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ABSTRACT behavior to better align with human intentions [7, 23]. However,

To integrate into human-centered environments, autonomous agents
must learn from and adapt to humans in their native settings.
Preference-based reinforcement learning (PbRL) can enable this
by learning reward functions from human preferences. However,
humans live in a world full of diverse information, most of which
is irrelevant to completing any particular task. It then becomes
essential that agents learn to focus on the subset of task-relevant
state features. To that end, this work proposes R2N (Robust-to-
Noise), the first PbRL algorithm that leverages principles of dy-
namic sparse training to learn robust reward models that can focus
on task-relevant features. In experiments with a simulated teacher,
we demonstrate that R2N can adapt the sparse connectivity of its
neural networks to focus on task-relevant features, enabling R2N
to significantly outperform several sparse training and PbRL algo-
rithms across simulated robotic environments. We open-source our
code at the following link: https://github.com/cmuslima/R2N.
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1 INTRODUCTION

Recent advances in reinforcement learning (RL) are bringing us
closer to a future where RL agents aid humans in their daily lives
[10, 13, 30]. Preference-based RL (PbRL) is a promising paradigm
that allows RL agents to leverage human preferences to adapt their
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to effectively integrate agents into human-centered environments,
autonomous agents should be able to learn from humans in their
natural settings. Unfortunately, human environments are inher-
ently noisy. For example, a household robot should be able to effec-
tively learn from human preferences despite receiving a continuous
stream of information regarding various household chores. Suppose
a household robot is tasked with learning to clean a toy room, and
a human provides the robot with preferences on how the room
should be cleaned. In this scenario, the robot might receive distract-
ing information such as sounds from children playing, colors and
shapes of various toys, room temperature, etc. Only a certain subset
of the robot’s perceptions is relevant to the task. Identifying this
subset of task-relevant features can boost performance and sample
efficiency. However, there has been little attention in PbRL on how
to learn in such noisy environments. More often, research in PbRL
focuses on hand-engineered environments that contain only task-
relevant features [19, 23, 24, 28, 31]. There has been little attention
in PbRL on how to learn in noisy environments where identifying
all relevant features can be difficult and time-consuming. This lack
of attention is problematic as we consider more real-world settings,
like the household robot example. In such settings, recent algorith-
mic improvements for PbRL may not be helpful in environments
containing irrelevant features. This paper asks the question:

How can autonomous agents learn from human preferences in
noisy environments with many irrelevant features?

To study this, we consider the Extremely Noisy Environment
(ENE) problem setting [16]. Given a traditional RL environment,
an ENE expands the size of the state space by adding features of
random noise sampled from N (0, 1). These new features are task-
irrelevant and the agent does not have any information on the utility
of each feature. Learning becomes quite difficult without knowing
which features are task-relevant and which are noise. While previ-
ous work in dynamic sparse training (DST) has shown promising
results in filtering out irrelevant features in reinforcement learning
[11, 16, 27, 33], its application to preference-based reinforcement
learning remains unexplored. To that end, we present R2N, a robust-
to-noise PbRL algorithm that leverages principles of dynamic sparse
training to learn a robust reward model, effectively filtering out
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irrelevant features while reinforcing neural network connections
to pertinent ones. Importantly, this filtering and policy learning is
done solely from preferences and not from a ground truth reward
function or other background knowledge.

This paper’s core contributions are as follows:

e We are the first to consider the Extremely Noisy Environment
setting for preference-based reinforcement learning.

e We propose R2N, a noise-robust PbRL algorithm that enables
its learned reward model and RL agent to focus on relevant
environmental features through dynamic sparse training.

e We demonstrate that R2N can maintain competitive perfor-
mance, but often outperform four sparse training algorithms
in five DeepMind Control environments [34] with high added
noise.

e We integrate R2N with three state-of-the-art PbRL algo-
rithms, leading to significant performance improvements.
This demonstrates the versatility of R2N and its ability to
enhance multiple PbRL methods.

The primary goal of this paper is to highlight the importance of
continued research in PbRL for noisy environments, as it is neces-
sary for PbRL to be effective in real-world settings. We demonstrate
the potential of dynamic sparse training as a promising avenue
towards achieving this goal.

2 RELATED WORK

Human-in-the-Loop RL. Human-in-the-loop RL consists of a grow-
ing set of methods that allow an RL agent to leverage human feed-
back to improve its behavior. Various types of human feedback
have been considered, including demonstrations, action advice,
scalar feedback, and preferences. By learning from demonstrations,
teachers provide (state, action) trajectories of the desired agent
behavior [1, 2, 6]. Similarly, in the action advising setting, a teacher
suggests actions for the RL agent to take [12, 35]. As an alternative,
other approaches consider scalar and preference-based feedback. In
learning from scalar feedback, teachers provide a scalar rating of an
agent’s behavior [15, 21, 25, 26, 37, 38]. In PbRL, human feedback
is even simpler, only requiring a preference between two recorded
segments of the agent’s behavior. The preferences are often used to
learn an estimate of the true reward function, which the RL agent
then maximizes [7, 23]. To reduce the number of human preferences
necessary, works have considered a variety of techniques, includ-
ing data augmentation [31], uncertainty-based exploration [24],
meta-learning [19], semi-supervised learning [31], and pre-training
with sub-optimal data [28]. Other work has focused on leveraging
preferences without explicitly modeling a reward function [18, 32].
PbRL has been popularized in recent years, particularly due to its
success in improving large language models [30, 41].

Sparsity in Neural Networks. Sparsity provides a means to reduce
the parameter count of neural networks without decreasing perfor-
mance or representational power [3, 4, 9, 11, 27, 39, 40]. Dynamic
sparse training is a subfield of sparse training, with methods such
as SET [27] and RigL [11], that start from a random sparse neural
network and improve its topology over time. In both algorithms,
the neural network is randomly pruned at initialization up to a
certain sparsity level s € (0, 1). During training, the network is
periodically updated by pruning and growing connections in each

sparse layer. More specifically, both SET and RigL drop a fraction of
connections with the lowest weight magnitude. However, to grow
new weights, SET selects random locations, whereas RigL grows
new weights in locations where the gradient magnitude is the high-
est. This means RigL needs to compute the gradient of all weights
(including the inactive ones) during a sparse topology update. RigL
has been shown to outperform SET in supervised learning tasks
[11], but in RL, there seems to be no significant difference [14].
The fact that DST methods are dynamic (i.e., able to update the
network’s topology over time) is crucial. In reinforcement learning
Sokar et al. [33] applied DST, successfully improving performance
using only ~50% of the weights. In noisy RL environments, Grooten
et al. [16] further showed that specifically sparsifying the input
layer improves the robustness of RL algorithms. Graesser et al. [14]
also provided a large overview of the state of sparse training in a
diverse set of RL environments, algorithms, and sparsity levels.

