
THE GROUP GL2(Z/nZ) AS PERMUTATIONS OF (Z/nZ)2

ABSTRACT. The group GL2(Z/nZ) acts on (Z/nZ)2 by matrix multiplication. Each element
gives a permutation of (Z/nZ)2, and we study its decomposition into disjoint cycles. We also
consider the analogous problem for the semi-direct product GL2(Z/nZ) ⋉ (Z/nZ)2: for its
element (M, v) we first act on (Z/nZ)2 with the matrix multiplication by M and then with the
translation by v.

1. INTRODUCTION

Consider an integer n ≥ 2. The group GL2(Z/nZ) acts on (Z/nZ)2 by matrix multiplication,
and each matrix gives a bijection on (Z/nZ)2. Thus we can see GL2(Z/nZ) as a subgroup of
the permutation group of (Z/nZ)2. The permutation group has size (n2)! while GL2(Z/nZ)
has size less than n4, so we only obtain very few permutations.

The aim of this paper is understanding the decomposition into disjoint cycles of the permuta-
tions stemming from GL2(Z/nZ). Thanks to the Chinese Remainder Theorem we may reduce
to the case in which n = pe, where p is a prime number and e ≥ 1. Our two main results are
the following:

Theorem 1. A permutation of (Z/pZ)2 stemming from GL2(Z/pZ) has the following decom-
position into disjoint cycles: the zero vector forms a 1-cycle; an eigenvector belongs to a cycle
whose length is the order of the eigenvalue; any further vector belongs to a cycle whose length
is the order of the matrix.

Theorem 2. Consider the permutation of (Z/peZ)2 stemming from M ∈ GL2(Z/peZ) and
let w ∈ (Z/peZ)2. Suppose that M ≡ I mod p, and that M ≡ I mod 4 in case p = 2. If
Mw = w then M is in a 1-cycle for M , otherwise it is in a cycle of length pe−v, where pv is
the largest power of p dividing (M − I)w.

Theorem 2 has an assumption (namely, M ≡ I mod p and M ≡ I mod 4 in case p = 2) and
it is an important special case: in Section 5 we describe how to reduce to this case.

We also consider the semi-direct product GL2(Z/nZ) ⋉ (Z/nZ)2: this group is again a sub-
group of permutations of (Z/nZ)2. Indeed, for an element (M, v) and for w ∈ (Z/nZ)2 we
define

(M,v)w = Mw + v .

In other words, we compose the bijection given by M with the translation by v. We have the
following result:

Theorem 3. Consider a permutation (M, v) ∈ GL2(Z/pZ) ⋉ (Z/pZ)2. If v ∈ Im(M − I),
then its structure is the same as the permutation given by M . Now suppose that v /∈ Im(M−I)
and let w ∈ (Z/pZ)2. If Mw = w, then w belongs to a p-cycle. Suppose that Mw ̸= w: if
the eigenvalues of M are 1, λ with λ ̸= 1, then w belongs to a p ord(λ)-cycle; if 1 is the only
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eigenvalue of M , then w belongs to a p-cycle unless p = 2 and M ̸= I , in which case we have
a 4-cycle.

For e > 1, we compare the cycle length at w for a permutation (M,v) ∈ GL2(Z/peZ) ⋉
(Z/peZ)2 with the one for M ∈ GL2(Z/peZ): in particular, see the important special case
covered in Theorem 36.

As an aside, we consider the permutations of GL2(Z/pZ) modulo a subgroup of the scal-
ars (Z/pZ) \ {0}: we explain the framework in Section 3.1 and address the generalization
to GL2(Z/peZ) in Section 5.1. The motivation is, by considering the full group of scalars,
studying the action of PGL2(Z/pZ) on the one-dimensional projective space over Z/pZ.

We have also studied GLm(Z/pZ) as permutations of (Z/pZ)m, for any m ≥ 2. We may easily
reduce to the case of a Jordan matrix and then, if p ≥ m, the permutation structure is clear (see
Proposition 14). Building on this result, we investigate the permutations of GLm(Z/peZ) on
(Z/peZ)m: we cover an important special case in Theorem 24, and then for m = 2, 3 we show
how to reduce to this case.

In this paper we only use elementary methods and we rely on standard facts about binomial
coefficients, linear algebra and matrices over rings [2]. The results are of general interest, and
they are relevant to elliptic curves:

Let E be an elliptic curve defined over Q. For every n ≥ 2 we consider the group E[n]
of torsion points in Q of order dividing n. After choosing a basis for E[n], this group can
be identified to (Z/nZ)2 and the action of a Galois automorphism in Gal(Q/Q) is given by
multiplication with a matrix in GL2(Z/nZ). Suppose that E(Q) contains a non-zero point P ,
and write 1

nP for the subset of E(Q) consisting of the points whose n-multiple is P . Fixing
some Q ∈ 1

nP we have
1

n
P = Q+ E[n] .

If T ∈ E[n] and g ∈ Gal(Q/Q), then we have g(Q + T ) = g(Q) + g(T ). We call Mg ∈
GL2(Z/nZ) the element giving the action of g on E[n] and we set vg := g(Q) − Q ∈ E[n].
Then we have

g(Q+ T ) = Q+ (MgT + vg) .

We deduce that the Galois action on 1
nP is described by the permutation of E[n] stemming

from (Mg, vg) ∈ GL2(Z/nZ) ⋉ (Z/nZ)2. For an introduction to this framework for elliptic
curves we refer to [1] (and to [3] for the basic notions). The results of this paper then shed light
on the Galois action on the torsion points and on the division points of elliptic curves.

