
Characterizing Implementability of Global Protocols with
Infinite States and Data

ELAINE LI∗, New York University, USA

FELIX STUTZ, University of Luxembourg, Luxembourg

THOMAS WIES, New York University, USA

DAMIEN ZUFFEREY†, NVIDIA, Switzerland

We study the implementability problem for an expressive class of symbolic communication protocols involv-
ing multiple participants. Our symbolic protocols describe in�nite states and data values using dependent
re�nement predicates. Implementability asks whether a global protocol speci�cation admits a distributed, asyn-
chronous implementation, namely one for each participant, that is deadlock-free and exhibits the same behavior
as the speci�cation. We provide a uni�ed explanation of seemingly disparate sources of non-implementability
through a precise semantic characterization of implementability for in�nite protocols. Our characterization
reduces the problem of implementability to (co)reachability in the global protocol restricted to each partic-
ipant. This compositional reduction yields the �rst sound and relatively complete algorithm for checking
implementability of symbolic protocols. We use our characterization to show that for �nite protocols, imple-
mentability is co-NP-complete for explicit representations and PSPACE-complete for symbolic representations.
The �nite, explicit fragment subsumes a previously studied fragment of multiparty session types for which
our characterization yields a co-NP decision procedure, tightening a prior PSPACE upper bound.

CCS Concepts: • Theory of computation→ Logic and veri�cation; Distributed computing models;
Automata over in�nite objects.

Additional KeyWords and Phrases: Message-passing, Protocol veri�cation, Data re�nements, Implementability,
`CLP reduction, Synthesis

ACM Reference Format:

Elaine Li, Felix Stutz, Thomas Wies, and Damien Zu�erey. 2025. Characterizing Implementability of Global
Protocols with In�nite States and Data. Proc. ACM Program. Lang. 9, OOPSLA1, Article 131 (April 2025),
30 pages. https://doi.org/10.1145/3720493

1 Introduction

Concurrency is ubiquitous in modern computing, message-passing is a major concurrency paradigm,
and communication protocols are therefore a key target for formal veri�cation. Communication
protocols specify distributed, message-passing behaviors from a global point of view, altogether
describing the interactions between all participants in the protocol. Implementability and synthesis
are two central questions to the veri�cation of communication protocols. Implementability asks
whether a protocol admits a distributed implementation, and synthesis in turn computes an admis-
sible one. A distributed implementation is considered admissible if it is deadlock-free and exhibits

∗corresponding author
†Damien Zu�erey was working at SonarSource in Switzerland when this work began.

Authors’ Contact Information: Elaine Li, New York University, New York, USA, e�9013@nyu.edu; Felix Stutz, University
of Luxembourg, Esch-sur-Alzette, Luxembourg, felix.stutz@uni.lu; Thomas Wies, New York University, New York, USA,
wies@cs.nyu.edu; Damien Zu�erey, NVIDIA, Zurich, Switzerland, rilaak@gmail.com.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2025 Copyright held by the owner/author(s).
ACM 2475-1421/2025/4-ART131
https://doi.org/10.1145/3720493

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 131. Publication date: April 2025.

131:2 E. Li, F. Stutz, T. Wies, D. Zu�erey

exactly the same communication behaviors described by the speci�cation. We refer to the latter
property as protocol �delity. The implementability question precedes the synthesis question in
importance: synthesizing implementations for unrealizable protocols is a fruitless endeavor.

Global protocol speci�cations �nd industry applications in the form of UML’s high-level message
sequence charts and the Web Service Choreography Description Language, and are widely studied
in academia in the form of multiparty session types and choreographic programming. Multiparty
session types (MSTs) have been implemented in at least 16 programming languages including
Python [25, 69, 71], Java [46, 47], C [72], Go [11, 54], Scala [12], Rust [16, 52], OCaml [48], F# [70],
and applied to operating systems [28], high performance computing [24, 44, 73], cyber-physical
systems [62, 63], and web services [87]. We refer the reader to [86] and [65] for a comprehensive
survey of MST and choreography applicability respectively.
To model real-world veri�cation targets, we desire for our protocol speci�cations to be as

expressive as possible. Various dimensions of expressivity have been explored in the literature, such
as arbitrary message payloads, non-deterministic choice, unrestricted recursion and parametricity.
Formalisms such as choreography automata [34], high-level message sequence charts [1, 3, 30–
33, 59, 64, 66, 68, 74] and session types [6, 7, 45, 56, 81, 89] correspond to syntactically-de�ned
fragments that incorporate a selection of these features.

In this paper, we study the implementability problem for a semantically-de�ned class of commu-
nication protocols, which we call global communicating labeled transition systems (GCLTS). GCLTS
impose only modest syntactic restrictions and subsume many existing fragments of asynchronous
multiparty session types and choreography automata. GCLTS capture the following important
features:

• Asynchrony: the semantics are interpreted over a peer-to-peer, asynchronous network, with
FIFO channels connecting each pair of protocol participants.
• Generalized sender-driven choice: the only notable syntactic restriction imposed by our
formalism is that at each branching point of the protocol’s control �ow, a single participant
chooses a branch. In other words, the �rst message that is sent in each branch of a choice
must come from the same sender. However, we impose no restrictions on the recipient or the
message payload other than that no two branches share the same recipient and message.
• In�nite protocol state: protocol states contain registers that take values from an in�nite
domain. This allows loops to carry memory across iterations, and allows the protocol to be
speci�ed in terms of dependent re�nement predicates.
• In�nite message payloads: messages can carry values drawn from an in�nite data domain.

Implementability is undecidable for this general class of protocols. The presence of and interac-
tion between the aforementioned features means that even soundly approximating implementability
is challenging. Existing work is either comparable in expressivity but does not solve the imple-
mentability problem, or solves the implementability problem but is incomparably restricted in
expressivity. Zhou et al. [89] present a framework for synchronous, re�ned multiparty session types
that soundly approximates implementability through its endpoint projection, but that may yield
local speci�cations that are not implementable. Several works [2, 56, 59, 78] precisely characterize
implementability for �nite protocol speci�cations. However, the implementability check in [2, 56]
relies on synthesizing an implementation upfront, which is not possible for in�nite-state protocols.
Das and Pfenning [22] study local session types with arithmetic re�nements in a binary setting.

We address these challenges by decomposing the implementability problem into two steps. First,
we give a precise, semantic characterization of implementability for GCLTS that we prove sound
and complete once and for all. Our characterization is de�ned directly on the global speci�cation,

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 131. Publication date: April 2025.

