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Abstract. In this paper, we introduce and study the logics for condi-
tionals of the form “Given φ, it suffices to do ψ”, which are known as
“deontic sufficiency” in the deontic logic literature and are useful in the
decision and game theory contexts. We completely axiomatize the log-
ics under different assumptions about the properties of the preference
relations and establish decidability results for each logic.
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1 Introduction

Deontic logic is an area of logic that studies normative concepts such as obligation
and permission [6]. Among the different approaches to deontic logic, the modal
logic approach investigates deontic logic as a branch of modal logic. This is based
on an analogy between the deontic modality “It is obligatory that” and the alethic
modality “It is necessary that”, since the obligatory is “what is necessary for a
good person to do”, as suggested by Leibniz [11]. As such, the most discussed
deontic logic system, standard deontic logic (SDL), is just modal logic of type
KD. The necessity modality □φ (or, following the convention in deontic logic,
Oφ) in SDL is interpreted as “It is obligatory that φ” and the possibility modality
♢φ (Pφ) “It is permitted that φ”.

Given that obligation can be interpreted as (deontic) necessity, one may won-
der whether other modal notions can be applied in deontic logic, e.g. sufficiency.
In his paper [20], von Wright noticed the connection between deontic sufficiency
and the notion of strong permission, which is deemed different from the notion of
weak permission as characterized in SDL. Strong permission is argued to satisfy
the free choice principle P (p ∨ q) ↔ (Pp ∧ Pq) (for example, “You may have
cake or coffee” implies both “You may have cake” and “You may have coffee”).
However, it is not part of SDL (as the ♢-operator does not distribute over dis-
junction). Von Wright suggested that interpreting strong permission as deontic
sufficiency validates this principle. Van Benthem [2] pursued this idea formally
in modal logic. The deontic sufficiency operator Sφ is interpreted on a Kripke
model M = (W,R, V ) as follows:

M,w |= Sφ iff wRv for all v ∈W such that M, v |= φ
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Since wRv represents that “v is an ideal situation relative to w”, the operator
Sφ states that φ is a sufficient condition to achieve ideality.1 In the deontic logic
literature, the deontic sufficiency operator has received far less attention than
deontic necessity. However, it has recently regained interest, see [17,19].

This paper follows the above research line. We aim to study a conditional
variant of the deontic sufficiency operator, analogous to how monadic obligation
in SDL is generalized to conditional obligation in dyadic deontic logic (DDL)
[9,18]. In DDL, a new dyadic operator O(ψ/φ) is introduced to express the
condition obligation that “Given φ, it is obligatory that ψ”, which is not repre-
sentable in SDL when contrary-to-duty scenarios like Chisholm’s are considered
[5]. This dyadic operator is interpreted on the so-called “preference models”,
where possible worlds are ranked according to their comparative goodness (in-
stead of divided into either ideal or non-ideal ones), such that O(ψ/φ) is true iff
all the best φ-worlds are also ψ-worlds.

In this paper, inspired by the semantics of the dyadic obligation in DDL,
we introduce and study a dyadic operator S(ψ/φ) which is to be understood as
“Given φ, ψ is a sufficient condition for achieving ideality”. Semantically, this
operator states that all φ ∧ ψ-worlds are best φ-worlds in a preference model.

We could regard S(ψ/φ) as a conditional version of strong permission. How-
ever, the use of the deontic sufficiency operator in the decision and game theory
contexts has already been noted by a series of authors, e.g., [1,4,17]. We illustrate
this by the following example:

Example 1 (The umbrella). A professor wakes up in the morning and recalls
that there is an important exam today. She must bring the test papers to the
classroom. However, she is unsure whether it will rain today. She needs to bring
an umbrella to protect the test papers if it rains. Otherwise, there is no need.
As a cautious person, the professor decides to bring an umbrella regardless of
whether it rains.

The point of the above example is that we cannot explain the professor’s deci-
sion if we interpreted it as the necessary conditions for achieving her goal, i.e.,
bringing the test papers to the classroom without wetting them. This is because
carrying an umbrella is not necessary in case it does not rain. As will be seen,
the professor’s decision can be explained only if it is interpreted as the sufficient
conditions for achieving the goal. Our paper presents a series of logic systems to
reason about them.

This paper is structured as follows. Following the convention in the modal
logic research, we start by introducing the formal language and semantics of
our logical systems in Section 2. In Section 3, we analyze the impacts of differ-
ent properties of the preference relations on the resulting logics. Based on this
analysis, three Hilbert-style axiom systems are proposed in Section 4 and the
completeness results are established in the next two sections: Sections 5 and 6.
Finally, in Section 7, we conclude with some discussions.

1 In [2], the notation Pφ is used. But the semantic definition is the same. Sφ is also
known as the “window” modality in the modal logic literature [3].



Deontic Sufficiency in Dyadic Deontic Logic 3

2 Syntax and Semantics

We start by presenting the basics of our logical systems, including the formal
language and semantics.

Let Prop be a countable infinite set of propositional variables or atoms. In
addition to Boolean connectives, there are two modalities □φ and S(ψ/φ) in
our language. □φ is the alethic necessity modality, which can be read as “φ is
necessarily true”. The dyadic modality S(ψ/φ) is read as “Given φ, it suffices to
do ψ”.

Definition 1 (Language). The language L is given by the following BNF
grammar:

φ ::= p | ¬φ | (φ ∧ φ) | □φ | S(φ/φ)
where p ∈ Prop. Other Boolean connectives are defined as usual.

The formulas are interpreted on preference models from DDL. In a preference
model, possible worlds are ordered according to their comparative goodness.

Definition 2 (Preference model). A preference model M = (W,⪰, V ) is a
tuple where:

1. W is a non-empty set of possible worlds (states);
2. ⪰ is binary relation over W (s ⪰ y means that “s is at least as good as y”);
3. V : Prop→ ℘(W ) is a valuation.

As an example of the preference models, consider the umbrella example in
the Introduction. For simplicity, we assume that there are only two atoms r and
u in the language: r stands for “It rains” and u for “The professor brings an
umbrella”. As illustrated in Fig. 1, the most preferred worlds (s1, s2, and s3) are
those in which the professor can bring the test papers to the classroom without
wetting them, i.e., either it does not rain or she brings an umbrella. The worst
is where the professor does not bring an umbrella while it rains.

s1 • r,u oo // s2 • u??

