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Abstract
Ensemble learning for artificial neural networks (ANNs) is an effective method to enhance predictive perfor-
mance. However, ANNs are computationally and memory intensive, and naively training multiple networks can
lead to excessive training times and costs. An effective tool for improving ensemble efficiency is introducing
topological sparsity. Even though several implementations of efficient ensembles have been proposed, none of
them can provide actual benefits in terms of computational overhead as the sparsity is simulated using binary
masks. In this paper, we address this issue by introducing a Truly Sparse Ensemble without binary masks and
directly incorporate native sparsity. We also propose two algorithms for initializing new subnetworks within the
ensemble, leveraging this native topological sparsity to enhance subnetwork diversity. We demonstrate the
performance of the resulting models at high levels of sparsity on several datasets in terms of classification
accuracy, floating point operations (FLOPs), and actual running time. The proposed methods outperform all
baseline dense and truly sparse models on tabular data, successfully diversify the training trajectory of the
subnetworks, and increase the topological distance between subnetworks after re-initialization.
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1 Introduction

Artificial neural networks (ANNs) have driven intense recent advancements in machine learning and related fields
research. Due to the ever-increasing amount of available data and the growing complexity of problems, the
demanded capability of neural networks is growing as well. Larger networks are trained, which risk to overfit
training data due to overparametrization. An architectural method to improve performance without risking
overfitting and significantly increasing computational overhead is ensemble learning [1]. The core idea of this
paradigm is to ensemble several weak learners which are computationally cheap to obtain a strong combined
learner.

For ANNs with fully connected neurons, the number of connections between consecutive layers increases
quadratically with the number of neurons in the respective layers. The resources needed for training and applying
deep neural networks are thus often prohibitive [2]. In contrast, neurophysiological findings about the topology of
the brain, as showed by [3], reveals that the more neurons a human brain has, the fewer connections between
neurons are created. By transferring this concept to ANNs, [4] showed that sparse networks could obtain the same
level of accuracy as their dense counterparts.

Neural Computing and Applications (2025) 37:15419–15438 https://doi.org/10.1007/s00521-025-11294-3

123

Neural Computing and Applications (2025) 37:15419–15438

http://orcid.org/0009-0005-4958-1728
http://orcid.org/0000-0002-7478-3509
http://orcid.org/0000-0001-6552-2596
http://orcid.org/0000-0002-5636-7683
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-025-11294-3&amp;domain=pdf
https://doi.org/10.1007/s00521-025-11294-3


In the realm where sparsity intersects with ensemble learning, the concept of sparse ensembles emerges.
Although there has been research on pre-defined sparsity and pruning weights during training, little to no practical
advantages are obtained as most sparse training is simulated by applying binary masks to the weight matrices.
Despite allowing to study the behavior of sparse ensembles, the masked-sparsity approach does not decrease the
computation and memory overhead. The reason for existing works to mostly adopt masked sparsity is that almost
all specialized deep learning frameworks and hardware are optimized for dense matrix operations [5]. Thus,
developing sparse deep neural networks using sparse matrix operations is much more complicated than sparse
networks that leverage standard (dense matrix) deep learning libraries. [6] introduced a truly sparse multilayer
perceptron (MLP) and trained a neural network with more than one million neurons on a regular CPU without
additional GPU support. Together with hardware improvements, algorithmic and software developments for truly
sparse training are vital to actually provide faster, energy-efficient, and memory-efficient deep neural networks.

In this paper, we demonstrate the training of high-efficiency sparse ensembles in the unstructured sparsity
setting, without the overhead of binary masks, and propose methods to control subnetwork diversification in
sparse ensembles to improve overall performance.

We introduce a first-of-its-kind Truly Sparse Ensemble and train it on just one single CPU core at very high
levels of sparsity. The main focus of this work is on tabular data and the MLP architecture that we train in our
ensemble, as it is commonly used in low-resource applications such as IoT [7] and computation at the edge [8].
The main contributions include:

• The development of a Truly Sparse MLP Ensemble, further demonstrating the advantages of the truly sparse
framework during training in terms of performance, number of floating point operations, and running time.

• Two efficient and effective subnetwork diversification strategies regrow subnetwork weights based on the
Euclidean distance to its predecessor or the topological dissimilarity to all predecessors, respectively.

2 Related work

2.1 Sparse training

Over the past few years, sparse implementations for several ANN architectures have been introduced including
Restricted Boltzmann Machines [9], Convolutional Neural Networks [10–13], and Recurrent Neural Networks
[12]. Enforced sparsity levels vary greatly and can range from a moderate sparsity level of 50% as in [14], to
extreme sparsity levels ([99%) as presented in [15]. A distinction between two main approaches to realize
unstructured sparsity in an ANN can be made, namely dense-to-sparse training and sparse-to-sparse training.
Dense-to-sparse training concerns pruning of the non-critical connections of the ANN during training with a
dense network as a starting point (dense-to-sparse training) [4, 16–18]. In sparse-to-sparse training, a sparsely
initialized network is either trained with a fixed sparse topology [9, 19] or a dynamically updating topology by
pruning and regrowing weights during training [20, 21] (sparse-to-sparse training). Dynamic Sparse Training
(DST) has gained a lot of popularity and has led to the introduction of many new DST-based methods, such as the
Sparse Evolutionary Training (SET) [20] and Rigged Lottery (RigL) [22], using various model types, pruning
criteria, and regrowth methods [20, 22–26]. A benefit of these methods is the reduced memory overhead as a
result of sparse initialization. Nevertheless, none of these methods provide actual benefit in terms of efficiency as
the sparsity is simulated using binary masks, usually causing additional computational and memory overhead.