Characterizing Implementability of Global Protocols with Infinite States and Data 131:3

and thus forgoes the need to �rst synthesize a candidate implementation. Moreover, our charac-
terization gives a uni�ed semantic explanation to disparate causes of non-implementability that
arise from the expressivity of our protocol fragment. We encapsulate the complexities introduced
by communication-speci�c features such as asynchrony and partial information in the �rst step.
Our semantic characterization reduces implementability to (co)reachability in the GCLTS. Speci�-
cally, we provide a sound and complete reduction to the �rst-order �xpoint logic `CLP [83]. The
`CLP calculus can express recursive predicates with least and greatest �xpoint semantics where
the predicate body is constrained by a �rst-order logic formula over a background theory. Our
implementability characterization can therefore be checked by existing `CLP solvers. Second, we
use this reduction to obtain a blueprint for solving implementability algorithmically. Our reduction
yields algorithms that are sound and complete relative to an assumed oracle for solving `CLP
validity, in addition to decision procedures with optimal complexity for various decidable classes.

Contributions. In summary, our contributions are:

• Global communicating labeled transition systems (GCLTS): a semantically-de�ned class of
asynchronous communication protocols that subsumes most formalisms in the literature.
• A precise characterization of implementability for GCLTS.
• The �rst symbolic algorithm for checking implementability of in�nite, symbolic protocols
that is sound and relatively complete.
• Optimal decision procedures for checking implementability of �nite protocols. In particular,
we show that for explicit protocol representations that enumerate all states and transitions,
the problem is co-NP-complete, and for symbolic protocol representations that encode states
and transitions using predicates and variables, the problem is PSPACE-complete.
• As a corollary of the previous result, we obtain a co-NP decision procedure for implementabil-
ity of global types, tightening a prior PSPACE upper bound [56, 57].

2 Overview

We motivate our work using an in�nite state version of a two-bidder protocol, depicted as a high-
level message sequence chart (HMSC) in Fig. 1. The protocol speci�es the behavior of two bidders,
B1 and B2, who negotiate to split the purchase of a book from seller S.

The protocol begins with B1 announcing to S and B2 the book ~ it proposes to buy. The protocol
requires that ~ signi�es a valid ISBN number, which we abstract with the predicate ISBN(~). The
seller S then informs B1 the requested book’s price I. After this, B1 and B2 enter a bidding phase in
which they negotiate the split of their respective contributions 11 and 12 towards the purchase. In
each round of the bidding phase, B1 proposes its contribution 11 to B2. Bidder B2 then decides to
either abort the protocol by sending a quit message to S, or respond to B1 with its own bid 12. In
case B2 aborts, S echoes the abort message to B1 and the protocol terminates. In case B2 continues
bidding, if the sum of the proposed bids exceeds the book’s price, B1 informs S of the successful
negotiation. Seller S in turn relays the message to B2. Otherwise, B1 sends a cont message to B2,
informing them that they need to enter another bidding round. Throughout the bidding phase, B1
and B2 track the values of their latest bids in the registers I1 and I2. The re�nements ensure that
the proposed bids are strictly increasing from one round to the next, thus enforcing termination.

Figs. 2 to 4 show an admissible implementation for the two-bidder protocol in Fig. 1, consisting
of a local implementation for each participant: S, B1 and B2. The transition labels specify their local
behaviors: B1 ² S!~{ISBN(~)} speci�es that B1 sends a message ~ to S such that ~ satis�es ISBN(~),
i.e. ~ is a valid ISBN number; S ³ B1?~{ISBN(~)} speci�es that S receives ~ from B1, and can assume
ISBN(~) holds of ~. We assume an asynchronous setting in which every pair of participants is

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 131. Publication date: April 2025.

131:4 E. Li, F. Stutz, T. Wies, D. Zu�erey

connected by a FIFO channel. The implementability of Fig. 1 is witnessed by Figs. 2 to 4, which
together exhibit the same behaviors as the global protocol and is never stuck.
To see that the implementability problem is non-trivial, consider a variant of the protocol in

Fig. 1 where the succ message to S is sent by B2 instead of B1. The resulting protocol is no longer
implementable because B2 never learns about the price I of the book ~ and is therefore unable to
determine when the negotiation with B1 has succeeded.
Our example highlights several important expressive features of GCLTS:

• Generalized sender-driven choice: after B2 receives a bid from B1, it has the option to either
send a bid back to B1 and continue the bidding process, or terminate the protocol by sending
a quit message to the bookseller, who then relays the termination message to the �rst bidder.
Due to this choice interaction alone, the protocol is not expressible in [89].
• In�nite state: the protocol state contains registers that can be assigned values from an in�nite
domain. Registers are updated to store the last bid from each round I1 and I2, and to enforce
that bidders make strictly increasing bids per round.
• In�nite message data: message payload values can be drawn from an in�nite data domain,
such as the book price I and bids 11 and 12.
• Dependent re�nement predicates: message payloads are constrained by data re�nements
such as I1 < 11 and I < 11 +12. The re�nement predicates can refer to current register values
in addition to data values sent in prior messages.
• Partial information: each protocol participant only has a partial view of the global protocol
state. For example, even though S participates in the bidding phase of the protocol, it never
learns about the bids 11 and 12 in each bidding round. In fact, the registers I1 and I2 that
store the last bid are known only to the bidders.

The presence of these features in the class of communication protocols we consider makes
checking implementability uniquely challenging. For protocols with �nite GCLTS speci�cations,
deciding implementability in the presence of asynchrony and non-deterministic choice already
presents a challenge. Note that �niteness here refers only to the speci�cation, and does not mean that

S B1 B2~{ISBN(~) }

~{ISBN(~) }

I{I > 0}

S B1 B211 {11 > I1 }

S B1 B2quit

quit

S B1 B2succ{11 + 12 g I}

succ

S B1 B212 {12 > I2 }

S B1 B2cont{11 + 12 < I}

ïI1, I2 ð v ï0, 0ð

ïI1, I2 ð v ï11, 12 ð

Fig. 1. Two-bidder protocol.

@0,S

S

@1,S

@2,S

@3,S

@4,S

@5,S

@6,S

S ³ B1?~{ISBN(~) }

S ² B1!I{I > 0}

S ³ B2?quit

S ² B1!quit

S ³ B1?succ{11 + 12 g I}

S ² B2!succ

Fig. 2. State machine for seller S for Fig. 1.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 131. Publication date: April 2025.

Characterizing Implementability of Global Protocols with Infinite States and Data 131:5

@0,B1

B1

@1,B1

@2,B1@3,B1

@4,B1

@5,B1

@6,B1 @7,B1

@8,B1 @9,B1

B1 ² S!~{ISBN(~) }

B1 ² B2!~{ISBN(~) }

B1 ³ S?I{I > 0}

ïI1, I2 ð v ï0, 0ð

B1 ² B2!11 {11 > I1 }

B1 ³ S?quit B1 ³ B2?12 {12 > I2 }

B1 ² B2!succ{11 + 12 g I} B1 ² B2!cont{11 + 12 < I}

ïI1, I2 ð v ï11, 12 ð

Fig. 3. State machine for bidder B1 for Fig. 1.