2. PRELIMINARIES

To ease notation, we write Rn for the ring Z/nZ and GLm(n) for GLm(Rn). We call vectors
the elements of Rm

n , which we see as column vectors. We call I the identity matrix. We may
consider the groups GLm(n) and GLm(n) ⋉ Rm

n as subgroups of the permutation group of
Rm

n . Indeed, M ∈ GLm(n) acts on Rm
n by the matrix multiplication by M while (M, v) ∈

GLm(n)⋉Rm
n acts by the matrix multiplication by M followed by the translation by v.

Remark 4. The matrix I ∈ GLm(n) (respectively, the identity (I, 0) ∈ GLm(n) ⋉ Rm
n ) are

the trivial permutation of Rm
n . An element (I, v) ∈ GLm(n)⋉Rm

n with v ̸= 0 acts on Rm
n via

the translation by v: the permutation consists of cycles whose length is the order of v in Rm
n .
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Remark 5. Replacing an element of GLm(n) by a conjugated element does not change the
permutation structure because this is independent from the choice of a Rn-basis of Rm

n . The
same holds for GLm(n) ⋉ Rm

n because this group can be embedded in GLm+1(Rn), see Re-
mark 9.

By acting on Rm
n with GLm(n), the zero vector clearly forms a 1-cycle (so it would be equi-

valent to restrict the permutation to Rm
n \ {0}).

Remark 6. By acting on Rm
n with (M,v) ∈ GLm(n)⋉Rm

n , we have at least a 1-cycle if and
only if there is some vector w ∈ Rm

n such that Mw+ v = w. This precisely means that v is in
the image of M − I . In particular, there is at least a 1-cycle for any v if and only if the matrix
M − I is invertible.

Remark 7. Let A be in GLm(n) (respectively, in GLm(n) ⋉ Rm
n ) and let w ∈ Rm

n . If z is a
positive integer, we have Azw = w if and only if z is a multiple of the length of the cycle of A
containing w. Consequently, this length divides the order of A.

By the following remark we may suppose that n = pe, where p is a prime number and e is a
positive integer.

Remark 8. We write n =
∏r

i=1 ni, where the integers n1, . . . , nr are pairwise coprime prime
powers larger than 1, and make use of the Chinese Remainder Theorem. Each element a ∈ Rm

n

can be written as

a = (a1, . . . , ar) where ai ∈ Rm
ni

and a ≡ ai mod ni .

Thus a permutation σ on Rm
n is such that σ(a) = (σ1(a1), . . . , σr(ar)), where σi is a permuta-

tion of Rm
ni

. The length of the cycle of σ containing a is the least common multiple of the
length of the cycle of σi containing ai, by varying i = 1, . . . , r.

Moreover, the tuple of the reduction maps modulo ni (for i = 1, . . . , r) gives isomorphisms

GLm(n) ≃
∏
i

GLm(ni) and GLm(n)⋉Rm
n ≃

∏
i

GLm(ni)⋉Rm
ni

and the reduction modulo ni of an element which acts on Rm
n via σ acts on Rm

ni
via σi.

Remark 9. We can embed GL2(n)⋉R2
n into GL3(n) with the map((

a b
c d

)
,

(
e
f

))
7→

a b e
c d f
0 0 1


noting that we have a b e

c d f
0 0 1

x
y
1

 =

(a b
c d

)(
x
y

)
+

(
e
f

)
1

 .

We can similarly embed GLm(n)⋉ (Rm
n )s into GLm+s(n) with the map

(M, (v1, . . . , vs)) 7→


M v1 . . . vs

1
. . .

1

 .

Finally, we recall some results on the divisibility of binomial coefficients:
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Remark 10. For any positive integers m,n the integer n
gcd(m,n) divides

(
n
m

)
. Indeed, for any

integers x, y such that gcd(m,n) = mx+ ny we have

gcd(m,n)

n

(
n

m

)
= x

(
n− 1

m− 1

)
+ y

(
n

m

)
∈ Z .

Consequently, the following holds:

• If t, a are positive integers such that 2 ≤ t ≤ a, then pa−vp(t) divides
(
pa

t

)
. Indeed, we

have pa

gcd(pa,t) = pa−vp(t). If p ̸= 2, we may deduce that pa+2−t divides
(
pa

t

)
, while if

p = 2 we may deduce that 2a+3−2t divides
(
2a

t

)
.

• If p is a prime number and vp(m) < vp(n), then p divides
(
n
m

)
because it divides

n
gcd(m,n) .

3. THE ACTION OF GL2(p)

We keep the notation of Section 2. We let M ∈ GL2(p) and call λ1, λ2 ∈ F×
p2

the (not
necessarily distinct) eigenvalues of M . We let w ∈ R2

p. As we have observed, we may suppose
without loss of generality that M ̸= I and that w ̸= 0. Recall from Remark 7 that the length
of the cycle at w for M is the smallest positive integer z such that w ∈ ker(M z − I) and we
have z | ord(M) (and w is a 1-eigenvector for M z).

Lemma 11. Beyond the 1-cycle at 0, the lengths of the cycles of M belong to the set

{ord(λ1), ord(λ2), ord(M)} .

Proof. Fix w ∈ R2
p \{0} and call L the length of the cycle at w. We suppose that L < ord(M)

and show that L ∈ {ord(λ1), ord(λ2)}. The matrix ML has eigenvalues λL
1 and λL

2 and w is
a 1-eigenvector for ML hence without loss of generality we have ord(λ1) | L. Consider the
following inclusions of Fp2-vector spaces:

{0} ⊊ ker(M − λ1I) ⊆ ker(Mord(λ1) − I) ⊆ ker(ML − I) ⊊ ker(Mord(M) − I) = F2
p2 .

A dimension argument gives us that the second and third inclusions are equalities. Thus
ker(Mord(λ1) − I) = ker(ML − I) hence the smallest positive integer z such that w ∈
ker(M z − I) is ord(λ1). □

Theorem 12. A non-zero vector is in a cycle of length ord(M), unless it is a λ-eigenvector for
some λ ∈ F×

p , in which case it is in a cycle of length ord(λ).