2.2 Efficient ensembles

The fundamental concept of ensemble methods lies in integrating multiple weak learners, which together can
achieve superior outcomes compared to a single, standalone learner. Ensemble members can be obtained in
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parallel (independently) or sequentially [27, 28]. Diversity among such ensemble members is key for the
effectiveness of the overall ensemble for several reasons, primarily because it facilitates the exploration of a larger
part of the solution space [1, 28–34]. Methods to establish diversity in ensembles vary depending on whether the
ensemble is obtained in parallel or sequentially. In parallel ensembles, diversity is often introduced through data
diversity techniques such as (feature space) bagging [1, 35–38], which trains independent models on different
subsets of data. In contrast, sequential ensembles typically leverage boosting [39, 40], where later models focus
on correcting errors made by earlier ones, enhancing diversity through iterative learning. Structural diversity
methods, which incorporate different models as base predictors [1, 29, 41–43], and parameter diversity methods,
such as evolutionary and cross-over learning [32, 44], can be applied both sequentially and in parallel and further
contribute to the diversity of the ensemble. The recent work of [45] demonstrated that, unlike ensembles with
small subnetworks, ensembles consisting of very large subnetworks, such as ResNet-18, do not benefit from
actively promoting predictive diversity. Topological sparsity can be used to create structural diversity among
subnetworks. Iterative pruning to obtain subnetworks [46] or individually pruning subnetworks with the same
base network [14] have shown to be effective. Both methods apply a dense-to-sparse training regime causing
substantial computational overhead. In the work of [47], two methods with no computational overhead during
training and testing were proposed, namely (Efficient) Dynamic Sparse Training Ensembles, or (E)DST
Ensembles. For this method, subnetworks are sequentially obtained with the RigL method [22], after an initial
exploration phase, by pruning and regrowing a large part (e.g., 80%) of the weights with the smallest magnitude.
The authors of [48] showed that the success of a DST method like RigL is likely the result of improved gradient
flow in early training by regrowing weights based on high-magnitude gradients, something the Lottery Ticket
Hypothesis [4] and SET [20] on their own seem to be less effective at. Despite its efficiency, EDST does not
leverage topological sparsity to boost subnetwork diversity, a balance crucial for enhancing ensemble diversity
and performance.

2.3 Truly sparse training

Research in the domain of ‘truly’ sparse training has been limited. This approach involves training neural
networks without relying on dense matrix operations filled predominantly with redundant zero-valued weights.
Instead, it employs more efficient data representations for enhanced effectiveness. The benefits of using more
efficient data representations include improvements in memory overhead as we no longer store redundant zeros
and binary masks, as well as an increase in computational efficiency by avoiding unnecessary 0-multiplications.
Since the sparsity is inherent in the model’s construction rather than being simulated with binary masks, this type
of sparsity is referred to as ‘native sparsity.’ An efficient sparse backpropagation algorithm, SparseProp, was
introduced in [49], to speed up ANN training on commodity CPUs. They reported speedups in the end-to-end
runtime of experiments. Moreover, novel results were presented by [6] and [50] who came up with a new training
paradigm called truly sparse training. They implemented the SET algorithm for a regular MLP and a Denoising
Autoencoder, allowing an MLP with hundreds of thousands of neurons to be trained on a regular CPU without
GPU support. This work was continued by [51] who introduced a parallel training algorithm for truly sparse
networks. To the best of our knowledge, the existing methods that use the truly sparse framework do not have the
capability to store, re-train, and re-evaluate networks after the cache had been cleared. In this paper, we extend the
truly sparse framework to ensemble learning and sequentially train, store, and evaluate, the ensemble of efficient
subnetworks.
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3 Truly Sparse Ensembles

We present a Truly Sparse Ensemble (TSE)1 at the intersection of truly sparse training and ensemble learning.
Moreover, we propose two algorithms that increase diversity between subnetworks after re-initialization in a
sparse ensemble. Our goal is to advance the truly sparse training paradigm by creating an actually sparse
ensemble without the overhead of simulating binary masks, while exploiting the topological flexibility of sparse
networks to increase the diversity between subnetworks in the ensemble.

3.1 Designing the Truly Sparse Ensemble

We construct an ensemble of truly sparse MLP networks without binary masks. We implement our solution by
using the library of [6], which we refer to as the Truly Sparse Framework. Following the Efficient Dynamic
Sparse Training (EDST) protocol [47], we sequentially obtain the subnetworks for our ensemble. After the EDST
global exploration phase during which we explore the solution space with a large learning rate, we propose a two-
stepped Comprehensive Refinement Phase (see Sect. 3.2.3) to reach better convergence for the final state of our
subnetworks. A new subnetwork is obtained by pruning a large percentage of the weights (e.g., 80%) and
randomly regrowing new weights following either of our proposed re-initialization algorithms. To circumvent the
need for dense matrix operations, which occur when calculating gradients for all weights in the network, our
approach does not rely on gradient magnitude for regrowing weights during the re-initialization of a new
subnetwork. Creating a truly sparse implementation with gradient-based regrowing is therefore not ideal as the
dense matrices or the computational time required for this (even when the gradients are computed online) reduce
the truly sparse advantages. The aim of ensembles in the Truly Sparse Framework is to enable the training of
efficient sparse ensembles on resource-limited hardware. The complete ensemble consists of M sparse subnet-
works that collectively form the TSE. Similar to [47], the final prediction of the ensemble is given by

ŷ ¼ argmaxð 1
M

XM

i¼1

Softmaxð½pðai1Þ:::pðaikÞ� ð1Þ

where ŷ is the prediction of the ensemble, M the number of subnetworks, and pðaikÞ the predicted probability of
the kth output neuron of the ith subnetwork. We introduce several new functionalities to the truly sparse
framework to realize this, including the capability to store networks and retrieve them later. All weight matrices
are stored in Compressed Sparse Row format using SciPy [52].