@0,B2

B2

@1,B2

@2,B2

@3,B2

@4,B2 @5,B2

@6,B2 @7,B2

B2 ³ B1?~{ISBN(~) }

ïI1, I2 ð v ï0, 0ð

B2 ³ B1?11 {11 > I1 }

B2 ² S!quit B2 ² B1!12 {12 > I2 }

B2 ³ S?succ B2 ³ B1?cont{11 + 12 < I}

ïI1, I2 ð v ï11, 12 ð

Fig. 4. State machine for bidder B2 for Fig. 1.

the underlying protocol is �nite-state, nor that it contains only �nite traces. Most existing work has
therefore focused on developing projection operators that are sound but incomplete [14, 45, 75, 81].
These projection operators solve implementability and synthesis simultaneously by computing a
candidate implementation, but often fail eagerly for protocols for which an implementation exists.
Li et al. [56] proposed the �rst sound and complete projection operator for �nite, asynchronous,
multiparty session types. The projection operator critically relies on the observation that if a global
type is implementable, then a canonical implementation implements it. Thus, the implementability
problem reduces to checking whether this canonical implementation indeed implements the global
type, i.e. it recognizes the same set of behaviors and is deadlock-free. Towards these ends, Li et al.
[56] identify sound and complete conditions, referred to as Send Validity and Receive Validity, that
are checked on the states of the canonical implementation.

In the presence of dependent re�nement predicates, checking these conditions is not straightfor-
ward. Consider the examples S1 (using a©) and S′1 (using b©) in Fig. 5, which are variations of the ex-
amples for Receive Validity [56] featuring dependent predicates. A transition label p→r :~{~ > G},
which is a© for S1, atomically speci�es the send event by p and the corresponding receive event
by r, along with the constraint that ~ satis�es ~ > G . In S1, participant p chooses a branch with-
out explicitly informing r of their choice. In both branches, r is required to subtract the second
value that is sent from the �rst value that is sent, and send the result back to p. However, due to
asynchrony, both messages can arrive in r’s message channels simultaneously, and r cannot tell
which value was sent �rst. Therefore, r may subtract the values in the wrong order, rendering the
protocol unimplementable.

s→p :G {¦} a© p→r :~{~ > G }

b© p→r :~{~ = G + 2}

p→q :b{4E4=
(G) }

p→q :m{>33 (G) }

p→r :I1 q→r :I2 r→p :I{I = I1 − I2 }

q→r :I2 p→r :I1 r→p :I{I = I2 − I1 }

Fig. 5. Two protocols: S1 using a© with receive order violation S
′
1 using b© without receive order violation.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 131. Publication date: April 2025.

131:6 E. Li, F. Stutz, T. Wies, D. Zu�erey

@1

@2

s→q :b
q→p :G1 {G1 = 4} p→q :o q→r :m

s→q :m
q→p :G2 {¦}

q→r :b{G2 ≠
5}

q→r :m{G2 = 5} p→q :o

Fig. 6. S2: An protocol with a send violation.

Li et al. [56] propose one method of protocol repair: introducing a message sent by r on each
branch that creates a causal dependency between the messages from p and q, so that r can no longer
receive them in either order. The incorporation of dependent re�nements enables a new method
of protocol repair: one that does not change the communication events among the participants.
The newly repaired protocol is depicted in S

′
1, in which the predicate on the second transition is

changed from ~ > G to ~ = G + 2. Despite the fact that r is still not informed of p’s choice, r can
infer p’s choice through the parity of the �rst value it received from p and thus correctly follow the
protocol: if ~ is even, r receives from p �rst, and if ~ is odd, r receives from q �rst.

We now turn our attention to send violations. In the protocol shown in Fig. 6, s chooses a branch
and communicates its choice to q. Participant p is again not explicitly informed of the choice: in
fact, p can receive 4 from q on both branches. At �rst glance, it appears as though it is safe for p
to send o to q upon receiving 4 from q, because whilst p cannot distinguish the two branches,
both branches contain the transition p→q :o. Upon closer inspection, the predicate guarding the
transition immediately preceding p −→ q : o on the lower branch, G2 = 5, is only satis�ed when p

receives 5 from q. When p receives 4, the lower branch from @2 is disabled, and since the upper
branch from @2 does not contain the transition p→q :o, the protocol is not implementable.
The examples above exemplify the ways in which re�nement predicates complicate imple-

mentability checking for symbolic protocols. We return to these examples, in addition to some
others, in greater detail in §4 when we present our precise characterization of implementability. We
structure the rest of the paper as follows. §3 presents relevant preliminary de�nitions and de�nes
the class of communication protocols we consider. §4 presents our semantic characterization of
implementability for GCLTS in terms of (co)reachability, and proves that it is precise. §5 describes
our sound and complete reduction from the characterization in §4 to logical formulas in `CLP [83],
and additionally presents improved complexity results under certain �niteness assumptions on the
GCLTS. §6 discusses related work and concludes.

3 Preliminaries

We introduce some basic concepts and notation before de�ning our class of protocols.

Words. Let Σ be an alphabet. Σ∗ denotes the set of �nite words over Σ, Σl the set of in�nite
words, and Σ

∞ their union Σ
∗ ∪ Σ

l . A word D ∈ Σ
∗ is a pre�x of word E ∈ Σ

∞, denoted D f E ,
if there exists F ∈ Σ

∞ with D · F = E ; we denote all pre�xes of D with pref (D). Given a word
F =F0 . . .F= , we use F [8] to denote the i-th symbol F8 ∈ Σ, and F [0..8] to denote the subword
between and includingF0 andF8 , i.e.F0 . . .F8 .

Message Alphabets. Let P be a �nite set of participants and V be a (possibly in�nite) data
domain. We de�ne the set of synchronous events �sync v {p→q :< | p, q ∈ P and< ∈ V} where
p→q :< denotes a message exchange of< from sender p to receiver q. For a participant p ∈ P,
we de�ne the alphabet �p = {p→ q :< | q ∈ P, < ∈ V} ∪ {q→ p :< | q ∈ P, < ∈ V}, and
a homomorphism ó�p , where Gó�p = G if G ∈ �p and Y otherwise. A synchronous event is split
into a send and receive event for the respective participant, yielding asynchronous events. For a

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 131. Publication date: April 2025.