��
s3•
  

``

��
s4 • r

Fig. 1. A preference model M , where s → t means s ⪰ t. The reflexive and transitive
arrows are omitted.

Next, we present the semantics. Recall that the operator S(ψ/φ) is intended
to express that ψ is a sufficient condition for achieving ideality in the context
of φ. In a preference model, it means that all ψ-worlds (in the context of φ) are
the best φ-worlds. This gives rise to the following semantic definition:
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Definition 3 (Satisfaction). Given a preference model M = (W,⪰, V ), for all
w ∈W and formulas φ, the satisfaction relation M, s |= φ is inductively defined
as follows (where the clauses for atoms and Boolean connectives are as usual
and thus omitted):

– M, s |= □φ iff, for all t ∈W , M, t |= φ
– M, s |= S(ψ/φ) iff [[ψ ∧ φ]]M ⊆ opt⪰([[φ]]M )

where [[φ]]M = {s ∈W |M, s |= φ} is the truth set of φ (and same for [[ψ∧φ]]M ),
and opt⪰([[φ]]M ) = {s ∈ [[φ]]M | s ⪰ t for all t ∈ [[φ]]M}. The notion of validity
is defined as usual.

Remark 1. In DDL [18], the truth definition for conditional obligation O(ψ/φ)
is given by the expression “opt⪰([[φ]]M ) ⊆ [[ψ]]M ”. Thus, the truth definition for
S(ψ/φ) is roughly the inverted version of that for O(ψ/φ). Note also that, like
in DDL, the truth of □φ and S(ψ/φ) does not depend on the evaluating states.

Remark 2. In the truth definition for S(ψ/φ), opt⪰([[φ]]M ) could have been re-
placed by the set of all ⪰-maximal φ-worlds. The choice between optimality and
maximality is a long-known problem in the DDL literature, see [13,15]. Here we
follow [16] and [18]. We plan to study the maximality version in the future.

Consider again the umbrella example. In the preference model M depicted
in Fig. 1, M, s1 |= S(u/⊤), which means that bringing an umbrella is sufficient
to achieve the goal. In contrast, given that it will not rain, whether or not
bringing an umbrella will suffice (M, s1 |= S(u/¬r) ∧ S(¬u/¬r)). Note that in
both contexts of ⊤ and ¬r, bringing an umbrella is not necessary (to achieve the
goal): M, s1 ̸|= O(u/⊤) and M, s1 ̸|= O(u/¬r).

A key feature of the operator S(ψ/φ) is that it satisfies the principle of
strengthening the antecedent, which distinguishes it from the conditional obli-
gation O(ψ/φ) in DDL. The operator S(ψ/φ) also validates the principle of
strengthening the consequent: S(ψ/φ) → S(ψ ∧ χ/φ).2 Moreover, S(ψ/φ) vali-
dates a conditional version of the free choice principle:

Proposition 1. The following hold for all formulas φ,ψ, χ:

(1) |= S(ψ/φ) → S(ψ/φ ∧ χ).
(2) |= S(ψ/φ) → S(ψ ∧ χ/φ).
(3) |= S(ψ ∨ χ/φ) ↔ S(ψ/φ) ∧ S(χ/φ).

3 Properties of Preference Relations

In this section, we examine the impacts of different properties of preference
relations on the resulting logics. We will consider four familiar properties in the
DDL literature [18]. Other interesting properties (such as antisymmetry) are left
for future investigation.
2 We thank an anonymous referee for pointing out this. The validity of strengthening

the consequent is considered to be problematic if we interpret S(ψ/φ) as (condi-
tional) permission, see [10].
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Definition 4. A preference model M = (W,⪰, V ) is

– reflexive if, for all s ∈W , s ⪰ s;
– total (or connected) if, for all s, t ∈W , s ⪰ t or t ⪰ s;
– transitive if, for all s, t, w ∈W , s ⪰ t and t ⪰ w implies s ⪰ w;
– limited if, for all formulas φ, [[φ]]M ̸= ∅ implies opt⪰([[φ]]M ) ̸= ∅.

The class of all reflexive (total, transitive, limited, respectively) preference models
is denoted by R (C, T, L, respectively). A nonempty subset of {R,C,T,L} will
denote the intersection of all its members, e.g., RTL denotes the class of all
reflexive, transitive, and limited preference models. For each nonempty subset
X ⊆ {R,C,T,L}, LX is the set of all validities on the model class X. Finally, L
is the set of validities on the class of all models.

We completely studied the logics generated by the 16 (possibly equivalent)
classes of models. The results are summarized in Fig. 2. The main observation
is that, unlike transitivity, imposing only totalness or limitedness on models has
no import to the logic. Only when totalness and limitedness are combined with
transitivity can we obtain stronger logics.

L

Prop. 2

Prop. 3 // LT
Prop. 5 // LTL

Prop. 6
LTRCL

Thm. 3

LRCL LTR

Prop. 4

LTC

Fig. 2. The logics generated by different model classes, where LX == LY means that
the two logics are the same and LX −→ LY means that LX is a proper subset of LY .

The first proposition in the section shows that the assumptions of reflexivity,
totalness, and limitedness have no import to the logic. 3

Proposition 2. For every preference model M = (W,⪰, V ) and s ∈ W , there
is a reflexive, total, and limited preference model M ′ = (W ′,⪰′, V ′) and s′ ∈W ′

such that for all formulas φ, M, s |= φ iff M ′, s′ |= φ.