Other forms of dynamic sparse training can include DropConnect
[36] and L1 regularization [29]. DropConnect introduces dynamic
sparsity into a model by randomly setting a subset of weights to
zero during each forward pass. In contrast, L1 regularization adds a
term to the model’s loss function that is proportional to the sum of
the absolute value of the model’s weights. This induces sparsity by
driving the weights of less important features to zero, effectively
performing feature selection. Unlike DST approaches, static sparse
training prunes a set of weights at initialization to a fixed sparsity
level, and this sparsity pattern remains fixed throughout training.
However, static sparse training has generally been found to be less
effective [14, 27].

3 BACKGROUND

In reinforcement learning, an RL agent interacts with an environ-
ment to maximize the expected cumulative (discounted) reward.
This interaction process is modeled as a Markov Decision Process
(MDP) consisting of (S, A, T,r,y). At each interaction step ¢, the
agent receives a state s; € S and takes an action a; € A accord-
ing to its policy 7 (s|a). The environment then provides a reward
re+1 = r(ss, ar) and transitions to the next state s;41 according to
the transitions dynamics T (s¢+1|sz, a;). The agent attempts to learn
a policy that maximizes the discounted return G = ZZ":O yk Piaktl

This work assumes an MDP\R setting, where access to the envi-
ronmental reward function is not provided. The goal is to learn a
good policy while simultaneously learning a proper estimate of the
reward function from human preferences.

Preference-based Reinforcement Learning. PbRL considers trajec-
tory segments o, where each segment consists of a sequence of
states and actions {s¢, ar, St+1, A1, - St4k» Az+k ) Where k is the tra-
jectory segment length. Two segments, 6% and ¢, are then com-
pared by a teacher. If the teacher prefers segment ¢! over segment
o”, then the target label y = 1, and if the converse is true, y = 0. If
both segments are equally preferred, then y = 0.5. As feedback is
provided, it is stored as tuples (0'0, al, y) in a dataset D. Then, we
follow the Bradley-Terry model [5] to define a preference predictor
Py using the reward function estimator 7y:

Pg(o'l N 0_0) — exp (Zt fg(s;,a})A) _
Liefo1y exp (X Fo(sf. ap))

1)



Intuitively, if segment o is preferred over segment ¢/ in Equa-
tion (1), then the cumulative predicted reward for o* should be
greater than for o/. To train the reward function, we can use su-
pervised learning where the teacher provides the labels y. We can
then update 7g through Py by minimizing the standard binary cross-
entropy objective.

LCE(G,D) =- E(Uo’01,y)~D [(1 ) long(Uo > 01)
+ ylogPy(c' > a%)] (2)

In Equation (2), the loss increases as the predicted probability that
ol > ¢° diverges from the true label (e.g., y = 1). This loss drives
the reward model to update its weights to output a greater predicted
total reward for ¢! than for ¢°. The learned reward function, 7o,
is then used in place of the environmental reward function in the
typical reinforcement learning interaction loop.

Noise in Human-in-the-loop RL. RL agents can experience dif-
ferent types of noise while interacting and learning from humans:
measurement error and distracting features. Measurement error
results from uncertainty in perception. For example, if a human is
providing feedback to an RL agent, they might be unsure or inde-
cisive about what feedback to provide. In the preference learning
literature, some work has studied this by incorporating “imperfect”
simulated teachers that provide random preference orderings to
some percentage of their total preference queries [22]. However,
this type of noise is outside the scope of this work.

Problem Setting. We study the setting in which noise is classified
as a distracting feature in an environment. For example, consider
the household cleaning robot that receives preferences on cleaning
styles. In this task, the robot can receive excess information about
the house that is not necessary for the cleaning task. Therefore,
the robot needs to learn to filter through the noise to focus solely
on task-relevant features. We consider the Extremely Noisy En-
vironment (ENE) [16] to study this setting. In an ENE, the state
space of a regular RL environment is increased by concatenating
a large number of irrelevant features. More specifically, an ENE
enlarges the state space such that a certain fraction ny € [0,1)
of the total state space is random noise. These irrelevant features
are produced by sampling i.i.d. from N (0, 1). We use this setting
in our experiments unless stated otherwise. The PbRL algorithms
must identify the most relevant features to (1) learn a robust reward
function and (2) learn an adequate policy.

4 ROBUST-TO-NOISE PREFERENCE
LEARNING

In this section, we introduce R2N, a preference-based RL algorithm
specifically designed to handle noisy environments (see Figure 1).
The goal of R2N is to learn useful reward functions from feedback in
environments that contain large numbers of task-irrelevant features
(e.g., noise features). To do so, R2N applies dynamic sparse train-
ing techniques to PbRL algorithms for the learned reward model
to focus on relevant environment features. Algorithm 1 outlines
how DST is applied to the reward learning module in a PbRL al-
gorithm, with novel components highlighted in blue. R2N consists
of two primary steps. First, at initialization, R2N randomly prunes

the input layer of the reward model to a pre-defined sparsity level
sR (see line 2 in Algorithm 1). This is an important step, as prior
works have shown that sparse neural networks can outperform
their dense counterparts in both the supervised learning and RL
settings [11, 27, 33]. Second, after every ATR weight updates in
the training loop, we prune the weakest active connections in the
reward model’s input layer (see line 7 in Algorithm 1). The strength
of a connection is defined by the absolute value of its weight. After
dropping a certain fraction d¥ € (0, 1) of the overall active connec-

tions, R2N grows the same number of connections in new locations
(see line 8 in Algorithm 1). Growing new connections ensures we
maintain the same sparsity level throughout training. To choose
which inactive connections to grow, we use the RigL algorithm [11],
which activates connections with the highest gradient magnitude.
As training the reward model is done via supervised learning, RigL
is a more suitable DST candidate due to its demonstrated advan-
tage over SET in supervised learning tasks [11]. This step enables
the reward model to concentrate on the most pertinent features
during training (see Figure 4c and Appendix B.1). We also repeat
this procedure for the input layers of the actor and critic networks
of the RL agent, as done in Grooten et al. [16].

A key distinction between R2N and previous work on noisy set-
tings is that R2N is specifically designed for PbRL. R2N is the first
to apply DST to the reward learning module. Prior work focuses
solely on the deep RL setting, only applying DST to the RL agent’s
networks [16]. This difference in setting further resulted in varia-
tions in the underlying DST algorithms. R2N purposely uses RigL
as the reward models are trained via supervised learning, whereas
Grooten et al. [16] is based on the SET algorithm. Figure 2 provides
support for this design choice by demonstrating the advantages of
using RigL over SET for preference learning. We further illustrate
the importance of R2N leveraging DST in both reward learning and
RL modules for PbRL algorithms in Figure 4d and Appendix B.6.
We observe that applying DST to only the reward module or only
the RL module leads to significantly lower performance compared
to R2N, which applies DST in both.