3.2 Subnetwork re-initialization

Subnetwork diversity is of great importance for the performance of an overall ensemble [29–32, 53]. This
significance stems from the fact that a lack of diversity among subnetworks often leads to correlated errors; if one
subnetwork errors in classification, the others are likely to make similar mistakes [53].

We propose two new algorithms focused on improving subnetwork diversity after re-initialization in an
ensemble: Disjoint Truly Sparse Ensemble (Disjoint TSE) and Distance Truly Sparse Ensemble (Distance TSE).
The novelty of both methods lies in how we grow new connections when re-initializing a new subnetwork. In
contrast to the EDSTRG procedure which does not actively diversify subnetworks when regrowing weights, the
Disjoint TSE and Distance TSE approaches that we propose adopt distinct strategies for regrowing subnetwork
weights. Specifically, Disjoint TSE bases regrowth on topological dissimilarity to all previous subnetworks, while
Distance TSE utilizes the Euclidean distance to the preceding subnetwork. Moreover, we introduce a new

1 Code is available at https://github.com/prdvanderwal/Truly-Sparse-Ensembles
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implementation of the refinement phase where we also reduce the frequency with which the weight evolution
procedure is applied (evolution frequency).

3.2.1 Disjoint re-initialization

The Disjoint TSE algorithm focuses on improving topological diversity among subnetworks when re-growing
weights for the re-initialization of a new subnetwork, inducing structural diversity with a heterogeneous ensemble
as a result. We iteratively regrow weights that are not part of the final topology of any previous subnetwork.
When the new model is initialized, weights are randomly regrown as long as they are not in the set of ‘‘blocked‘‘
weights of all converged subnetworks thus far. Given that the time complexity of a look-up in a set is O(1), the
computational overhead of this iterative process is marginal. More details on the Disjoint TSE implementation
can be found in the pseudocode in Appendix A.1.

The proposed Disjoint TSE algorithm has two variants: (1) Regular Disjoint TSE (RD-TSE) and (2) Fully
Disjoint TSE (FD-TSE). For the former variant, the newly grown weights of the new subnetwork are only disjoint
with the weight matrices of all previous subnetworks when initialized. During the subsequent training epochs, the
network topology of the new subnetwork dynamically adapts and is able to grow weights that are in similar
locations as previous subnetworks. Given the high topological sparsity of the subnetworks, we propose a second
variant where the regrown weights in the new subnetwork are fully disjoint with any previous subnetwork. An
overview of FD-TSE is presented in Fig. 1. The only difference between RD-TSE and FD-TSE is step c. We only
apply FD-TSE and RD-TSE to the weight matrices of the hidden layers as all weight matrices are initialized
following the Erd}os-Rényi distribution as presented by [20]. As a result, for datasets with a relatively low number
of input features and output classes, the first and last layers of a subnetwork have too many existing connections

Fig. 1 Schematic overview of the Fully Disjoint TSE (FD-TSE) training procedure. The procedure is visualized for a single
sparse connected layer (SCj) but is applied to all hidden layers. After the initial exploration phase, we obtain the base
subnetwork Si (a). We take this network (b) and start the refinement phase as depicted in (c). The refinement phase entails
that for a selected number of epochs, a small fraction of the weights is pruned and regrown where the regrown weights are
forced to be disjoint with previous subnetworks in their final states (if applicable). After the refinement phase, we obtain the
final state of subnetwork Si (Spa) which we store for later (f). Thicker lines correspond with weights with a higher
magnitude. To obtain a new base subnetwork, we prune a very large fraction of the weights that are the smallest in
magnitude and obtain the network depicted in (e). Subsequently, we regrow the same number of weights disjointly with all
previous subnetworks in their final state and obtain the new subnetwork Siþ1. The cyclus b-c-d-e is repeated for another
M � 1 times to collect M almost fully disjoint subnetworks which we combine into an ensemble (g).
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to find disjoint matrices. For consistency, we also apply the Dist-TSE algorithm only to the weight matrices of the
hidden layers.

3.2.2 Distance re-initialization

Distance TSE (Dist-TSE) forces the network to regrow the weights so that the Euclidean distance between the
weights of the new subnetwork and the preceding subnetwork, exceeds a certain distance within the solution
space. Our analysis revealed that the Euclidean distances between the weight matrices of converged subnetworks
and the weight matrices of newly initialized subnetworks, follow approximately a Gaussian distribution. Given
this property, we use a sampled mean and a factored standard deviation as indicators to find sufficiently distant
weight matrices. The pseudocode of Dist-TSE can be found in Appendix A.2.