Proof. We construct M ′ = (W ′,⪰′, V ′) as follows:

– W ′ = {(a, n) | a ∈W,n ∈ {0, 1}}
– (a, n) ⪰′ (b,m) iff a ⪰ b or n ≥ m
– V ′(p) = {(a, n) | a ∈ V (p)}

Let s′ = (s, 0). We first show that

for all a ∈W and n ∈ {0, 1}, a |= φ iff (a, n) |= φ (∗)
3 This result is similar to [14, Theorem 3.3], but, of course, we work on different formal

languages. We thank an anonymous referee for pointing out this.
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We show only the case for S(ψ/φ). From left to right. Suppose a |= S(ψ/φ). Let
(b,m) |= ψ ∧ φ. To show that (b,m) ∈ opt⪰′([[φ]]M ′), let (c, l) |= φ be arbitrary.
If (b,m) ̸⪰′ (c, l), then b ̸⪰ c. Note that b |= ψ ∧ φ and c |= φ by IH. Thus,
[[ψ ∧ φ]]M ̸⊆ opt⪰([[φ]]M ), contradicting the assumption. Hence, (b,m) ⪰′ (c, l).
Thus, (b,m) ∈ opt⪰′([[φ]]M ′). Therefore, (a, n) |= S(ψ/φ). From right to left.
Suppose (a, n) |= S(ψ/φ). Let b |= ψ∧φ. To show that b ∈ opt⪰([[φ]]M ), let c |= φ
be arbitrary. Suppose, toward a contradiction, that b ̸⪰ c. Then (b, 0) ̸⪰′ (c, 1).
Note that, by IH, (b, 0) |= ψ∧φ and (c, 1) |= φ. Hence, [[ψ∧φ]]M ′ ̸⊆ opt⪰′([[φ]]M ′),
contradicting the assumption. Hence, b ⪰ c and thus b ∈ opt⪰([[φ]]M ). Therefore,
a |= S(ψ/φ).

It remains to show that M ′ satisfies the required properties. Clearly, M ′ is
total (and therefore reflexive). For all formulas φ with [[φ]]M ′ ̸= ∅, it follows
from (∗) that [[φ]]M ′ ∩ (W × {1}) ̸= ∅ (since (s, 0) |= φ iff (s, 1) |= φ for all
s ∈ W ). Let (s, 1) |= φ. It is easy to see that (s, 1) ∈ opt⪰′([[φ]]M ′). Therefore,
opt⪰([[φ]]M ) ̸= ∅. Thus, M ′ is limited.

The next proposition shows that, by imposing only transitivity on the models,
we obtain a stronger logic. Let (Tran) be the following formula:

S(φ/φ ∨ ψ) ∧ S(ψ/ψ ∨ χ) ∧ ♢ψ → S(φ/φ ∨ χ) (Tran)

Proposition 3. The following hold:

(1) (Tran) is valid on the class of all transitive preference models.
(2) (Tran) is invalid on the class of all preference models.

Proof. (1) Let M = (W,⪰, V ) be a transitive preference model. Suppose:

(i) M, s |= ♢ψ,
(ii) M, s |= S(φ/φ ∨ ψ),
(iii) M, s |= S(ψ/ψ ∨ χ),

Let t1 |= φ∧ (φ∨ χ) (i.e., t1 |= φ) and t2 |= φ∨ χ. To show M, s |= S(φ/φ∨ χ),
it suffices to show that t1 ⪰ t2. If t2 |= φ, since s |= S(φ/φ ∨ ψ), t1 ⪰ t2 by
semantics. Otherwise, t2 |= χ, from (i) and (iii) it follows that there must be
t3 |= ψ such that t3 ⪰ t2. Note that t1 ⪰ t3 by (ii). Thus, by transitivity, t1 ⪰ t2.

(2) A counter model is provided in Figure 3 where s1 ̸|= S(p/p ∨ q) ∧ S(q/q ∨
r) ∧ ♢q → S(p/p ∨ r).

s1 • p oo //��
s2 • p, q, r //��

s3 • r

Fig. 3. A preference model M .

Proposition 4. For every transitive preference model M = (W,⪰, V ) and s ∈
W , there is a reflexive and transitive preference model M ′ = (W ′,⪰′, V ′) and
s′ ∈W ′ such that, for all formulas φ, M, s |= φ iff M ′, s′ |= φ.
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Proof. We construct M ′ as follows:

– W ′ =W × {0, 1} (the elements of W are denoted by s0, s1, t0, t1, . . . )
– ⪰′= {(si, tj) | s ⪰ t} ∪ {(si, si) | si ∈W ′}
– si ∈ V ′(p) iff s ∈ V (p)

Obviously, ⪰′ is reflexive and transitive. It can be verified that, for all s ∈W and
i ∈ {0, 1}, M, s |= φ iff M ′, si |= φ for all formulas φ. Here we show only the case
for S(ψ/φ). The direction from left to right is trivial. From right to left. Suppose
M ′, si |= S(ψ/φ). Let M,u |= ψ∧φ and M, t |= φ. Then, by IH, M ′, u0 |= ψ∧φ
and M ′, t1 |= φ. Since M ′, si |= S(ψ/φ), u0 ⪰′ t1. By the definition of ⪰′, it
must be u ⪰ t. Hence, M, s |= S(ψ/φ).

Next we show that, given transitivity, the addition of either limitedness or
totalness changes the logic. For this, we need the following lemma. 4

Lemma 1. The following holds for every preference model M = (W,⪰, V ) that
is either transitive and limited or transitive and total: for all X,Y ⊆ W , if
X ⊆ opt⪰([[ψ]]) and Y ⊆ opt⪰([[θ]]), then X ⊆ opt⪰([[ψ∨θ]]) or Y ⊆ opt⪰([[ψ∨θ]]).

Proof. Suppose M is transitive and limited. We consider two cases: (1) X = ∅ or
Y = ∅. Then X ⊆ opt⪰([[φ∨ψ]]) or Y ⊆ opt⪰([[φ∨ψ]]). (2) X ̸= ∅ and Y ̸= ∅.
Then [[ψ ∨ θ]] ̸= ∅. By limitedness, opt⪰([[ψ ∨ θ]]) ̸= ∅. Let s ∈ opt⪰([[ψ ∨ θ]]).
Then s ∈ [[ψ ∨ θ]]. Without loss of generality, we assume s ∈ [[ψ]]. For every
t ∈ X, t ∈ opt⪰([[ψ]]). Thus, t ⪰ s. By transitivity, t ∈ opt⪰([[ψ ∨ θ]]). Hence,
X ⊆ opt⪰([[ψ ∨ θ]]).

