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Abstract

The recent success of Automatic Speech Recognition (ASR)
is largely attributed to the ever-growing amount of training
data. However, this trend has made model training prohibitively
costly and imposed computational demands. While data prun-
ing has been proposed to mitigate this issue by identifying a
small subset of relevant data, its application in ASR has been
barely explored, and existing works often entail significant
overhead to achieve meaningful results. To fill this gap, this
paper presents the first investigation of dynamic data pruning
for ASR, finding that we can reach the full-data performance by
dynamically selecting 70% of data. Furthermore, we introduce
Dynamic Data Pruning for ASR (DDP-ASR), which offers sev-
eral fine-grained pruning granularities specifically tailored for
speech-related datasets, going beyond the conventional pruning
of entire time sequences. Our intensive experiments show that
DDP-ASR can save up to 1.6x training time with negligible
performance loss.

Index Terms: automatic speech recognition, data pruning,
learning efficiency

1. Introduction

In the speech domain, the increasingly larger training datasets
have significantly contributed to remarkable performance
gains [1-3]. However, it also poses substantial challenges
to training with limited computational resources. Some prior
works have revealed that not all training instances are equally
important for model training [4—6]. This has led to inspiring ef-
forts to improve the training efficiency of neural networks by ei-
ther eliminating redundant data or prioritizing training instances
based on their informational complexity [7-9]. Many recent
works have also proposed diverse data pruning approaches to
enhance training efficiency across various domains, such as
computer vision [10-13] and natural language processing [14—
16].

Despite the potential benefits of data pruning, it has re-
ceived limited attention in the domain of Automatic Speech
Recognition (ASR). In a recent study, Boris et al. [17] intro-
duced a pruning approach to first group similar instances to-
gether through clustering to minimize the dataset size while
maintaining its representative characteristics. This approach ex-
plores similarities in the multidimensional feature space of a
pre-trained large audio model. However, it requires multiple tri-
als to derive more precise representations before data pruning,
leading to additional overhead costs. To address this issue, for
the first time, we introduce Dynamic Data Pruning (DDP) [11,
18, 19] in the context of ASR. DDP is a recently emerged data-
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pruning technique where only a subset of data is sampled and
fed into the model throughout the training process.

Specifically, we begin by conducting a comprehensive in-
vestigation into DDP for ASR pre-training, using various prun-
ing criteria. Our findings reveal an encouraging discovery:
through the adoption of a curriculum learning strategy [20], we
are able to train an ASR model using only 70% of the data while
achieving performance on par with that of the full-data training
approach. To further enhance the efficacy of data pruning in
ASR, we delve into a series of finely-tuned granularities metic-
ulously crafted for speech-related data pruning. These granu-
larities encompass the removal of individual time points as well
as segments of temporal chunks. Our results demonstrate that
by selectively removing consecutive samples, we can further
improve the data efficiency of ASR. These empirical investi-
gations culminate in the development of a novel data pruning
approach for ASR, which we term Dynamic Data Pruning for
ASR (DDP-ASR).

DDP-ASR incorporates both instance-wise and fine-
grained time-wise granularities, allowing for the removal of a
significant portion of data while achieving substantial practi-
cal speedup. Our extensive experiments on Librispeech demon-
strate that, with a mixture of rule-of-thumb pruning rates, DDP-
ASR can deliver up to 1.6 x training speedups, while maintain-
ing comparable performance to that achieved with full data. Ad-
ditionally, we investigate the model’s temporal robustness when
trained on pruned subsets, revealing that our approach also
brings benefits of robustness to audio clips with low sampling
rates. To the best of our knowledge, our work is the first attempt
to explore dynamic data pruning for ASR with novel pruning
granularities specifically tailored for speech-related data, pre-
senting new opportunities for enhancing the training efficiency
of speech-related models.

2. Methodology

2.1. Dynamic data pruning

Given a dataset D = {z; = (z, yl)}||£|1, a score H(z) is as-
signed to each instance z. In each pruning cycle, instances are
selectively removed according to the distribution of scores H
and the pruning criterion S. The reserved subset after data prun-
ing is defined as:

PPt = S (H, X, k) 6))

where k is the kept ratio and X’ corresponds to all input in-
stances. For static data pruning [6, 10], instances that satisfy a
specific condition are permanently discarded before the training
begins and will never be activated again.