Proof. Let w ∈ R2
p \ {0} and call L the length of the cycle of M at w. If w is a λ-eigenvector

for M , then we must have λ ∈ F×
p and clearly L = ord(λ). Now suppose that w is not an

eigenvector (in particular, M is not a scalar matrix). If M is diagonalizable over Fp2 (hence
λ1 ̸= λ2), then in a basis consisting of eigenvectors both coordinates of w are non-zero hence
L = lcm(ord(λ1), ord(λ2)) = ord(M). In the remaining case, up to conjugation we have

M = λ

(
1 b
0 1

)
with λ ∈ F×

p and b ̸= 0 .

Observe that L divides ord(M) = ord(λ)p. We claim that p | L. Then, since Mp = λI , we
must have L = ord(M). The claim holds because Mord(λ)w ̸= w. Indeed, the 1-eigenspace
of Mord(λ) equals the λ-eigenspace of M and w is not an eigenvector for M . □
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Proof of Theorem 1. The result follows from Theorem 12, considering that the zero vector
forms a 1-cycle and that, for an eigenvector in R2

p, the eigenvalue must be in Fp. □

3.1. The action of GL2(p) modulo a group of scalars. Consider the action of GL2(p) on
the set S := R2

p \ {0}. We fix a non-zero subgroup H of R×
p and we call two vectors in S

equivalent if one equals the other times a scalar in H . This is an equivalence relation on S, and
we call SH the set of the equivalence classes. We see the quotient group GH := GL2(p)/HI
as a group of permutations of SH .

Let M ∈ GL2(p) and call MH ∈ GH its residue class. We consider a vector w ∈ S and call
wH ∈ SH its equivalence class. We have studied the length L of the cycle at w of M and
we now investigate the length LH of the cycle at wH of MH . The integer LH is the smallest
positive integer n such that Mnw = hw holds for some h ∈ H . We deduce that LH | L and
that L divides LH ·#H .

We call λ1, λ2 ∈ Fp2 \ {0} the (not necessarily distinct) eigenvalues of M and we let ℓ be the
smallest positive integer for which λℓ

1 (equivalently, λℓ
2) is in R×

p . We observe that ℓ | (p+ 1)

and that ℓ | LH . If r ∈ F×
p2

, then we write ordH(r) for the smallest positive integer t such that
rt ∈ H .

Theorem 13. If w is a λℓ
i-eigenvector of M ℓ, then we have LH = ordH(λi), for i = 1, 2. If w

is not an eigenvector of M ℓ, then we have LH = ord(M) if λ1 ̸= λ2 and LH = p ordH(λ1)
otherwise.

Proof. Observing that LH/ℓ is the length of the cycle at wH for M ℓ
H , we may replace M by

M ℓ and suppose that ℓ = 1 or, equivalently, that λ1, λ2 ∈ R×
p .

If without loss of generality Mw = λ1w, then we clearly have LH = ordH(λ1), so suppose
that w is not an eigenvector of M (in particular, M is not a scalar matrix).

If λ1 ̸= λ2, then the smallest positive integer n for which w is an eigenvector of Mn is
lcm(ord(λ1), ord(λ2)) = ord(M) and we conclude. Finally suppose that λ1 = λ2 and that M
is not diagonalizable. By Theorem 12 we have L = ord(M) hence p | L. Since #H is coprime
to p, we deduce that p | LH . Moreover, we have Mp = λp

1I and hence LH = p ordH(λ1). □

4. THE ACTION OF GLm(p) ON Rm
p

Let p be a prime number, m ≥ 2 and set q = pm!. We see M ∈ GLm(Fq) as a permutation of
the vectors in Fm

q . For our purposes, M ∈ GLm(p) hence the permutation maps Rm
p to itself

and all eigenvalues of M are in Fq. We fix w ∈ Rm
p \ {0} and study the length L of the cycle

of M at w.

The permutation structure of M is invariant under a base change in GLm(Fq) so we may sup-
pose that M is in Jordan normal form. The decomposition of M into Jordan blocks J1, . . . , Jr
naturally gives a decomposition of Fm

q as a sum of vector subspaces V1, . . . , Vr (which only
consider the coordinates corresponding to the various Jordan blocks). We may then write
w = (w1, . . . , wr) with wi ∈ Vi for i = 1, . . . , r and we have

Mw = (J1w1, . . . , Jrwr) .

Consequently, L is the least common multiple of the lengths of the cycle of Ji at wi for i =
1, . . . , r. So we reduce to the case where M ∈ GLm(Fq) consists of a single Jordan block J .
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Calling λ the eigenvalue, we have

J =


λ 1

λ 1
. . . . . .

λ 1
λ


By induction, for k ≥ 1 we have

(1) Jk =


λk

(
k
1

)
λk−1

(
k
2

)
λk−2 · · ·

(
k

m−1

)
λk−m+1

λk
(
k
1

)
λk−1 · · ·

(
k

m−2

)
λk−m+2

· · ·
...

λk
(
k
1

)
λk−1

λk

 .

Namely, Jk is an upper triangular matrix whose elements on the main diagonal are λk and the
entry in row i and column i+ t (with 1 ≤ t ≤ m− i) is

(
k
t

)
λk−t.

Proposition 14. If w is a λ-eigenvector for J , then L = ord(λ). Otherwise, we have L =
px ord(λ) for some positive integer x such that px−1 < m (thus, L = p ord(λ) if p ≥ m).

Proof. If w is a λ-eigenvector for J , the statement is immediate, so suppose that this is not the
case. Since 0 ̸= w ∈ ker(JL − I) we deduce from (1) that

0 = det(JL − I) = (λL − 1)m

and hence ord(λ) | L.