Our algorithm iteratively finds a sufficiently distant weight matrix for all the hidden layers in the MLP
subnetwork. To qualify as the weight matrix for the new subnetwork, a generated weight matrix must exceed the
minimum Euclidean distance threshold. This threshold is established by generating 100 random weight matrices
and calculating the mean and standard deviation of the Euclidean distances to the preceding network weight
matrix. The minimum distance threshold is set by adding the calculated standard deviation, multiplied with the
matrix distance coefficient k (hyperparameter), to the mean. Our empirical analysis revealed that setting the
iteration count to 100 offers an optimal balance between computational expense and ensuring a Gaussian-like
distribution of Euclidean distances, which is indicative of the running time (see Fig. 2a).

Early testing revealed the boundary values of the coefficient k after which finding a sufficiently distant matrix
quickly becomes intractable. An overview of the impact of the chosen value for the matrix distance coefficient on
the running time is presented in Fig. 2b. We observe that the running time strongly increases for values of k
which are larger than 2.0. We, therefore, limited the experiments for the Dist-TSE implementation to k values of
1.0, 1.5, and 2.0. Nevertheless, a fail-safe was integrated into the algorithm for the unlikely scenario that it is not
able to find a fitting matrix.

3.2.3 Refinement phase

The refinement phase as presented by [47] only lowers the learning rate and pruning rate to allow the subnetwork
to converge to a more optimal solution. Extending the idea of lowering the learning and pruning rate as done by
[22] and [47] to reach better convergence, we propose to also reduce the frequency with which the weight
evolution procedure is applied (evolution frequency). The aim of the Comprehensive Refinement Phase that we
propose is to make the network able to converge better during the refinement phase as it trains for more epochs

Fig. 2 a Euclidean distance
distribution after sampling
100 random weight matri-
ces. b Boxplot showing
how the matrix distance
coefficient k affects the
running time to find a dis-
tant matrix. For each value
of k, we ran 10 iterations of
the distance re-initialization
algorithm on the Gesture
Phase Segmentation dataset
for a 1000� 1000 weight
matrix at a sparsity level of
0.96.
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with the same topology. The intuition behind this is that minimizing the loss during these final steps of training
might benefit from being disturbed less as the step size and loss reduction per step are small.

Each subnetwork undergoes a two-step refinement phase after exploration, with equal epochs for both steps.
The first step halves the weight evolution frequency, and the second halves the learning rate, pruning rate, and
evolution frequency. After a fixed number of epochs (tunable hyperparameter), we obtain the final topology of the
subnetwork and enter the cycle of escaping the solution basin by pruning the network with a global pruning rate
q, regrowing the weights following either of the implementations above, and resetting the learning rate, pruning
rate, and evolution frequency to the values of the first step of the refinement phase and continue training for the
next subnetwork. This cycle is repeated M times to cheaply obtain M subnetworks.

4 Evaluation

We demonstrate the effectiveness of the proposed Truly Sparse Ensemble in terms of accuracy, the number of
parameters, training floating point operations (FLOPs), and actual training time. We compare our proposed
algorithms with several baselines and evaluate the effectiveness of the Comprehensive Refinement Phase with an
ablation study.

4.1 Experimental setup

4.1.1 Datasets

We evaluate our methods on 16 datasets, of which 2 are widely used datasets from different domains: the Gesture
Phase Segmentation dataset (video segmentation) [54] and HIGGS (physics particles) [55]. The other 14 datasets
were selected from the tabular data benchmark2 [56].

4.1.2 Evaluation metrics

The metrics used to evaluate the performance of the model are the classification accuracy on the test set, the
number of weights, the number of training FLOPs, and the actual training time. In contrast to most related work,
we do not calculate the number of training FLOPs theoretically for our truly sparse models. Instead, as our
implementation allows it, we make use of the Performance Application Programming Interface software [57].
This library provides us with the interface for a hardware performance counter, allowing us to process raw CPU
data and extract the actual number of FLOPs performed by the CPU. Moreover, we report the actual training time
as we do not make use of binary masking.

4.1.3 Implementation

We constructed all models in the Truly Sparse Framework with three hidden layers, each consisting of 1000
neurons. All ensembles, unless indicated differently, consist of five submodels and were trained for a total of 350
epochs. All layers in each network were initialized with the Erd}os-Rényi (ER) distribution as presented by [20].
The hyperparameter � determines the sparsity level S of a model layer. The ER distribution allocates higher
sparsity to the layers with more neurons. For most datasets, we used different values of � for our experiments.
However, as a result of the aforementioned ER initialization property, the total sparsity level of a model differs
slightly per dataset. A model with a ‘higher’ sparsity level refers to a network with fewer connections. All
experiments were run on a single core of a Dell T60 (remote) server with a 2�Silver-4210 processor.

2 Available at: https://huggingface.co/datasets/inria-soda/tabular-benchmark
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4.1.4 Baselines

We consider the EDST model [47] as the baseline for results comparison. However, the EDST model by [47] is
implemented in PyTorch [58], a well-established and highly optimized machine learning framework, and makes
use of gradient magnitude regrowing. Given the nascency of the Truly Sparse Framework, comparing our models
to a model in PyTorch yields a distorted impression of the effectiveness of our algorithms. Instead, we create a
new EDST implementation with the Truly Sparse Framework named EDSTRG, where RG stands for random
growth. We also compare our methods with a single SET-MLP [20] and a single static sparse model. For
completeness, we also evaluate fully connected networks as non-sparse baselines, specifically a single dense MLP
and an ensemble consisting of dense MLPs (dense ensemble). As we aim to advance performance within the new
paradigm of truly sparse training, we implement all these models in the truly sparse framework to allow for an
accurate and fair comparison.

