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Abstract. Portfolio selection is a fundamental task in finance and it is
to seek the best allocation of wealth among a basket of assets. Nowadays,
Online portfolio selection has received increasing attention from both
AT and machine learning communities. Mean reversion is an essential
property of stock performance. Hence, most state-of-the-art online port-
folio strategies have been built based on this. Though they succeed in
specific datasets, most of the existing mean reversion strategies applied
the same weights on samples in multiple periods and considered each
of the assets separately, ignoring the data noise from short-lived events,
trend changing in the time series data, and the dependence of multi-assets.
To overcome these limitations, in this paper, we exploit the reversion
phenomenon with multivariate robust estimates and propose a novel
online portfolio selection strategy named “Weighted Multivariate Mean
Reversion” (WMMR) El Empirical studies on various datasets show that
WMMR has the ability to overcome the limitations of existing mean
reversion algorithms and achieve superior results.

Keywords: portfolio selection - online learning - multivariate robust
estimates.

1 Introduction

Portfolio selection, which has been explored in both finance and quantitative fields,
is concerned with determining a portfolio for allocating the wealth among a set of
assets to achieve some financial objectives such as maximizing cumulative wealth
or risk-adjusted return, in the long run. There are two main mathematical theories
for this problem: the mean-variance theory [22] and the Kelly investment [17].
Mean-variance theory proposed by Markowitz trades off between the expected
return (mean) and risk (variance) of a portfolio in a single-period framework.
Contrarily, the Kelly investment aims to maximize the expected log return
in a multi-period setting. Online portfolio selection (PS), which follows the
Kelly investment and investigates the sequential portfolio selection strategies, is
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attracting increasing interest from Al and machine learning communities. Based
on the Kelly investment model, some state-of-the-art online PS strategies [10]
assume that current best-performing stocks would also perform well in the next
trading period. However, empirical evidence indicates that such assumptions may
often be violated especially in the short term. This observation of an asset’s price
tends to converge to the average price over time, leading to strategies of buying
poor-performing stocks and selling those with good performance. This trading
principle is known as the “mean reversion” principle.

In recent years, by exploiting the multi-period mean reversion principle, several
online PS strategies [B [18], [13] have been proposed and achieved encouraging
results when applied to many datasets. However, the existing studies ignored the
data noise from short-lived events, trend changes in the time series data, and the
dependence of multi-assets [21], [I8], while these are important properties of stock
movements. To overcome these drawbacks, different methods have been proposed
[26]. For instance, a new PS strategy has been proposed, which more accurately
estimates parameters via subset resampling. This approach is particularly useful
when the number of assets is large. An ensemble learning method has also
been proposed for Kelly’s growth optimal portfolio to mitigate estimation errors
[24]. Additionally, [28] introduced a novel Relation-aware Transformer (RAT)
method to simultaneously model complex sequential patterns and varying asset
correlations for PS.

In this paper, we propose a multi-period online PS strategy named “Weighted
Multivariate Mean Reversion” (WMMR) without requiring subset resampling
demanding thousands of loops or model training requiring sufficient data. The
basic idea of WMMR is to update the next price prediction via robust multivariate
estimates with exponential decay. By capturing the correlation between multiple
assets, robust multivariate estimates could reduce or remove the effect of outlying
data points, which are produced by the short-lived events in the financial market
and may lead to incorrect forecasts or predictions. We determine the portfolio
selection strategies via online learning techniques. The experimental results
show that WMMR can achieve greater profits than several existing algorithms.
Moreover, it is robust to different parameter values and its performance is
consistently well when considering reasonable transaction costs.

