THE GROUP GL,(Z/nZ) AS PERMUTATIONS OF (Z/nZ)>

ABSTRACT. The group GL2(Z/nZ) acts on (Z/nZ)?* by matrix multiplication. Each element
gives a permutation of (Z/nZ)?, and we study its decomposition into disjoint cycles. We also
consider the analogous problem for the semi-direct product GL2(Z/nZ) x (Z/nZ)?: for its
element (M, v) we first act on (Z/nZ)? with the matrix multiplication by M and then with the
translation by v.

1. INTRODUCTION

Consider an integer n > 2. The group GLo(Z/nZ) acts on (Z/nZ)? by matrix multiplication,
and each matrix gives a bijection on (Z/nZ)?2. Thus we can see GLo(Z/nZ) as a subgroup of
the permutation group of (Z/nZ)?. The permutation group has size (n?)! while GL(Z/nZ)
has size less than n?, so we only obtain very few permutations.

The aim of this paper is understanding the decomposition into disjoint cycles of the permuta-
tions stemming from GLy(Z/nZ). Thanks to the Chinese Remainder Theorem we may reduce
to the case in which n = p®, where p is a prime number and e > 1. Our two main results are
the following:

Theorem 1. A permutation of (7./pZ)? stemming from GLa(Z/pZ) has the following decom-
position into disjoint cycles: the zero vector forms a 1-cycle; an eigenvector belongs to a cycle
whose length is the order of the eigenvalue; any further vector belongs to a cycle whose length
is the order of the matrix.

Theorem 2. Consider the permutation of (7.,/p°Z)? stemming from M € GLo(Z/p°Z) and
let w € (Z/p°Z)%. Suppose that M = I mod p, and that M = I mod 4 in case p = 2. If
Mw = w then M is in a 1-cycle for M, otherwise it is in a cycle of length p®~", where p* is
the largest power of p dividing (M — I )w.

Theorem 2] has an assumption (namely, M/ = I mod p and M = I mod 4 in case p = 2) and
it is an important special case: in Section [5] we describe how to reduce to this case.

We also consider the semi-direct product GLo(Z/nZ) x (Z/nZ)?: this group is again a sub-
group of permutations of (Z/nZ)?2. Indeed, for an element (M, v) and for w € (Z/nZ)* we
define

(M,v)w=Muw+v.
In other words, we compose the bijection given by M with the translation by v. We have the
following result:

Theorem 3. Consider a permutation (M,v) € GLo(Z/pZ) x (Z/pZ)*. Ifv € Im(M — I),
then its structure is the same as the permutation given by M. Now suppose that v ¢ Im(M —1I)
and let w € (Z/pZ)?. If Mw = w, then w belongs to a p-cycle. Suppose that Mw # w: if
the eigenvalues of M are 1, \ with A\ # 1, then w belongs to a pord(\)-cycle; if 1 is the only
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eigenvalue of M, then w belongs to a p-cycle unless p = 2 and M +# 1, in which case we have
a 4-cycle.

For e > 1, we compare the cycle length at w for a permutation (M,v) € GLy(Z/p°Z) x
(Z/p°Z)* with the one for M € GLg(Z/p°Z): in particular, see the important special case
covered in Theorem 36

As an aside, we consider the permutations of GL9(Z/pZ) modulo a subgroup of the scal-
ars (Z/pZ) \ {0}: we explain the framework in Section and address the generalization
to GLa(Z/p°Z) in Section The motivation is, by considering the full group of scalars,
studying the action of PGLo(Z/pZ) on the one-dimensional projective space over Z/pZ.

We have also studied GL,, (Z/pZ) as permutations of (Z/pZ)™, for any m > 2. We may easily
reduce to the case of a Jordan matrix and then, if p > m, the permutation structure is clear (see
Proposition . Building on this result, we investigate the permutations of GL,,,(Z/p°Z) on
(Z/p°Z)™: we cover an important special case in Theorem [24] and then for m = 2, 3 we show
how to reduce to this case.

In this paper we only use elementary methods and we rely on standard facts about binomial
coefficients, linear algebra and matrices over rings [2]]. The results are of general interest, and
they are relevant to elliptic curves:

Let E be an elliptic curve defined over Q. For every n > 2 we consider the group E[n]
of torsion points in Q of order dividing n. After choosing a basis for E[n], this group can
be identified to (Z/nZ)? and the action of a Galois automorphism in Gal(Q/Q) is given by
multiplication with a matrix in GL2(Z/nZ). Suppose that £(Q) contains a non-zero point P,

and write %P for the subset of £'(Q) consisting of the points whose n-multiple is P. Fixing
some ) € %P we have

Lp—Q+ERm.
n

If T € E[n] and g € Gal(Q/Q), then we have g(Q + T) = ¢(Q) + g(T). We call M, €
GL2(Z/nZ) the element giving the action of g on E[n] and we set vy := ¢(Q) — Q € Eln|.
Then we have

9(Q+T)=Q+ (MyT + vg).