Characterizing Implementability of Global Protocols with Infinite States and Data 131:7

participant p ∈ P, we de�ne the alphabet Σp,! = {p ² q!< | q ∈ P, < ∈ V} of send events and the
alphabet Σp,? = {p ³ q?< | q ∈ P, < ∈ V} of receive events. The event p ² q!< denotes participant
p sending a message< to q, and p ³ q?< denotes participant p receiving a message< from q. We
write Σp = Σp,! ∪ Σp,?, Σ! =

⋃
p∈P Σp,!, and Σ? =

⋃
p∈P Σp,?. Finally, Σasync = Σ! ∪ Σ?. We de�ne

a homomorphism to map the synchronous alphabet to its asynchronous counterpart, de�ned as
split(p→ q :<) v p ² q!<. q ³ p?<. Because split is injective, there exists a unique inverse,
which we denote split−1. We say that p is active in G ∈ Σasync if G ∈ Σp. For each participant
p ∈ P, we de�ne a homomorphism óΣp , where GóΣp = G if G ∈ Σp and Y otherwise. We writeV(F)
to project the send and receive events inF onto their messages. We �x P andV in the remainder
of the paper.

Labeled Transition Systems. A labeled transition system (LTS) is a tuple S = ((, �,) , B0, �) where
(is a set of states, � is a set of labels,) is a set of transitions from (× � × (, � ¦ (is a set of �nal
states, and B0 ∈ (is the initial state. We use ?

U
−→ @ to denote the transition (?, U, @) ∈) . Runs and

traces of an LTS are de�ned in the expected way. A run is maximal if it is either �nite and ends
in a �nal state, or is in�nite. The language of an LTS S, denoted L(S), is de�ned as the set of
maximal traces. A state B ∈ (is a deadlock if it is not �nal and has no outgoing transitions. An
LTS is deadlock-free if no reachable state is a deadlock. Given an LTS S = ((, �,) , B0, �) and a state
B ∈ (, we use SB to denote the LTS obtained by replacing B0 with B as the initial state: ((, �,) , B, �).

3.1 Global Communicating Labeled Transition Systems (GCLTS)

We use LTS over the synchronous alphabet �sync to model communication protocols from a global
perspective. We impose three more conditions on the class of LTSs we consider: that �nal states do
not contain outgoing transitions, that multiple outgoing transitions from a state share a sender,
and that the LTS is deadlock-free.

De�nition 3.1 (Global communicating LTS). AnLTSS = ((, �sync,) , B0, �) is a global communicating

labeled transition system (GCLTS) if the following conditions hold:

(1) sink-�nality: for every �nal state B ∈ � , there does not exist ; ∈ �sync and B′ ∈ (with

B
;
−→ B′ ∈) ;

(2) sender-driven choice: for all states B, B1, B2 ∈ (and ;1, ;2 ∈ �sync such that B
;8
−→ B8 ∈) for

8 ∈ {1, 2}, there is a participant p ∈ P who is the sender for both, i.e. split(;8) ∈ Σp,! for
8 ∈ {1, 2}, and furthermore ;1 = ;2 =⇒ B1 = B2;

(3) deadlock freedom: S is deadlock-free.

Condition (1) is ubiquitous in the domain of multiparty session types and was also shown to
require special treatment in the literature on high-level message sequence charts [18].

Condition (2) is a generalisation of most multiparty session types fragments, which require not
only a dedicated sender but also a dedicated receiver. This more restrictive condition is called
directed choice. In contrast, mixed choice lifts all restrictions on choice, and amounts to only requir-
ing determinism. Lohrey [59] showed that implementability is undecidable for HMSCs satisfying
determinism and Condition (3). Stutz [79] showed that implementability remains undecidable for
mixed choice global multiparty session types satisfying determinism and Conditions (1) and (3).
Sender-driven choice thus represents a good middle ground, allowing to express interesting com-
munication patterns while retaining decidability of implementability.
Condition (3) simply requires that protocols do not specify deadlocking behaviors.
In the remainder of the paper we refer to a GCLTS simply as a protocol.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 131. Publication date: April 2025.

131:8 E. Li, F. Stutz, T. Wies, D. Zu�erey

Restricting Protocols to Participants. From a protocol S, we can de�ne a local protocol for each
participant p via domain restriction to Σp. Formally, given a protocol S = ((, �sync,) , B0, �), we

de�ne Sp v ((, �p ⊎ {Y},)p, B0, �) where)p v {B
;ó�p
−−−→ B′ | B

;
−→ B′ ∈) } for a participant p ∈ P.

Asynchronous Protocol Semantics. Note that a protocol is speci�ed using the synchronous alpha-
bet �sync . To de�ne the asynchronous semantics of a protocol S we �rst map �nite and in�nite words
of S onto their asynchronous counterpart using split, thus obtaining a set of asynchronous words
in which matching send and receive events are adjacent to each other. In an asynchronous, FIFO
network, two events are independent if they are not related by the happened-before relation [53].
For example, any two send events from distinct senders are independent. Consequently, two words
are indistinguishable if any asynchronous, FIFO implementation that recognizes one word must
recognize the other, e.g. F · p ² q!< · r ² s!<′ · D and F · r ² s!<′ · p ² q!< · D, where p ≠ r. We
de�ne our protocol semantics as the set of channel-compliant [60] words that are closed under this
notion of indistinguishability. Channel compliance characterizes words that respect FIFO order, i.e.
receive events appear after their matching send event, and the order of receive events follows that
of send events in each channel.

De�nition 3.2 (Channel compliance). LetF ∈ Σ∞async . We say thatF is channel-compliant if for all
pre�xesF ′ f F , for all p ≠ q ∈ P,V(F ′óq³p?_) f V(F

′óp²q!_).

The asynchronous semantics of a protocol is de�ned as follows:

C∼ (S) = {F ′ ∈Σ∗async | ∃F ∈ Σ
∗
async .F ∈split(L(S)) 'F

′ is channel-compliant

' ∀p∈P . F ′óΣp =FóΣp }

∪ {F ′ ∈Σlasync | ∀E
′ f F ′ . ∃F ∈ Σ∞async .F ∈split(L(S)) ' ∃D,D

′ ∈ Σ∗async .

E ′ · D′ is channel-compliant ' D f F ' ∀p ∈ P . (E ′ · D′)óΣp = DóΣp } .

Membership of in�nite words is de�ned in terms of their pre�xes: every pre�x E ′ must be channel-
compliant, and moreover extensible to a word E ′D′ that is indistinguishable from another pre�x
already in the language. Since we do not make any fairness assumptions on scheduling, the
semantics of in�nite words includes traces such as (p ² q!<)l for the protocol (p ² q!<.q ³ p?<)l ,
where only the sender is scheduled. Membership of �nite words follows standard MSC semantics.