2 Problem Setting

Let us consider a financial market with m assets for n periods. On the ¢ period,
the assets’ prices are represented by a close price vector p; € R and each
element p; ; represents the close price of asset 7. The changes of asset prices for n
trading periods are represented by a sequence of non-negative, non-zero price
relative vectors xi,...,x, € R7". Let us use x" = {x1,...,X,} to denote such

a sequence of price relative vectors for n periods and z;; = %. Thus, an
1

investment in asset i on the t*" period increases by a factor of Tt
At the beginning of the t** period, we diversify our capital among the m
assets specified by a portfolio vector by = (b1, ..., bsm), where b, ; represents
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the proportion of wealth invested in asset i. Typically, we assume the portfolio
is self-financed and no short selling is allowed, which means each entry of a
portfolio is non-negative and adds up to one, that is, by € A,,, where 4,, =
{by : b, € R, 3" by; = 1}. The investment procedure is represented by a
portfolio strategy, that is, b; = %1 and following sequence of mappings f :
RT(FU — Ap,t=2,3,..., where by = f(x1,...,%;_1) is the t! portfolio given
past market sequence x!~! = {x;,...,x;_1}. Let us denote b™ = {by,...,b,}
as the portfolio strategy for n trading period.

On the t" trading period, an investment according to portfolio b, results
in a portfolio daily return s;, that is, the wealth increases by a factor of s; =
blx; = 2111 byixy;. Since we reinvest and adopt price relative, the portfolio
wealth would grow multiplicatively. Thus, after n trading periods, the investment
according to a portfolio strategy b,, results in portfolio cumulative wealth S,,,
which increases the initial wealth by a factor of [];_; bl'x;, that is,

S = So [[ b %, (1)
t=1

where Sy denotes the initial wealth and is set to $1 for convenience.

Finally, let us formulate the online portfolio selection problem as a sequential
decision problem. In this task, the portfolio manager is a decision maker whose
goal is to make a portfolio strategy b™ on financial markets to maximize the
portfolio cumulative wealth .S,,. He computes the portfolios sequentially. On each
trading period t, the portfolio manager has access to the sequences of previous
price relative vectors x'~1 = {x1,...,%;_1}, and previous sequences of portfolio
vectors b1 = {by,...,b;_1}. Based on historical information, the portfolio
manager computes a new portfolio vector b; for the next price relative vector
X, where the decision criterion varies among different managers. The resulting
portfolio b, is scored based on the portfolio period return of S;. The procedure
repeats until the end of trading periods and the portfolio strategy is finally scored
by the cumulative wealth S,,.

3 Related Work and Motivation

3.1 Related Work

Following the principle of the Kelly investment [I7], many kinds of portfolio
selection methods have been proposed. Online learning portfolio selection maxi-
mizes the expected return with sequential decision-making. The most common
and well-known benchmark is the Buy-And-Hold (BAH) strategy, that is, one
invests his/her wealth in the market with an initial portfolio and holds it within
his/her investment periods. The BAH strategy with a uniform initial portfolio
by = (1/m,1/m,...,1/m)7 is called uniform BAH strategy, which is adopted
as market strategy producing the market index in our study. Contrary to the
static nature of the BAH strategy, active trading strategies usually change port-
folios regularly during trading periods. A classical active strategy is Constant
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Rebalanced Portfolios (CRP) [6], which rebalances a fixed portfolio every trading
period. The Best CRP (BCRP) is the best CRP strategy over the entire trading
period, which is only a high-sight strategy.

Several portfolio strategies assume that past well-performing securities would
still perform well in the future. These strategies are called momentum strategies,
which approximate the expected logarithmic cumulative return of BCRP. The
portfolio in Universal portfolios (UP) [5] is the historical performance weighted
average of all possible CRP experts. The Semi-Universal Portfolio(SUP) strategies
with transaction cost|[I4] consider Cover’s moving target portfolio with occasional
rebalancing. Ezponential Gradient (EG) [12] is based on multiplicative updates.

Empirical evidence indicates that opposite trends may often happen in the
financial market, which is a common and famous principle called mean reversion.
Based on the idea of mean reversion, [3] proposed the Anticorrelation (Anticor)
strategy. It calculates a cross-correlation matrix between two specific market
windows and transfers the wealth from winning assets to losing assets, and adjusts
the corresponding amounts based on the cross-correlation matrix. [2I] proposed
the Passive Aggressive Mean Reversion (PAMR) strategy, which only considers
the single periodical mean reversion property. [9] proposed the Passive Aggressive
Combined Strategy (PACS), which combines price reversion and momentum
via a multipiece-wise loss function. [I8] proposed the Online Moving Average
Reversion (OLMAR) strategy, which exploits mean reversion’s multi-period
nature via moving average prediction. [I3] proposed the Robust Median Reversion
(RMR) strategy which exploits the reversion phenomenon by robust L;-median
estimator. All in all, mean reversion is crucial for designing online portfolio
selection strategies.