Algorithm 1 R2N

Require: Reward model sparsity level s¥, topology update period
ATR , drop fraction d}lf
Require: Set of collected preference data D
1: Initialize the reward model 7y
2: Randomly prune the input layer of the reward model to sparsity
level sR

3. for gradient stept=1...T do > Reward learning
4 Sample minibatch B{(c?, o1, y)i}f.’:1 ~D

5 Update 7y with LEE, B (equ. 2)

6: if t mod ATR == 0 then » Update reward model topology
7 Prune a fraction d}? of the smallest magnitude reward

model weights 0

8: Grow d}z new reward model weights 6 via RigL

9: end if
10: end for
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Figure 1: Overview of R2N. Consider the example of a household robot tasked with cleaning a toy room from human preferences.
The robot observes many features, although only a few are relevant to the task. R2N learns to connect with the input neurons
that provide useful information by continually pruning and growing new connections.

5 EXPERIMENTS

In this section, we outline the research questions we address in this
work and the respective experimental design and empirical results.

5.1 Research Questions
We consider the five research questions listed below.

RQ 1: Can R2N outperform other sparse training baselines in ex-
tremely noisy environments?

RQ 2: Can the addition of R2N boost the performance of a variety
of PbRL algorithms?

RQ 3: How does the amount of noise and feedback affect the per-
formance of R2N?

RQ 4: What is the effect of applying DST to the reward learning
versus RL module in R2N?

RQ 5: Can R2N learn in environments where the noise features
imitate the task-relevant features?

5.2 Experimental Design

We evaluate R2N in the DMControl Suite [34], a commonly used
PbRL benchmark. More specifically, we consider the following five
tasks: Cartpole-swingup, Walker-walk, Quadruped-walk, Cheetah-
run, and Humanoid-stand.

Baselines. To evaluate the effectiveness of R2N (RQ 1), we com-
pare it to four sparse training baselines: SET [27], Static Sparse
Training, L1 Regularization [29], and DropConnect [36]. Each base-
line was integrated with the PbRL algorithm PEBBLE [23]. SET and
Static Sparse Training are integrated within both the reward learn-
ing and actor/critic modules. L1 Regularization and DropConnect
are integrated only within the reward learning module. PEBBLE
is a PbRL algorithm that uses unsupervised exploration for policy
initialization.

Next, to address RQ 2 and analyze the usefulness of R2N across
diverse PbRL algorithms, we integrated it with two additional state-
of-the-art PbRL algorithms: SURF and RUNE. These algorithms
build upon PEBBLE by applying semi-supervised learning and data
augmentation (SURF) and uncertainty-based exploration (RUNE).

This results in the following baselines: PEBBLE, SURF, and RUNE.
We further show the performance of SAC [17] and ANF-SAC [16] in
Appendix B.4. However, note that these algorithms serve as oracle
baselines as they have access to the ground truth reward during
training, unlike the PbRL algorithms.

Implementation Details. The primary R2N-specific hyperparame-
ters are the (1) reward model input layer sparsity level s¥, (2) the re-
ward model topology update period ATR, and (3) the reward model

drop fraction dlfz. After a grid search, we set sR =80%, ATR = 100,

and d}z = 0.2. As we also apply DST to the RL agent, we use the
same sparsity level, topology update period, and drop fraction for
the actor and critic networks. For any PbRL-specific hyperparam-
eters, we use the default values. As for the RL agent, all methods
use the SAC algorithm with the same neural network architecture
and associated SAC hyperparameters. See Appendix A for full hy-
perparameter details for all baselines. For the PbRL baselines, we
use a simulated teacher that provides preferences between two
trajectory segments according to the ground truth reward function.
Although our future work will involve human teachers, simulated
teachers have commonly been used for evaluation in prior works
[7, 22—-24, 28, 31] to reduce the time and expense of human subject
studies.

Training and Evaluation. We train all algorithms for 1 million
timesteps. For evaluation, we show average offline performance
(i.e., freeze the policy and act greedily) over ten episodes using the
ground truth reward function. We perform this evaluation every
5000 timesteps. Results are averaged over 5 or 14 seeds (Figure
3) with shaded regions indicating the standard error. To test for
significant differences in final performance and learning efficiency
(e.g., area under the curve: AUC), we perform a one-tailed Welch’s
t-test (equal variances not assumed) with a p-value significance
threshold of 0.05. We use this statistical test, as it was found to be
more robust to violations in test assumptions compared to other
parametric and non-parametric tests [8]. See Appendix B.8-B.10 for
a summary of final performance and AUC across all experiments.
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Figure 2: These learning curves evaluate the effectiveness of R2N against various dynamic and static sparse training algorithms.
R2N (green curves) maintains competitive or greater performance in all environments. Solid lines represent the mean, and
shaded regions indicate the standard error across five runs.
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6 DMCONTROL RESULTS

To address RQ 1 and 2, we evaluate R2N in three DMControl
environments with noise fraction ny = 0.90: Cartpole-swingup,
Cheetah-run, and Walker-walk. Recall that this results in a 10X
expansion in the state space size from the original tasks. This sig-
nificantly increases the size of the state space for the original tasks,
from 5 (Cartpole-swingup), 17 (Cheetah-run), and 24 (Walker-walk)
to 51,171, and 241 respectively. As a result, we use larger preference
budgets of 400 (Cartpole-swingup), 1000 (Cheetah-run), and 4000
(Walker-walk) to compensate for the increased task difficulty. Next,
we evaluate R2N in two DMControl environments with noise frac-
tion ny = 0.70: Quadruped-walk and Humanoid-stand. To keep the
state space size for all ENE variants comparable, we use a smaller
noise fraction for Quadruped-walk and Humanoid-stand. This is
necessary as the original state spaces of these environments are
three times larger than those of the DMControl environments pre-
viously tested. This results in the state space size increasing from
68 to 260 and 67 to 224 for the Quadruped-walk and Humanoid-
stand environments respectively. In this setting, we used preference
budgets of 4000 (Quadruped-walk) and 10000 (Humanoid-stand).

R2N versus Sparse Training Baselines. In Figure 2 and Appendix
B.8, we evaluate RQ 1, examining the effectiveness of R2N com-
pared to four sparse training baselines. We find that in all five
environments, RZN-PEBBLE (green curves) is the only algorithm
that consistently achieves superior performance. In particular, R2N-
PEBBLE significantly outperforms L1-Regularization (black curves)
and DropConnect (brown curves) in terms of learning efficiency
in four out of five environments (p < 0.034). While Static-PEBBLE
(orange curves) and SET-PEBBLE (pink curves) prove to be more
competitive, R2N maintains significant performance improvement
both in Humanoid-stand (Static and SET-PEBBLE; AUC and final re-
turn, p < 0.024) and Cheetah-run (Static-PEBBLE; AUC, p < 0.018).