In the remainder of the paper, we overload notation and use L(S) to denote C∼(S).

Communicating LTS. We use communicating LTS to model the local behaviors of participants:
T = {{)p}}p∈P is a communicating labeled transition system (CLTS) over P andV if)p is a deter-
ministic LTS over Σp for every p ∈ P, denoted by (&p, Σp, Xp, @0,p, �p). Let

∏
p∈P &p denote the set

of global states and Chan = {(p, q) | p, q ∈ P, p ≠ q} denote the set of channels. A con�guration of
A is a pair (®B, b), where ®B is a global state and b : Chan→ V∗ is a mapping from each channel
to a sequence of messages. We use ®Bp to denote the state of p in ®B . The CLTS transition relation,
denoted→, is de�ned as follows.

• (®B, b)
p²q!<
−−−−→ (®B ′, b ′) if (®Bp, p ² q!<, ®B ′p) ∈ Xp, ®Br = ®B ′r for every participant r ≠ p, b ′ (p, q) =

b (p, q) ·< and b ′ (2) = b (2) for every other channel 2 ∈ Chan.

• (®B, b)
q³p?<
−−−−−→ (®B ′, b ′) if (®Bq, q ³ p?<, ®B ′q) ∈ Xq, ®Br = ®B ′r for every participant r ≠ q, b (p, q) =

< · b ′ (p, q) and b ′ (2) = b (2) for every other channel 2 ∈ Chan.

In the initial con�guration (®B0, b0), each participant’s state in ®B0 is the initial state @0,p of �p, and
b0 maps each channel to Y. A con�guration (®B, b) is �nal i� ®Bp is �nal for every p and b maps each
channel to Y. Runs and traces are de�ned in the expected way. A run is maximal if either it is �nite

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 131. Publication date: April 2025.

Characterizing Implementability of Global Protocols with Infinite States and Data 131:9

@0 @1 @2 @3

@4

@5

@6

@7

@8

{
A~ = 0 ' AI = 0
' AI1 = 0 ' AI2 = 0

}

B1→S :~

{
ISBN(~)
' A ′~ = ~

}

B1→B2 :~{~ = A~ }
S→B1 :I

{
I > 0
' A ′I = I

}

B1→B2 :11

{
11 > AI1
' A ′I1 = 11

}

B2→S :G {G = quit}

S→B1 :G {G = quit}

B2→B1 :12

{
12 > AI2
' A ′I2 = 12

}

B1→S :G

{
G = succ

' AI1 + AI2 g AI

}

S→B2 :G {G = succ}

B1→B2 :G

{
G = cont

' AI1 + AI2 < AI

}

Fig. 7. The two-bidder protocol from Fig. 1 as a symbolic protocol with registers AI , A~ , AI1 , and AI2 .

and ends in a �nal con�guration, or it is in�nite. The language L(T) of the CLTS T is de�ned as
the set of maximal traces. A con�guration (®B, b) is a deadlock if it is not �nal and has no outgoing
transitions. A CLTS is deadlock-free if no reachable con�guration is a deadlock.
Observe that in a CLTS, send transitions are always enabled, whereas receive transitions are

only enabled if the message exists at the head of its corresponding channel. Communicating state
machines [8] are a special case of CLTS where the LTS for each participant p ∈ P is a deterministic
�nite state machine. Note that CLTS describe asynchronous communication with message channels
of unbounded size. Thus, they di�er from Zielonka’s asynchronous automata [90], which actually
describe synchronously communicating systems [67]. We refer the reader to [26] for further details.
Finally, we de�ne protocol implementability.

De�nition 3.3 (Protocol Implementability). A protocol S is implementable if there exists a CLTS
{{)p}}p∈P such that the following two properties hold: (i) protocol �delity: L({{)p}}p∈P) = L(S),
and (ii) deadlock freedom: {{)p}}p∈P is deadlock-free. We say that {{)p}}p∈P implements S.

A notion of implementability that relaxes language equality to language inclusion has been
studied as protocol re�nement [55]. Alternatively, one can expand the set of protocol behaviors to
include deadlocking behaviors, resulting in a notion of implementability that replaces language
equality with pre�x set equality, and waives the requirement of deadlock freedom.

3.2 Symbolic Protocols with Dependent Refinements

We now introduce our model for �nitely representing in�nite state protocols. We refer to these
representations simply as symbolic protocols. Figure 7 shows the two-bidder protocol from Fig. 1
expressed as a symbolic protocol.
The formal de�nition of this class of symbolic protocols is given below. In this de�nition, we

assume a �xed but unspeci�ed �rst-order background theory of message values (e.g. linear integer
arithmetic). We assume standard syntax and semantics of �rst-order formulas and denote by F
the set of �rst-order formulas with free variables drawn from an in�nite set - . We assume that
these variables are interpreted over the set of message valuesV . For a valuation d ∈ - →V and
i ∈ F (-), we write d |= q to indicate that i evaluates to true under d in the underlying theory.

De�nition 3.4 (Symbolic protocol). A symbolic protocol is a tuple S = ((, ',�, B0, d0, �) where

• (is a �nite set of control states,
• ' is a �nite set of register variables,

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 131. Publication date: April 2025.

131:10 E. Li, F. Stutz, T. Wies, D. Zu�erey

• � ¦ (× P × - × P × F × (is a �nite set that consists of symbolic transitions of the form

B
p→q:G {i }
−−−−−−−−→ B′ where the formula i with free variables ' ⊎ '′ ⊎ {G} expresses a transition

constraint that relates the old and new register values (' and '′), and the sent value G ,
• B0 ∈ (is the initial control state,
• d0 : ' →V is the initial register assignment, and
• � ¦ (is a set of �nal states.

To streamline our de�nition, we choose not to separate register update expressions from predi-
cates describing the communication. Rather, we specify everything together in a single formula i ,
that can only talk about the current value being communicated, and the register values in the pre-
and post-state. Thus, i can describe values that are communicated between participants, in addition
to register assignments and updates. For example, p→ q : G{4E4=(G)'A ′1 = A1+2'A

′
2 = G} describes

p sending q an even number G , incrementing the value of register A1 by 2, and storing the value of
G in register A2. We formally specify the two-bidder protocol from Fig. 1 as a symbolic protocol
in Fig. 7 for demonstration purposes; note that the transition predicate ISBN(~) from @1 to @2 is
replaced with an equality. For readability and conciseness, we employ the following conventions
from now on. We treat communication variables as registers that are automatically assigned the
communicated value, e.g. S→B1 :I{I > 0} should be understood as S→B1 :G{G > 0 ' I′ = G} for
some fresh G . Furthermore, if the communicated value is a constant 2 and there is no need to store
this value, we inline it and write S→B2 :succ{¦} instead of S→B2 :G{G = succ}. We may omit the
condition ¦, turning S→B2 :succ{¦} into S→B2 :succ.
Symbolic protocols are speci�cation-wise similar to symbolic register automata [19], but allow

more general patterns of register manipulation and do not a priori require formulas to come from an
e�ective Boolean algebra. Symbolic protocols can be seen as a �nite description of an in�nite-state
LTS, whose concrete states consist of a control state along with an assignment for the register
variables '. Transitions are concrete communication events that optionally modify register values.
We formally de�ne the concretization of a symbolic protocol below.