The case where M is transitive and total remains to be considered. We split
into the same two subcases as above. We consider only the subcase where both
X and Y are nonempty. Let x ∈ X and y ∈ Y . Since M is total, x ⪰ y or
y ⪰ x. (a) If x ⪰ y, let x′ ∈ X be arbitrary. For all z ∈ [[ψ ∨ θ]], z ∈ [[ψ]] or
z ∈ [[θ]]. If z ∈ [[ψ]], then x′ ⪰ z since X ⊆ opt⪰([[ψ]]). If z ∈ [[θ]], then y ⪰ z as
Y ⊆ opt⪰([[θ]]). Since x′ ⪰ x, x ⪰ y and y ⪰ z, x′ ⪰ z by transitivity. Therefore,
x′ ∈ opt⪰([[ψ ∨ θ]]), i.e., X ⊆ opt⪰([[ψ ∨ θ]]). (b) Otherwise, y ⪰ x. Similarly, we
can show that Y ⊆ opt⪰([[ψ ∨ θ]]).

In what follows, let (Lim) be the formula below:

S(φ/ψ) ∧ S(χ/θ) → (S(φ ∧ ψ/ψ ∨ θ) ∨ S(χ ∧ θ/ψ ∨ θ)) (Lim)

Proposition 5. The following hold:

(1) (Lim) is valid on the class of all transitive and limited preference models.
(2) (Lim) is valid on the class of all transitive and total preference models.
(3) (Lim) is invalid on the class of all transitive models.

Proof. (1) and (2) follow immediately from Lemma 1. For (3), a counter-model
is provided in Figure 4 where s ̸|= S(p/p)∧S(¬p/¬p) → (S(p/p∨¬p)∨S(¬p/p∨
¬p)).
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s • p
��

t•
��

Fig. 4. A counter model M .

The last proposition in the section shows that, given transitivity and limit-
edness, totalness has no import to the logic. In the proof, we use the same model
construction method as in the proof of [13, Prop. 13]:

Proposition 6. For all transitive and limited preference models M = (W,⪰, V )
and s ∈ W , there is a reflexive, total, transitive, and limited preference model
M ′ = (W ′,⪰′, V ′) and s′ ∈ W ′ such that for all formulas φ, M, s |= φ iff
M ′, s′ |= φ.

Proof. Let U = {x ∈ W | there is a formula φ such that x ∈ opt⪰([[φ]]M )}. We
construct M ′ as follows:

– W ′ =W and V ′ = V ,
– For all x, y ∈W :

• If x, y ∈ U , then x ⪰′ y iff x ⪰ y;
• If x ∈ U and y /∈ U , then x ⪰′ y;
• If x /∈ U and y /∈ U , then x ⪰′ y and y ⪰′ x.

We first show that

for all x ∈W and formulas φ, M,x |= φ iff M ′, x |= φ. (∗)

We show only the case S(ψ/χ). From left to right. Suppose M,x |= S(ψ/χ).
Then [[ψ ∧χ]]M ⊆ opt⪰([[χ]]M ). Let y ∈ [[ψ ∧χ]]M ′ . Then, by IH, y ∈ [[ψ ∧χ]]M ⊆
opt⪰([[χ]]M ). For every z ∈ [[χ]]M ′ , by IH we have z ∈ [[χ]]M . Thus, y ⪰ z. If
z ∈ U , then y ⪰′ z by the definition of ⪰′ (note that y ∈ U). Otherwise, z /∈ U ,
we also have y ⪰′ z by the definition of ⪰′. Hence, y ∈ opt⪰′([[χ]]M ′). Therefore,
[[ψ∧χ]]M ′ ⊆ opt⪰′([[χ]]M ′) and thus M ′, x |= S(ψ/χ). From right to left. Suppose
M ′, x |= S(ψ/χ). Then [[ψ ∧ χ]]M ′ ⊆ opt⪰′([[χ]]M ′). If [[χ]]M = ∅, then it holds
trivially that M,x |= S(ψ/χ). Otherwise, [[χ]]M ̸= ∅, by the limitedness of ⪰
it follows that opt⪰([[χ]]M ) ̸= ∅. Let t ∈ opt⪰([[χ]]M ). Thus, t ∈ U . For each
y ∈ [[ψ ∧ χ]]M = [[ψ ∧ χ]]M ′ , since t ∈ [[χ]]M = [[χ]]M ′ , we have y ⪰′ t by our
assumption thatM ′, x |= S(ψ/χ). Since t ∈ U , it follows from the definition of ⪰′

that y ⪰ t. As t ∈ opt⪰([[χ]]M ), by the transitivity of ⪰ we have y ∈ opt⪰([[χ]]M ).
Therefore, M,x |= S(ψ/χ).

It remains to show that M ′ satisfies the required properties. Transitivity :
Suppose, toward a contradiction, that there are x, y, z such that x ⪰′ y, y ⪰′ z,
and x ̸⪰′ z. Since x ̸⪰′ z, by the definition of ⪰′, it can only be the following
two cases: (1) x, z ∈ U and x ̸⪰ z. Since x ⪰′ y and y ⪰′ z, it must be that
y ∈ U , x ⪰ y, and y ⪰ z by the definition of ⪰′. Thus, by the transitivity of ⪰,
4 This is a generalization of [13, Lemma 8]. We thank an anonymous referee for point-

ing out this.
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x ⪰ z and thus x ⪰′ z. Contradiction! (2) x /∈ U and z ∈ U . Since x ⪰ y, y /∈ U .
However, it implies that y ̸⪰ z. Contradiction!

The limitedness of M ′ follows directly from that of M and (∗). To show
that ⪰′ is total, let x, y ∈W . The only non-trivial case is when x, y ∈ U . By the
definition of U , x ∈ opt⪰([[ψ]]) and y ∈ opt⪰([[θ]]). By Lemma 1, x ∈ opt⪰([[ψ∨θ]])
or y ∈ opt⪰([[ψ ∨ θ]]). In either case, x ⪰ y or y ⪰ x. Hence, x ⪰′ y or y ⪰′ x.
Thus, ⪰′ is total and thus reflexive.

4 Axiomatizations

In this section, we present three Hilbert-style axiom systems for our language L.