3.2 Motivation

The existing moving average reversion strategies, i.e. OLMAR [I§] and RMR
[13], exploits the mean reversion in the following ways. OLMAR assumes that
the stock price of (£ + 1) period will revert to the moving average (mean) of
the prices in the previous periods with a w-window, that is, the update for
prediction becomes P11 = i Zz;fw 41 Pi- Considering the noises and outliers
in real market data, RMR exploits the multi-period reversion property via the

robust median reversion, that is,

t—w+1
Bros = argmin 3 [lpe — sl )
K i=t
where || - || denotes the Euclidean norm. The robust median is a L;-median in

statistics [27], which is of less sensitivity to the outliers and noisy data compared
to the mean. Empirical results of RMR on various datasets are significantly better
than OLMAR, which inspires us to explore the robust estimates [I5] [, [16] in
online portfolio selection.

We assume that the stock prices p; satisfy p; = p, + o+ © us, where p, =
(e1y s fitm) € R™ and wy = (ug1, .., Us,m) € R™ represent the real price
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behind and the noise contaminating the real price respectively. It is noticed that
© represents the element-wise multiplication. Let uy 1, ..., usm for t =1,...,n are
ii.d with the density f. oy = (04,1,...,0¢,m) € R is the unknown parameter to
measure the contamination scale on the corresponding asset. Thus, the density

of p; can be defined as a% f (%) Note that p;, p, and o are all vectors

and the above operations are element-wise. The maximum likelihood estimation
(MLE) of p, and o is:

(ﬂt,é't):argmaxi H f(pl_“t>

pnor o o
ks i=t—w+1 t

3)

t
1 -
:argmin{ E p<m>+logat},
M0t n . Ot
i=t—w-+1
where p(.) = —log f(.), since f(.) is everywhere positive and the logarithm

is an increasing function. If p(.) is differentiable and p”(0) exists, first order
optimization for yields:

ﬂt = (Z§=t—w+1 pin(ma;,,ﬂt))/(ZE:t—wH Wl(pi;f‘t )),

(4)

~2 1 t Pi—[ ) A \2
Oy = 4 2ui=t—w+1 Wy ( 5 t) (pz - “t) s

"(z)/xz if x#0
p"(0) if x=0"
p .
_[—d@)z i a#0
W2(@) = )2 it z=0°
We use f1, as the updated prediction for p;y. It’s noted that pa;t“t is the
outlyingness measure adjusting the weights on sample p;41 in i-th period and
the next estimated stock price as a weighted mean. In general W (z) is a non-
increasing function of |z|, so outlying observations will receive smaller weights. It
is worth noting that Wy (z) and Wa(x) are equal except when x = 0.

. 'In most cases of interest, Table 1. Examples of W(d;) functions
it is known or assumed that

Wy(z) =3 *

~

where

W (d;

some form of dependence be- (d:)
tween stocks exists, and hence  HUBER {llc/ Vi, \/\/?5 :
that considering each of them P RCA

. BI A (1 - ﬁ) ) \/(Tz <k
separately would entail a loss SQUAR 0, Vi, > k
of information. In the univari- 1, d; <4
ate case, 2Pt measures the SHR q(di), 4 <d; <9

7t 0 ,di>9

univariate outlyingness. In the
multivariate case, the squared
Mahalanobis Distance [7] be-
tween the vectors p; and u, with respect to the covariance matrix X' is used
to measure the multivariate outlyingness, which is defined as d;(p;, g, X¢) =
(pi — ) 'S, Ypi— 1), that is, the normalized squared distance between p; and

q(d) = —1.944 + 1.728d — 0.312d* + 0.01643
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p,;. In general, the dependence of multiple assets is taken into consideration and
we derive the updated prediction for the mean and covariance matrix of return

by MLE.

Assumption 1 Suppose that: i. The observations p; are the i.i.d samples
from multivariate probability density f(pi, py, X¢). 8. The probability density
f(pivl'l’ta Et) has the form Of f(pi?p‘bzt) = \/%h(di(piaﬂn Et))7 where |2t|

is the determinant of 3. 4. In f is differentiable.