De�nition 3.5 (Concretization of symbolic protocols). For a symbolic protocol S = ((, ',�, B0, d0, �),
let SS denote its concrete protocol. The set of states of SS is (× (' →V).

Transitions in SS are de�ned as follows:

B1
p→q:G {i }
−−−−−−−−→ B2 ∈ � d1d

′
2 [G ↦→ E] |= i

(B1, d1)
p→q:E
−−−−−→ (B2, d2)

Intuitively, the rule says that a symbolic transition from B1 to B2 can be instantiated to one from
(B1, d1) to (B2, d2) on value E when E together with the register assignments in the pre- and post-
state satisfy the transition constraint i . Here, we use juxtaposition d1d

′
2 of register assignments to

express their disjoint union. The assignment d ′2 is obtained from d2 by replacing registers A in the
domain with their primed version in '′. The initial state is de�ned as (B0, d0). A state (B, d) in SS is
�nal when B ∈ � .

Thus, the concrete protocol SS is a protocol over the alphabet �sync . The language of a symbolic
protocol S is de�ned as the language of its concretization SS. Consequently, a symbolic protocol is
implementable if its concretization is implementable.

4 Characterizing Protocol Implementability

We motivate our precise characterization of protocol implementability through examples of non-
implementable protocols, and show that seemingly disparate sources of non-implementability share

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 131. Publication date: April 2025.

Characterizing Implementability of Global Protocols with Infinite States and Data 131:11

a uni�ed semantic explanation. Recall the protocol S1 from §2 with a receiver violation, depicted in
Fig. 5. The in�nite-state LTS S1 contains the two concrete run pre�xes depicted in Fig. 8, where the
values of G,~ are 2, 3 and 1, 3 respectively.

Inspecting S1’s speci�cation reveals that the protocol expects r to receive messages from p and q
in a di�erent order depending on the branch that q chooses to follow. However, this expectation
is unreasonable in a distributed setting. Between the two concrete runs, r’s partial view of the
protocol’s behavior is the same: r receives a value 3 from p, yet r is expected to receive in p, q order
in one run, and receive in q, p order in the other.

Recall the protocol S2 from §2 with a sender violation, depicted in Fig. 6. Again inspecting S2’s
speci�cation, the branching structure imposes the expectation that on the top branch, p should send
q an o message, whereas on the bottom branch, p should immediately terminate. The two concrete
runs in Fig. 9 and Fig. 10 again demonstrate that this expectation is unreasonable: p receives the
value 3 from q in both runs, but in one run is expected to send a message, whereas in the other is
expected to terminate.

The non-implementability in the examples above can be attributed to insu�cient local informa-
tion about protocol control �ow. This source of non-implementability is inherent to the expressive
power of branching choice in protocol speci�cations, and is present even in �nite protocols with
more restricted choice constructs. While most existing works soundly detect insu�cient local
information through conservative projection algorithms [14, 45, 75, 81], Li et al. [56] give a com-
plete characterization. To check implementability, they �rst obtain a candidate implementation
by restricting the global protocol onto each participant’s alphabet, and then determinizing the
resulting �nite state automaton. Then, they check sound and complete conditions directly on the
states of the candidate implementation.

Our �rst observation towards a precise characterization is that implementability can be checked
directly on the global protocol speci�cation, without synthesizing a candidate implementation
upfront. This is especially important in the general case, when synthesizing a candidate imple-
mentation is itself challenging and not always possible. Our analysis of the protocols above shows
that non-implementability can be blamed solely on the existence of certain states in the concrete
LTS represented by the global protocol. In fact, we show in §5 that the implementability check for
global types by Li et al. [56] can be made more e�cient by forgoing the synthesis step.

Let us now turn our attention to a di�erent source of non-implementability that is unique to the
setting of dependent data re�nements. Consider the following pair of symbolic protocols S3 and S′3,
depicted in Fig. 11 and Fig. 12.

Non-implementability is again caused by insu�cient local information, but this time with respect
to message data rather than control �ow: in fact, no branching choice appears in this pair of simple
protocols. The problem instead arises in the fact that in both S3 and S

′
3, r does not know the value

of G . While an implementation for r could produce a subset of S3’s behaviors (e.g. by sending
I such that I > ~), or produce a superset of S3’s behaviors (e.g. by sending all values for I), no
implementation can produce exactly the speci�ed behaviors, as required by protocol �delity. Zhou

(a)
s→p : 2 p→r : 3 p→q :b

p→r :o q→r :o r→p :b

(b)
s→p : 1 p→r : 3

p→q :m q→r :o p→r :o r→p :m

Fig. 8. Two concrete runs of S1 (Fig. 5): (a) with G = 2 and ~ = 3 and (b) with G = 1 and ~ = 3.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 131. Publication date: April 2025.

131:12 E. Li, F. Stutz, T. Wies, D. Zu�erey

@1
s→

q :b
q→p : 4 p→q :o q→r :m

Fig. 9. A concrete run of S2 (Fig. 6) with s choosing the

top branch.

@2
s→q :m

q→p : 4

q→r :b

Fig. 10. A concrete run of S2 (Fig. 6) with

s choosing the bo�om branch and G2 = 4.

et al. [89] address partial information of protocol variables by syntactically classifying whether a
variable is known or unknown to a participant, and annotating the variables accordingly in the
typing context: a variable is known to its sender and receiver, and unknown to all other participants.
However, this syntactic analysis is itself insu�cient, as demonstrated by these examples: both
protocols yield the same classi�cation of variables per participant, yet one is implementable and
the other is not.

We instead turn to concrete runs of S3 to �nd the source of non-implementability. Let us consider
the concrete runs of S3 depicted in Fig. 13, where the values of G,~ are 2, 4 and 3, 4 respectively.