In contrast, dynamic data pruning enables the score H:
to be dynamically updated throughout training, ensuring that
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Figure 1: Instance-wise pruning approaches: (a) Easy: Instances with the lowest scores are selected. (b) Hard: Instances with the
highest scores are selected. (c) Easy2hard: Following the essence of curriculum learning, models initially train on relatively easy
instances and progressively shift focus to more challenging ones as the training progresses.

the coreset data can be more effectively adjusted based on the
model’s status at every ¢t epoch. In this scenario, there is no
reliance on pre-trained models, and intricate trials or runs are
needed to acquire the pruning score before training [11, 18, 19].

2.2. Dynamic data pruning for ASR

To facilitate training acceleration through dynamic data pruning
for speech data, we introduce a novel data pruning method,
referred to as DDP-ASR (Dynamic Data Pruning for ASR).
DDP-ASR extends beyond the conventional instance-wise
data pruning by incorporating fine-grained time-wise pruning
strategies within each time sequence, thereby achieving a
practical speedup.

2.2.1. Instance-wise pruning

Instance-wise pruning aims to remove entire audio sequences
based on a given score H;. Several methods have been pro-
posed to calculate the score of each instance, such as the loss
values [11] and uncertainty [19]. The calculated score H; is
then used to determine which instances to preserve based on
pruning criteria. For instance, the score distribution H; can be
used to identify and retain either easy or hard instances, where
easy instances are those with lower scores and hard instances
are those with higher scores. In this study, we select the loss
values £ of each instance z as the corresponding score, as these
values can be obtained without extra cost during training and
reflect the learning status of the instances. Moreover, its effec-
tiveness has been verified in [11, 21]. Therefore, we explore
a variety of instance-wise pruning methods tailored for ASR
training:

Easy. We prioritize the training of models on instances classi-
fied as “easy”, which are identified by their lower scores, opting
to exclude those with the highest scores. Figure 1 (a) illustrates
an example of this method.

Hard. Conversely, we focus on incorporating “hard” in-
stances for training, effectively sidelining those instances that
are scored lower based on score distribution H;. Figure 1 (b)
provides an example for this method.

Easy2hard. Inspired by curriculum learning strategies [22,
23], which train their models by progressively showing harder
examples, we propose a novel selection strategy that dynami-
cally schedules the presentation of instances to the model dur-
ing training. Thus, at every checkpoint, (1 — €) k points with
progressively increasing difficulty are kept, and € k points are
randomly selected from the remaining dataset. Here € is used to
strategically schedule the presentation of easy or hard instances
to the model. It is worth noting that € starts at 1 and gradu-
ally linearly decreases during training, effectively altering the
selection strategy over time, as shown in Figure 1 (c).

2.2.2. Time-wise dropping

Point-wise dropping. Inspired by CLIP [24], which removes a
portion of image patches to yield a training speedup, we intro-
duce point dropping, a simple time-wise dropping strategy that
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Figure 2: A toy example comparing different time-wise pruning
approaches: (a) Point Dropping, (b) Chunk Dropping, where
signals highlighted in gray are pruned during training.

® ]|

removes individual data points within an instance to improve
training speed. This is done by randomly retaining L audio
samples within an instance that contains 7" audio samples.
Chunk-wise dropping. Compared to point dropping, chunk
dropping specifically targets the removal of chunks, each con-
sisting of n consecutive audio samples. For any given chunk
[t,t + n], t is chosen from the range [0, T — n), where T is the
input length of the instance. With a remaining length denoted
as L, the method eliminates (7' — L)/n chunks.