Theorem 1. Under Assumption[l] the updated prediction is given by:
= Zf:tfwﬂ W(di)pi/z;?:tfw+l W(d;),

2= % Z::t—w-‘rl W (d;) (pi — 1) (pi — ﬂt)T '

where W (d;) = (=2Inh(dy))" and d;(ps, fu;, 3¢) = (pi — fo,) 27 (ps — i), which
are different from the univariate case.

()

Proof. Let p; are the i.i.d sample from f(p;, p;, X¢) = ﬁh(di(pi,ut,ﬁt)),
fori=t—w+1,...,t. The MLE of pu, and X} is

R 1
[y, Y, = argmax ———
' weoze [Tl

I 7@, 20)). (6)

i=t—w+1

It is noted that Since h is everywhere positive and the logarithm is an increasing
function, thus, EqJf] can be written as

¢
fi,, 3, = argminwn | X,| + Z p(ds), (7)
By X i=t—w+1

where p(d;) = —2Inh(d;) and d; = d (pi,ﬂt,ﬁ]t) = (pi — ) 2 H(ps — 1y)-
Differentiating with respect to p, and X, yields

t

SO W) () =0, S0 W) (pi o) (pi— ) =

1=t—w+1 1=t—w+1

with W (d;) = p/(d;). If we knew f(.) exactly, the W (d;) would be “optimal”, but
since we only know f(.) approximately, our goal is to find estimators that are
“nearly optimal”. For simplicity, we will consider two cases:

— Multivariate Normal: f(p;, p;, X¢) = %\/g‘di), then W (di) is a constant.

— m (the number of stocks) multivariate Student distribution with v degrees:

fpi, g, 2e) = %7 then W(d;) = (m +v)/(d; + v). If the value of

v is large, then W(d;) is a constant; v is 0, then W(d;) = m/d;.
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In our paper, we use classical functions (Huber|2], Bisquare[II], and the
weighting function (we shall use SHR here) employed for time series estimation
[23]) in robust regression to approximate the true W(d;) under unknown f(.), as
in Table [I] These functions assign smaller weights to outlying observations, and
some may even be removed (except for the Huber function). In a time series of
financial data, there will be trend changes that cannot be ignored even in a short
period. Thus, the exponential decay is adopted in Eq[f] that is,

o= (Tic s (1= @) DWW (d)/(Tieyyyr (1= @)W (dy)),
(®)

3 : o \T

= e w W) (Pi = ) (Pi — )

where « is the decaying factor. fi, is the predicted price vector for the (t + l)th

period.

4 Multi-variate Robust Mean Reversion

4.1 Formulation

The proposed formulation, WMMR, is to find the optimal portfolio by weighted
multivariate mean reversion and passive-aggressive online learning. The basic idea
is to obtain the estimate of the next price relative x;11 via robust multivariate
estimates, and then maximize the expected return b”x;,; with the hope that
the new portfolio is not far away from the previous one.

Most of W (d;) in Table [1]depend on the constant k € R. Here a rescaled d;,
i.e., d;/S is applied to the W (d;), that is,

By = (Zfztfziﬂrl (1= )" P (di/$)) /(s (1 = a):iW(dz‘/s))’
B = 1wY e (1 @)W (da/S) (b — i) (b — )"

(9)

where § = MED([di— w1, -+, di]) and d(i, iy, 3¢) = (Pi — fy) "7 (Pi — )

In this formulation of WMMR, different W (d;) and X, are discussed as follows:

— Case 1: W(d;) =1, 37, is not considered and o = 0.

— Case 2: W(di):\/%,ﬁ'tzIandazO.

— Case 3: W(d;) is the HUBER weighting function, ¥, is computed via Eq.5
and « is a parameter.

— Case 4: W(d;) is the BISQUA weighting function, 3, is computed via Eq.5
and « is a parameter.

