
— Dzgy = [a(t,0) + b (t,0)v° (t,0)] 2° (t,0) + ¢° (¢,0),

and

N /oT /S [9¢ (.0, 97 (£, 0) v° (t,0)) v° (£,0) 2° (£,0) + 77 (¢,0)] dOdt

—I—/ hy (T, y° (T,0)) z° (T, 0) df
S

respectively, with

o (ta ‘9) = b (ta ‘9) y° (ta ‘9) [U (ta 0) —° (tv 0)] )
Y (t0) = g(t,0,y°(t,0)v(t0)) — g0,y (t,0)v° (t,0)).
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We next choose a Ef so that |Ef§| = § |Sr|. By (56), d (v§,v®) = |E5|. Hence, by (55)

VeS|

Vv

= Ik {177 =T @) + e} = 1T (05) = T 07) + ]2
0

Taking 6 — 0 and using (59), the right-hand side converges to

[J (va) - J(U*) + 5]4-15 + < (y( )5§ Z€> =1°l° ¢+ <m€,2’8>,

F. (v®)
where
e [J (v) = J (v*) + €], e — do (y°) &°
F. (v?) ’ F. (v)
and
Vdy (y°), ify* ¢ Q,
&)=
0 ify* e @
Hence, by (55),
Ve |Sr| > veIF + (mF, 2F). (62)
Note that by (52),
& W)le@y =1 iy €Q.
It follows from (50) that u° > 0 and
Ve 4 Imfl sy =1 for all € > 0.
Also, by Corollary 1,
(m®,z—y°) < —dp(y°) <0 for any z € Q. (63)
Next, by (53) and Lemma 1, it follows that
Y=y +0d2"+0(), J(v%) =J ") +l" +0(d), (64)
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where z* and [* satisfy equations

zf — Dzjy = [a(t,0) +b(t,0)v* (t,0)] 2% (t,0) + ¢* (¢,6),
2*(0,0) =0

and

/0 ' /S (g0 (10,57 (1,0) 0™ (£, 0)) v* (£, 0) 2* (1, 0) + ~* (£, 0)] dodt

+ /S hy (T,y" (T.60)) 2 (T, 6) do,

respectively, with

¢ (tv 0) = b(tv 0) Y (t, 6) [’U <t76) —v" <t7‘9>] )
Y (t0) = g(t,0,y" (,0)v(t,0) —g(t. 0,y (t,0)v" (t,0)).

From (64) we see that y° — y* in C%%/2(Sy) as ¢ — 0. Thus, from (60) and (61) we find
25— 2% in C**2 and I* — [* in R as ¢ — 0. Since Q is finite codimensional in C (Sr),
it follows from Lemma 3.2 of X. Li and J. Yong (1991) that the weakly-* limit, (v, m), of
(v%,m) as € — 0 is positive. Taking ¢ — 0 in (63) we find (m,z —y*) <0 for any z € Q. In
addition, from (62) we find

vi* +(m,z*) <0 for any v € B. (66)
We show that the above inequality is equivalent to

T
0 < / / (019 (t.0,57 (£.0) v™ (t,6)) — g (t,6,y" (t,60) v (1,6))
(L 0)b(4,0) y* (£,0) v (£,6) — v (¢,0)]} dodt

=// (10,47 (1,6) 0" (1,0), v, (1,0))
CH (,0,y% (t,0) 0 (1,0) v, (t,0))] dodt

for any v € B. Using (7) and (65), we find
T T
/ / (2%, dOdt = / / (2 + 2%y dfdt
0 JS

_ //W —vzg;) dodt + (m,2%)
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where

g; = Jc (t» 0, y* (tv 9) v* (t, 9)) v (t7 9) :

On the other hand, since

2" (0,0) =0, Y(T,) = vhy (T,y" (T, '))+m’{T}><Sa

it follows that

/OT /S [2*¢], dOdt = /S 2 (T.0) 0 (T.0) db

- V/Shy (T,y* (T, 0)) =* (T, 0) df + (m. * (T, )} .