Definition 5 (Axiomatizations). The axiomatization DLDS0 consists of the
axioms and rules listed below. The axiomatization DLDS1 is obtained by supple-
menting DLDS0 with the axiom (Tran). The axiomatization DLDS2 is obtained
by supplementing DLDS1 with the axiom (Lim). For each x ∈ {0, 1, 2}, let the
set of DLDSx-theorems be the least set of formulas that contains all instances
of the axiom schemas and is closed under the inference rules in DLDSx. If a
formula φ is a DLDSx-theorem, we write ⊢DLDSx

φ.

PL All instances of propositional tautologies
□-K □(φ→ ψ) → (□φ→ □ψ)
□-T □φ→ φ
□-5 ¬□φ→ □¬□φ
A1 S(ψ/φ) → □S(ψ/φ)
A2 S(ψ/φ) ∧ S(χ/φ) → S(ψ ∨ χ/φ)
A3 S(φ/φ ∨ ψ) → (S(φ/φ ∨ χ) → S(φ/φ ∨ ψ ∨ χ))
A4 □(ψ → χ) → (S(χ/φ) → S(ψ/φ))
A5 □(ψ → φ) → (S(χ/φ) → S(χ/ψ))
A6 □¬(ψ ∧ φ) → S(ψ/φ)
MP From φ and φ→ ψ, infer ψ
Nec From φ, infer □φ

The following result on DLDS2 will be used in the completeness proof.

Proposition 7. The following holds for all integers n ≥ 1:

⊢DLDS2

 ∧
1≤i≤n

□ (φi → ψi) ∧ S(φi/ψi)

 →
∨

1≤i≤n

S(φi/
∨

1≤i≤n

ψi).

Proof. Induction on n. The axiom (Lim) is used in the inductive step.

It is not hard to verify that all the axioms and rules in DLDS0 are valid or
preserve validity on the class of all preference models. Therefore,

Proposition 8. The axiomatization DLDS0 is sound with respect to the class
of all preference models.
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5 Canonical Model

In this and the next sections, we establish the completeness results for DLDS0–
DLDS2 with respect to the intended model classes. We will focus on the weak
completeness of the three systems. Following the classical canonical model method,
we construct the canonical model using maximal consistent sets (MCS). How-
ever, since we aim only to prove weak completeness, we assume a finite number
of propositional variables in the language. The main novelty of our proof lies in
using a propositional formula as the “name” of each MCS t, which we denote by
Nom(t). This allows us to reduce the truth of formulas S(ψ/φ) to that of for-
mulas like S(Nom(t)/φ) (the latter can be semantically regarded as a monadic
modality).

Throughout this section, let A ⊂ Prop be a finite nonempty set of atoms
and LA be the sublanguage of L restricted to atoms in A. Let Λ range over
{DLDS0,DLDS1,DLDS2}. A set Γ of formulas in LA is said to be Λ-consistent
if there are no φ1, . . . , φn ∈ Γ such that ⊢Λ φ1 ∧ · · · ∧φn → ⊥. Γ is maximal Λ-
consistent if Γ is Λ-consistent, and any set of formulas in LA properly containing
Γ is Λ-inconsistent. The standard properties of maximal consistent sets are taken
as granted, i.e., for all Λ-maximal consistent sets Γ and formulas φ,ψ ∈ LA:

– ¬φ ∈ Γ iff φ /∈ Γ , and
– φ ∧ ψ ∈ Γ iff φ ∈ Γ and ψ ∈ Γ .

The Lindenbaum lemma also holds, which claims that every Λ-consistent set of
formulas in LA can be extended to a maximal Λ-consistent one. The set of all
Λ-maximal consistent sets in LA will be denoted by MCSΛ.

In what follows, we fix a w ∈ MCSΛ and let □w = {φ ∈ LA | □φ ∈ w}.
For each s ∈ MCSΛ, let Nom(s) be the formula

∧
p∈s

p ∧
∧

p∈A\s
¬p. Note that

Nom(s) ∈ LA and Nom(s) ∈ s (by the properties of maximal consistent sets).

Lemma 2. For all s, t ∈MCSΛ, if Nom(t) ∈ s then Nom(s) = Nom(t).

Proof. It suffices to show that for all p ∈ A, p ∈ s iff p ∈ t. For all p ∈ A,
if p ∈ t then Nom(t) → p is a propositional tautology. Since Nom(t) ∈ s,
p ∈ s. Conversely, if p /∈ t then Nom(t) → ¬p is a propositional tautology. Since
Nom(t) ∈ s, ¬p ∈ s. Thus, p /∈ s.

Now we are ready to define the canonical model.

Definition 6 (Canonical model). The canonical model for w ∈ MCSΛ is a
structure M(w) = (W,⪰, V ) such that

– W = {s ∈MCSΛ | □w ⊆ s}.
– s ⪰ t iff there is φ ∈ LA such that φ ∈ t ∩ s and S(Nom(s)/φ) ∈ w.
– For all p ∈ Prop, s ∈ V (p) iff p ∈ s.

It is clear that M(w) is a preference model and w ∈ W . For each formula
ψ ∈ LA, let ||ψ|| = {s ∈W | ψ ∈ s} and [[ψ]] = [[ψ]]M(w).

Xu



Deontic Sufficiency in Dyadic Deontic Logic 11

Lemma 3. The following holds for all s ∈W :

(1) for all formulas □φ ∈ LA, □φ ∈ s iff □φ ∈ w;
(2) for all formulas S(ψ/φ) ∈ LA, S(ψ/φ) ∈ s iff S(ψ/φ) ∈ w.

Proof. Since □φ is an S5-modality, (1) follows from the standard argument.
(2): The direction from right to left follows directly from the axiom A1 and

the definition of W . For the converse, if S(ψ/φ) ∈ s then □S(ψ/φ) ∈ s by A1.
From (1) it follows that □S(ψ/φ) ∈ w. Hence, S(ψ/φ) ∈ w by □-T.

Lemma 4. For all s, t ∈W , if Nom(s) = Nom(t) then s = t. Thus, by Lemma
2, if Nom(t) ∈ s then s = t.

Proof. Suppose Nom(s) = Nom(t). We show that for all formulas φ ∈ LA, φ ∈ s
iff φ ∈ t. The cases for atoms and Boolean connectives are trivial. The cases □φ
and S(ψ/φ) follow directly from Lemma 3.

Note that Lemma 4 implies that W is finite. The next lemma is standard.