We now prove that ker(Jord(λ)−I) is the λ-eigenspace of J , which implies L ̸= ord(λ). Since
the diagonal entries of Jord(λ) − I are zero, the kernel contains the λ-eigenspace. Moreover,
the kernel is 1-dimensional because p ∤ ord(λ) implies p ∤

(
ord(λ)

1

)
hence the first m− 1 rows

of Jord(λ) − I are linearly independent.

To conclude it suffices to prove that Jpz ord(λ) = I holds for the smallest positive integer z
such that pz ≥ m. This is the case by (1) because p |

(
pz ord(λ)

t

)
holds in particular for all

1 ≤ t < m ≤ pz as vp(t) < vp(p
z ord(λ)), see Remark 10. □

Remark 15. Let p = 2 and m = 3. If there are more than one Jordan blocks we may reduce
to the case m = 2 ≤ p covered by Proposition 14, and if there is only one Jordan block J then
the eigenvalue must be over Fp and hence 1. So we have

J2 =

1 0 1
1 0

1

 and J4 = I .

If w is a 1-eigenvector, then L = 1. Otherwise, we have L = 2 unless the last coordinate of w
is non-zero, in which case L = 4.

5. THE ACTION OF GLm(pe)

Let p be a prime number and e > 1. We fix M ∈ GLm(pe) and w ∈ Rm
pe \ {0}. For every

1 ≤ s ≤ e we call Ms (respectively, ws) the reduction of M (respectively, w) modulo ps and
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we call Ls the length of the cycle at ws of the permutation Ms. We observe that Ls is the
smallest positive integer satisfying

MLsw ≡ w mod ps .

Moreover, we remark that Ls | Ls+1 holds for all 1 ≤ s < e and that for m = 2, 3 the number
L1 can be determined thanks to Proposition 14 and Remark 15.

Proposition 16. Let 1 ≤ s < e and write MLsw = w + psw′
s for some w′

s ∈ Rm
pe . Then

Ls+1/Ls is the smallest positive integer t such that

(2) (w′
s mod p) ∈ ker

(
t−1∑
i=0

MLs i
1

)
.

Proof. Write Ls+1 = Lst and N = MLs . Then t is the smallest positive integer such that

N tw ≡ w mod ps+1 .

Since (as it can be shown by induction) we have

N tw = w + ps
t−1∑
i=0

N iw′
s ,

we may conclude by rewriting the condition as

t−1∑
i=0

N iw′
s ≡ 0 mod p .

□

Remark 17. We have the following recursive formula for w′
s, for s = 1, . . . , e− 1:

(3) w′
s+1 =

(MLs+1 − I)w

ps+1
=

1

p

Ls+1/Ls−1∑
k=0

MLsk (M
Ls − I)w

ps
=

1

p

Ls+1/Ls−1∑
k=0

MLskw′
s.

Remark 18. Write w = pvw′ with 0 ≤ v < e maximal. Then the cycle length Le is the same
as the cycle length L′

e−v of M at w′. So up to replacing w by w′ and e by e−v we may suppose
that w1 ̸= 0.

Remark 19. Suppose that (w′
s mod p) = 0 and let h be the largest positive integer such that

ph | w′
s. Then we have Ls+x = Ls for every 0 ≤ x ≤ h and (w′

s+h mod p) ̸= 0. This is a
consequence of Proposition 16 and (3) because w′

s+x = p−xw′
s.

Example 20. Suppose that e = 2 and that M = I + pM ′ holds for some matrix M ′. We have
L1 = 1 because M1 = I . Since Mw = w + pM ′w, with the notation of Proposition 16 we
have w′

1 = M ′w. Since
t−1∑
i=0

ML1i ≡ tI mod p

by Proposition 16 we have L2 = 1 (which means Mw = w) if w′
1 ≡ 0 mod p and L2 = p

otherwise.
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Theorem 21. Let M ∈ GLm(pe). Let s ≥ 1 and let the matrix MLs
1 have Jordan normal

form diag(J1, . . . , Jr) with Jj the Jordan blocks corresponding to an eigenvalue λj ∈ Fp for
j = 1, . . . , r. Write w′

s mod p = (v1, v2, . . . , vr) with vj a column vector with as many rows
as Jj . Define

dj :=


1 if vj = 0;
ordλj if λj ̸= 1 and vj = (a, 0, 0, . . . , 0) with a ∈ Fp

×
;

p ordλj otherwise.

Suppose that the size of each Jordan block is at most p and for the Jordan blocks with eigen-
value 1 strictly less than p. Then we have

Ls+1/Ls = lcm(d1, . . . , dm) .

Proof. We make use of Proposition 16. Condition (2) is equivalent to vj ∈ ker(
∑t−1

k=0 J
k
j ) for

all j = 1, 2, . . . , r so we have reduced to consider a Jordan block J of MLs
1 corresponding to

an eigenvalue λ and set v := w′
s mod p. We clearly have Ls+1/Ls = 1 if and only if v = 0.

Suppose first that λ = 1 and that v ̸= 0. By (1) and by the hockey-stick identity
∑t−1

k=z

(
k
z

)
=(

t
z+1

)
all entries of

∑p−1
k=0 J

k are 0 inside Fp. Thus by (2) Ls+1/Ls divides p and we may
conclude.

Now suppose that λ ̸= 1 and that v ̸= 0. Then ord(λ) divides Ls+1/Ls because for ord(λ) ∤ t
the triangular matrix

∑t−1
k=0 J

k is invertible (the entries on the main diagonal are λt−1
λ−1 ). By (1)

and Remark 10 we have Jp = λI hence

p ordλ−1∑
k=0

Jk =
ordλ−1∑
k=0

p−1∑
l=0

Jkp+l =

(
ordλ−1∑
k=0

λk

)(
p−1∑
l=0

J l

)
= 0,

implying that Ls+1/Ls divides p ord(λ). We deduce that Ls+1/Ls equals ord(λ) or p ord(λ)
and we are in the former case if and only if for t := ord(λ) the vector v is in the kernel of

t−1∑
k=0

Jk .