As a result,

V/Shy (T,y* (T, 0)) =* (T, 0) d0 + (m, =" +u/ / g1 dbdt

. (67)
:/ /¢(t,9) ¢” (t,0) dfdt — (m, 2" >(0T)><S'
0 S 7

By (66),
/ / z* gy +"(t 9)] dodt + u/ hy (T, y* (T,0)) 2" (T,0) do + (m, Z*>$T <0.
S
As a result, by (67),

/ ' / Wy (4,0) + 4 (1, 0) 6* (£, 0)] ditdf) < 0.
0 S

This is equivalent to

T
/0 /S{I/ lg (t,0,y* (t,0)v* (t,0)) — g (t,0,y" (t,0) v (t,0))]
S0 (0 (1,6) " (1) [0 (1,6) — v (1,0)]} dbds

for any v € B. Since v (t,0) is arbitrary, (8) follows.

The proof is complete.
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A.2 Proof of Proposition 1

Eq. (7) takes the form

i+ Dipgg = — [A = Ne* /k*]9b — pNe P ()77 /k* = m|(o.r)xs:
(G (Ta ) = Mhy (Ta k* (T7 )) + m|{T}XSa

(68)

where ¢* satisfies

%c* (t,0)7 — ¢* (t,0) 4 (,0)
L e {“e”tcu,e)l—“—c<t,9>w(t,e>}.

0<c<Bk*) |1 —0

(69)

Either p = 0 or p > 0. In the case where p = 0, (69) implies that ¢* = 0. Thus, (68) is the
same as (20). If x> 0, then (69) implies

¥ (t,0) = pe™ et (6,6)77 .

Substituting the right-hand side for v in the right-hand side of the first equation in (68), we
again obtain

Yy + Dipgg + A = —m|o 1) s- (70)

In addition, from the proof of Proposition 5 we see that either ¢* (¢,6) = 0 for all (¢,0) if
pw=0or

—1/o

¢ (t,0) = [e" (¢,0)] for all (¢,0) (71)

if ;1 > 0 (and therefore is set to be 1). In the former case (26) cannot hold. Thus p =1 and
(71) holds.

Let Q be the interior of the set

Q=1{(t,0) € (0,00) x S: k*(t,0) =1} .
We first observe that by (18), ¢* (¢,0) = A(#) in Q. Thus, by (71),

D (t,0)=ePAB) NG inQ

and by (20)
e’'m = —e” {tpy + L[]} = pA~"N° — L[AN7]
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Let p(t,0) = e'4 (t,0). Then (70) is equivalent to

Pt + Dpog + (A—p)p=—-M

(0,T)xS (72)

where

M =e”'m = pA~"N? — L[A"N7]. (73)

This leads to the first equation in (20). The second equation in (20) and (21) follows directly
from the second equation of (68) and (71), respectively. .

This completes the proof.

A.3 Proof of Proposition 2

Let k (t,0) be the solution to the initial-boundary value problem

ki = Dkgg + (A— NB)k fort >0, fes,
k(0,0) = ko (9) for €S

(74)

with a nonnegative nontrivial initial function kg (f). By the maximum principle for parabolic
partial differential equations, k (¢,6) > 0 for all (¢,0) € (0,00) x S.
Since c¢* (t,0) > B (6) k* (t,0) for all (¢,0), it follows that k (¢,0) is a lower solution for

(13) with ¢ = ¢*. It is easy to see that the solution k of the initial-value problem

k; = Dkgg + Ak for ¢t > 0, 9esS,

i (0,0) = ko (0) foroeS

is an upper solution and % (¢,60) > k (t,0) for all (¢,0). Hence, by the comparison principle
(cf, C.V. Pao (1992), Chapter 2, Theorem 4.1), k (t,0) < k*(t,0) < k(t,0). As a result
k* (t,0) > 0 for all (¢,0). Furthermore, let ¢y be a positive eigenfunction of the operator M

corresponding to the principal eigenvalue, pg. Then

/S K (t,60) o (0) d6 > / k (t,60) do (6) d6 = (k (£,-) , o) . (75)

S

Multiplying ¢o to the first equation in (74) and integrating over S, we obtain

<E (t, ) ) ¢0>/ = <ME (ta ) ) ¢0> = Ho <E (t7 ) 7¢0> .
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It follows that
<E (ta ) 7¢0> = <k0’ ¢0> G#Ot‘

Hence, by (75),
/8 k* (£,0) do (0) dO > (ko, do) eho".