3. Experimental Setup

Dataset. In this study, we conduct experiments on two
datasets: Librispeech [25], an audio corpus collected from au-
diobooks, and LRS3 [26], an audio-visual corpus from TED
and TEDx talks. For Librispeech, we use “train-clean-100",
“train-clean-360”, and “train-other-500" subsets, totalling 960
hours of training data and evaluate our performance on the “test-
clean” set with a total of 5.1 hours of audio. LRS3 consists of
439 hours of video clips, with 118 516 (408 hours), 31 982 (30
hours) and 1321 clips (0.9 hours) in the pre-training, training-
validation, and test sets, respectively.

Pre-processing. Following [27], we take raw audio wave-
forms as input to the model and perform only z-normalisation
per utterance before feeding it into the model.

Data augmentation. We only apply adaptive time mask-
ing [28] to the raw audio stream. In particular, we choose a
number of masks that is proportional to the utterance length and
a maximum masking length of up to 0.4 seconds.

Model architecture. Rather than pursuing state-of-the-art
performance, our primary goal is to investigate data pruning
techniques in the domain of ASR. Accordingly, we adapt the
open-source conformer-based architecture from [29]. Our mod-
els comprises a 1D ResNet front-end (3.9 M parameters) to ex-
tract speech features from raw audio waveforms, followed by
a conformer encoder (170.9 M parameters), a Transformer de-
coder (64.5 M parameters) and a projection CTC layer (3.9 M
parameters), resulting in a total of 243.1 M parameters.
Training details. Following standard practices in ASR, we
train using a combination of CTC loss and Cross-Entropy loss.
The model is trained for 75 epochs using the AdamW opti-
miser [30]. A cosine learning rate scheduler and a warm-up
of 5 epochs are used, with the peak learning rate set to 0.001.
We limit the duration of each training clip to no more than 16
seconds, and the maximum number of duration per batch is 64
seconds. All the models are trained with 32 A100 GPUs. For
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Figure 3: The distribution of length on Librispeech and LRS3.

data pruning, we update the remaining subset every epoch. In
the Easy2hard method, the proportion between the selected
subset based on scores and a random one is set to 2:1 at the end
of the training, which means that ¢ will linearly decay to 1/3.
For time-wise dropping, we randomly drop samples up to the
given dropping rate.

4. Experimental Results

4.1. Performance for instance-wise pruning

We evaluate the effectiveness of different instance-wise pruning
methods for the Librispeech and LRS3 datasets. For a broader
comparison, we include two additional pruning methods: (i)
models trained with subsets randomly selected from the entire
dataset in each pruning cycle, termed as Random, and (ii) mod-
els trained on a fixed subset initially chosen at random from the
full dataset, referred to as Static.

Results of using different instance-wise pruning methods
on the ‘test-clean” set of Librispeech are shown in Table 1.
We observe that for most pruning methods (namely, Static,
Easy and Random, respectively), the performance is substan-
tially impacted when more training instances are pruned. For
example, when using 50 % easy training data (namely, Easy),
a substantial increase of 1.7 % in Word Error Rate (WER) is
observed. More hard instances likely tend to be removed, re-
sulting in a relatively poor generalisation on the long sentences
(More details analysis can be found in section 4.6). The issue
can be partly mitigated by training with the Random method,
which avoids bias in the remaining instances. As a result, it
narrows the performance gap to a mere 0.3 % in WER at a kept
ratio of 50 %. A further closer performance gap to full data can
be observed when using hard-related methods (namely, Hard
and Easy2hard, respectively), which force the model to fo-
cus more on hard instances. Additionally, it is worth noting that
using 70 % of the hard training instances can yield performance
comparable to using the entire dataset, indicating considerable
redundancy in LibriSpeech.

Results of using different instance-wise pruning methods
on the test set of LRS3 are presented in Table 2. A similar
trend as in the Librispeech experiments can be observed. The
only exception is the results after using Hard, which consis-
tently perform worse than the Random method. This might be
due to a large discrepancy in the distribution of length between
the training and test sets (as shown in Figure 3). Specifically,
concentrating on a subset of hard instances in the training set,
which may not align well with the test set, can result in dimin-
ished test set performance. This is not the case for Librispeech,
where length discrepancies are less noticeable.