4.2 Experimental results

We evaluate the proposed models, Regular Disjoint TSE (RD-TSE), Fully Disjoint TSE (FD-TSE), and Distance
TSE (Dist-TSE), against several baselines. An overview of a selection of the experimental results on the Gesture
Phase Segmentation dataset and HIGGS dataset can be found in Table 1.

For the two tabular datasets, the Gesture Phase Segmentation dataset and HIGGS, we observe that for almost
all variations, the two proposed algorithms consistently outperform the EDSTRG implementation and all other
baselines without any significant additional overhead in terms of training FLOPS and training time. The inference
time of the proposed methods is equal to the baseline models. Interestingly, the best performing method is
different per dataset and sparsity level. Dataset characteristics such as the number of features, initialization
method, and the number of target classes, most likely affect the effectiveness of our methods on each dataset.
Neither varying the number of subnetworks in the ensemble nor the depth or width of the ensemble showed
significant differences between the proposed methods. FD-TSE was the only model that benefited from an
increase in the number of subnetworks. The results in Table 1 show that the proposed algorithms and variations
improve overall ensemble performance on the two selected tabular datasets. To overcome the numerical insta-
bility of the Truly Sparse Framework due to its nascency, and evaluate our algorithms at lower levels of sparsity,
we implemented both the Regular and Fully Disjoint algorithm in PyTorch [58], the same framework as [47], and
found that our algorithms can also be used at lower levels of sparsity.

4.3 Tabular benchmark results

To assess our methods’ performance without dataset-specific fine-tuning, we evaluated all models on the
numerical classification benchmark for tabular data [56]. More details on the individual datasets can be found in
Appendix D. For the training of all models, we used the same configuration as described in Sect. 4.1. For all
sparse models, we used an � of 20 for the Erd}os-Rényi initialization of the weight matrices. The actual sparsity
level differs per dataset as it is dependent on the number of input features as explained in Sect. 4.1. The results of
the experiments on the tabular benchmark are presented in Table 2. The best performing model (BPM) metric
indicates the number of times a model achieved the highest accuracy on the test set. In 11 out of 14 datasets, one
of our methods topped in classification accuracy, most often achieved by Dist-TSE. The disjoint implementations
incur minor running time overheads but are still much faster than a single dense model. Table 2 shows that our re-
initialization algorithms enhance ensemble performance across various tabular datasets.
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4.4 Ablation study Comprehensive Refinement Phase

Next to our two proposed algorithms, we also suggest reducing the frequency with which we apply the topology
update (evolution frequency) during the refinement phase. We hypothesized that this would allow the network to
converge better. In this section, we present the results of the ablation study on the impact of this change in the
refinement phase. Specifically, we compare the refinement phase as discussed by [47] where only the learning rate
and pruning rate are halved during the two-stepped refinement phase, to our proposed Comprehensive Refinement
Phase. The results of the ablation study are reported in Table 3.

In line with our hypothesis, we observe that for the tabular datasets, our proposed refinement phase is
predominantly beneficial. We did not observe any significant difference in terms of FLOPs and running time for
the ablation experiments.

Table 1 Summary of experiments of our TSE implementations and baselines on the Gesture Phase Segmentation and
HIGGS datasets. We take the single dense model as a reference point for the less intuitive metrics and express the results for
the other models as a fraction (...x) of the result of the dense model. For all sparse models, we ran three iterations and report
the average classification accuracy and standard deviation. Models marked with * showed statistically significant
improvement over the baseline model EDSTRG at the corresponding sparsity level in a different experiment. See Appendix
B for details

Dataset Model Sparsity (S) Results

Accuracy (%) Weights (#) Train flops (#) Train time (min)