We deduce that the Galois action on %P is described by the permutation of E[n| stemming
from (M, vy) € GL2(Z/nZ) x (Z/nZ)*. For an introduction to this framework for elliptic
curves we refer to [[1] (and to [3]] for the basic notions). The results of this paper then shed light
on the Galois action on the torsion points and on the division points of elliptic curves.

2. PRELIMINARIES

To ease notation, we write R,, for the ring Z/nZ and GL,,(n) for GL,,(R,,). We call vectors
the elements of 1], which we see as column vectors. We call I the identity matrix. We may
consider the groups GL,,(n) and GL,,(n) X R} as subgroups of the permutation group of
R, Indeed, M € GL,,(n) acts on R} by the matrix multiplication by M while (M,v) €
GL;,(n) X R} acts by the matrix multiplication by M followed by the translation by v.

Remark 4. The matrix I € GL,,(n) (respectively, the identity (I,0) € GL,,(n) x RI") are
the trivial permutation of R". An element (I,v) € GL,,(n) x R} with v # 0 acts on R]"" via
the translation by v: the permutation consists of cycles whose length is the order of v in R]".
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Remark 5. Replacing an element of GL,,(n) by a conjugated element does not change the
permutation structure because this is independent from the choice of a R,,-basis of R]*. The
same holds for GL,,(n) x R!" because this group can be embedded in GL,,,+1(R,,), see Re-
mark [0

By acting on R} with GL,,,(n), the zero vector clearly forms a 1-cycle (so it would be equi-
valent to restrict the permutation to R]"* \ {0}).

Remark 6. By acting on R} with (M, v) € GL,,(n) x R;", we have at least a 1-cycle if and
only if there is some vector w € R} such that Mw + v = w. This precisely means that v is in
the image of M — I. In particular, there is at least a 1-cycle for any v if and only if the matrix
M — I is invertible.

Remark 7. Let A be in GL,,(n) (respectively, in GL,,(n) x R) andletw € R". If zis a
positive integer, we have A*w = w if and only if 2 is a multiple of the length of the cycle of A
containing w. Consequently, this length divides the order of A.

By the following remark we may suppose that n = p®, where p is a prime number and e is a
positive integer.

Remark 8. We write n = [[!_, n;, where the integers ny, . .., n, are pairwise coprime prime
powers larger than 1, and make use of the Chinese Remainder Theorem. Each elementa € R
can be written as

a=(ay,...,a) where a; € R, and a=a; modn;.

Thus a permutation o on R]" is such that o(a) = (o1(a1), ..., 0r(ay)), where o; is a permuta-
tion of R;'. The length of the cycle of o containing a is the least common multiple of the
length of the cycle of o; containing a;, by varyingi =1,... 7.

Moreover, the tuple of the reduction maps modulo n; (for 7 = 1,...,r) gives isomorphisms

GLp(n) ~ [[ GLm(n:)  and  GLp(n) x Ry ~ [ [ GLin () x R}y

and the reduction modulo n; of an element which acts on R} via ¢ acts on ani via o;.

Remark 9. We can embed GLy(n) x R2 into GL3(n) with the map
b

(D))ot
(C6)+0)

We can similarly embed GL,,(n) x (R")® into GLj,+s(n) with the map
M v ... v

noting that we have

<

b
d
0

S0
— S~ 0
—< 8
—_

1

Finally, we recall some results on the divisibility of binomial coefficients:
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Remark 10. For any positive integers m, n the integer m divides (:1) Indeed, for any

integers x, y such that gcd(m, n) = max + ny we have

sl (1) <o (11 +a () e 2.

Consequently, the following holds:

e If ¢, a are positive integers such that 2 < ¢ < q, then pa_vp(t) divides (p:). Indeed, we
have #;a,t) = po~v®)_If p % 2, we may deduce that p2T2* divides (p:), while if
p = 2 we may deduce that 2032 divides (%).

e If p is a prime number and v,(m) < v,(n), then p divides (") because it divides

n

ged(m,n)*

3. THE ACTION OF GLy(p)

We keep the notation of Section 2l We let M € GLa(p) and call A\, \y € IF‘;2 the (not

necessarily distinct) eigenvalues of M. We let w € Rf). As we have observed, we may suppose
without loss of generality that M/ # I and that w # 0. Recall from Remark [7] that the length
of the cycle at w for M is the smallest positive integer z such that w € ker(M?* — I) and we
have z | ord(M ) (and w is a 1-eigenvector for M?).

Lemma 11. Beyond the 1-cycle at 0, the lengths of the cycles of M belong to the set
{ord(A1),ord(\s),ord(M)} .

Proof. Fix w € R2\ {0} and call L the length of the cycle at w. We suppose that L < ord(M)

and show that L € {ord()\;),ord(A\2)}. The matrix M* has eigenvalues A¥ and A\ and w is
a 1-eigenvector for M” hence without loss of generality we have ord()\;) | L. Consider the
following inclusions of I 2-vector spaces:

{0} C ker(M — M) C ker(M° ) — T) € ker(ME — I) C ker(M° M) — 1) = 2.