— Case 5: W(d;) is the SHR weighting function, ¥, is computed via Eq.5 and
« is a parameter.
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Algorithm 1 WMMR(py, pt—1, - - -, Pt—w+t1,7s K, @)

Input: Current stock price sequence p¢, pt—1 , - - - , Pt—w+1; Loleration level 7;
Iteration maximum K; Decaying factor a.
Output: estimated X;41
Procedure:
Initialize j ¢ 0, ft, + 21 and ¥, =1
The estimation of next period price: Piy1 + ft,
while j < K do
Calculate the following variables:

—_

The multivariate outlyingness: d; < (pi — ft,)" 3, (pi — f,) (i = t-w+1,...,t)
The error scale: S < MED([dt—w+1, -..dt])

The weight: W; <~ W (d;/S) (i = t-w+1,...,t)

The estimation of f1, in 5 iteration :

—

[y

fy, — Z (1—a)  "Wipi/ Z (1—a)~'W;

i=t—w+1 i=t—w+1

12:  The estimation of 3 in j*" iteration :

t
X+ % > Wilpi— i) (pi — i)
i=t—w+1

if |, — Pey1| < 7 |fr,| then break

end if
13: ﬁt+1 — ﬂt
14: end while
15: The price relative vectors in (t 4 1) period: X;11 < Pr+1/Dt

Note that in Case 1, 1, = % Z’;:t_wﬂ P;, which is the moving average mean

used in OLMAR; In Case 2, f1, = (Zzzt_wH m)/(g:t_w+1 m)v
which is the robust median used in RMR. OLMAR and RMR strategies are

sub-samples of WMMR. In this paper, the effectiveness of Case 3, Case 4, and
Case b are mainly explored, which are denoted by WMMR-HUBER, WMMR-BIS,
and WMMR-SHR respectively.

4.2 Online Portfolio Selection

bT)A(t+1 Z €,

bT1 =1 (10)

1 0

bt = argugn L b bl + 5 [f? st {
where X;41 is the price relative estimated via weighted multivariate mean reversion
and € > 0 is the regularization parameter and is manually tuned. The above
formulation attempts to find a portfolio satisfying the condition of b”%;; > €
while not far away from the last portfolio. On one side, when the expected return
is larger than a threshold ¢, the investment strategy will passively keep the last
portfolio. On another side, when the constraint b7%;,; > ¢ is not satisfied, the
portfolio will be aggressively updated by forcing expected return is larger than
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the threshold e. By adding the regularization ||b||* under the constrain b71 =1,
we push the new portfolio move forward to %n and prevent the solution from
over-fitted.

Algorithm 2 Online Portfolio Selection(e, w, X¢41, by)

1: Input: Reversion threshold: € > 1; Window size: w; Predicted price relatives :X¢41;
Current portfolio: by.
Output: Next portfolio byy1.
Procedure: Calculate the following variables:
(1+9)€*’A<?+1 (bt +61) ))
[[%e+1-2era2]]”

Update the portfolio: b = ﬁlg[bt + Ne1 (Reg1 — Te11)] + ﬁ

Ne+1 = max (0,

1

m

Normalize bs: byy1 = argmin ||b — b1

m

Algorithm 3 Portfolio Selection with WMMR,

1: Input: Reversion threshold: € > 1; Window size: w; [teration maximum k; Toleration
level 7; Decaying factor o; Market Sequence P™.
Output: Cumulative wealth after nt* periods
Procedure:
Initialization: Initial portfolio: by = %1; Initial wealth: Sop = 1.
for t = w to n do

Predict next price relative vector according Algorithm

)A(t+1 — WMMR(pt, Pt—-1, ..., Pt—w+1,T, k, Oé).
7:  Update the portfolio according Algorithm

bi+1 < Online Portfolio Selection(e, w, X¢+1, be).

8: Receive stock price: Py41.
9: Update cumulative return: Sy < Si X (thT%).
10: end for

4.3 Algorithms

From the formulation of WMMR(Eq. [9)), the weights W (d;/S) depend also
on ft, and i}, hence Eq. |§I is not an explicit expression for fi, and 3. The
solution of weighted multivariate estimation could be calculated through iteration,
and the iteration process is described in Algorithm [I Once the constraint
I “tH1 < 7 ||y ||y is satisfied, or the number of iteration is larger than the
threshold k, the iteration is terminated, where 7 is a toleration level and k is the
maximum iteration number.