Gesture phase Single dense model - 54.9 2,058,005 1.71e13 � 60.0

Segmentation EDSTRG 0.98 71.2 ± 0.4 0.12x 0.04x � 19.2 ± 0.4

0.95 71.8 ± 0.2 0.25x 0.07x � 27.9 ± 0.2

0.93 71.0 ± 0.2 0.37x 0.11x � 37.0 ± 0.4

RD-TSE (ours) 0.98 72.0 ± 0.4 0.12x 0.04x � 18.6 ± 0.1

0:95� 73.1 ± 0.2 0.25x 0.07x � 32.3 ± 0.1

0:93� 73.1 ± 0.3 0.37x 0.11x � 55.4 ± 1.3

FD-TSE (ours) 0:98� 71.9 ± 0.2 0.12x 0.04x � 21.5 ± 0.2

0:95� 73.4 ± 0.7 0.25x 0.07x � 40.9 ± 2.8

0:93� 74.8 – 0.3 0.37x 0.11x � 82.1 ± 5.9

Dist-TSE (k ¼ 1:5) (ours) 0:98� 72.7 ± 0.5 0.12x 0.04x � 16.7 ± 0.2

0:95� 72.8 ± 0.1 0.25x 0.07x � 24.7 ± 0.2

0:93� 73.2 ± 0.3 0.37x 0.11x � 33.0 ± 0.7

SET-MLP 0.95 60.6 ± 0.7 0.05x 0.07x � 28.3 ± 0.6

Single static sparse model 0.95 67.2 ± 0.7 0.05x 0.07x � 23.5 ± 0.1

Dense ensemble - 54.0 5.00x 5.00x � 299.9

HIGGS Single dense model - 57.1 2,033,002 2.28e14 � 709.6

EDSTRG 0.98 64.2 ± 0.1 0.12x 0.04x � 273.8 ± 10.5

0.95 63.0 ± 0.1 0.25x 0.07x � 397.8 ± 6.1

RD-TSE (ours) 0.98 64.7 – 0.1 0.12x 0.04x � 273.3 ± 2.0

0:95� 64.0 ± 0.2 0.25x 0.07x � 400.6 ± 1.6

FD-TSE (ours) 0:98� 64.7 – 0.1 0.12x 0.04x � 274.0 ± 2.0

0:95� 64.1 ± 0.3 0.25x 0.07x � 403.6 ± 2.5

Dist-TSE (k ¼ 1:5) (ours) 0:98� 64.7 – 0.1 0.12x 0.04x � 275.4 ± 3.3

0:95� 64.0 ± 0.1 0.25x 0.07x � 397.3 ± 6.8

SET-MLP 0.95 54.2 ± 0.2 0.05x 0.07x � 381.9 ± 1.0

Single static sparse model 0.95 53.3 ± 0.6 0.05x 0.07x � 378.3 ± 1.7

Dense ensemble - 60.4 5.00x 5.00x � 3561.5

Bold indicates the best-performing model in terms of classification accuracy
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4.5 Training trajectory

We use t-SNE [59] to visualize the training trajectories of our submodels in the solution space. We project the
output of the Softmax layer computed on the samples of the test set onto a 2D space. Figure 3 gives an overview
of the different training trajectories of three subnetworks on the Gesture Phase Segmentation dataset. We observe
that the trajectories of the subnetworks of the EDSTRG implementation (3a) and Dist-TSE (3d) seem fairly
random and sometimes have shared trajectories. This was to be expected as there is no regularization in place for
the models to take a different trajectory direction besides random re-initialization (in terms of topological

Fig. 3 t-SNE projection of the training trajectories of three subnetworks discovered by various TSE implementations on the
GPS dataset. For Dist-TSE, we set k ¼ 1:5. The diamonds and stars represent the start and end of each subnetwork,
respectively. The sparsity level is S ¼ 0:95.

Table 3 Ablation study on
the impact of the Compre-
hensive Refinement Phase
on the Gesture Phase Seg-
mentation (GPS) and
HIGGS datasets

Model Comprehensive Test accuracy [%]

Refinement GPS HIGGS

RD-TSE No 71.2 63.7
Yes 72.6 63.5

FD-TSE No 73.9 63.5

Yes 74.2 63.7
Dist-TSE (k ¼ 1:5) No 71.7 63.5

Yes 73.4 63.5

Bold indicates the best-performing model in terms of classification accuracy

Table 2 Aggregated results of experiments on 14 numerical classification datasets from the tabular data benchmark [56]. The
best performing model (BPM) metric represents the frequency that a model got the highest classification accuracy of all
models

Dataset Model BPM [#] Total train time [min]

Aggregated datasets Single dense model 0 � 2011

EDSTRG 2 � 827

RD-TSE (ours) 2.33 � 899

FD-TSE (ours) 2.33 � 1010

Dist-TSE (k ¼ 1:5) (ours) 6.33 � 823

SET-MLP 1 � 820

Single static sparse model 0 � 789

Dense ensemble - -

Bold indicates the best-performing model in terms of BPM metric
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similarity). For Fig. 3b, we see that the training trajectory of a new subnetwork is different from that of the
previous networks and that the model is mostly preserving this difference in direction. In Fig. 3c, the quasi-
orthogonal trajectories across each subnetwork’s refinement phases suggest the algorithm’s effectiveness in
achieving disjoint networks. However, the point distances in t-SNE, subject to potential information loss due to
dimensionality reduction, do not provide significant insights, as global distances are not reliably preserved.

4.6 Topological distances between subnetworks

Building on the findings of [60], we visualize the topological distances between subnetworks for each proposed
method using NNSTD [60]. This metric accounts for the isomorphic nature of ANNs. We evaluate the effec-
tiveness of our proposed algorithms by visualizing the topological distance between a converged subnetwork and
the succeeding subnetwork that has just been re-initialized with one of our algorithms. For the EDSTRG

implementation and for each of our proposed methods, we train 10 independent subnetworks for a duration of one
exploration phase and one refinement phase. We subsequently store the converged topologies and re-initialize all
subnetworks with one of our methods. In Fig. 4, a visualization of the topological distances between the
converged subnetworks and re-initialized subnetworks is presented. We observe from Fig. 4b and c that disjoint
re-initialization yields a more distant subnetwork topology from its predecessor compared to regrowing the
weights without considering subnetwork diversity as is done in the EDSTRG (Fig. 4a). We surprisingly also see
that the Distance TSE algorithm (Fig. 4d) consistently yields topologies that are closer to each other compared to
the EDSTRG implementation. A possible explanation could be that an effective way of finding a distant matrix
would be for the new subnetwork to have a negative weight in the same location where its predecessor had a
positive weight and vice-versa. As the resulting Euclidean distance is higher for this instance than for regrowing a
weight somewhere the subnetwork’s predecessor did not have a weight, our iterative process of finding a distance
matrix might unintentionally give a slight preference for subnetworks with a more similar topology.