Effectiveness of R2N across PbRL Algorithms. Next, we focus on
RQ 2, to understand whether R2N can boost performance across a di-
verse set of PbRL algorithms. In Figure 3 and Appendix B.9, we find
that the addition of R2N (solid lines) significantly improved both
the learning efficiency (p < 0.021) and final return (p < 0.006) of
the base PbRL algorithm (dotted lines) across all 15 tested baseline-
environment combinations.! Moreover, in Table 7, we find that R2N
resulted in a substantial increase in average final return over the
base PbRL algorithms, with almost half of the cases achieving a 50%
or greater performance boost. We argue that R2N can outperform
the current PbRL algorithms because it is designed to disregard
irrelevant features, an important trait for extremely noisy envi-
ronments. In Figure 4c, we find that R2N adapts its reward model
to focus more on task-relevant features. This results in a signifi-
cantly greater number of connections to the task-relevant features
(pink curve) as compared with the noise features (orange curve).
We observe a similar pattern for the actor and critic networks (see
Appendix B.1). Existing PbRL algorithms primarily focus on im-
proving feedback efficiency in conventional RL environments that
contain only task-relevant features — these results show that such
improvements alone may be insufficient for more noisy DMControl

'We perform three separate Welch’s ¢-tests comparing the base PbRL algorithm to its
R2N variant.

environments. However, we also find that R2N can achieve com-
parable performance in noise-free environments (see Figure 18),
indicating its broader applicability.

7 SENSITIVITY AND ABLATION STUDIES

Research questions 3-5 pertain to the utility of R2N across the fol-
lowing dimensions: (1) the number of noise features, (2) the number
of feedback queries, (3) the effect of DST on individual learning
modules in R2N, and (4) the type of noise features. We perform
this analysis in the Cheetah-run environment. In these studies, we
restrict our comparison of R2N-PEBBLE with only PEBBLE, as PEB-
BLE performed comparably to the other tested PbRL algorithms
in Section 6. We include additional results for the Walker-walk
environment in Appendix B. These results demonstrate similar
performance trends.

Noise Study. First, we aim to understand how effective R2N is at
various noise fractions, RQ 3. Therefore, we fix the preference bud-
get to 1000 and vary the noise fraction np€ {0,0.2,0.5,0.7,0.9,0.95}.
In Figure 4a and Table 10, we find that for higher noise fractions
in Cheetah-run, R2N-PEBBLE maintains significant improvement
over PEBBLE in learning efficiency with p < 0.014 for ny > 50%,
and in final return with p < 0.007 for ny > 70%. Unsurprisingly,
given the small feedback budget, both methods perform worse as
the noise fraction increases.

Feedback Study. We continue our analysis of RQ 3 and evalu-
ate both algorithms under multiple preference budgets. We set
the noise fraction ng = 0.90 and vary the preference budget b €
{100, 200, 400, 1000, 2000, 4000, 10000}. In Figure 4b and Table 11, we
find that in Cheetah-run, R2N-PEBBLE significantly outperforms
PEBBLE in terms of learning efficiency (AUC) and final return with
p < 0.009 for all tested feedback budgets.

DST Component Ablation. In R2N, we apply DST to both the
reward model and actor/critic networks. In RQ 4, our goal is to
understand the importance of DST for both learning modules. In
this ablation, we consider a noise fraction n = 0.90 and a pref-
erence budget of 1000. In Figure 4d and Table 12, we find that in
Cheetah-run, full R2N (green curve) significantly outperforms the
R2N variants that apply DST only to the RL module (purple curve;
p <0.022 for AUC and final return) or only to the reward learning
module (black curve; p < 0.002 for AUC and final return). This
demonstrates that it is important for the reward model and RL agent
to learn to avoid irrelevant features in R2N-PEBBLE.

Imitating Real Features Study. Experiments thus far consider ex-
tremely noisy environments where noise features were sampled
from N (0, 1). For RQ 5, we increase the difficulty by using noise
features that mimic task-relevant features. We find the distribution
of each task-relevant feature as follows. First, we train a SAC agent
in a noise-free environment for 1 million timesteps. Second, we
perform policy rollouts and store the state transitions. Third, with
the state transition data, we can create a histogram for each fea-
ture. Fourth, we sample from each feature distribution to create a
noise feature. Due to increased difficulty, we set the noise fraction
ny = 0.90 but use a higher preference budget of 4000. In Figure 4e
and Table 13, we find that in this setting R2N-PEBBLE (dotted green



800 500 100
e | €
2 00 3 a 90
(0] ] (o]
o 5400 B 80
© © (0]
= < <
w [T c
400 =300 g 70
2 3 :
g g S 60
2200 2200 =
50
0 20 50 70 9095 0 2500 5000 7500 10000 00 02 04 06 08 1.0
Noise Fraction % Amount of Feedback Timesteps (x 10°)
—+— R2N-PEBBLE —e— R2N-PEBBLE Task-relevant Features
PEBBLE PEBBLE Noise Features
(a) Noise Study (b) Feedback Study (c) Neural Network Connections
500 500
400 400
£ S
2300 g 300
£ o
()
200 S 200
= =
100 100
0

0.0 02 04 06 0.8 1.0
Timesteps (x 10°)
—— R2N-PEBBLE
—— R2N-PEBBLE Actor/Critic Only
—— R2N-PEBBLE Reward Model Only

(d) DST Component Study

0.0 0.2 04 06 08 1.0
Timesteps (x 10°)
—— R2N-PEBBLE WN(0, 1) noise
—== R2N-PEBBLE imitated noise
PEBBLE WN(0, 1) noise
PEBBLE imitated noise

(e) Imitating Noise Study

Figure 4: Further studies in Cheetah-run: (a) effect of noise fraction, (b) effect of feedback budget, (c) average number of neural
network connections to task-relevant versus noise features in a reward model with R2N, (d) DST component ablation, and (e)
effect of noise feature distributions. Solid lines and shaded regions represent the mean and standard error across five runs.

curve) maintains significantly greater performance than PEBBLE
(dotted yellow curve) with p < 0.004 for both AUC and final return.
However, for both R2N-PEBBLE and PEBBLE, we observe perfor-
mance degradation compared to the setting in which the noise is
sampled from the standard normal distribution (solid curves).

8 CONCLUSION

For RL agents to become commonplace, agents should be able to
learn from people in human-centered environments (e.g., home,
school, office). However, humans live in a world full of information,

most of which is not necessary for completing individual tasks. Cur-
rent state-of-the-state PbRL algorithms do not consider the impact
of irrelevant environment features and are, consequently, unable
to adequately learn in this setting. To that end, we present R2N, a
novel robust-to-noise PbRL algorithm that leverages dynamic sparse
training techniques to learn robust reward models in extremely
noisy environments. R2N continually adjusts the network topol-
ogy of both the reward model and RL agent networks to focus on
task-relevant features. This enables R2N to successfully learn in
environments where up to 95% of the features are noise.



This work represents the first PbRL algorithm specifically de-
signed to learn in extremely noisy environments. As such, several
promising research directions remain to be explored. For example,
to provide a proof-of-concept of R2N, we use a simulated teacher
to obtain preferences. To further validate our obtained results and
confirm their generalizability to human preferences, future work
must perform a human-subjects study. In addition, we limit our
investigation of R2N to the Extremely Noisy Environment setting,
where noise features are added to existing RL environments. To
consider more real-world settings, R2N should be studied with real
robots that may be receiving pixel input. Lastly, this work assumes
that a feature’s relevance is constant (i.e., always useful or always
noise). However, an interesting extension would be learning to
filter irrelevant features in the continual learning setting, in which
features can be relevant to one task and irrelevant to the next.
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APPENDIX
A IMPLEMENTATION DETAILS

In this section, we present further implementation details on our
method R2N, as well as the other baselines compared in our study.
Our results in Section 6 show that R2N can boost the performance
of multiple preference-based reinforcement learning algorithms,
especially in extremely noisy environments. For an overview of the
dimensions of the state space in each ENE studied, see Table 1.