4.2. Performance for time-wise dropping

Table 3 studies the impact of two time-wise dropping strate-
gies (namely, point and chunk, respectively) by varying
the dropping ratio on our proposed Easy2hard method. We
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Table 1: WER [%] (1) of our models with different pruning
methods as a function of the kept ratio on the test set of Lib-
rispeech. The best results are bold for each kept ratio.

Method/Kept ratio [%] 100 90 70 50 30

Static 2.58 2.69 2.86 3.52 4.59
Easy 2.58 291 3.65 4.28 6.90
Random 2.58 2.59 2.66 2.88 3.17
Hard 2.58 2.63 2.57 2.76 3.13
Easy2hard 2.58 2.56 2.53 2.72 3.09

Table 2: WER [%] ({) results of our ASR model with different
pruning methods as a function of the kept ratio on the “test-
clean” set of LRS3.

Method/Kept ratio [%] 100 90 70 50 30

Static 2.10 2.18 2.65 345 4.71
Easy 2.10 2.27 2.27 5.03 15.17
Random 2.10 2.12 2.12 2.29 2.60
Hard 2.10 2.16 2.67 2.80 2.90
Easy2hard 2.10 2.08 1.95 2.17 2.54

Table 3: WER [%] ({) results of our models with different time-
wise dropping methods as a function of the kept ratio on the
“test-clean” set of LibriSpeech. The best results are bold for
each time-wise kept ratio. “k” denotes the kept ratio.

Instance-wise Time-wise k [%]

Method k[%] 00 9% 70 50 30
Point 70 253 265 278 280 305
Chunk 70 253 259 259 266 279

observe that overall the performance gap between the model
trained after time dropping and the baseline model without time
dropping becomes increasingly larger as the dropping ratio in-
creases. The performance degradation may be partially due to
corrupted temporal dependencies, where the model relies on the
precise order of input data for accurate predictions. In particu-
lar, for point dropping, where at 30% of the dropping ratio, it
results in a 0.25% increase of WER. Notably, chunk dropping,
which involves removing consecutive samples in each chunk,
can mitigate some of the performance declines. When apply-
ing a 30% time-wise dropping ratio to the audio samples using
this method, the impact on performance is minimal, with only a
0.06% WER increase. Given that chunk dropping performs bet-
ter, we use chunk dropping as our default setting for the time-
wise dropping.

4.3. Instance-wise pruning or time-wise dropping?

We investigate in Table 4 the optimal strategy of combining
both pruning methods under the same wall-clock training time.
The results indicate that for models trained with a larger por-
tion of data (more than 70%), including time dropping results
in a slight decrease in performance. Interestingly, we show
that when the sampling rate is down-sampled from 16 000 Hz
to 11 025 Hz, a closer performance gap for the model with time
dropping can be observed compared with its counterpart, which
indicates that a more robustness temporal dependency is learnt
when time-wise dropping is applied. On the other hand, within
the same training duration, combining instance- and time-wise



Table 4: Impact of different sampling rates on the performance
of Librispeech. “k” denotes the kept ratio.

Instance Time Wall-clock time WER WER
k[%] k[%] perepoch[min] 16KHz[%] 11KHz[%]

100 100 13.240.2 2.58 9.77
70 100 9.840.2 2.53 10.56
80 80 9.840.1 2.56+0.03 8.941 62
90 60 9.740.2 2.6140.08 7.48,3.08
30 100 4.240.1 3.09 14.29
40 50 4.240.1 3.04,0.05 9.524.77
50 25 4.4+40.2 2.990.10 9.42 4 87

data pruning for a smaller portion of training data leads to
an observable reduction in WER, compared to models trained
solely with instance-wise data pruning at a standard sampling
rate (16000 Hz). This suggests that the synergistic application
of both pruning strategies is beneficial in scenarios with a very
limited computational resource. In general, it is observed that
models trained using time-wise dropping exhibit greater robust-
ness across different sampling rates, especially at a low sam-
pling rate.

Table 5: Time masking and dropping. Instances are kept to 70 %
of the whole dataset for all cases. We mask up to 40 % audio
samples in chunks and drop up to 30% of the audio samples.