4.7 Scalability

To get a better understanding of how our proposed algorithms scale with an increasing number of neurons, we
conducted some experiments for each of our proposed methods with a larger number of neurons. More specif-
ically, we ran 10 iterations of each of our proposed re-initialization algorithms for a weight matrix of two hidden
layers with a variable number of neurons. We used � ¼ 10 to control the sparsity level and k ¼ 1:5 for Dist-TSE.
The results are presented in Table 4.

Fig. 4 Heatmap representing the topological distances measured by the NNSTD method [60] between the second layer of
thoroughly trained subnetworks (x-axis) and the second layer of subnetworks that were obtained directly following re-
initialization (y-axis) using various TSE implementations on the Gesture Phase Segmentation dataset. For Dist-TSE we set
k ¼ 1:5. The parameter wiði ¼ 0; 1; :::; 9Þ represents 10 independently trained and evaluated subnetworks. Note, the heatmap
in (d) has a different color scale. A topology similarity value of 0 means that the networks are identical, while a value of 1
means that the models’ topologies are completely different. The sparsity level is S ¼ 0:95.
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We observe that both RD-TSE and FD-TSE scale well with the number of neurons, showing negligible
increases in running time. While Dist-TSE’s running time does increase with more neurons, the average number
of iterations (minimum = 100) remains constant for larger matrices. From this, it can be derived that the main
cause for extra running time is caused by the 100 iterations which is used to set a minimum distance and not by
the increased difficulty of finding a sufficiently distant matrix.

4.8 Limitations

This work introduces a new perspective on subnetwork diversification in dynamic sparse ensembles by intro-
duction of two new algorithms for ensemble diversification, along with a software contribution and the Truly
Sparse Ensemble. The primary challenge we faced is the difficulty in quantitatively comparing our results with
existing literature, as almost all related methods rely on dense matrices. In contrast, our approach employs truly
sparse training, which offers significant computational efficiency that dense frameworks cannot match.

Although some configurations showed numerical instability, this highlights the need for software improve-
ments rather than a limitation of the method itself. Our results demonstrated the effectiveness of our algorithms
but did so for both basic sparsity and ensemble training methods. Future work could focus on integrating more
advanced methods like boosting, exploring new regrowth criteria such as gradient magnitude regrowth
[22, 47, 48], and extending the approach to different architectures to enhance both performance and stability.

5 Conclusions

We proposed two algorithms to improve diversity among subnetworks in ensembles in a truly sparse context,
with novel strategies to grow new connections when re-initializing a new subnetwork. At the intersection of truly
sparse training and ensemble learning, we have effectively introduced a novel concept: the Truly Sparse
Ensemble. We moved beyond the typical approach of simulating sparsity with binary masks, and implemented
our proposed algorithms in a truly sparse manner to take full benefits of unstructured sparsity during training. We
evaluated the learning capabilities of the Truly Sparse Ensembles on various datasets. Our methods surpass both
sparse and dense baseline models in performance on tabular data, achieving this with minimal computational
overhead in terms of floating point operations and running time. Moreover, all training was conducted using a
single CPU core, illustrating that truly sparse models can be efficiently trained on commodity hardware without
significantly prolonged training times, exemplifying the potential of the truly sparse training paradigm. Our

Table 4 Summary of
results of all experiments
evaluating the scalability of
our proposed method. We
ran 10 iterations for each
method and report the
average running time with
standard deviation. For D-
EDST, we also report the
average number of itera-
tions it took to find a suf-
ficiently distant matrix. We
used a value of k ¼ 1:5 for
D-EDST and set the spar-
sity parameter � ¼ 10 for
all experiments

Model Weight matrix size Avg. running time (sec.) Avg. iterations

RD-TSE 1,000�1,000 0.081 ± 0.02 -

5,000�5,000 0.387 ± 0.03 -

10,000�10,000 0.813 ± 0.08 -

15,000�15,000 1.120 ± 0.09 -

FD-TSE 1,000�1,000 0.082 ± 0.03 -

5,000�5,000 0.732 ± 0.16 -

10,000�10,000 0.723 ± 0.07 -

15,000�15,000 1.051 ± 0.05 -

Dist-TSE 1,000�1,000 11.65 ± 1.03 109.8 ± 9.54

5,000�5,000 50.11 ± 8.47 126.9 ± 17.2

10,000�10,000 153.4 ± 16.9 116.7 ± 13.4

15,000�15,000 278.2 ± 19.9 109.2 ± 6.70
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proposed sparse models notably exceed the performance of dense baseline models in both accuracy and running
time.

Algorithms

Disjoint re-initialization algorithm

Algorithm 1 Truly Sparse Ensemble with disjoint re-initialization
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Distance re-initialization algorithm

Algorithm 2 Truly Sparse Ensemble with distance re-initialization

Statistical analysis

In order to test the statistical significance of the increase in performance of our models presented in Table 1
compared to the sparse baseline EDSTRG model, we conduct a paired statistical test for the two datasets in
Table 1: the Gesture Phase Segmentation dataset and HIGGS. We bootstrap the test set of the respective datasets
30 times and do a paired comparison between the ensemble accuracies of the sparse baseline model EDSTRG and
either of our proposed methods FD-TSE, RD-TSE, and Dist-TSE. Through the use of Shapiro–Wilkinson tests we
discover that normality cannot be assumed for the distribution of ensemble accuracies. Therefore, we conducted
the one-tailed nonparametric Wilcoxon test to verify that each of our proposed models outperforms the baseline
model at each sparsity level. The results are presented in Table 5.