In this pair of runs, r observes the same behaviors, namely receiving the value 4 from q. While S3
also permits r to send 4 to p in the �rst run, sending 3 to p in the second run constitutes a violation
to the re�nement predicate I > G , i.e. 3 > 3 is false. Again, this presents a problem because the two
run pre�xes are indistinguishable to r. Observe that in this example, non-implementability can
again be blamed solely on the existence of states in the global protocol.
We formalize a participant’s local information about the protocol using two variations on the

standard notion of reachability. Let S = ((, �sync,) , B0, �) be a protocol and let p ∈ P be a participant.

The standard notion de�nes B′ as reachable from B in S onF ∈ �∗sync , denoted B
F
−→∗ B′, when there

exists a sequence of transitions B1
;1
−→ B2 . . . B=−1

;=−1
−−−→ B= , such that B1 = B , B= = B′, ;1 . . . ;=−1 =F and

for each 1 f 8 < =, it holds that B8
;8
−→ B8+1 ∈) . We �rst de�ne a notion of reachability that restricts

the transitions to only the actions observable by a single participant.

Participant-based Reachability. We say that B ∈ (is reachable for p on D ∈ �∗p when there exists

F ∈ �
∗
sync such that B0

F
−→∗ B ∈) and Fó�p = D, which we denote B0

D
=⇒
p

∗ B . We characterize

simultaneously reachable pairs of states for each participant using the notion of participant-based
reachability.

Simultaneous Reachability. We say that B1, B2 ∈ (are simultaneously reachable for participant p

on D ∈ �∗p , denoted B0
D
=⇒
p

∗ B1, B2, if there existF1,F2 ∈ �
∗
sync such that B0

F1
−−→∗ B1 ∈), B0

F2
−−→∗ B2 ∈)

andF1ó�p =F2ó�p = D. Simultaneous reachability captures the notion of locally indistinguishable

states: to a participant, two states are locally indistinguishable if they are simultaneously reachable.
Send Coherence requires that any message that can be sent from a state can also be sent from all

other states that are locally indistinguishable to the sender.

p→q :G {¦} q→r :~{~ > G } r→p :I{I > G }

Fig. 11. S3: A non-implementable protocol with

dependent refinements.

p→q :G {¦} q→r :~{~ = G } r→p :I{I > G }

Fig. 12. S′3: An implementable protocol with

dependent refinements.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 131. Publication date: April 2025.

Characterizing Implementability of Global Protocols with Infinite States and Data 131:13

(a)
p→q : 2 q→r : 4 r→p : 3

(b)
p→q : 3 q→r : 4 r→p : 4

Fig. 13. Two concrete runs of S3 (Fig. 11): (a) with G = 2, ~ = 4, I = 3 and (b) with G = 3, ~ = 4, I = 4.

De�nition 4.1 (Send Coherence). A protocol S = ((, �sync,) , B0, �) satis�es Send Coherence (SC)

when for every B1
p→q:<
−−−−−→ B2 ∈), B

′
1 ∈ (:

(∃D ∈ �∗p . B0
D
=⇒
p

∗ B1, B
′
1) =⇒ (∃B′2 ∈ (. B

′
1

p→q:<
======⇒

p

∗ B′2) .

Receive Coherence, on the other hand, requires that no message which can be received from a
state can be received from any other state that is locally indistinguishable to the receiver.

De�nition 4.2 (Receive Coherence). A protocol S = ((, �sync,) , B0, �) satis�es Receive Coherence

(RC) when for every B1
p→q:<
−−−−−→ B2, B

′
1

r→q:<
−−−−−→ B′2 ∈) :

(r ≠ p'∃D ∈ �∗q . B0
D
=⇒
q

∗ B1, B
′
1) =⇒ ∀F ∈ pref (L(SB′2)). FóΣq ≠Y (V(Fóp²q!_)≠V(Fóq³p?_)·<) .

No Mixed Choice requires that roles cannot equivocate between sending and receiving in two
locally indistinguishable states.

De�nition 4.3 (No Mixed Choice). A protocol S = ((, �sync,) , B0, �) satis�es No Mixed Choice

(NMC) when for every B1
p→q:<
−−−−−→ B2, B

′
1

r→p:<
−−−−−→ B′2 ∈) : (∃D ∈ �

∗
p . B0

D
=⇒
p

∗ B1, B
′
1) =⇒ § .

Our semantic characterization of protocol implementability is the conjunction of the above
three conditions. In contrast to the syntactic analysis in [89], our semantic approach is sound and
complete. In contrast to the sound and complete approach in [56], our implementability conditions
do not rely on synthesizing an implementation upfront.

De�nition 4.4 (Coherence Conditions). A protocol satis�es Coherence Conditions (CC) when it
satis�es Send Coherence, Receive Coherence and No Mixed Choice.

The preciseness of CC is stated as follows.

Theorem 4.5. Let S be a protocol. Then, S is implementable if and only if it satis�es CC.

In the next two sections, we illustrate the key steps for proving Theorem 4.5. We refer the reader
to the extended version [58] for the complete proofs.

4.1 Soundness

Soundness requires us to show that if a protocol satis�es CC, then it is implementable. We begin
by echoing the observation made in several prior works [1, 56, 78] that for any global protocol,
there exists a canonical implementation consisting of one local implementation per participant. We
formally de�ne what it means for an implementation to be canonical in our setting below.

De�nition 4.6 (Canonical implementations). We say a CLTS {{)p}}p∈P is a canonical implementation

for a protocol S = ((, �sync,) , B0, �) if for every p ∈ P,)p satis�es:
(i) ∀F ∈ Σ∗p. F ∈ L()p) ô F ∈ L(S)óΣp , and (ii) pref (L()p)) = pref (L(S)óΣp).

We �rst prove that following fact about canonical implementations of protocols satisfying NMC,
which states that the canonical implementations themselves do not exhibit mixed choice.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 131. Publication date: April 2025.

131:14 E. Li, F. Stutz, T. Wies, D. Zu�erey

Lemma 4.7 (No Mixed Choice). Let S be a protocol satisfying NMC (De�nition 4.3) and let

{{)p}}p∈P be a canonical implementation for S. Let FG1,FG2 ∈ pref (L()p)) with G1 ≠ G2 for some

p ∈ P. Then, G1 ∈ Σ! i� G2 ∈ Σ!.

We choose the canonical implementation as our existential witness to show that any protocol
satisfying CC is implementable. By the de�nition of implementability (De�nition 3.3), soundness
amounts to showing the following three conditions:
(a) L(S) ¦ L({{)p}}p∈P), (b) L({{)p}}p∈P) ¦ L(S), and (c) {{)p}}p∈P is deadlock-free.

Condition (a) states that any canonical implementation recognizes at least the global protocol
behaviors. This fact can be shown for any LTS and canonical CLTS, and does not rely on assumptions
about determinism or sender-drivenness, nor assumptions about the LTS satisfying CC.