This matrix is upper triangular with zero entries on the main diagonal. Moreover, we have

t−1∑
k=0

kλk−1 =
(t− 1)λt − tλt−1 + 1

(λ− 1)2
=

ordλ(1− λ−1)

(λ− 1)2
̸= 0

on the first superdiagonal. This implies ker(
∑t

k=0 J
k) = ⟨(1, 0, . . . , 0)⟩ and we may conclude.

□

Remark 22. We adapt the proof of Theorem 21 supposing that p,m ∈ {2, 3}, p ≤ m. Suppose
first that J is a m×m Jordan block for the eigenvalue 1. In this case we have

∑p2−1
k=0 Jk = 0

hence Ls+1/Ls divides p2. Moreover, Ls+1/Ls = 1 if and only if v = 0 and Ls+1/Ls = p2

if and only if the last entry of v is non-zero. Now suppose that J is a Jordan block for an
eigenvalue λ ̸= 1: considering that 1 is an eigenvalue of MLs

1 , J is either 1× 1 or 2× 2 so the
proof does not require any change.
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Corollary 23. Suppose that m = 2 and that MLs
1 has eigenvalues 1 and λ ̸= 1 (thus, p ̸= 2).

We have

(4) Ls+1/Ls =


1 if (w′

s mod p) is zero
p if (w′

s mod p) is a 1-eigenvector for MLs
1

ord(λ) if (w′
s mod p) is a λ-eigenvector for MLs

1

p ord(λ) otherwise.

Proof. This is a special case of Theorem 21. □

In the following result we may suppose that Mw ̸= w because otherwise Le = 1:

Theorem 24. Let e ≥ 2 and suppose that M = I+pM ′ for some matrix M ′. We suppose that
Mw ̸= w and write uniquely M ′w = pku where 0 ≤ k < e and u ∈ Rm

pe is such that p ∤ u. If
p = 2, suppose additionally that 2 | M ′. Then we have Le = pe−k−1.

Proof. Since M1 = I , we have L1 = 1. We prove that

Li =

{
1 1 ≤ i ≤ k + 1

pi−k−1 k + 1 < i ≤ e .

Proposition 16 says that Ls+1/Ls ∈ {1, p} and (since M1 = I) that Ls+1 = Ls if and only if
w′
s ≡ 0 mod p. We can write

Mw = w + pM ′w = w + pk+1u .

Supposing that Ls = 1 we have w′
s = pk+1−su and hence w′

s ≡ 0 mod p holds for s ≤ k.
Thus, Li = 1 holds for i = 1, . . . , k + 1.

To conclude (recalling that p ∤ u) we prove by strong induction that w′
s ≡ u mod p holds

for k + 1 ≤ s ≤ e − 1. For s = k + 1 (considering that Lk+1 = 1) we have shown above
that w′

s = u. Now suppose that w′
i ≡ u mod p holds for all k + 1 ≤ i ≤ s (for some

k+1 ≤ s ≤ e−2). We have to prove that w′
s+1 ≡ u mod p. Our induction hypothesis implies

that Ls+1 = ps−k. Making use of the binomial expansion we obtain

MLs+1 = I + ps−k · pM ′ +

ps−k∑
t=2

(
ps−k

t

)
pt(M ′)t−1

M ′ .

If p ̸= 2 we observe that ps−k+2−t divides
(
ps−k

t

)
for all 2 ≤ t ≤ s − k (see Remark 10).

Recall that by definition we have MLs+1w = w+ ps+1w′
s+1 and M ′w = pku. Then, applying

w to the above formula we may conclude because we have

ps+1w′
s+1 ≡ ps+1u mod ps+2 .

If p = 2 we adapt the previous case. Since 2t(M ′)t−1 is divisible by 22t−1 we only need to
prove that 2s−k+3−2t divides

(
2s−k

t

)
for all 2 ≤ t ≤ s− k, and this holds by Remark 10. □

Proof of Theorem 2. The result is equivalent to Theorem 24. □

In what follows, we make use of the notation M1, Ls and w′
s from Proposition 16. Since L1

divides Le, we may work with ML1 thus (w mod p) is a 1-eigenvector for ML1
1 .
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Remark 25. Let m = 2, 3 and p ̸= 2. Recall that the case M1 = I is covered by Theorem 24.

Suppose that 1 is the only eigenvalue for ML1
1 hence by (1) the order of ML1

1 divides p. Since
ord(ML1) is a power of p, the same holds for Le/L1 hence we either have Le = L1 or we may
replace ML1 by MpL1 and reduce to the case M1 = I .

Now suppose that ML1
1 has, beyond the eigenvalue 1, at least one eigenvalue λ ̸= 1 (over

Fp2). For m = 3, the possible further eigenvalue that is not 1 has also order ord(λ). Up to a
base change that preserves the affine structure, we let Rm

p = E ⊕ E1 where E1 (respectively,
E) is the vector subspace corresponding to the Jordan blocks with eigenvalue 1 (respectively,
different from 1). In case that for some 1 ≤ s < e the vector (w′

s mod p) has a non-trivial
component in E, by Theorem 21 we have ord(λ) | Le hence replacing M by MLs ord(λ)

we may again reduce to the case M1 = I . Moreover, if (w′
s mod p) also has a non-trivial

component in E1, we have Ls+1 = p ord(λ)Ls hence MLs ord(λ)w − w is not divisible by
ps+1. Theorem 24 then gives Le = Ls ord(λ)p

e−s−1.

Remark 26. Let m = 2, 3 and p = 2. Recall that the case M2 = I is covered by Theorem 24.