A dimension argument gives us that the second and third inclusions are equalities. Thus
ker(M°d\) — T) = ker(M’ — I) hence the smallest positive integer z such that w €
ker(M?* — I)is ord(\). O

Theorem 12. A non-zero vector is in a cycle of length ord(M), unless it is a A-eigenvector for
some \ € T, in which case it is in a cycle of length ord(\).

Proof. Letw € Rg \ {0} and call L the length of the cycle of M at w. If w is a A-eigenvector
for M, then we must have A € F,’ and clearly L = ord()\). Now suppose that w is not an
eigenvector (in particular, M is not a scalar matrix). If M is diagonalizable over F > (hence
A1 # A2), then in a basis consisting of eigenvectors both coordinates of w are non-zero hence
L =lem(ord(A1),ord(A2)) = ord(M). In the remaining case, up to conjugation we have

01

Observe that L divides ord(M) = ord(\)p. We claim that p | L. Then, since MP = \I, we
must have L = ord(M). The claim holds because M ord(N)qy £ . Indeed, the 1-eigenspace
of MM equals the A-eigenspace of M and w is not an eigenvector for M. (Il

M:)\<1 b) with AeF,; and b#0.
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Proof of Theorem([l] The result follows from Theorem [12] considering that the zero vector
forms a 1-cycle and that, for an eigenvector in R?, the eigenvalue must be in Fp. O

3.1. The action of GLy(p) modulo a group of scalars. Consider the action of GL2(p) on
the set S := R2\ {0}. We fix a non-zero subgroup H of R and we call two vectors in .S
equivalent if one equals the other times a scalar in H. This is an equivalence relation on .S, and
we call Sp the set of the equivalence classes. We see the quotient group G := GLa(p)/HI
as a group of permutations of Sp;.

Let M € GLgy(p) and call My € Gy its residue class. We consider a vector w € S and call
wg € Sy its equivalence class. We have studied the length L of the cycle at w of M and
we now investigate the length Lz of the cycle at wg of Mpy. The integer L is the smallest
positive integer n such that M"w = hw holds for some h € H. We deduce that Ly | L and
that L divides Ly - #H.

We call Ai, Ay € Fp2 \ {0} the (not necessarily distinct) eigenvalues of M and we let £ be the

smallest positive integer for which \{ (equivalently, \9) is in R). We observe that £ | (p + 1)

and that £ | Ly. If r € F,, then we write ord 7 (r) for the smallest positive integer ¢ such that
. P

re H.

Theorem 13. If w is a \i-eigenvector of MY, then we have Ly = ordy(\;), fori = 1,2. If w
is not an eigenvector of MY, then we have Ly = ord(M) if \y # Ay and Ly = pordg (A1)
otherwise.

Proof. Observing that Ly /¢ is the length of the cycle at wy for M ¢ we may replace M by
M* and suppose that £ = 1 or, equivalently, that A;, Ay € RY.

If without loss of generality Mw = Ajw, then we clearly have Ly = ordg (A1), so suppose
that w is not an eigenvector of M (in particular, M is not a scalar matrix).

If A1 # Ao, then the smallest positive integer n for which w is an eigenvector of M" is
lem(ord(A1),ord(A2)) = ord(M) and we conclude. Finally suppose that \; = A9 and that M
is not diagonalizable. By Theorem|[12)we have L = ord(M) hence p | L. Since #H is coprime
to p, we deduce that p | L. Moreover, we have MP = M/T and hence Ly = pordy(A\1). O

4. THE ACTION OF GLy,(p) ON R

Let p be a prime number, m > 2 and set ¢ = p™'. We see M € GL,,(F,) as a permutation of
the vectors in Fi*. For our purposes, M € GLn,(p) hence the permutation maps R;" to itself
and all eigenvalues of M are in F,. We fix w € R;" \ {0} and study the length L of the cycle
of M atw.

The permutation structure of M is invariant under a base change in GL,,(F,) so we may sup-
pose that M is in Jordan normal form. The decomposition of M into Jordan blocks Ji, ..., J,
naturally gives a decomposition of Fy* as a sum of vector subspaces V1, ..., V. (which only
consider the coordinates corresponding to the various Jordan blocks). We may then write
w = (wy,...,w,) withw; € V;fori =1,...,r and we have

Mw = (Jywy, ..., Jyw,).

Consequently, L is the least common multiple of the lengths of the cycle of J; at w; for ¢ =
1,...,7. So we reduce to the case where M € GL,,(F,) consists of a single Jordan block .J.
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Calling X the eigenvalue, we have

A1l
A1
J = .
A1
A
By induction, for £ > 1 we have
N (DA (’g)AH (mgl)kk‘m+l
Ak (1))\k71 L (m_2) )\kfm+2
(1) Jh = :
v e

Ak

Namely, .J* is an upper triangular matrix whose elements on the main diagonal are A\* and the
entry in row 4 and column i + ¢ (with 1 < ¢ < m — 1) is (';) Ne—t,

Proposition 14. If w is a A-eigenvector for J, then L = ord(\). Otherwise, we have L =
p® ord(\) for some positive integer x such that p*~* < m (thus, L = pord()\) if p > m).