The primary R2N-specific hyperparameters are the (1) reward
model input layer sparsity level s, (2) the reward model topol-
ogy update period AT, and (3) the reward model drop fraction
dy. To set these values, we performed a grid search. For the re-
ward model input layer sparsity level s, we used the default spar-
sity level as in ANF [16]. Next, for the reward model topology up-
date period AT, we tested values for AT € {20, 100, 250, 500, 1000}.
Lastly, for the reward model drop fraction d [, we tested values for
dy € {0.05,0.1,0.2}.

To train a single R2N model (i.e., one seed), we used 1 GPU, 20-24
hours of run-time and 25-50G of memory.

Hyperparameters. An overview of the hyperparameters of the
standard RL algorithms (without preference learning) is provided
in Table 2. The specific settings of R2N and our PbRL baselines
are given in Table 3. The hyperparameters for the sparse training
baselines are outlined in Table 4.

B ADDITIONAL RESULTS

B.1 Neural Network Connections to Relevant
versus Noise Features

In this section, we show further analysis of the neural network
connections in R2N-PEBBLE for the Cheetah-run experiment (90%
noise features and a feedback budget of 1000) and Walker-walk
experiment (90% noise features and a feedback budget of 4000).
More specifically, Figures 5 and 6 highlight that with R2N, the RL
agent and the reward models can significantly increase the number
of connections to the task-relevant features (pink curves) compared
with the number of noise features (orange curves). However, note
that the reward models are trained until timestep 500000, so the
connectivity does not alter after that point.

B.2 Feedback and Noise Ablations in
Cheetah-run

In this section, we present additional experimental results ablating
over the noise fractions and preference feedback budgets for the
Cheetah-run environment. Overall, in Figures 7 through 10, we
find that R2N-PEBBLE (green curves) is generally more robust
than PEBBLE (yellow curves) in varying noise levels and feedback
amounts. Especially in environments with high noise levels, such
as 90-95%, shown in Figures 9 and 10, R2N significantly improves
the performance of PEBBLE.



Table 1: This table shows the size of the state space for the original environments and the corresponding
extremely noisy environment (ENE) variants.
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Figure 5: Cheetah-run. These plots show the average number of neural network connections to the relevant versus noise
features in R2N’s RL networks and reward models.



Table 2: Hyperparameters for SAC and ANF-SAC, the standard RL algorithms that learn from the environment’s
true reward signal, not via preference learning. Note, however, that we present R2N’s hyperparameters for the
actor and critic networks here as well.

Hyperparameter Value
SAC (Shared by all algorithms)
optimizer Adam [20]
discount 0.99
actor learning rate 10~4
critic learning rate 10~4
alpha learning rate 10~4
actor betas 0.9, 0.999
critic betas 0.9, 0.999
alpha betas 0.9, 0.999
target smoothing coefficient 0.005
actor update frequency 1
critic target update frequency 2
init temperature 0.1
batch size 1024
replay buffer size 106
initial collect steps 1000
network type MLP
number of hidden layers 2
number of neurons per hidden layer 1024
nonlinearity ReLU
number of training steps 106
ANF-SAC and R2N (actor & critics)
sparsity level input layer 0.8
drop fraction d¢ 0.05
topology-change period AT 1000
new weights init value 0
DST method RigL [11]
sparsify target networks false




Table 3: Hyperparameters for the PbRL algorithms used, including our method R2N.

Hyperparameter Value

PEBBLE (reward model hyperparameters

shared by all PbRL algorithms)
trajectory segment size 50
number of unsupervised exploration steps 9000
learning rate 0.003
batch size 128
ensemble size 3
network type MLP
number of hidden layers 4
number of neurons per hidden layer 128
nonlinearity LeakyReLU
optimizer Adam [20]
replay buffer size 10°
feedback frequency 5000

reward batch size

trajectory sampling scheme

training epochs

feedback budget / 100
DMC - Uniform
50

SURF

confidence threshold 7 0.99

loss weight A 1

inverse label ratio 10

data augmentation window 5

crop range 5
RUNE

beta schedule linear decay

beta init 0.05

beta decay 0.00001
R2N (reward models)

sparsity level input layer s; 0.8

drop fraction dy 0.20

topology-change period AT 100




Table 4: Hyperparameters for Sparse Training Baslines

Hyperparameter Value
SET-PEBBLE
sparsity level input layers; 0.8
drop fraction dy 0.20

Static-PEBBLE
sparsity level input layers; 0.8
DropConnect
drop fraction d¢ 0.20
L1 Regularization
A 0.01




400
500
Z Z
_9350 5
] 5400
(0] (0]
£300 =
(o] (o]
o 0300
£250 €
> >
=4 =z
200 200
0.0 02 04 06 08 1.0 0.0 02 04 06 08 1.0
Timesteps (x 10°) Timesteps (x 10°)
Task-relevant Features Task-relevant Features
Noise Features Noise Features
(a) Actor Network (b) Critic Network 1
100
" »n 100
S 90 S
‘8 ©
g 80 g 80
g s
o 70 O
€ 60 E 60
=z =z
50
40
00 02 04 06 08 1.0 00 02 04 06 08 1.0

Timesteps (x 10°) Timesteps (x 10°)

Task-relevant Features
Noise Features

Task-relevant Features
Noise Features

(d) Reward Model 1 (e) Reward Model 2

500
1)
C
o
£400
(0]
C
C
(o]
0300
€
>
4
200
0.0 02 04 06 08 1.0
Timesteps (x 10°)
Task-relevant Features
Noise Features
(c) Critic Network 2
100
[}
S 90
©
2 80
&
8 70
€ 60
=z
50
40
00 02 04 06 08 1.0

Timesteps (x 106)

Task-relevant Features
Noise Features

(f) Reward Model 3

Figure 6: Walker-walk. These plots show the average number of neural network connections to the relevant versus noise

features in R2N’s RL networks and reward models.
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Figure 7: Cheetah-run, Feedback Ablation, Noise = 20%
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Figure 8: Cheetah-run, Feedback Ablation, Noise = 50%



B.3 Feedback and Noise Ablations in
Walker-walk

In this section, we present additional experimental results ablat-
ing the noise levels and preference budgets for the Walker-walk
environment. Overall, in Figures 11 through 14, we find that R2N-
PEBBLE (green curves) is generally more robust than PEBBLE (yel-
low curves) in varying noise levels and feedback amounts.