Suppose that 1 is the only eigenvalue for ML1
1 (thus ord(ML1) is a power of 2). Then the

cycle of ML1 at w has length 1 (if ML1w = w) or 2 (if ML1w ̸= w and M2L1w = w) or 4 (if
M2L1w ̸= w and M4L1w = w) or a multiple of 8. In the last case, we may work with M8L1

hence reduce to the case M2 = I . We observe that, unless m = 3 and ML1
1 is a Jordan matrix,

as soon as the cycle length is a multiple of 4 we may reduce to the case M2 = I by considering
M4L1 .

Now suppose that ML1
1 ∈ GLm(p) has (beyond the eigenvalue 1) an eigenvalue λ ̸= 1, which

implies that m = 3 and M1 is diagonalizable over Fp2 of order ord(λ) = 3 with three distinct
eigenvalues 1, λ, λ. Having the information on whether 3 divides or not Le/L1 would allows
us to work with M3L1 instead, thus reducing to the previous case. Suppose that working with
M3L1

1 instead we get a ratio L′
e/L1. Then Le is L′

e or 3L′
e and the latter case occurs if and only

if 3 | Le. In turn, this occurs if and only if M2xL1w ̸= w for any x. So by taking x = e we
are reduced to study whether w is a 1-eigenvector for a power of ML1 that has order 3. This
power equals ML1

1 interpreting the coefficients 0, 1 as classes modulo 2e (this can be seen by
writing I = (ML1

1 + 2fN)3 with f maximal and working modulo 2f+1 in case f < e).

Remark 27. Let m = 2 and p ̸= 2. Suppose that M1 has an eigenvalue λ ̸= 1 and that (w′
s

mod p) is a 1-eigenvector. Up to a base change, suppose that M1 is diagonal and the second
coordinate corresponds to the λ-eigenspace. Then (w′

s+1 mod p) is either a 1-eigenvector for
M1 or it is neither zero nor an eigenvector, and the former case holds if and only if the second
coordinate of (w′

s mod p2) is zero. By Corollary 23, this can be shown by plugging t = p
and y = 0 in the following calculations: in a suitable basis, write

MLs ≡
(
1 0
0 λ

)
+ p

(
a b
c d

)
mod p2 w′

s ≡
(
x+ pe
y + pf

)
mod p2

with a, b, c, d, e, f, x, y ∈ Rp. By induction, for any k ≥ 0 we have

MLskw′
s ≡ p

(
by λk−1

λ−1 + kax+ e

cxλk−1
λ−1 + fλk + dykλk−1

)
+

(
x

yλk

)
mod p2

so that for t = Ls+1/Ls we have by (3)

pw′
s+1 ≡ p

(
by
∑t−1

k=0
λk−1
λ−1 + ax t(t−1)

2 + et

cx
∑t−1

k=0
λk−1
λ−1 + f λt−1

λ−1 + dy
∑t−1

k=0 kλ
k−1

)
+

(
tx

y λt−1
λ−1

)
mod p2.
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Example 28. Let m = 2, pe = 27 and let M ≡
(
1 0
0 −1

)
mod p. We set t1 := L1, t2 :=

L2/L1 and t3 := L3/L2 so that L3 = t1t2t3. We characterize all possible values of the triple
(t1, t2, t3).

By Proposition 14, we have t1 ∈ {1, 2}. If t1 = 2, then ML1
1 = I , so by Theorem 21 we have

t2, t3 ∈ {1, 3} and moreover t2 = 3 implies t3 = 3 by Theorem 24. Now suppose that t1 = 1
hence by Corollary 23 we have t2 ∈ {1, 2, 3, 6}.

• If t2 = 1, then by Corollary 23 we have t3 ∈ {1, 2, 3, 6}.
• If t2 = 2, then ML2

1 = I , so by Theorem 21 we have t3 ∈ {1, 3}.
• If t2 = 3, then by Corollary 23 we find that w′

2 mod p is a 1-eigenvector for M3
1 , thus

by Remark 27 we have t3 ∈ {3, 6}.
• If t2 = 6, then from Remark 25 w′

1 mod 3 has a nontrivial component in E and E1

and hence t3 = 3.

All the twelve obtained triples are achievable, and even for one same M . Indeed, in the table

below we can see the triples corresponding to the given values of w for M =

(
13 12
12 17

)
:

w (t1, t2, t3) w (t1, t2, t3)

(0, 0) (1, 1, 1) (1, 24) (1, 3, 3)
(0, 9) (1, 1, 2) (1, 6) (1, 3, 6)
(3, 18) (1, 1, 3) (1, 0) (1, 6, 3)
(3, 0) (1, 1, 6) (3, 1) (2, 1, 1)
(0, 3) (1, 2, 1) (0, 1) (2, 1, 3)
(3, 3) (1, 2, 3) (1, 1) (2, 3, 3)

5.1. The action of GL2(p
e) modulo a group of scalars. Fix M ∈ GL2(p

e) and a vector
w ∈ R2

pe . We let H ≤ (Z/peZ)× or simply H = Rpe and investigate the smallest positive
integer n such that Mnw = hw holds for some h ∈ H . We have already treated the case
H = {1} and in general we may proceed with the same strategy. We may suppose that w ̸= 0

and (similarly to Remark 18) that w1 ̸= 0. For 1 ≤ s ≤ e we define L̃s to be the smallest
positive integer n such that there is h ∈ H such that Mnw ≡ hw mod ps. We observe
that those n satisfying the condition for a given s are precisely the multiples of L̃s (because if
n1 < n2 satisfy the condition, so does n2−n1). Note that L̃1 can be computed using Theorem
13. Moreover, we have L̃s | L̃s+1 and L̃s | Ls.

We write N = M L̃s and Nw = µw + psw̃s with µ ∈ H . Then we have

Nnw = µnw + ps

(
n−1∑
i=0

N iw̃s

)
.