Proof. If w is a A-eigenvector for J, the statement is immediate, so suppose that this is not the
case. Since 0 # w € ker(J* — I') we deduce from () that

0=det(JE-I)= W\ —1)™
and hence ord(\) | L.

We now prove that ker(.J ord(A) _ 1 ) is the A-eigenspace of J, which implies L # ord(\). Since
the diagonal entries of J°'4()) — I are zero, the kernel contains the A-eigenspace. Moreover,
the kernel is 1-dimensional because p 1 ord(\) implies p 1 (Ordl(A)) hence the first m — 1 rows
of Jo"4(N) — T are linearly independent.

To conclude it suffices to prove that JP 4\ = [ holds for the smallest positive integer z

such that p* > m. This is the case by (T) because p | (*"“"*™) holds in particular for all
1 <t<m<p*asvy(t) < vp(p®ord(N)), see Remark [10] O

Remark 15. Let p = 2 and m = 3. If there are more than one Jordan blocks we may reduce
to the case m = 2 < p covered by Proposition[I4] and if there is only one Jordan block .J then
the eigenvalue must be over IF;, and hence 1. So we have

1 01
J? = 1 0 and J'=T1.
1

If w is a 1-eigenvector, then L = 1. Otherwise, we have L = 2 unless the last coordinate of w
18 non-zero, in which case L = 4.

5. THE ACTION OF GL,,(p)

Let p be a prime number and e > 1. We fix M € GL,(p°) and w € Rj¢ \ {0}. For every
1 < s < e we call M (respectively, w;) the reduction of M (respectively, w) modulo p® and
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we call L the length of the cycle at ws of the permutation M. We observe that L is the
smallest positive integer satisfying

MPw=w modp°.

Moreover, we remark that L | L1 holds for all 1 < s < e and that for m = 2, 3 the number
L, can be determined thanks to Proposition [I4]and Remark [15]

Proposition 16. Ler 1 < s < e and write M™*w = w + p*w), for some w}, € Rit. Then
L1/ Lg is the smallest positive integer t such that

t—1
() (wl, mod p) € ker <Z M{“Z) :

=0

Proof. Write Ly, = Lyt and N = MPs. Then t is the smallest positive integer such that
Nlw=w mod p*Tt.

Since (as it can be shown by induction) we have

t—1
Ntw = w+psZNiw;,
=0

we may conclude by rewriting the condition as

t—1
ZNiw; =0modp.
=0

O
Remark 17. We have the following recursive formula for v/, fors =1,...,e — 1:
Ls 1/Ls*1 L5+1/L571
Mbstr — Iy 1777 Ms — Dw 1
3) wgﬂz%:, Z Mmk%:f Z MEsky
p r p p=

Remark 18. Write w = p”w’ with 0 < v < e maximal. Then the cycle length L. is the same
as the cycle length L, of M atw’. So up to replacing w by w’ and e by e — v we may suppose
that wy # 0.

Remark 19. Suppose that (w, mod p) = 0 and let h be the largest positive integer such that
p" | w),. Then we have Ly , = L, for every 0 < = < hand (w/_, mod p) # 0. Thisis a
consequence of Proposition[16[and (3) because w/, , = p~"wy.

Example 20. Suppose that e = 2 and that M = I + pM’ holds for some matrix M'. We have
Ly = 1 because My, = I. Since Mw = w + pM'w, with the notation of Proposition [16| we
have w] = M'w. Since

t—1

ZML” =tI mod p

i=0
by Proposition 16| we have Ly = 1 (which means Mw = w) if wj = 0 mod p and Ly = p
otherwise.
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Theorem 21. Let M € GL,,(p¢). Let s > 1 and let the matrix MlLS have Jordan normal

form diag(Ji, ..., J,) with J;j the Jordan blocks corresponding to an eigenvalue \; € pror
j=1,...,r. Writew!, mod p = (vy,vs,...,v,) with v; a column vector with as many rows
as Jj;. Define

1 ifvj =0;

dj:=1Qord)\; ifA; #1landv; = (a,0,0,...,0) witha € F,”;
pord \; otherwise.

Suppose that the size of each Jordan block is at most p and for the Jordan blocks with eigen-
value 1 strictly less than p. Then we have

LS+1/LS = lcm(dl, NN ,dm) .

Proof. We make use of Proposition (16 Condition (2) is equivalent to v; € ker(zz;lo J ]k ) for

all 7 = 1,2,...,r so we have reduced to consider a Jordan block J of M. 1L * corresponding to
an eigenvalue \ and set v := w’, mod p. We clearly have L,1/Ls = 1 if and only if v = 0.

Suppose first that A = 1 and that v # 0. By (I]) and by the hockey-stick identity ZZ_:IZ (lz) =

(Zil) all entries of ZZ;é J¥ are 0 inside F),. Thus by @) Ls11/Ls divides p and we may
conclude.