B.4 Comparison of R2N with Traditional RL
Algorithms

In this section, we show additional results comparing R2N-PEBBLE
(green curve) with two RL algorithms, SAC (brown curve) and ANF-
SAC (black curve). We note that both these algorithms learn while
accessing the true environmental reward which is unavailable to
R2N. Impressively, in Figure 15, we find that in three out of the
five tested DMControl environments, R2N can achieve comparable
results with SAC and ANF-SAC.

B.5 Imitating Noise Analysis

In this section, we show additional results of the experiment where
noise features imitate the distribution of real features, as described
in Section 7. We find that in the Cheetah-run environment, R2N-
PEBBLE (green dotted curve) maintains performance gains over
PEBBLE (yellow dotted curve) when we increase the preference
budget to 10000 (see Figure 16a). However, we find that for Walker-
walk, R2N-PEBBLE performs comparably to PEBBLE for preference
budgets of 4000 and 10000 (see Figures 16b and 16c¢).

B.6 DST Component Analyisis

In this section, we aim to understand the importance of dynamic
sparse training on both reward learning and RL modules. In Figure
17, we find that in Walker-walk, full R2N which applies DST to
both learning modules is superior to R2N variants that only apply
DST to one learning module.

B.7 R2N on Zero Noise Environments

In this section, we show additional results comparing R2N-PEBBLE
(green curve) with PEBBLE (yellow curve) in traditional RL en-
vironments without any added noise features. Overall in Figure
18, we find that R2N-PEBBLE can achieve performance gains in
some environments (Humanoid-stand), however, in others, it per-
forms comparable or slightly worse. In this set of experiments, we
kept the feedback budgets the same as the experiments with high
added noise. Therefore, it might be the case that in 0% noise envi-
ronments, R2N-PEBBLE can achieve greater performance gains in
lower feedback regimes.

B.8 Tests for Statistical Significance: R2N versus
Sparse Training Baselines

This section provides a full summary of all experiments under RQ

1. Tables 5 and 6 show the average AUC and final return for R2N

and the four sparse training baselines in the tested DMControl
experiments. We also include the outcome of a Welch’s t-test (equal

variances not assumed). We use a p-value significance threshold of
0.05.

B.9 Tests for Statistical Significance for:
Effectiveness of R2N across PbRL
Algorithms

This section provides a full summary of all experiments under RQ 2.
Table 8 and Table 9 show the average final return and average area
under the curve respectively over 14 seeds. We perform statistical
tests between R2N and each baseline it is paired with, showing the
outcome of Welch’s t-test (equal variances not assumed). We use
a p-value significance threshold of 0.05. Note that in all 15 cases,
R2N significantly increases both the final performance and the area
under the curve (AUC) of its baseline.

B.10 Tests for Statistical Significance for
Sensitivity and Ablation Studies

This section provides a full summary of all experiments presented
in Section 7. Tables 10-13 show the average final return and average
area under the curve respectively over five seeds for the various
sensitivity and ablation studies. We perform statistical tests between
R2N and each baseline it is paired with, showing the outcome of
Welch’s t-test (equal variances not assumed). We use a p-value
significance threshold of 0.05.
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Figure 9: Cheetah-run, Feedback Ablation, Noise = 90%
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Figure 11: Walker-walk, Feedback Ablation, Noise = 20%
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Figure 12: Walker-walk, Feedback Ablation, Noise = 50%
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Figure 13: Walker-walk, Feedback Ablation, Noise = 90%
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Figure 14: Walker-walk, Feedback Ablation, Noise = 95%



600
£ £
2 2
&J400 g
(0] (0]
2 2
200 7 2
0
00 02 04 06 08 1.0 00 02 04 06 08 1.0
Timesteps (x 10°) Timesteps (x 10°)
—— R2N-PEBBLE —— SAC —— ANF-SAC —— R2N-PEBBLE — SAC —— ANF-SAC

(a) Walker-walk, Noise=90% (b) Cheetah-run, Noise=90%

800
c
5600
-
&
5400
2
F200
0
00 02 04 06 08 1.0
Timesteps (x 10°)
—— R2N-PEBBLE — SAC —— ANF-SAC

(c) Cartpole-swingup, Noise=90%

600
c 150 c
E 5400
2100 &
g g
£ 50 =200
0 0
00 02 04 06 08 1.0 00 02 04 06 08 1.0
Timesteps (x 10°) Timesteps (x 10°)
—— R2N-PEBBLE — SAC —— ANF-SAC —— R2N-PEBBLE —— SAC —— ANF-SAC

(d) Humanoid-stand, Noise=70%

(e) Quadruped-walk, Noise=70%

Figure 15: These plots compare R2N-PEBBLE with SAC and ANF-SAC, algorithms that have access to the ground truth reward

function.



400

- £400

> 5

] ]

& &

200

) ()

S E200

= =

0 -
0.0 0.2 04 06 0.8 1.0 0.0 0.2 04 06 0.8 1.0
Timesteps (x 10°) Timesteps (x 10°)
—— R2N-PEBBLE N{(0, 1) noise PEBBLE imitated noise —— R2N-PEBBLE N{(0, 1) noise PEBBLE imitated noise
—== R2N-PEBBLE imitated noise PEBBLE W0, 1) noise —== R2N-PEBBLE imitated noise PEBBLE N0, 1) noise
(a) Cheetah-run, Noise=90%, Feedback=10000 (b) Walker-walk, Noise=90%, Feedback=4000

£400
S5
-
Q
o
v 200
~
=

00 02 04 06 08 1.0

Timesteps (x 10°)
—— R2N-PEBBLE W0, 1) noise PEBBLE imitated noise
—== R2N-PEBBLE imitated noise PEBBLE W0, 1) noise

(c) Walker-walk, Noise=90%, Feedback=10000
Figure 16: These plots compare the performance of R2N-PEBBLE and PEBBLE in the ENE setting where the noise features

imitate the task-relevant features.



True Return

00 02 04 06 08 1.0
Timesteps (x 109)

—— R2N-PEBBLE
—— R2N-PEBBLE Actor/Critic Only
—— R2N-PEBBLE Reward Model Only

Figure 17: This plot shows the performance of R2N-PEBBLE in Walker-walk (noise = 90%, feedback
= 4000) with R2N variants that only apply DST to either the RL modules (actor/critic) or the reward
learning module.



800 1000 | —
.4/ d
c 600 c 800
2 2 600
& 400 &
S S 400
F200 =
200 |
0 /
00 02 04 06 08 1.0 00 02 04 0.6 08 1.0
Timesteps (x 10°) Timesteps (x 10°)
—— R2N-PEBBLE PEBBLE —— R2N-PEBBLE PEBBLE
(a) Cheetah-run, Feedback=1000 (b) Walker-walk, Feedback=4000
300
C
5200
v
o
Q
2100
|_
ol —

00 02 04 06 08 1.0
Timesteps (x 10°)
—— R2N-PEBBLE PEBBLE

(c) Humanoid-stand, Feedback=10000
Figure 18: These plots compare the performance of R2N-PEBBLE and PEBBLE in traditional RL environments (i.e., 0% noise

setting).