Thus L̃s+1/L̃s is the smallest positive integer n such that there is h ∈ H such that

(5) Nnw = µnw + ps

(
n−1∑
i=0

N i

)
w̃s ≡ hw mod ps+1 .

If t is the smallest positive integer such that w̃s mod p ∈ ker
(∑t−1

i=0 N
i
1

)
, then we have

L̃s+1/L̃s ≤ t by setting n = t and h = µt in (5).
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Suppose that H = Rpe . Then (5) is equivalent to

(6)

(
n−1∑
i=0

N i
1

)
w̃s mod p ∈ ⟨w1⟩ .

We deduce that L̃s+1/L̃s divides t: if n1 < n2 satisfy (6), so does their difference because
N1w1 ∈ ⟨w1⟩ and we have

(n2−n1)−1∑
i=0

N i
1 =

(
n2−1∑
i=0

N i
1

)
−Nn1

1

(
n1−1∑
i=0

N i
1

)
.

We have L̃s+1 = L̃s if and only if w̃s mod p is a multiple of w1. So suppose that this is not
the case. If w̃s mod p is an eigenvector for N1, then L̃s+1/L̃s = t (and if it is a 1-eigenvector,
then t = p). In general, L̃s+1/L̃s divides ord(N1) (respectively, 4 if p = 2 and N1 is not
diagonalizable) because the matrix sum in (6) is the zero matrix for this value.

6. THE ACTION OF GL2(p
e)⋉R2

pe

6.1. The action of GL2(p)⋉R2
p. Let p be a prime number and consider (M,v) ∈ GL2(p)⋉R2

p

as a permutation of R2
p. If (M, v) satisfies v = (M − I)u for some u ∈ R2

p, then we have

(I, u)(M,v)(I, u)−1 = (M, 0)

and the permutation given by (M, 0) is the same as the one given by M (which was already
discussed). So we may assume that v is not in the image of M − I , and in particular that 1 is
an eigenvalue of M (so a further eigenvalue for M must be in Fp). We may also suppose that
M ̸= I by Remark 4.

Theorem 29. Suppose that M ̸= I and v /∈ Im(M − I). The following holds for (M, v):

• Suppose that the eigenvalues of M are 1, λ with λ ̸= 1. The vectors in the 1-eigenspace
of M form a p-cycle, while the other vectors form cycles of length p ord(λ).

• Suppose that 1 is the only eigenvalue of M . For p = 2 the permutation is a 4-cycle
while for p odd the permutations consists of p-cycles.

Proof. Suppose first that M has two distinct eigenvalues 1, λ. Then up to conjugation we have

(M, v) =

((
1 0
0 λ

)
,

(
vx
vy

))
vx ̸= 0 .

We compute((
a 0
0 a

)
,

(
0
t

))
(M, v)

((
a 0
0 a

)
,

(
0
t

))−1

=

((
1 0
0 λ

)
,

(
avx

avy + t(1− λ)

))
.

By choosing t = −avy/(1− λ) and a = v−1
x , we may then assume that v = (1, 0)T . Then (by

induction) for any k ∈ Z we have

(M, v)k
(
x
y

)
=

((
1 0
0 λk

)
,

(
k
0

))(
x
y

)
=

(
x+ k
λky

)
.

Thus (observing that ord(λ) is coprime to p) all vectors with y = 0 are in one same p-cycle
while if y ̸= 0 the vector (x, y)T is in a cycle of length p ord(λ).
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Now assume that up to conjugation we have

(M, v) =

((
1 1
0 1

)
,

(
vx
vy

))
vy ̸= 0 .

By conjugating with (I, (0, vx)
T ) we may assume that vx = 0. Then, by conjugating with

(v−1
y I, 0), we may assume that vy = 1.

If p = 2, then (M,v) has order 4 hence the length of each cycle divides 4. Since (M, v)2 =
(I, u) for some u ̸= 0, this permutation has no fixed vectors hence (M,v) does not have cycles
of length 1 or 2 and we conclude. If p is odd, a computation by induction gives

(M, v)k
(
x
y

)
=

((
1 k
0 1

)
,

(
k(k − 1)/2

k

))(
x
y

)
=

(
x+ ky + k(k − 1)/2

y + k

)
which is equal to (x, y)T if and only if p | k. Thus every vector is in a cycle of length p. □

Proof of Theorem 3. The result follows from Theorem 29 and the considerations at the begin-
ning of this section. □

Remark 30. We have found that the permutation induced by (M, v) is of the same type of the
one induced by M if and only if there is a 1-cycle if and only if v ∈ Im(M − I). In particular,
if M − I is invertible, then for any v the permutation (M, v) has the same structure as the
permutation M . Moreover, beyond the distinction of whether v belongs or not to Im(M − I),
we have seen that the type of the permutation does not depend on v.

6.2. The action of GL2(p
e) ⋉ R2

pe for e > 1. Consider (M,v) ∈ GL2(p
e) ⋉ R2

pe as a
permutation of R2

pe . For every n ≥ 1 (by induction) we have

(M, v)n =

(
Mn,

n−1∑
i=0

M iv

)
.

Let w ∈ R2
pe . The cycle length L′

e of (M,v) at w is the smallest positive integer n such that
(M,v)nw = w or, equivalently, such that

(7) (M − I)w + v ∈ ker

n−1∑
i=0

M i .

We similarly define L′
i by working modulo pi for i = 1, . . . , e and consider the analogous

quantities Li for the permutation given by M .

Remark 31. The permutation (M, v) has a 1-cycle if and only if v ∈ Im(M − I). In this case,
the permutation (M, v) has the same structure as the permutation M . Moreover, if w = 0, then
L′
e is clearly the order of v ∈ R2

pe .