Now suppose that A # 1 and that v # 0. Then ord(\) divides Ls1/Ls because for ord(\) { ¢
the triangular matrix ZZ_:IO J¥ is invertible (the entries on the main diagonal are %). By (1)
and Remark [I0l we have J? = A\I hence

pord A—1 ord A\—1 p—1 ord A—1 p—1
>y S () () o
k=0 k=0 =0

k=0 =0

implying that L1/ L divides pord(\). We deduce that L1 /Ls equals ord(\) or pord(\)
and we are in the former case if and only if for ¢ := ord(\) the vector v is in the kernel of

t—1
> oI
k=0

This matrix is upper triangular with zero entries on the main diagonal. Moreover, we have

t—1
-1 t_ t—1 1 1— —1
2 A1) A1)

on the first superdiagonal. This implies ker(3";_, J*) = ((1,0,...,0)) and we may conclude.
O

Remark 22. We adapt the proof of Theorem supposing that p, m € {2, 3}, p < m. Suppose

first that J is a m x m Jordan block for the eigenvalue 1. In this case we have ZZQZ_OI JF=0
hence L, 1/Ls divides p?. Moreover, Ly, 1/Ls = 1 if and only if v = 0 and Lsy1/Ls = p?
if and only if the last entry of v is non-zero. Now suppose that .J is a Jordan block for an
eigenvalue A # 1: considering that 1 is an eigenvalue of M 1LS, Jiseither 1 x 1 or 2 x 2 so the
proof does not require any change.
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Corollary 23. Suppose that m = 2 and that MlLS has eigenvalues 1 and \ # 1 (thus, p # 2).
We have

1 if (W, mod p) is zero
D if (w’, mod p) is a 1-eigenvector for M
4 Ls-l—l/Ls = . ’ . . Ls
ord(A)  if (w, mod p) is a A-eigenvector for M;
pord(\) otherwise.
Proof. This is a special case of Theorem 2] ([l

In the following result we may suppose that M w # w because otherwise L, = 1:

Theorem 24. Let ¢ > 2 and suppose that M = [ +pM’ for some matrix M'. We suppose that

Muw # w and write uniquely M'w = p*u where 0 < k < e and u € Rje is such that p fu If

p = 2, suppose additionally that 2 | M'. Then we have L, = p®~*~1,

Proof. Since My = I, we have L1 = 1. We prove that

1 1<i<k+1
Li=q . .
P’ k+l1<i<e.
Propositionsays that Ls41/Ls € {1,p} and (since M; = I) that L, = Ly if and only if
w’ = 0 mod p. We can write
Mw =w+ pM'w =w+ p*u.
k+1—s

Supposing that Ly = 1 we have w), = p
Thus, L; =1 holds fori =1,...,k+ 1.

w and hence w’, = 0 mod p holds for s < k.

To conclude (recalling that p { u) we prove by strong induction that w, = u mod p holds
fork+1 < s <e—1. For s = k + 1 (considering that L1 = 1) we have shown above
that w, = wu. Now suppose that w; = w mod p holds for all £ +1 < ¢ < s (for some
k+1 < s < e—2). We have to prove that w),__; = u mod p. Our induction hypothesis implies
that Ls1q = psfk. Making use of the binomial expansion we obtain

Pk s—k
ML3+1 =7 +ps—k . pM/ + Z (p >pt(M/)t—1 M/ )
=2 t
s—k
If p # 2 we observe that p**+27" divides (¥, ) forall 2 < ¢ < s — k (see Remark .
Recall that by definition we have M Ls+1w = w + p* 1w, 4 and M'w = pFu. Then, applying
w to the above formula we may conclude because we have

s+1, .7 s+1 s+2

P’ W,y = p° umod p
If p = 2 we adapt the previous case. Since 2¢(M’)!~! is divisible by 22/~! we only need to

prove that 25~ *3=2 divides (2S;k) forall 2 < t < s — k, and this holds by Remark O

Proof of Theorem[2] The result is equivalent to Theorem [24] O

In what follows, we make use of the notation My, Ly and w’, from Proposition Since L4
divides L., we may work with M’ thus (w mod p) is a 1-eigenvector for M 1L L
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Remark 25. Let m = 2,3 and p # 2. Recall that the case M, = I is covered by Theorem [24]

Suppose that 1 is the only eigenvalue for M IL ! hence by (I)) the order of M IL ! divides p. Since
ord(M*1) is a power of p, the same holds for L. /L; hence we either have L. = L1 or we may
replace M1 by MPL1 and reduce to the case M = I.