Table 5: This table shows the average area under the curve (AUC) +/- standard error across all methods and environments.
indicates a significant difference between R2N and the other sparse training baselines.

Task Feedback / Noise ~Method AUC P Value
R2N-PEBBLE 117315.62 +/- 2335.79
Static-R2N-PEBBLE 116461.45 +/- 2334.99  0.411
Cartpole-swingup 400/ 0.9 SET-R2N-PEBBLE 112016.81 +/- 6987.0  0.269
DropConnect-PEBBLE  117025.07 +/- 2073.38  0.4678
L1Reg-PEBBLE 110815.92 +/- 4545.69  0.144
R2N-PEBBLE 59633.26 +/- 6314.67
Static-R2N-PEBBLE 54004.32 +/- 4094.93 0.261
Walker-walk 4000/ 0.9 SET-R2N-PEBBLE 47873.41 +/- 1013.76  0.069
DropConnect-PEBBLE  38794.09 +/- 3707.38  0.017"
L1Reg-PEBBLE 43978.68 +/- 2085.58 0.034*
R2N-PEBBLE 45055.91 +/- 1383.87
Static-R2N-PEBBLE 39629.12 +/- 1361.03 0.018*
Cheetah-run 1000/ 0.9 SET-R2N-PEBBLE 41051.56 +/- 2109.16 0.096
DropConnect-PEBBLE  24896.96 +/- 2316.76  0.000"
L1Reg-PEBBLE 26874.27 +/- 1625.5 0.000*
R2N-PEBBLE 41388.91 +/- 3133.91
Static-R2N-PEBBLE 41030.21 +/- 1388.97 0.463
Quadruped-walk 4000/ 0.7 SET-R2N-PEBBLE 37897.23 +/- 2112.66 0.216
DropConnect-PEBBLE  29980.62 +/- 1000.13  0.007"
L1Reg-PEBBLE 28905.57 +/- 2408.5 0.011*
R2N-PEBBLE 10231.46 +/- 1680.98
Static-R2N-PEBBLE 4323.92 +/- 997.25 0.013*
Humanoid-stand 10000/ 0.7 SET-R2N-PEBBLE 2310.3 +/- 668.14 0.002*
DropConnect-PEBBLE  1109.44 +/- 69.78 0.000*
L1Reg-PEBBLE 1170.72 +/- 56.38 0.000*




Task Feedback / Noise Method Final Performnce P Value
Cartpole-swingup 400/ 0.9 R2N-PEBBLE 729.95 +/- 14.26
Static-R2N-PEBBLE 737.59 +/- 16.23 0.620
SET-PEBBLE 728.63 +/- 20.24 0.481
DropConnect-PEBBLE  719.91 +/- 7.62 0.296
L1Reg-PEBBLE 690.3 +/- 17.57 0.077
Walker-walk 4000/ 0.9 R2N-PEBBLE 434.85 +/- 48.74
Static-R2N-PEBBLE 367.56 +/- 30.18 0.162
SET-PEBBLE 329.17 +/- 11.53 0.047*
DropConnect-PEBBLE  252.73 +/- 34.83 0.013*
L1Reg-PEBBLE 340.34 +/- 33.39 0.095
Cheetah-run 1000/ 0.9 R2N-PEBBLE 384.8 +/- 12.53
Static-R2N-PEBBLE 377.23 +/- 13.53 0.361
SET-PEBBLE 404.03 +/- 13.36 0.812
DropConnect-PEBBLE  219.24 +/- 19.39 0.000"
L1Reg-PEBBLE 239.53 +/- 14.52 0.000*
Quadruped-walk 4000/ 0.7 R2N-PEBBLE 355.62 +/- 73.09
Static-R2N-PEBBLE 283.55 +/- 20.56 0.210
SET-PEBBLE 245.51 +/- 12.33 0.110
DropConnect-PEBBLE  207.51 +/- 14.16 0.056
L1Reg-PEBBLE 218.3 +/- 34.69 0.083
Humanoid-stand 10000 / 0.7 R2N-PEBBLE 154.63 +/- 20.46
Static-R2N-PEBBLE 81.42 +/- 19.54 0.024*
SET-PEBBLE 43.65 +/- 19.9 0.004*
DropConnect-PEBBLE  7.93 +/- 1.64 0.000"
L1Reg-PEBBLE 8.34 +/- 1.22 0.000*

Table 6: This table shows the average area under the curve (AUC) +/- standard error across all methods and environments. *
indicates a significant difference between R2N and the other sparse training baselines.

PERCENT IMPROVEMENT OF R2N

Task / FEEDBACK / No1sE FRacTioN R2N-PEBBLE v. PEBBLE R2N-RUNE v. RUNE R2N-SURF v. SURF

CARTPOLE-SWINGUP / 400 / 0.90 8.540% 8.21% 7.90%
WALKER-WALK / 4000 / 0.90 33.60% 36.59% 44.98%
CHEETAH-RUN / 1000 / 0.90 70.26% 103.06% 55.74%
QUADRUPED-WALK / 4000 / 0.70 66.83% 39.67% 39.55%
HuMANOID-STAND / 10000 / 0.70 1942.97% 2165.27% 1266.18%

Table 7: This table shows the percent improvement in the average final return of the original PbRL algorithms once R2N is
applied to it. This highlights that in all tested cases, R2N can boost the performance of the base PbRL algorithm.



Table 8: This table shows the average final return +/- standard error across all methods and environments
significant difference between R2N and the original PbRL algorithm.

Task Feedback / Noise Method Final Return P Value
R2N-PEBBLE 716.89 +/- 9.75* 0.001
PEBBLE 660.48 +/- 11.47 ’

. R2N-RUNE 731.78 +/- 8.69*

Cartpole-swingup 400/ 0.9 RUNE 674.94 +/- 5.52 0.000
R2N-SURF 734.73 +/- 10.83* 0.003
SURF 680.90 +/- 13.79 ’
R2N-PEBBLE 455.22 +/- 21.62" 0.000
PEBBLE 340.72 +/- 16.29 ’
R2N-RUNE 462.98 +/- 20.32*

Walker-walk 4000/ 0.9 RUNE 338.04 +/- 24.78 0.000
R2N-SURF 411.19 +/- 23.52* 0.000
SURF 283.60 +/- 11.33 ’
R2N-PEBBLE 404.59 +/- 17.12* 0.000
PEBBLE 237.62 +/- 14.43 ’
R2N-RUNE 410.94 +/- 19.18"

Cheetah-run 1000/ 0.9 RUNE 202.37 +/- 15.26 0.000
R2N-SURF 405.68 +/- 18.38* 0.000
SURF 260.47 +/- 10.74 ’
R2N-PEBBLE 309.33 +/- 29.36* 0.000
PEBBLE 185.41 +/- 8.88 ’
R2N-RUNE 266.06 +/- 24.87*

Quadruped-walk 4000/ 0.7 RUNE 190.48 +/- 9.30 0.005
R2N-SURF 274.78 +/- 13.77* 0.006
SURF 196.90 +/- 24.05 ’
R2N-PEBBLE 127.89 +/- 20.31* 0.000
PEBBLE 6.26 +/- 0.18 ’

. R2N-RUNE 140.90 +/- 21.94*

Humanoid-stand 10000 / 0.7 RUNE 6.22 +/- 0.19 0.000
R2N-SURF 74.73 +/- 18.66" 0.000
SURF 5.47 +/- 0.19 ’

. “indicates a



Table 9: This table shows the average area under the curve (AUC) +/- standard error across all methods and environments. *
indicates a significant difference between R2N and the original PbRL algorithm.