Using the positivity and boundedness of ¢¢ on S, the above relation leads to

<k07 ¢0> e/J,Ot
maxges ¢o (6)

/ k* (t,0)do >
S
This completes the proof.

A.4 Proof of Proposition 3

First observe that (26) implies 4 = 1 and
p(t,0)=c"(¢,0)7 for all (¢,0) € (0,00) x S. (76)
satisfies

pt+ (L —p)[p]l = —M|o1)xs (77)

where M is a Radon measure with a support that satisfies (24).
Suppose for contradiction that £* (¢,0) < 1 for all (¢,0) € (0,00) x S. Then M = 0 a.e.

As a result, p satisfies

pe+(L—=p)[p]=0

everywhere. Using a Fourier expansion

2
p(£0) =po(t) o (0) + > ) pji(t) s (0) (78)
j>1 =1
we find
po (t) = po (0) e~ Po=P)t,
and

pji (1) =pji (0) e~ NPt for j>1,i=1,2.

Observe that (76) implies that p (¢,6) > 0 everywhere. Since ¢;; changes the sign in S and

Aj < A for all j > 1, it follows that the only non-zero term on the right-hand side of (78) is
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po (t) o (0). Therefore, by (76),
¢ (t,0) = [po (0) o ()] Y7 €™ for all (¢,6).

Substituting the right-hand side for ¢ in (13), and using Fourier expansions

Z kji (1) @4 (0) [po (0) o = Z 14,i%5,i
we find
ki () = Njkji (8) = njae’,

where r = %. Solving the equation we find

77 1 r 77,1 .
kjﬂ'(t):)\ j_ret-i- [k (0)—)\?_7,] ehit
J J

if \; #r and

if A\; = r. In particular

ko (t) = _o ot + Pﬁo (0) — 7/\0773 J erot

if Ao #r and
ko (t) = [ko (0) — mot] €™

if A\g = 7. Since r and )\ are both positive, kg (¢) is unbounded. Note that ko (t) = (k (¢, ) , ¥0)

and g is positive in S, the state constraint 0 < k (¢,6) < 1 implies

0< ko (t) < /Sme)de

Thus, ko (t) is bounded. This is a contradiction.

The proof is complete.
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A.5 Proof of Proposition 4

Let {k(6),2(0)} be a steady state, and let p(6) = &(#) 7. Then, by (13) and (77),

DF' (0) + Ak () = Np(6)~/,

Dp" (0)+(A—p)p(0) = —M(0) for0 eS8

where
(p—A)AT°N? ifk(0) =1,

0 elsewhere.
Suppose for contradiction that there is an interval I on which k() < 1. It is not possible
that I = S, because if so, p would be a positive eigenfunction of the operator £ corresponding
to the eigenvalue p. However, the only eigenvalue of £ that can have positive eigenfunction
is a > p. This is a contradiction. Hence, I is a proper subinterval of §. Without loss
of generality, we may assume that I = (—a,a) is symmetric, with a constant a satisfying
0<a<m Asaresult, k(—a) = k(a) = 1. Also, since k(#) < 1 for all 8, it follows that
k' (—a) = k' (a) = 0.
We first solve p (0). Note that M (6) = 0 in (—a,a), p satisfies

DP'(6)+ (A= p)p() =0 in (—a,a).