Lemma 5. The following hold:

(1) for all propositional formulas π ∈ LA and s ∈W , π ∈ s iff M(w), s |= π;
(2) for all formulas □φ ∈ LA, □φ ∈ w iff φ ∈ t for all t ∈W .

Lemma 6. For all formulas ψ ∈ LA, □(ψ ↔
∨

t∈||ψ||
Nom(t)) ∈ w.

Proof. By Lemma 5(2), it suffices to show that ψ ↔
∨

t∈||ψ||
Nom(t) ∈ s for all

s ∈ W . That is, ψ ∈ s iff
∨

t∈||ψ||
Nom(t) ∈ s. The direction from left to right

is straightforward (as Nom(s) ∈ s). For the converse, let s ∈ W be such that∨
t∈||ψ||

Nom(t) ∈ s. Then there must be t ∈ ||ψ|| such that Nom(t) ∈ s. Thus, by

Lemma 4, s = t ∈ ||ψ||.

Lemma 7. For all formulas S(ψ/φ) ∈ LA, S(ψ/φ) ∈ w iff for all t ∈ ||ψ||,
S(Nom(t)/φ) ∈ w.

Proof. From left to right. Let t ∈ ||ψ||. By Lemma 6, □(Nom(t) → ψ) ∈ w. Since
S(ψ/φ) ∈ w, S(Nom(t)/φ) ∈ w by A4. From right to left. Suppose that for all
t ∈ ||ψ||, S(Nom(t)/φ) ∈ w. Then, by A2 and A6, S(

∨
t∈||ψ||

Nom(t)/φ) ∈ w. Since

□(ψ →
∨

t∈||ψ||
Nom(t)) ∈ w by Lemma 6, S(ψ/φ) ∈ w by A4.

Lemma 8. For all formulas S(ψ/φ) ∈ LA, w |= S(ψ/φ) iff for all t ∈ [[ψ]],
w |= S(Nom(t)/φ).
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Proof. From left to right. Suppose w |= S(ψ/φ). Let t ∈ [[ψ]] and s |= Nom(t)∧φ.
Since s |= Nom(t), Nom(t) ∈ s by Lemma 5(1). Therefore, s = t by Lemma 4.
Since w |= S(ψ/φ) and s |= ψ∧φ, s ∈ opt⪰([[φ]]). Thus, w |= S(Nom(t)/φ). From
right to left. Suppose that for all t ∈ [[ψ]], w |= S(Nom(t)/φ). Let s ∈ [[ψ ∧ φ]].
Since w |= S(Nom(s)/φ) and s |= Nom(s) ∧ φ, s ∈ opt⪰([[φ]]). Therefore,
w |= S(ψ/φ).

Lemma 9 (Truth). For all s ∈W and α ∈ LA, α ∈ s iff M(w), s |= α.

Proof. Induction on the structure of α. We show only the case for S(ψ/φ). We
first show the following claim:
Claim. For all s ∈W and φ ∈ LA, S(Nom(s)/φ) ∈ w iffM(w), w |= S(Nom(s)/φ).

Proof. From left to right. Suppose S(Nom(s)/φ) ∈ w. Let t |= Nom(s) ∧ φ. By
Lemma 5(1), Nom(s) ∈ t. Thus, by Lemma 4, t = s. It then suffices to show
that s ⪰ s′ for all s′ |= φ. Since s′ |= φ and s |= φ, φ ∈ s ∩ s′ by IH. As we
assume S(Nom(s)/φ) ∈ w, s ⪰ s′ by the construction of ⪰.

From right to left. Suppose S(Nom(s)/φ) /∈ w. We need to show that there is
s′ ∈W such that s′ |= Nom(s)∧φ and s′ /∈ opt⪰([[φ]]). Since s |= Nom(s), it suf-
fices to show that s |= φ and s /∈ opt⪰([[φ]]) = opt⪰(||φ||). Since S(Nom(s)/φ) /∈
w, by A6, □¬(Nom(s) ∧ φ) /∈ w. Thus, by Lemma 5(2), there must be t ∈ W
with Nom(s) ∧ φ ∈ t. Thus, s = t (by Lemma 4). Since φ ∈ t = s, s |= φ by IH.

It remains to show that s /∈ opt⪰(||φ||), i.e., there is t ∈ W such that φ ∈ t
and s ̸⪰ t. We consider two cases:

(1) For all S(Nom(s)/ψ) ∈ w, ψ /∈ s. Then s ̸⪰ s by the construction of ⪰.
(2) Otherwise, by the Lindenbaum lemma and the construction of ⪰, it suffices
to show that the following set of formulas is consistent:

Γ = □w ∪ {φ} ∪ {¬ψ | S(Nom(s)/ψ) ∈ w & ψ ∈ s}

Suppose, toward a contradiction, that Γ is inconsistent. Then there must be
□χ1, . . . ,□χm ∈ w and S(Nom(s)/ψ1), . . . , S(Nom(s)/ψn) ∈ w (with n ≥ 1
and each ψi ∈ s) such that

⊢Λ χ1 ∧ · · · ∧ χm → (φ→ (ψ1 ∨ · · · ∨ ψn))

Since □ is a normal modality, □(φ→ ψ1 ∨ · · · ∨ ψn) ∈ w (∗). For each ψi, since
s ∈ ||ψi||, it follows from Lemma 6 that □(Nom(s) → ψi) ∈ w. Thus, □(Nom(s)∨
ψi → ψi) ∈ w. Since S(Nom(s)/ψi) ∈ w, by A5 we have S(Nom(s)/Nom(s) ∨
ψi) ∈ w for all 1 ≤ i ≤ n. Using A3, we derive that S(Nom(s)/Nom(s) ∨ ψ1 ∨
· · ·∨ψn) ∈ w. From (∗) and A5, it follows that S(Nom(s)/φ) ∈ w, contradicting
our assumption.

Given the above claim, we are ready to show the inductive case S(ψ/φ):
S(ψ/φ) ∈ s

iff S(ψ/φ) ∈ w (Lemma 3)
iff for all t ∈ ||ψ||, S(Nom(t)/φ) ∈ w (Lemma 7)
iff for all t ∈ [[ψ]], w |= S(Nom(t)/φ) (IH and the above claim)
iff w |= S(ψ/φ) (Lemma 8)
iff s |= S(ψ/φ) (by semantics)
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6 Completeness

Given the canonical model and the truth lemma in the previous section, we
are ready to present our completeness results for the three systems DLDS0,
DLDS1, and DLDS2.