The constrained optimization problem can be solved by the technique
of convex optimization [4]. The solution of (10} without considering the non-
negativity constraint is

0
(1+0)

; (11)

I

1 . _
by = 150 by + n(Xex1 — Tep11)] +

+0)67x$+1(bt+91))

(1
where 1 = max(0 - 4
N ©, I%er1 =211



10 B. Wu et al.

Proof. Define the Lagrangian of the problem to be:

1 1 N
L(b,n,A) =5 b= b[* + 50 [b* —n (b =) + 21D 1), (12)
Setting the partial derivatives of £ with respect to the elements of b to zero,

yields:
oL

Multiplying both sides of Eq. With 17, and 1"b =1, 171 = m, we can get
T A
A= f% + %1T>A<t+1- Define Z;41 = % as the mean of the price relatives

in the period (¢ + 1)"™. Then, A can be rewritten as A = —L2 4+ 0244y, and the
solution for £ is
bt 01 n
b =
110 (1+0m 1+0

()A(t_;,_l - i't—&-l]-)' (14)

a3lb=b.|* | a%5|b|?
on on

Plugging Eq. ! to , noting that, %IT(fq_H —T4111) =0,

yields: Thus,

0% |b—by|*> 94 |b|? 1 2
= — Tl 15
o + o (1+0)77\|Xt+1 Tl (15)

%I b—e .
Plugging Eq. (14| to %;b), yields

877()2?+1b — 6) AT ( bt 01

2 N - 2
on =%l g + m) —€+ mﬁ”xtﬂ — Tl (16)

Plugging the expression of A and Eq. [14| to %ﬁbfl) , we get,
oN1Tb - 1)
on
From Eq. 15 Eq. [I6] and Eq. [I7}, we get,

oL . b 01 n . _ 2
0= — =€e—%/, - — 1 18
o € Xt+1(1+9 + 1+9> (1+9)||Xt+1 T 1, (18)

—0, (17)

then,
- (1+6)e—x7 (b, +61) (19)
e+t — To411 )

It is noted that n > 0, so

(1+6)e—xF (b, +061)

[%e+1 — T4

) (20)

n = max(0,

For simplicity, the non-negativity constraint of portfolio b is not considered
in the above formulation. It is possible that the resulting portfolio calculated
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from Eq. is not non-negative. Thus, the projection of the solution to the
simplex domain [§] is necessary, as shown in Algorithm [2| Finally, the online
portfolio selection algorithm based on the Weighted Multivariate Mean Reversion
is described in Algorithm |3} Unlike the regret minimization approaches, the
WMMR strategy takes advantage of the statistical properties (mean reversion) of
the financial market, which is difficult to provide a traditional regret bound. [3]
failed to provide a regret bound for the Anticor strategy, which passively exploits
the mean reversion idea. Although we cannot prove the traditional regret bound,
the proposed algorithms do provide strong empirical evidence, which sequentially
advances the state of the art.

5 Experiments

The effectiveness of the proposed port-

) T Table 2. Summary of the four real datasets
folio strategies is tested on four pub-

in our numerical experiments.

liC datasets fI‘Om I‘eal markets Whose dataset  Market Region Time frame Trading days Assets
)
1 3 o o 1 NYSE(o) Stock US  Jul.3rd 1962 Dec.31st 1984 5651 36
lnforma’tlon 18 Summarlzed m Table NYSE(N) Stock US  Jan.lst 1985-Jun.30th 2010 6431 23
3 3 DJIA Stock  US  Jan.14th 2001-Jan.14th 2003 507 30
NYSE(O)’ Wthh 15 a benChmark MSCI Index Global Apr.1st 2006-Mar.31st 2010 1043 24

dataset pioneered by [5]. Considering
amalgamation and bankruptcy, the second dataset NYSE(N) consists of 23 stocks
from dataset NYSE(O) including 36 stocks and was collected by Li et al. [19].
The third dataset is DJIA collected by Borodin et al. [3]. MSCI is a dataset that
is collected from global equity indices that constitute the MSCI World Index.
Several research studies and the state-of-art model RMR also utilize these four
datasets in their experiments.