Due to the symmetry, p(—60) = p(0). Let b denote the common value of p(—a) and p(a).
By computation

p(6) = bcoswb in (—a,a)

for some b > 0, where w = /(A — p) /D. Solving the differential equation for z, we find

0 —1/c
k (0) = ¢ cos \/?9 + ¢ sin \/39 + Nbl/”/o coslA\/%wﬁ) sin \/g(e — ) d¢ (79)

for some constants ¢; and cp. Using the boundary conditions &k (—a) = k (a) = 1, we find

c2 = 0. Then, from the conditions k' (—a) = k' (a) = 0 we find

A a -1/ ] A
c1cosy/5a+Nb*1/" ; WSln\/D(a—Odﬁ = 1,
A @ cos™ V7 (we) A
. Za—N —1/0’/ i _ — .
clsm\/Da b ; 7iD cosy/D(a &) d¢ 0
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Solving the equations, we find

= /Oa cos ™7 (we) cos \/g (a—¢&)d¢/ /Oa cos ™7 (we) cos \/gfcﬁ

We show that ¢; > 1. It amounts to show that

/Oa cos /7 (we) cos \/g(a —&)d¢ > /Oa cos 7 (w€) cos \/gfdf. (80)

Note that both cos™/7 (w€) and cos % (a — &) are positive and increasing in (0,a). Let us

use f (&) and g (§) to denote two positive and strictly increasing functions. It is easy to see

that
f &) —fla=&l[g(€) —gla=&§] =20  for { €(0,a)

and the strict inequality holds for all £ € (0, a) except for £ = a/2. Thus,

[v©-ra-els©-sa-olde>o

On the other hand, the left-hand side can be written as

/Oa[f(ﬁ)g(é)+f(a—§)g(a—€)]d§—/Oa[f(f)g(a—ﬁ)+f(a—§)g(€)]d€‘ (81)

Using a change of variable, it is easy to verify that

/af(a—ﬁ)g(a—£)d£ _ /af(ﬁ)g(ﬁ)d&

0 0
/f<5>g<a£>ds - /f<af>g<s>df.
0 0

Thus, by (81) we find
/ F(©)g(€)de >/ F(€)g(a—€)de.
0 0

Apply the above inequality to the function f (£) = cos™/7 (w€) and g (€) = cos \/m (a =),
(80) follows.

By (79), k (0) = ¢; > 1. This contradicts the constraint k (f) < 1 in S.

If an optimal pair {k*,c*} converges as t — oo, then the limit must be a steady state.
Thus, (29) must hold.

This completes the proof.
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A.6 Proof of Proposition 5

By (34), M =0 and 0 < ¢* (¢,0) < B (0) k* (t,0). Thus, p satisfies
pet+(L—p)[p]=0 inSr
for any T' > 0. Since p > 0, it follows that
p(t,0) =po(0)e" PPty (4)  for all (¢,0).

As a result,

¢ (8,0) = p(t,0) 77 = copo ()7 e

where ¢g = po (0)”Y/7 is a constant.
Consider the initial value problem (13) with

c=c* = cppo (0)_1/‘7 e,

ie.,
ki = L[k] — Negpg /e fort >0, 6€S,
k(0,0) = ko (9) for 6 € S.

(82)

Let ag (t) = (k (t,-), o). Clearly for &k (t,6) > 0 in (0,00) x S, it is necessary that ag (t) > 0
for all ¢. By multiplying ¢o to the both sides of (82) and integrating the results over S, we

obtain

ay = Aoag — coe’” <Ncpal/g, <p0> for ¢t > 0,

ap (0) = (ko, o) -

The solution is

co <N9061/07900>
A — T

, . co <N80(;1/Ua 800> Nt
e” + | (ko, po) — N —7 e

ap (t) =

Note that since p > Ao > (1 — ) Ag it follows that

Ao —
Ag > 0 p:’l”.
g
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Hence, for ag (t) > 0 for all ¢, it is necessary that

< (Ao — 1) (Ko, ¥0)

co < — o = 0o
<Ng00 Y ) 900>
Note that by (14),
l1—0o 00
J (ko ) = 0 / elor+(1=o)lt gy / N (60) o (0)17 db
l1—0 0 S

which is increasing in ¢g. Hence, since {é, l;:} is feasible, it follows that
¢ (t,0) = oo ()7t =¢(t,0)  in (0,00) x S.
This completes the proof.