Now suppose that ]\41L1 has, beyond the eigenvalue 1, at least one eigenvalue A #* 1 (over
[F,2). For m = 3, the possible further eigenvalue that is not 1 has also order ord()). Up to a
base change that preserves the affine structure, we let R)' = E @ Ey where E; (respectively,
) is the vector subspace corresponding to the Jordan blocks with eigenvalue 1 (respectively,
different from 1). In case that for some 1 < s < e the vector (w, mod p) has a non-trivial
component in E, by Theorem [21| we have ord()\) | L. hence replacing M by M %sord(d)
we may again reduce to the case M, = I. Moreover, if (w, mod p) also has a non-trivial
component in Fy, we have Ls11 = pord(A)Ls hence MLs0ordN gy — 4y is not divisible by
psTL Theoremthen gives L, = Lgord(\)p®*~1,

Remark 26. Let m = 2,3 and p = 2. Recall that the case My = I is covered by Theorem [24]

Suppose that 1 is the only eigenvalue for MlL1 (thus ord(M11) is a power of 2). Then the
cycle of M*1 at w has length 1 (if M 1w = w) or 2 (if M1 w # w and M?*1w = w) or 4 (if
M?*F1y # w and M* 1w = w) or a multiple of 8. In the last case, we may work with /851
hence reduce to the case My = I. We observe that, unless m = 3 and M- 1L ! is a Jordan matrix,
as soon as the cycle length is a multiple of 4 we may reduce to the case M> = I by considering
M4L1 .

Now suppose that M 1L ! € GL,,(p) has (beyond the eigenvalue 1) an eigenvalue A # 1, which
implies that m = 3 and M is diagonalizable over IF,> of order ord(\) = 3 with three distinct
eigenvalues 1, \, \. Having the information on whether 3 divides or not L./L; would allows
us to work with M3%1 instead, thus reducing to the previous case. Suppose that working with
M3 instead we get aratio L, /Ly. Then L, is L, or 3L, and the latter case occurs if and only
if 3 | L.. In turn, this occurs if and only if M2?"F1w # w for any x. So by taking z = e we
are reduced to study whether w is a 1-eigenvector for a power of M that has order 3. This
power equals MlL ! interpreting the coefficients 0, 1 as classes modulo 2¢ (this can be seen by
writing [ = (]\41L1 + 2/ N)3 with f maximal and working modulo 2/+! in case f < e).
Remark 27. Let m = 2 and p # 2. Suppose that M has an eigenvalue A\ # 1 and that (w;
mod p) is a 1-eigenvector. Up to a base change, suppose that M; is diagonal and the second
coordinate corresponds to the A-eigenspace. Then (w)_,; mod p) is either a 1-eigenvector for
M or it is neither zero nor an eigenvector, and the former case holds if and only if the second
coordinate of (w/, mod p?) is zero. By Corollary this can be shown by plugging ¢ = p
and y = 0 in the following calculations: in a suitable basis, write

MLSE<(1] g>+p(i Z) mod p? wéz(iiﬁ?) mod p?

with a,b,c,d, e, f,x,y € R,. By induction, for any £ > 0 we have
byE + kax + e x
MEsky! = A=l + mod p?
s=P <cx§’“_11 F AR 4 dykakL y\F b
so that for t = Ls11/Ls we have by (3)

by Ztil L:l + az D) + et tx 5
pw;+1 Ep( t—1 )\15::10 A 1/\z 1 2 + y/\tfl mod p~.

cxrYy o5 tfoog Ty 22;10 kAR =1
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1 0
0 -1
Lo/Lq and t3 := L3/ Lo so that Ly = tqtots3. We characterize all possible values of the triple
(tla t?a t3)

By Proposition we have t; € {1,2}. If t; = 2, then MlL1 = I, so by Theorem we have
ta,t3 € {1, 3} and moreover ¢, = 3 implies t3 = 3 by Theorem 24] Now suppose that ¢; = 1
hence by Corollary 23|we have t5 € {1,2,3,6}.

Example 28. Let m = 2, p¢® = 27 and let M = mod p. We set ty := Lq,t9 :=

If t, = 1, then by Corollary 23| we have t3 € {1,2,3,6}.

If t2 = 2, then MIL2 = I,soby Theoremwe have t3 € {1, 3}.

If to = 3, then by Corollarywe find that w, mod pis a 1-eigenvector for M3, thus
by Remark 27| we have t3 € {3, 6}.

If to = 6, then from Remark 25| w} mod 3 has a nontrivial component in E and F;
and hence t3 = 3.

All the twelve obtained triples are achievable, and even for one same M. Indeed, in the table

below we can see the triples corresponding to the given values of w for M = (g }i) :

’ w ‘ (tlat27t3) H w ‘ (tl,tg,tg) ‘

—~|—
=R
Nej New)
S— [

9

—

9»3
—
o

~—

)

1
1
37
0
1

i

e s sl K=l K=2)
— =

) )

—~| |
W ol w
W Wl O
S [ N [
—~| =]

5.1. The action of GL2(p°) modulo a group of scalars. Fix M € GLa(p®) and a vector
w € Rge. We let H < (Z/p°Z)* or simply H = R, and investigate the smallest positive
integer n such that M™w = hw holds for some h € H. We have already treated the case
H = {1} and in general we may proceed with the same strategy. We may suppose that w # 0

and (similarly to Remark that wy # 0. For 1 < s < e we define L to be the smallest
positive integer n such that there is h € H such that M™w = hw mod p®. We observe
that those n satisfying the condition for a given s are precisely the multiples of E (because if
n1 < ng satisfy the condition, so does ny — n1). Note that E can be computed using Theorem
Moreover, we have E; | L/S\:I and f; | Ls.