Wall-clock time

Time mask Time drop per epoch [min] WER [%]
X X 9.7+0.2 3.11
v X 9.8+0.2 2.53
X v 8.1+0.1 2.78
v v 8.1+0.1 2.59

4.4. Time masking versus time dropping

Time dropping is implemented by eliminating data points from
the training instances, unlike time masking, which sets consec-
utive samples to zero without altering the speed, as discussed
in [31]. Table 5 shows the impact of the use of time mask-
ing and time dropping on the “test-clean” set of Librispeech.
In particular, the use of time masking results in a 0.58 % re-
duction in WER. However, substituting time masking with time
dropping leads to a 0.25 % increase in WER, alongside a sig-
nificant reduction of 17 % times. Interestingly, by integrating
both time-masking and time-dropping approaches, it is possi-
ble to mitigate the performance decrease, achieving enhanced
efficiency and comparable performance to the original model.

4.5. Data scaling and speedup

We expanded the training dataset from 960 hours to 3,494 hours
by incorporating additional datasets such as LRS3, VoxCeleb2,
and AVSpeech. The outcomes on the Librispeech dataset, dis-
played in Table 6, indicate a marginal improvement in perfor-
mance using our proposed data pruning method compared to the
random pruning method. This demonstrates the effectiveness of
our approach when applied to larger training datasets.

Table 7 presents the performance comparison of our method
with full data training under the same training time. In partic-
ular, when using an instance-wise kept ratio of 70% with the
Easy2hard method, which takes a similar training time to the
model using full data trained for 56 epochs, we observe a fur-
ther decrease in WER by 0.06% compared to the model trained
with the entire dataset for 56 epochs. Moreover, when com-
bined with time-wise dropping, the training speed improves by
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Table 6: Impact of the size of additional training data on the
“test-clean” set of Librispeech. The additional data includes
LRS3, VoxCeleb2, and AVSpeech, totaling 3 494 hours.

Training  Instance Time Wall-clock time
data k[%] k[%] perepoch [min] WER[%]
Random 50 100 25.54+0.5 2.25
Easy2hard 50 100 26.8+1.0 2.18

Table 7: Impact of the number of training epochs on the Lib-
rispeech dataset. “k” denotes the kept ratio.

Instance-wise Time-wise Training  Wall-clock time
k[%] k[%)] epochs per epoch [min] WER [%]
100 100 » 13.2+0.2 258
56,255 2.59
70 100 75 9.8+0.2 959 2.53
70 70 75 8.1+0.1 35 % 2.59
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Figure 4: Comparing instance-wise pruning strategies across
three subsets of the Librispeech “test-clean” set, with instance-
wise kept ratio of 50% for each method.

38%, resulting in a comparable WER to that achieved with 75
epochs of full data training.

4.6. Error analysis

To assess how the presented models affect performance across
instances of varying input lengths. We divide the test samples
in the “test-clean” set of Librispeech into three groups with dif-
ferent input duration, namely, Short (0 - 8 seconds), Middle (8 -
16 seconds) and Long (> 16seconds), respectively. The per-
formance of each group for the Easy, Random, Hard and
Easy2hard methods is presented in Figure 4. Interestingly,
we observe that models prioritizing easy instances tend to un-
derperform, especially on longer instances, whereas models
that focus on challenging instances show better performance on
shorter ones. Overall, the proposed Easy2hard approach con-
sistently outshines the other methods across all groups.

5. Conclusion

In this work, we conduct detailed analysis of dynamic data
pruning for ASR, focusing on both instance-wise and time-
wise pruning techniques. We demonstrate that these methods
can be synergistically employed to maintain performance while
achieving significant speed improvements. Among pruning
methods, our proposed Easy2hard method has been found to
be the most effective in speech recognition benchmarks. No-
tably, we observe that pruning up to 30% of instances, cou-
pled with a 30% chunk dropping rate, can maintain performance
compared to training with the full dataset. Moreover, our find-
ings reveal that time-wise pruning significantly boosts model
resilience to lower sampling rates, making it a valuable adjunct
to time masking.
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