6.1 DLDS0

The completeness of DLDS0 with respect to the class of all preference models
follows from the routine argument (the soundness has been established in Propo-
sition 8). Together with Proposition 2, it implies that DLDS0 is also sound and
complete with respect to the model class RCT.

Theorem 1 (Completeness of DLDS0). The axiomatization DLDS0 is sound
and weakly complete with respect to the class of all preference models and the
class of all reflexive, total, and limited preference models.

Since the canonical model is finite, the decidability of DLDS0 is straightforward:

Proposition 9. The theoremhood problem in DLDS0 is decidable.

6.2 DLDS1

To establish the completeness of DLDS1 with respect to the class of all transitive
preference models, we need the following lemma (which is called the canonicity
lemma in the literature):

Lemma 10. If w ∈MCSDLDS1 , then M(w) is a transitive preference model.

Proof. Suppose w ∈MCSDLDS1
. Suppose s ⪰ t and t ⪰ u. Then there must be

φ,ψ ∈ LA such that φ ∈ s∩t, S(Nom(s)/φ) ∈ w, ψ ∈ t∩u, and S(Nom(t)/ψ) ∈
w. We need to show that s ⪰ u.

Since s, t ∈ ||φ||, it follows from Lemma 6 that □(Nom(s)∨Nom(t) → φ) ∈ w.
Since S(Nom(s)/φ) ∈ w, by A5, S(Nom(s)/Nom(s)∨Nom(t)) ∈ w (∗). On the
other hand, since t ∈ ||ψ||, □(Nom(t) → ψ) ∈ w and thus □(Nom(t)∨ψ → ψ) ∈
w. As S(Nom(t)/ψ) ∈ w, S(Nom(t)/Nom(t) ∨ ψ) ∈ w by A5 (∗∗). Note that
since Nom(t) ∈ t, ♢Nom(t) ∈ w by Lemma 5(2). By (∗) and (∗∗), it follows
from (Tran) that S(Nom(s)/Nom(s) ∨ ψ) ∈ w. Since Nom(s) ∨ ψ ∈ s ∩ u, by
the definition of ⪰ it follows that s ⪰ u.

Theorem 2. The axiomatization DLDS1 is sound and weakly complete with
respect to the class of all transitive preference models and the class of all reflexive
and transitive preference models.

Proof. The soundness of DLDS1 with respect to the class of all transitive prefer-
ence models follows from Proposition 8 and Proposition 3(1). For completeness,
let φ ∈ L be a DLDS1-consistent formula, and let A be the set of atoms occurred
in φ. By the Lindenbaum lemma, there is w ∈ MCSDLDS1

such that φ ∈ w.
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By the truth lemma, M(w), w |= φ. Note that M(w) is transitive by Lemma 10.
Hence, φ is satisfiable on the class of all transitive preference models.

The soundness and completeness of DLDS1 with respect to the class of all
reflexive and transitive models follows from the above and Proposition 4.

Proposition 10. The theoremhood problem in DLDS1 is decidable.

6.3 DLDS2

The completeness of DLDS2 is more involved. We aim to show that DLDS2 is
complete with respect to the class of all transitive and limited preference models.
However, there is no guarantee that the canonical model for DLDS2 is limited.
Fortunately, we can transform the canonical model for DLDS2 into an equivalent
limited preference model. In the following, we describe the transformation.

Definition 7. Given a preference model M = (W,⪰, V ), the transformed model
of M , notation τ(M), is a preference model τ(M) = (W ′,⪰′, V ′) where:

(1) W ′ =W × {0, 1} (the elements of W ′ are denoted by s0, s1, t0, t1, . . . );
(2) ⪰′= {(si, tj) | s ⪰ t}∪{(s1, t0), (s1, t1) | for all u ∈W , u ⪰ s implies u ⪰ t};
(3) si ∈ V (p) iff s ∈ V (p).

It is essential that the above transformation preserves the truth of formulas:

Proposition 11. For every preference model M = (W,⪰, V ) and its trans-
formed model τ(M) = (W ′,⪰′, V ′), it holds that, for all s ∈ W , i ∈ {0, 1}, and
formulas φ, M, s |= φ iff τ(M), si |= φ.

Proof. Induction on the structure of φ. We consider only the inductive case
S(ψ/φ). From left to right. Suppose M, s |= S(ψ/φ). Let xi ∈ [[ψ ∧ φ]]τ(M) and
yj ∈ [[φ]]τ(M). By IH, x ∈ [[ψ ∧φ]]M and y ∈ [[φ]]M . Since M, s |= S(ψ/φ), x ⪰ y.
Thus, xi ⪰′ yj . Therefore, τ(M), si |= S(ψ/φ). From right to left. Suppose
M, s ̸|= S(ψ/φ). Then there must be x ∈ [[ψ ∧ φ]]M and y ∈ [[φ]]M such that
x ̸⪰ y. By the definition of ⪰′, x0 ̸⪰′ y1. Note that τ(M), x0 |= ψ ∧ φ and
τ(M), y1 |= φ by IH. Hence, τ(M), si ̸|= S(ψ/φ).

For the transformed model to be limited, the original model needs to satisfy
a property. We call a preference model M = (W,⪰, V ) almost-limited if, for all
formulas φ, [[φ]]M ̸= ∅ implies that there is s ∈ [[φ]]M such that, for all t ∈ W ,
if t ⪰ s then t ⪰ u for all u ∈ [[φ]]M .

Proposition 12. Given a transitive and almost-limited preference model M =
(W,⪰, V ), the transformed model of M is a transitive and limited preference
model.

Proof. We first show that ⪰′ is transitive. Let si ⪰′ tj and tj ⪰′ uk. We consider
the following cases:

(1) s ⪰ t and t ⪰ u. Then s ⪰ u by the transitivity of ⪰. Hence, si ⪰′ uk.
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(2) s ̸⪰ t and t ⪰ u. Then i = 1. To see s1 ⪰′ uk, it suffices to show that v ⪰ s
implies v ⪰ u for all v ∈ W . Let v ⪰ s. Since s1 ⪰′ tj and s ̸⪰ t, by the
definition of ⪰′, v ⪰ t. Thus, v ⪰ u by the transitivity of ⪰.