Remark 32. The number L′
e divides the order of (M,v), which in turn divides pe ord(M).

Since

(M − I)w ∈ ker

ord(M)−1∑
i=0

M i

the number L′
e does not divide ord(M) if and only if

v /∈ ker

ord(M)−1∑
i=0

M i .
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For any positive integer n, we consider the condition

(8) v ∈ ker
n−1∑
i=0

M i

and we call t the smallest positive integer satisfying (8).

Proposition 33. The positive integers n satisfying (8) are precisely the multiples of t. Moreover,
t divides ord(M)pe.

Proof. Write n = qt + r, where r is the remainder of n after division by t. If r = 0, then (8)
is satisfied because we have

qt−1∑
k=0

Mk =

q−1∑
k=0

t−1∑
l=0

Mkt+l =

(
m−1∑
k=0

Mkt

)(
t−1∑
l=0

M l

)
.

Now suppose that r > 0 and write

n−1∑
k=0

Mk = M r
qt−1∑
k=0

Mk +
r−1∑
k=0

Mk .

Then (8) does not hold for n because, by minimality of t, it does not hold for r. To prove the
second assertion we take n = ord(M)pe and observe that

n−1∑
k=0

Mk =

pe−1∑
k=0

Mk ord(M)

ord(M)−1∑
l=0

M l = pe
ord(M)−1∑

l=0

M l = 0 .

□

Remark 34. We show how to reduce to the case where L′
e is a power of p. If 1 is the only

eigenvalue of M1, then the order of (M,v) is a power of p and the same holds for L′
e. If

the eigenvalues of M1 are not 1, and (M, v)w ̸= w (which we exclude by saying that v /∈
Im(M − I)), then for the matrix

∑L′
e−1

k=0 Mk to have a non-trivial kernel, we need that the
order ℓ of one of the eigenvalues of M1 divides L′

e hence we may replace M by M ℓ and
L′
e by L′

e/ℓ, reducing to the case where at least one eigenvalue is 1. We may now suppose
that M1 has two distinct eigenvalues 1, λ and, up to conjugation, that the two coordinates
correspond to the 1-eigenspace and the λ-eigenspace respectively. In view of Remark 9, by
Theorem 21 L′

e is a power of p possibly multiplied by ord(λ). Then we have only to determine
whether ord(λ) divides L′

e. Analogously to Remark 26 we may replace (M,v) by (M, v)p
x

for
some large x we are left to consider an element (M1, v

′) of order ord(λ), where the matrix is
considered as a matrix modulo pe and v′ =

∑px−1
i=0 M iv. We then only have to check whether

(M1 − I)w + v′ = 0.

Remark 35. In Remark 34 we have seen how to reduce to the case where L′
e is a power of

p. So, unless L′
e = 1 (which we may exclude with the condition v /∈ Im(M − I)) we may

work with (M,v)p instead and hence without loss of generality replace M by a power such
that M1 = I . For p = 2, we may similarly reduce to the case M2 = I .

Theorem 36. Suppose that M1 = I . If Le ̸= t, we have L′
e = lcm(Le, t). Now suppose

that Le = t. We have L′
e | Le and, supposing additionally for p = 2 that M2 = I , we have

L′
e = pe−k, where k (with 0 ≤ k ≤ e) is the largest integer for which pk divides (M−I)w+v.
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Proof. Write (M − I)w + v = pkw′. Recall (7) and observe that Le is the smallest positive
integer n satisfying

(M − I)w ∈ ker
n−1∑
i=0

M i .

Then it is clear that L′
e divides lcm(Le, t) and if Le ̸= t (as Le and t are powers of p) then (7)

does not hold for the smallest of these numbers but it holds for the largest. Now suppose that
Le = t and observe that p ∤ w′. If k = e, then clearly L′

e = 1, so suppose that k < e. Then L′
e

is the smallest positive integer n satisfying

w′ ∈ ker
n−1∑
i=0

M i
e−k .

This condition holds for n = pe−k but it does not hold for n = pe−k−1 by Lemma 37. □

Lemma 37. Let e ≥ 1 and suppose that M1 = I . Then we have

pe−1∑
i=0

M i = 0 .

Supposing additionally for p = 2 that M2 = I , the kernel of

pe−1−1∑
i=0

M i

is pR2
e−1 (whose exponent is pe−1).

Proof. Consider that M1 = I . The two assertions for e = 1 follow immediately. For the first
assertion, also observe (by the induction hypothesis) that

pe−1−1∑
i=0

M i ≡
pe−1−1∑
i=0

M i
e−1 ≡ 0 mod pe−1 .

We deduce that
pe−1∑
i=0

M i =

p−1∑
k=0

Mpe−1k ·
pe−1−1∑
i=0

M i = 0 .

By the first assertion, the kernel of
pe−1−1∑
i=0

M i

contains pR2
e−1 so it suffices to prove that the exponent of the kernel is less than pe. For e = 2,

the second assertion is clear for p = 2 as M = I , so suppose that p ̸= 2: writing M = I+pN ,
we may conclude because we have

p−1∑
i=0

M i = pI +

p−1∑
i=1

ipN = pI .
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For e ≥ 3 (as Mp
2 = I) the exponent of the kernel of

∑p−1
k=0M

pe−2k is p. We may then
conclude (by the induction hypothesis) writing

pe−1−1∑
i=0

M i =

p−1∑
k=0

Mpe−2k ·
pe−2−1∑
i=0

M i .

□

Remark 38. Another viewpoint to study the action of GL2(p
e) ⋉ R2

pe on R2
pe is provided by

Remark 9 because we have

GL2(p
e)⋉R2

pe < GL3(p
e) and R2

pe < R3
pe .

For this reason we may reduce to consider M ∈ GL3(p
e) and w ∈ R3

pe such that the last row
of M is (0, 0, 1) and the last component of w is 1.
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