Cumulative wealth is the most common and significant metric and is used
to measure investment performance in this paper. To be consistent comparison
with other different methods, we implement the proposed WMMR-HUBER (with
k = 0.95), WMMR-BIS (with k£ = 3.85), WMMR-SHR and set the parameters
empirically without tuning for each dataset separately as follows: w = 5, € = 100,
a = 0.85 and € = 0.1. It is worth noting that choices of parameters are not always
optimal for WMMR, though these parameters can be tuned to obtain optimal
results. The sensitivities of these parameters will be evaluated in the next section.
It is necessary to note that the parameters in Algorithm 1, iteration maximum
K, are fixed to 50.

5.1 Cumulative Wealth

The cumulative wealth achieved by various methods is summarized in Table
On dataset NYSE(O), NYSE(N) and DJIA, WMMR (WMMR-HUBER, WMMR-
BISQUARE, and WMMR-SHR) outperform the state-of-the-art. On dataset
MSCI, WMMR beats the existing algorithm RMR. By tuning different values
of parameter w, €, «, and @ for the corresponding dataset, we also refer to the
best performance (in hindsight) shown as WMMR(max) in Table [3| Besides,
WMMR (max) is showing the potential of the proposed method by tuning the
optimal parameter.
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Table 3. Cumulative wealth achieved by
various strategies on the four datasets.

Finally, Table @ shows some statis- Methods NYSE(O) NYSE(N) DJIA MSCI
tics of WMMR. We only present glaikett . Ej‘;’z 51;?9(15 ?Zg ‘1)‘?(1)
. est-stoc 54. X)) . D

the results achleved by WMMR— BCRP 250.60 120.32 1.24 1.51
HUBER since the effect of WMMR- UP 26.68 3149 081 092
EG 27.09 31.00 081 0.93

BISQUARE and WMMR-SHR, are (g 10991 2159 153 0.86
quite similar to that of WMMR. From B* LOSE+09 4.64E+03 0.68 2.64
the results, a small p-value reveals BNN 335E+11 6.80E+04 0.88 13.47
i CORN 1.48E+13 5.37E+05 0.84 26.19

that WMMR’s excellent performance  anticor 241E+08 6.21E+06 220 3.22
iS Owed to the Strategy principle but PAMR 5.14E+15 1.25E+06 0.68 15.23
t due to luck CWMR 6.49E+15 1.41E+06 0.68 17.28
not due to luck. OLMAR 4.04E+16 2.24E+08 2.05 16.33
RMR L.64E+17 3.25E+08 2.67 16.76

TCO 1.35E+14 9.15E+06 2.01 9.68

5.2 Computational Time WMMR-HUBER 4.14E 17 4.11E {08 3.14 17.65
WMMR-BIS  4.53E+17 3.75E+08 2.91 17.02

It is widely known that computational =~ WMMR-SHR  3.0E+17 3.43E+08 3.10 17.42
WMMR(max)  5.83E+17 3.02E+09 3.15 25.82

time is important to certain trading
environments, we evaluate the computational time on one core of an Intel Core i5
2.3 GHz processor with 16GB, using Python on MacBook Pro. Experiments show
that it takes 57.38s, 101.65s, 526.2s, and 443.3s for DJIA, MSCI, NYSE(O),
and NYSE(N) respectively, which means that the computational time for each
of trading periods is less than 0.1s. The computational time is acceptable even
in the scenario of high-frequency trading, which occurs in fractions of a second.
Such time efficiency supports WMMR’s large-scale real applications.

5.3 Parameter Sensitivity Table 4. Statistical test of our algorithms.

Firstly, the effect of sensitivity param- S.tat' Attr. NYSE(O) NYSE(N) DJIA MSCI
eter w on cumulative wealth is eval- 7% 5651 6431 507 1043

MER(WMMR) 0.0078 0.0037  0.0028 0.0030
uated, in Figure[I] It is obvious that — MER(Market) 0.0005  0.0005 -0.0004 0.0000
in most cases, except NYSE(N), the i tatistics 152249  7.1985 2.2059 3.9214
cumulative wealth decreases with in-  p-value 0.0000  0.0000 0.0278 0.0000

creasing w. Secondly, the effect of sensitivity parameter € on cumulative wealth
is evaluated. From Figure 2] The growth of cumulative wealth is sharp as € in-
creases and turns flat when e exceeds a threshold. Finally, the effect of sensitivity
parameter 6 and o on cumulative wealth are evaluated in Figure [3| and Figure
[ From the above observation, it is clear that WMMR is robust for different
parameters and it is convenient to choose satisfying parameters.