With the exception of two models (y), all proposed models significantly outperform the baseline at p ¼ 0:05.
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Hyperparameters

Given the very limited availability of the literature on the implementation of the Truly Sparse Framework, we
mostly used the same configuration of hyperparameters as presented by [51]. For all training, we used gradient
descent with a momentum of 0.9 and a weight decay of 0.0002. In contrast to the works of [51] and [20], we used
a slightly lower dropout rate of 0.2 as our experiments concerned very sparse networks. We maintained the
inclusion of dropout in our training process, following the findings of [51], who demonstrated that integrating
dropout significantly aids in preventing overfitting. An overview of the main hyperparameters is given in Table 6.

Moreover, we used the Alternated Left ReLU activation function as presented in [51] for all layers except the
last layer to which we applied the Softmax activation function. For the Gesture Phase Segmentation dataset, no
value for the slope of the negative side of the input of the Alternated Left ReLU (a) was available in the literature.
We thus selected a neutral value of 0.5. For the aggregated datasets we instead applied the regular ReLU
activation function as finding a single value for a that suits all 14 datasets was highly unlikely, given the results
presented in [51] on the tuning of this hyperparameter. All dense models were also trained with the ReLU
activation function as All-ReLU was specifically designed for sparse networks. All models were trained with a
batch size of 128. The learning rate g and evolution frequency e varied for the TSE ensembles as a result of the
refinement phases. Here, the evolution frequency refers to how often, once every e epochs, we do a topology
update. For the dense models, we initially ran all experiments with a fixed learning rate of 0.01 as presented by
[20]. We decreased this learning rate to 0.001 for the HIGGS and the Gesture Phase Segmentation datasets. All
weights were initialized with He Initialization.

Table 5 Statistical evalua-
tion of ensemble accuracies
on 30 bootstrapped test sets
per sparsity level

D Sparsity Model Acc. (%) Wilcoxon p

Gesture Phase Segmentation 0.98 EDSTRG 70.5 ± 1.1 - -

RD-TSE (ours) y 70.4 ± 0.9 300 0.92

FD-TSE (ours) 70.7 ± 1.0 115 2.2e�2

Dist-TSE (k ¼ 1:5) (ours) 71.0 ± 1.1 46 1.7e�4

0.95 EDSTRG 70.8 ± 0.9 - -

RD-TSE (ours) 72.2 ± 0.9 0 8.6e�7

FD-TSE (ours) 71.4 ± 1.0 14 5.0e�6

Dist-TSE (k ¼ 1:5) (ours) 71.9 ± 1.1 0 1.9e�6

0.93 EDSTRG 70.3 ± 0.8 - -

RD-TSE (ours) 72.0 ± 0.7 0 8.2e�7

FD-TSE (ours) 72.5 ± 0.9 0 8.4e�7

Dist-TSE (k ¼ 1:5) (ours) 72.2 ± 0.8 0 8.5e�7

HIGGS 0.98 EDSTRG 64.2 ± 0.2 - -

RD-TSE (ours) y 64.1 ± 0.2 202 0.99

FD-TSE (ours) 64.2 ± 0.2 51 3.6e�2

Dist-TSE (k ¼ 1:5) (ours) 64.3 ± 0.2 51 1.9e�2

0.95 EDSTRG 63.2 ± 0.2 - -

RD-TSE (ours) 63.5 ± 0.2 0 1.6e�6

FD-TSE (ours) 63.7 ± 0.2 0 7.8e�7

Dist-TSE (k ¼ 1:5) (ours) 63.6 ± 0.2 0 1.2e�6

For each sparsity level, all models were evaluated on the same sets, and Wilcoxon statistics were used to
compare accuracy distributions between the baseline model, EDSTRG, and our proposed models
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Tabular benchmark datasets

For all datasets, an 80-20 train split was used to obtain separate sets for training and testing. An overview of the
data properties for all datasets can be found in Table 7. All datasets were transformed to binary classification
problems by [56]. The HIGGS dataset was already part of the main experiments and was excluded from this
benchmark to prevent duplicate experiments.
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Table 6 Table of hyperparameters used for the experiments

Experiment Dataset Architecture Hyperparameters

g e A a

Truly Sparse Ensembles GPS 50�1000�1000�1000�5 0.1�0.05 2-4-8 All-ReLU 0.5

HIGGS 28�1000�1000�1000�2 0.1�0.05 2-4-8 All-ReLU 0.05

Tab. Benchmark ...�1000�1000�1000�2 0.1�0.05 2-4-8 ReLU -

Baseline ensemble GPS 50�1000�1000�1000�5 0.01 2 All-ReLU 0.5

HIGGS 28�1000�1000�1000�2 0.01 2 All-ReLU 0.05

Tab. Benchmark ...�1000�1000�1000�2 0.01 2 ReLU -

Dense models GPS 50�1000�1000�1000�5 0.001 - ReLU -

HIGGS 28�1000�1000�1000�2 0.001 - ReLU -

Tab. Benchmark ...�1000�1000�1000�2 0.001 - ReLU -

Table 7 Summary of data-
sets contained in the tabular
benchmark

Dataset Dataset properties

Features Samples [#]

Bank marketing 7 10578

Bioresponse 419 3434

California 8 20634

Credit 10 16714

Default-of-credit-card-clients 20 13272

Diabetes130US 7 71090

Electricity 7 38474

Eye Movements 20 7608

Heloc 22 10000

House16 16 13488

Jannis 54 57580

MagicTelescope 10 13376

MiniBooNE 50 72998

Pol 26 10082
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