We write N = MLs and Nw = puw + p*ws with u € H. Then we have
n—1 .
N"w = p"w + p° (Z Nzﬂ)vs) .
i=0

Thus f;:l / L, is the smallest positive integer n such that there is h € H such that

n—1

5) N"w = p"w + p° (Z Ni) Wy = hw mod p*T!
i=0

If ¢ is the smallest positive integer such that w,; mod p € ker (Ef;é N{) then we have
I/J_;:l/f;vs < t by setting n = t and h = ! in (3).
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Suppose that H = Rye. Then () is equivalent to

n—1
(6) (Z Nf) ws mod p € (w1).

=0

We deduce that E;Z / E; divides ¢: if n; < ng satisfy (6), so does their difference because
Njw; € (wq) and we have

(n2—n1) na—1 m-1
S wi= () (S ).
i=0 =0

We have fs\; = f if and only if wy; mod p is a multlple of wi. So suppose that this is not
the case. If w; mod p is an elgenvector for N, then LS+1/L =t (and if it is a 1-eigenvector,

then ¢ = p). In general, L5+1 / LS divides ord(NN;) (respectively, 4 if p = 2 and Nj is not
diagonalizable) because the matrix sum in (6) is the zero matrix for this value.

6. THE ACTION OF GLy(p®) x R2.

6.1. The action of GL2(p)x Rz2>' Let p be a prime number and consider (M, v) € GLa(p) X Rg
as a permutation of R2. If (M, v) satisfies v = (M — I)u for some u € R, then we have

(I,u)(M,v)(I,u)" = (M,0)

and the permutation given by (M, 0) is the same as the one given by M (which was already
discussed). So we may assume that v is not in the image of M — I, and in particular that 1 is
an eigenvalue of M (so a further eigenvalue for /M must be in ). We may also suppose that
M # I by Remark 4]

Theorem 29. Suppose that M # I and v ¢ Tm(M — I). The following holds for (M, v):

o Suppose that the eigenvalues of M are 1, A with \ # 1. The vectors in the 1-eigenspace
of M form a p-cycle, while the other vectors form cycles of length p ord(\).

o Suppose that 1 is the only eigenvalue of M. For p = 2 the permutation is a 4-cycle
while for p odd the permutations consists of p-cycles.

Proof. Suppose first that M has two distinct eigenvalues 1, A\. Then up to conjugation we have

We compute (M’U):«é g)(l,)) vy £0.
(62 () oo (62 ()= (6 %) i)

1

By choosing t = —av, /(1 — \) and @ = vy !, we may then assume that v = (1,0). Then (by

induction) for any k € Z we have

oot (5= (0 %)-()) ()= ().

Thus (observing that ord(\) is coprime to p) all vectors with y = 0 are in one same p-cycle
while if y # 0 the vector (z,y)” is in a cycle of length pord()).
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Now assume that up to conjugation we have

=) oo

By conjugating with (I, (0,v,)”) we may assume that v, = 0. Then, by conjugating with
(vy_ll, 0), we may assume that v, = 1.
If p = 2, then (M, v) has order 4 hence the length of each cycle divides 4. Since (M, v)? =

(I, u) for some u # 0, this permutation has no fixed vectors hence (M, v) does not have cycles
of length 1 or 2 and we conclude. If p is odd, a computation by induction gives

o () (- (%) ()

which is equal to (x, )7 if and only if p | k. Thus every vector is in a cycle of length p. [

Proof of Theorem[3} The result follows from Theorem [29]and the considerations at the begin-
ning of this section. 0

Remark 30. We have found that the permutation induced by (M, v) is of the same type of the
one induced by M if and only if there is a 1-cycle if and only if v € Im(M — I). In particular,
if M — I is invertible, then for any v the permutation (M, v) has the same structure as the
permutation M. Moreover, beyond the distinction of whether v belongs or not to Im(M — I),
we have seen that the type of the permutation does not depend on v.

6.2. The action of GLy(p®) x RZE for ¢ > 1. Consider (M,v) € GLo(p®) X RI%E as a
permutation of Rf,e. For every n > 1 (by induction) we have

n—1
(M, v)" = (M",ZM%) :
=0

Letw € Rge. The cycle length L, of (M, v) at w is the smallest positive integer n such that
(M, v)"w = w or, equivalently, such that

n—1
(7 (M —Dw+v€ker Y M.
i=0
We similarly define L; by working modulo pt fori = 1,...,e and consider the analogous

quantities L; for the permutation given by M.

Remark 31. The permutation (), v) has a 1-cycle if and only if v € Im(M — I). In this case,
the permutation (M, v) has the same structure as the permutation M. Moreover, if w = 0, then
L. is clearly the order of v € Rf,e.