DJIA mscl NYSE(O)

NYSE(N)

+ WMMR
—— Market
— BCRP

+ WMMR
—— Market
— BCRP

h Achieved

+— WMMR
—— Market
BCRP

+ WMMR
Market
~— BCRP

10°

Total Wealth Achieved

Total Wealth Achieved
Total Wealth Achieved

Total Wea

1520 25 0 3 4
w

Fig. 1. Parameter sensitivity of WMMR w.r.t. w with fixed ¢ = 100, = 0.85,6 = 0.1
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Fig. 2. Parameter sensitivity of WMMR w.r.t. € with fixed w = 5, = 0.85,0 = 0.1
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Fig. 3. Parameter sensitivity of WMMR w.r.t. a with fixed w = 5,e¢ = 100,60 = 0.1
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Fig. 4. Parameter sensitivity of WMMR w.r.t. § with fixed w = 5,¢ = 100, « = 0.85

5.4 Risk-Adjusted Returns

The risk in terms of volatility risk and drawdown risk and the risk-adjusted return
in terms of annualized Sharpe ratio are evaluated in the experiment, taking two
benchmarks (Market and BCRP) and two state-of-the-art algorithms (OLMAR
and RMR) for comparison. The result of Risk-Adjusted Returns is shown in
figure [f] Though the high return is associated with high risk, WMMR achieves
the best performance in terms of the Sharpe ratio.

5.5 Transaction Cost Scalability

For a real-world application, the transaction cost is an important practical issue
for portfolio selection. Ignoring this cost may lead to aggressive trading and bring
biases into the estimation of returns. [25] proposed an approximate dynamic
programming (ADP) method to tackle the multi-asset portfolio optimization
problems with proportional transaction costs. [20] proposed a novel online portfo-
lio selection framework, named Transaction Cost Optimization(TCO) to trade-off
between maximizing expected log return and minimizing transaction costs. Here,
the proportional transaction cost model proposed in [3] is adopted to compute
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the cumulative wealth:

Sog (bt -Xt) X 1-— % X ; ‘btﬂ‘ — l;tfl,i

where, v is transaction cost rate v € (0,0.1) in the experiments, ZA)(t_Li) =
bi_1,i%¢_1,4
bl x¢_1

From Figure[6] we can observe that WMMR can withstand reasonable transaction
cost rates, and can beat the two benchmarks in most cases.

. The cumulative wealth with transaction cost is plotted in Figure

o
S

Market 7 Market Market
A BCRP 1

3 OLMAR . 3 OLMAR 80
1 RMR

I

S
g
®

=2 WMMR

IS
S
o

w
o
MDD Risk(%) }

Sharpe Ratio
~

N
o

Volativity Risk(%) }
~

-
15

s

I oy 20 i

4 n L 8

NYSE(O) NYSE(N)  DJIA MsCl NYSE(O) NYSE(N)  DJIA [l O NYSE©) NYSE(N) DJIA MsCl
Datasets Datasets Datasets

o

Fig. 5. Risk and risk-adjusted performance of various strategies on the four different
datasets. In each diagram, the rightmost bars represent the results achieved by WMMR.

DjiA mscl NYSE(0) NYSE(N)
—a WMMR N —+ WMMR

S — BCRP

Total Wealth Achieved

Total Wealth Achieved

04 o 04 06
Transaction Costs Transaction Costs

Fig. 6. Scalability of the total wealth achieved by WMMR with respect to transaction
cost rate

6 Conclusion

Based on the robust multivariate estimates and PA online learning, a novel
online portfolio selection strategy named “Weighted Multivariate Mean Rever-
sion” (WMMR) is proposed in this paper. In the exploitation of “Multi-period
Multivariate Average Reversion”, WMMR takes data noise, trend changes, and
the dependence of multi-assets into full consideration. Several cases of weighting
functions with exponential decay are investigated, and the results demonstrate
the effectiveness of WMMR. Moreover, extensive experiments on the real market
show that the proposed WMMR can achieve satisfying performance with an
acceptable run time.
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