A.7 Proof of Proposition 6

We use the initial value problem (82) with ¢y = ¢y using the Fourier series expansion

/%(t,@):ao +Zza]z QOJ’L

721 2

Substituting the right-hand side for & in (82), we obtain

al; (t) = Njag,i (t) — éoe” <N<Po_1/07 <Pj,z'> ; aj,i (0) = (ko, ¢j,i) -

The solution is

éo(Npo=17 i, éo (Npo™ 17 pj;
() = pv: £iidert s | (i) — 2 pv R
if \; #r and
aji(t) = [Ufo, ©j,i) — téo <N<P0_1/U, (Pj,z'>:| e (84)

if \; = r for all integers j and i.

Since {é, l%} is feasible, 0 < k (¢,60) < 1 for all (¢,6). In particular,

k(t,0) e = (ko o) o (0) + DD aji(t) e ;i (0) > 0.

7>l 12
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Note that ¢;; changes the sign in S for any j > 1, it follows that each a;; (¢) e~ is bounded.
Hence, by (83) and (84), Aj # r if (Npo ™/, ¢;,) # 0 and

o {(Npo™ 7, ;)
)\j -7

- <k07 (p],z>

if \; > r. As a result,

~ —1/c .
—rt €0 <N(P0 7SDJ,Z>
tlgnaﬂ(t)e N Aj—r

if \; # r for all j and

—rt

am,i (t) e = (ko, Pm,i)

if A, =r and <Ncpo_1/g, QOm,i> =0fori=1,2.

The proof is complete.

A.8 Proof of Corollary 2

Since A is a constant function, the eigenvalues and eigenfunctions are given by (27) and (28),

respectively. In this case,
<N<p‘1/”,<pj,i> —0 forallj>1,i=1,2

Hence, (36) become
1
g IGL
TJs
if  # A; for all j. This leads to (38).

In the case where r = \,, for some m, by (37) and (28)

yo) = l07 ©0) wo + (lo, ©m.1) Pm,1 (8) + (lo, ©m,2) Pm,2
= / lo(&)d¢ + — / (&) [cos mB cos m& + sinmf sinm&] d§.

This leads to (39).

The proof is complete.
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A.9 Proof of Proposition 7

Suppose by contradiction that {é, l;:} is feasible and ¢ € B (l;:) Then ¢é(t,0) < B(0) k (t,0)
for all (¢,60) € [0,00) x S. This implies that

ki > Dkgg+ (A—NB)k  forallt>0, 0€S.

we obtain
kb () > noko, ko (0) = <7;7(0,‘) 7<Z50>-
Hence,
INCO (t) 2 <i€ (07 ) 7¢0> en0t~
That is

/ J (£,6) do (6) d > ™t / ko (8) 6o (6) db. (85)
S S

On the other hand, by (31) and (33), k (t,6) satisfies

[ R0yen@)d8 = e [ ko (6) 00 6) ab
S

S

In view of (85), it follows that

This contradicts (42).
Suppose {c¢*, k*} is an optimal pair such that ¢* (t,6) < B (0) k* (t,0) for all (¢,6). Then,
by Proposition 3, {é, I%} = {c*, k*} is feasible. This is a contradiction.
This completes the proof.
A.10 Proof of Proposition 8
Since, by (43), k* < 1 at t = T, it follows that m = 0 at ¢t = T". Also, since {éT,l%T} is

feasible, by Proposition 3, {c¢*,k*} = {éT, l%T} in (T,00) x §. Thus by (44),

c (t? 9) = éT (t, 0) = éT,DQOO (9)_1/‘7 eT(th)
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for (¢,0) € (T,00) x S. In view of (43) and (70),

c* (t,0) = argmax

0<c<B(k*) l-o

pe (t,0)1°
W

—c(t,0)p(t, 9)} _ [p (t,g)] ~1/0

for (¢,0) € (T,00) x S. Clearly, p1 > 0. So we assume g = 1. Therefore,

p(t.0) =c"(t.0)"7 = rGpo (0) e~or(t=T) fort > T.

It follows that

p(T,0) = erfepo (0).

The result of the proposition then follows from Proposition 5. The statement regarding

k* is obviously true. That completes the proof.
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