Remark 32. The number L, divides the order of (M, v), which in turn divides p® ord(M).

Since
ord(M)—1
(M —Tjweker » M
i=0
the number L/ does not divide ord(M) if and only if
ord(M)—1

v ¢ ker Z M.
1=0
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For any positive integer n, we consider the condition
n—1

) v € ker Z M’
i=0

and we call ¢ the smallest positive integer satisfying (8.

Proposition 33. The positive integers n satisfying (8) are precisely the multiples of t. Moreover,
t divides ord (M )p®

Proof. Write n = qt + r, where r is the remainder of n after division by ¢. If = 0, then (8)
is satisfied because we have

qt—1 q—1t—-1 m—1 t—1
Mk — Mkt+l — < Mkt) ( Ml) )
R =T R P A

Now suppose that r > 0 and write

qt—1

-1
HZM’“ M" ZM’“+ZM’“
k=0

Then (8)) does not hold for n because, by minimality of ¢, it does not hold for 7. To prove the
second assertion we take n = ord (M )p® and observe that

ord(M)—

ord
ZMk Z Mkord Z Ml _p Z Ml —0.
O

Remark 34. We show how to reduce to the case where L, is a power of p. If 1 is the only
eigenvalue of M7, then the order of (M, v) is a power of p and the same holds for L. If
the eigenvalues of M are not 1, and (M, v)w # w (which we exclude by saying that v ¢

Im(M — I)), then for the matrix Z?;Bl MP to have a non-trivial kernel, we need that the
order £ of one of the eigenvalues of M; divides L. hence we may replace M by M* and
L. by L./¢, reducing to the case where at least one eigenvalue is 1. We may now suppose
that M7 has two distinct eigenvalues 1, A and, up to conjugation, that the two coordinates
correspond to the 1-eigenspace and the A-eigenspace respectively. In view of Remark [9] by
Theorem. 21| L, is a power of p possibly multiplied by ord(\). Then we have only to determine
whether ord(/\) divides L. Analogously to Remark.we may replace (M, v) by (M, v)P" for
some large = we are left to consider an element (M, v") of order ord(\), where the matrix is

considered as a matrix modulo p¢ and v' = fio_l M'v. We then only have to check whether
(My — Hw+v' =0.

Remark 35. In Remark we have seen how to reduce to the case where L, is a power of
p. So, unless L, = 1 (which we may exclude with the condition v ¢ Im(M — I)) we may
work with (M, v)P instead and hence without loss of generality replace M by a power such
that My = I. For p = 2, we may similarly reduce to the case My = I.

Theorem 36. Suppose that My = 1. If L. # t, we have L, = lem(Le,t). Now suppose
that L, = t. We have L., | L. and, supposing additionally for p = 2 that My = I, we have
L, = p°~*, where k (with 0 < k < e) is the largest integer for which p* divides (M — I )w +v.
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Proof. Write (M — I)w + v = p*w’. Recall (7) and observe that L. is the smallest positive
integer n satisfying

n—1

(M —I)w € ker  _ M".

i=0
Then it is clear that L/, divides lem(L,,t) and if L. # ¢ (as L. and t are powers of p) then
does not hold for the smallest of these numbers but it holds for the largest. Now suppose that
L. =t and observe that p { w'. If k = e, then clearly L/, = 1, so suppose that k < e. Then L,
is the smallest positive integer n satisfying

n—1
w' € ker Z M, .
i=0
This condition holds for n = p°~* but it does not hold for n = p°~*~1 by Lemma (]

Lemma 37. Let e > 1 and suppose that M1 = I. Then we have

pe—1
> M =o0.
=0
Supposing additionally for p = 2 that Mo = I, the kernel of

pe—lil

oM
i=0
is pR%_| (whose exponent is p°~1).

Proof. Consider that M7 = I. The two assertions for e = 1 follow immediately. For the first
assertion, also observe (by the induction hypothesis) that

pe—l_l pe—l_l

Z M= Z M!_; =0mod p* !,
i=0 i=0

We deduce that

pe-1 p—1 pe -1

A o1 .
S ar =Sy e
i=0 k=0 i=0

By the first assertion, the kernel of

contains pR2_; so it suffices to prove that the exponent of the kernel is less than p°. For e = 2,
the second assertion is clear for p = 2 as M = I, so suppose that p # 2: writing M = [ +pN,
we may conclude because we have

p—1 p—1
> M'=pI+) ipN =pl.
=0 i=1
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For e > 3 (as MY = I) the exponent of the kernel of Ei;é MP*k is p. We may then
conclude (by the induction hypothesis) writing

pefl_
=0

672_1

1 p—1 P
M= MR N
k=0 1=0

0

Remark 38. Another viewpoint to study the action of GLa(p®) X Rf,e on Rge is provided by
Remark [Qbecause we have

GLy(p°) x R2. < GL3(p°)  and  Rj. < R3..

For this reason we may reduce to consider M € GL3(p¢) and w € Rf,e such that the last row
of M is (0,0, 1) and the last component of w is 1.
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