Task Feedback / Noise Method AUC P Value
R2N-PEBBLE 114986.66 +/- 2597.90" 0.004
PEBBLE 104113.11 +/- 2612.11 ’

. R2N-RUNE 114836.05 +/- 2165.07*

Cartpole-swingup 400/ 0.9 RUNE 106055.52 +/- 1370.12 0.001
R2N-SURF 117204.59 +/- 3351.06* 0.021
SURF 107394.51 +/- 2908.52 ’
R2N-PEBBLE 61814.89 +/- 2902.65* 0.000
PEBBLE 45987.92 +/- 1716.72 ’
R2N-RUNE 64458.89 +/- 2444.11"%

Walker-walk 4000/ 0.9 RUNE 45895.60 +/- 2579.91 0.000
R2N-SURF 51750.05 +/- 2031.67" 0.000
SURF 41111.81 +/- 1387.92 )
R2N-PEBBLE 43970.86 +/- 1898.99* 0.000
PEBBLE 27585.24 +/- 1743.22 ’
R2N-RUNE 42316.32 +/- 1626.45*

Cheetah-run 1000/ 0.9 RUNE 22849 97 +/- 894.95 0.000
R2N-SURF 45172.59 +/- 2385.34* 0.000
SURF 28496.79 +/- 1338.12 )
R2N-PEBBLE 39639.90 +/- 1498.20* 0.000
PEBBLE 29227.14 +/- 1320.89 ’
R2N-RUNE 36803.72 +/- 1287.16"

Quadruped-walk 4000/ 0.7 RUNE 2074402 +/- 133192 0.001
R2N-SURF 37356.69 +/- 1390.05° 0.000
SURF 28689.95 +/- 1460.15 )
R2N-PEBBLE 8508.52 +/- 1357.08" 0.000
PEBBLE 1058.61 +/- 13.09 ’

. R2N-RUNE 9112.00 +/- 1421.13"

Humanoid-stand 10000 / 0.7 RUNE 1059 46 +/- 13.33 0.000
R2N-SURF 4987.07 +/- 1251.07 0.002
SURF 985.91 +/- 17.57 )




Table 10: This plot shows the average area under the curve (AUC) and final return +/- standard error for the noise ablation in
Cheetah-run. * indicates a significant difference between R2N-PEBBLE and PEBBLE.

Noise Level Method AUC P Value Final Return P Value

0 R2N-PEBBLE 100172.87 +/- 3499.24 0.710 709.93 +/- 15.80 0.975
PEBBLE 103557.90 +/- 3922.01 ) 765.43 +/- 14.62 )

20 R2N-PEBBLE 107612.78 +/- 5146.40 0.216 757.15 +/- 28.88 0.352
PEBBLE 99416.24 +/- 7195.32 736.78 +/- 36.13
R2N-PEBBLE 102043.73 +/- 4298.56* 737.09 +/- 21.96

50 0.014 0.103
PEBBLE 82705.98 +/- 4826.48 678.45 +/- 31.12

70 R2N-PEBBLE 69993.54 +/- 2737.56 0.009 598.03 +/- 28.87 0.007
PEBBLE 55111.51 +/- 3559.99 473.89 +/- 20.99

90 R2N-PEBBLE 45055.91 +/- 1383.87 0.000 384.80 +/- 12.53 0.001
PEBBLE 26506.93 +/- 1444.38 238.24 +/- 23.91

95 R2N-PEBBLE 27014.93 +/- 491.60 0.001 279.80 +/- 18.30 0.000
PEBBLE 15493.66 +/- 2258.69 109.26 +/- 16.56

Table 11: This table shows the average area under the curve (AUC) and final return +/- standard error for the feedback study in
Cheetah-run. * indicates a significant difference between R2N-PEBBLE and PEBBLE.

Feedback Amount Method AUC P Value Final Return P Value
R2N-PEBBLE 37114.41 +/- 3084.44* 372.74 +/- 30.01*

100 PEBBLE 19610.52 +/- 2607.00 0.002 176.43 +/- 28.41 0.001
R2N-PEBBLE 47562.73 +/- 2197.19* 498.50 +/- 18.10*

200 PEBBLE 23088.88 +/- 2265.25 0.000 186.83 +/- 19.61 0.000
R2N-PEBBLE 41644.86 +/- 3360.05* 380.38 +/- 29.99*

400 PEBBLE 27966.80 +/- 2221.47 0.008 227.58 +/- 15.53 0.001
R2N-PEBBLE 45055.91 +/- 1383.87* 384.80 +/- 12.53*

1000 PEBBLE 26506.94 +/- 1444.38 0.000 238.24 +/- 23.91 0.001
R2N-PEBBLE 45139.38 +/- 1645.85* 414.54 +/- 18.11*

2000 PEBBLE 32659.90 +/- 3447.91 0.009 266.72 +/- 23.28 0.001

4000 R2N-PEBBLE 46260.24 +/- 2147.41* 0.000 433.98 +/- 26.61* 0.000
PEBBLE 28900.51 +/- 1154.58 ) 263.39 +/- 9.58 )

10000 R2N-PEBBLE 46704.99 +/- 1681.03* 0.001 415.72 +/- 16.04* 0.001
PEBBLE 31946.62 +/- 2314.48 ) 276.67 +/-22.17 )

Table 12: This table shows the average area under the curve (AUC) and final return +/- standard error for the DST ablation in
Cheetah-run. ** indicates a significant difference between R2N-PEBBLE and both R2N-Actor/Critic Only and R2N-Reward
Model Only .

Method AUC P Value Final Return P Value
R2N-PEBBLE 45055.91 +/- 1383.87** 384.80 +/- 12.53**
R2N-Actor/Critic Only 33159.39 +/- 1813.11 0.001 327.33 +/- 17.82 0.022

R2N-Reward Model Only  28643.04 +/- 2679.96 0.001 265.27 +/- 22.51 0.002




Table 13: This table shows the average area under the curve (AUC) and final return +/- standard error for the imitating noise
study in Cheetah-run. * indicates a significant difference between R2N-PEBBLE and PEBBLE .

Method AUC P Value Final Return P Value
R2N-PEBBLE imitated noise 18081.23 +/- 1611.21* 220.19 +/- 26.47*
PEBBLE imitated noise 11356.92 +/- 660.51 0.004 93.92 +/- 50.70 0.001
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