(3) s ⪰ t and t ̸⪰ u. Since tj ⪰′ uk and t ̸⪰ u, by definition it follows that s ⪰ t
implies s ⪰ u. Thus, s ⪰ u. Thus, si ⪰ uk.

(4) s ̸⪰ t and t ̸⪰ u. Then i = j = 1. To see s1 ⪰′ uk, it suffices to show that
v ⪰ s implies v ⪰ u for all v ∈ W . Suppose v ⪰ s. Since s1 ⪰′ t1 and s ̸⪰ t,
v ⪰ t. Since t1 ⪰ uk and t ̸⪰ u, v ⪰ u.

It remains to show that τ(M) is limited. Let [[φ]]τ(M) ̸= ∅. By Proposition 11,
[[φ]]τ(M) = [[φ]]M × {0, 1}. Thus, [[φ]]M ̸= ∅. Since M is almost-limited, there
is s ∈ [[φ]]M such that, for all t ∈ W , if t ⪰ s then t ⪰ u for all u ∈ [[φ]]M .
Thus, by the definition of ⪰′, s1 ⪰′ u0 and s1 ⪰′ u1 for all u ∈ [[φ]]M . Since
[[φ]]τ(M) = [[φ]]M × {0, 1}, we conclude that s1 ∈ opt⪰′([[φ]]τ(M)).

Now we are ready to show the completeness of DLDS2. Given the previous
two propositions, it suffices to show that the canonical model for DLDS2 is
transitive and almost-limited.

Lemma 11. If w is a DLDS2-maximal consistent set, then the canonical model
for w, M(w) = (W,⪰, V ), is transitive and almost-limited.

Proof. The transitivity follows from Proposition 10. To show that M(w) is
almost-limited, it suffices to show that, for all ∅ ̸= U ⊆ W , there is s ∈ U
such that, for all t ∈ W , if t ⪰ s then t ⪰ u for all u ∈ U . Suppose, toward a
contradiction, that for all s ∈ U , there are s∗ ∈W and s† ∈ U such that s∗ ⪰ s
and s∗ ̸⪰ s†. We are going to show that for some t ∈ U , t∗ ⪰ y for all y ∈ U
(which contradicts that t∗ ̸⪰ t†).

For each s ∈ U , since s∗ ⪰ s, by the definition of the canonical model, there
is φs ∈ s∗ ∩ s such that S(Nom(s∗)/φs) ∈ w. Note also that, since φs ∈ s∗,
□(Nom(s∗) → φs) ∈ w by Lemma 6. Thus, it follows from Proposition 7 that∧

s∈U
S
(
Nom(s∗)/φs

)
→

∨
t∈U

S
(
Nom(t∗)/

∨
s∈U

φs

)
∈ w

Thus,
∨
t∈U

S
(
Nom(t∗)/

∨
s∈U

φs

)
∈ w. This implies that there is t ∈ U such that

S(Nom(t∗)/
∨
s∈U

φs) ∈ w. For each y ∈ U , since
∨
s∈U

φs ∈ t∗ ∩ y, t∗ ⪰ y by the

definition of the canonical model. This contradicts the fact that t∗ ̸⪰ t†.

Theorem 3. DLDS2 is sound and weakly complete with respect to
(1) the class of all transitive and limited preference models;
(2) the class of all transitive, limited, and total (thus reflexive) preference models;
(3) the class of all transitive and total preference models.

Proof. (1) Straightforward. (2) follows from (1) and Proposition 6.
(3) The soundness follows from Propositions 8, 3(1), and 5(2). For complete-

ness, note that LTC ⊆ LTRCL. Thus, the completeness of DLDS2 with respect to
the class of all transitive and total preference models follows from (2).

Proposition 13. The theoremhood problem in DLDS2 is decidable.
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L(= DLDS0) // LT(= DLDS1) // LTL(= DLDS2) LTRCL

LRCL LTR LTC

Fig. 5. Summary of the soundness and completeness results, where the same convention
is adopted as in Fig. 2.

7 Discussion and Conclusion

In this paper, following the previous work on deontic sufficiency in deontic logic,
we introduced and studied the logics of conditionals S(ψ/φ) which state that
ψ is a sufficient condition for achieving ideality in the context of φ. For the
semantics of the operator S(ψ/φ), we adopted the preference semantics used in
DDL. Like in DDL, preference relations may exhibit different properties. In this
paper, we considered four such properties, i.e., reflexivity, totalness, transitivity,
and limitedness, and we comprehensively analyzed the logics generated by differ-
ent combinations of the four properties. Our results are summarized in Fig. 5. In
general, we obtained three logics DLDS0 – DLDS2 with increasing deductive
power, which is analogous to the situation in DDL (where we also have three
systems [18]: E, F, and G). However, the main difference is that the operator
S(ψ/φ) is monotonic, which may make it less interesting than the conditional
obligation operator O(ψ/φ) as the latter can be used for nonmonotonic reason-
ing. Another difference is that our language L does not distinguish between the
class of all preference models and the class of limited preference models. Thus,
in a certain sense, our language L can be said to be “weaker” than the language
of DDL.

The method used in our completeness proof is, to the best of our knowledge,
new in the DDL literature. The general idea is to reduce the truth of the dyadic
operator S(ψ/φ) to that of a set of monadic operators. Our method has some
advantages. First, the construction of the canonical model is relatively straight-
forward. Second, it allows us to obtain completeness results for different model
classes in a modular way. Last, since the canonical model is finite, we automati-
cally derive the decidability of our logics. However, this method seems to be hard
to be adapted to obtain strong completeness results. For this, we may need more
involved constructions of the canonical model, as we have seen in the literature
[7,8,12,13].

For future work, one direction is to incorporate the conditional obligation in
the language, which will enable us to reason about both deontic sufficiency and
deontic necessity. One can also explore different truth definitions for the operator
S(ψ/φ), e.g., employing the maximality condition instead of optimality.
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