Lemma 4.8 (Canonical implementation language contains protocol language). Let S be

an LTS and let {{)p}}p∈P be a canonical implementation for S. Then, L(S) ¦ L({{)p}}p∈P).

Condition (b), on the other hand, states that any behavior recognized by the canonical implemen-
tation is a global protocol behavior, in other words, that the canonical CLTS does not add behaviors.
This is only true for protocols that satisfy CC.

Lemma 4.9 (Global protocol language contains canonical implementation language).

Let S be a protocol satisfying CC and let {{)p}}p∈P be a canonical implementation for S such that for

allF ∈ Σ∞async , ifF is a trace of {{)p}}p∈P , then � (F) ≠ ∅. Then, L({{)p}}p∈P) ¦ L(S).

Towards these ends, we adapt the key intermediate lemma from [56] to our setting, and show
the inductive invariant that every trace in the canonical implementation of a protocol satisfying
CC satis�es intersection set non-emptiness. Note that although our intermediate lemma statements
are similar to those in [56] in structure, [56] reasons about a particular implementation, namely
the subset construction obtained from the global type, whereas our proofs reason about any
canonical implementation of a global protocol that satis�es CC. As a result, the proof arguments
di�er signi�cantly.
We adapt the relevant de�nitions to our setting below.

De�nition 4.10 (LTS intersection sets). Let S be an LTS. Let p be a participant andF ∈ Σ∗async be a

word. We de�ne the set of possible runs RSp (F) as all maximal runs of S that are consistent with
p’s local view ofF :

RSp (F) v {d is a maximal run of S | FóΣp f split(trace(d))óΣp } .

We denote the intersection of the possible run sets for all participants as � S (F) v
⋂

p∈P R
S
p (F).

De�nition 4.11 (Unique splitting of a possible run). Let S be an LTS, p a participant, andF ∈ Σ∗async
a word. Let d be a run in RSp (F). We de�ne the longest pre�x of d matchingF :

U ′ v max{d ′ | d ′ f d ' split(trace(d ′))óΣp f FóΣp } .

If U ′ ≠ d , we can split d into d = U · B
;
−→ B′ · V where U ′ = U · B . , which we call the unique splitting

of d for p matchingF . Uniqueness follows from the maximality of U ′.

For example, the unique splitting of d = B1
p→q:m
−−−−−→ B2

r→q:b1
−−−−−→ B3

r→q:b2
−−−−−→ B4

q→p:o
−−−−−→ B5 for p

matching F = r ² q!b1. p ² q!m is U · B3
r→q:b2
−−−−−→ B4 · V , where U = B1

p→q:m
−−−−−→ B2

r→q:b1
−−−−−→ B3 and

V = B4
q→p:o
−−−−−→ B5.

Our intersection non-emptiness inductive invariant is stated below. The proof proceeds by
induction on the length of a pre�x F of the canonical implementation, and case splits based

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 131. Publication date: April 2025.

Characterizing Implementability of Global Protocols with Infinite States and Data 131:15

on whether F is extended by a send or receive action. Lemma 4.14 and Lemma 4.13 provide a
characterization for each case respectively.

Lemma 4.12 (Intersection set non-emptiness). Let S be a protocol satisfying CC, and let

{{)p}}p∈P be a canonical implementation for S. Then, for every traceF ∈ Σ∗async of {{)p}}p∈P , it holds

that � (F) ≠ ∅.

Lemma 4.13 (Receive events do not shrink intersection sets). Let S be a protocol satisfying

CC, and let {{)p}}p∈P be a canonical implementation for S. LetFG be a trace of {{)p}}p∈P such that

G ∈ Σ?. Then, � (F) = � (FG).

Lemma 4.14 (Send events preserve run prefixes). Let S be a protocol satisfying CC and

{{)p}}p∈P be a canonical implementation for S. Let FG be a trace of {{)p}}p∈P such that G ∈ Σp,! for

some p ∈ P. Let d be a run in � (F), and U · B?A4
;
−→ B?>BC · V be the unique splitting of d for p with

respect toF . Then, there exists a run d ′ in � (FG) such that U · B?A4 f d ′.

Finally, we show that protocols that satisfy CC and intersection set non-emptiness have deadlock-
free canonical implementations. The proof follows immediately from the following lemma and the
fact that CLTS are deterministic, and is thus omitted.

Lemma 4.15 (Channel compliance and intersection set non-emptiness implies prefix). Let

S = ((, �sync,) , B0, �) be a protocol and letF ∈ Σ
∗
async be a word such that (i)F is channel-compliant,

and (ii) � (F) ≠ ∅. Then,F ∈ pref (L(S)).

Lemma 4.16 (Canonical implementation deadlock freedom). Let S = ((, �sync,) , B0, �) be
a protocol satisfying CC and let {{)p}}p∈P be a canonical implementation for S such that for all

F ∈ Σ∗async , ifF is a trace of {{)p}}p∈P , then � (F) ≠ ∅. Then, {{)p}}p∈P is deadlock-free.

Soundness thus follows from the three conditions above.

Lemma 4.17 (Soundness of CC). Let S be a protocol. If S satis�es CC, then S is implementable.

4.2 Completeness

Completeness requires us to show that if a protocol is implementable, then it satis�es CC. We
prove completeness by modus tollens, and assume that a protocol S does not satisfy CC. We negate
SC, RC and NMC in turn: from the negation of SC we obtain a simultaneously reachable pair of
states in S such that a send event that is enabled in one is never enabled from the other. From
the negation of RC there exists a simultaneously reachable pair of states in S such that a receive
event that is enabled in one is also enabled in the other. From the negation of NMC we obtain
a simultaneously reachable pair of transitions where a participant is the sender in one and the
receiver in the other. We assume an arbitrary CLTS that implements S, and use these witnesses to
show that this CLTS must recognize a trace that is not a pre�x in L(S), thereby either violating
protocol �delity or deadlock freedom.

Lemma 4.18 (Completeness). Let S be a protocol. If S is implementable, then S satis�es CC.

An immediate consequence of the soundness and completeness of CC is the following fact about
the special case of binary protocols, when |P | = 2:

Lemma 4.19. Every binary protocol is implementable.

In the binary case, participant-based reachability is equivalent to standard reachability, because
both participants are involved in every synchronous communication. Because protocols are deter-
ministic, there exist no two distinct states in a binary protocol that are simultaneously reachable
for either participant, and thus CC holds vacuously.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 131. Publication date: April 2025.

131:16 E. Li, F. Stutz, T. Wies, D. Zu�erey

4.3 Synthesis

When proving soundness, we chose the canonical implementation as our witness to implementabil-
ity. In other words, if a protocol satis�es CC, then the canonical implementation implements it.
When proving completeness, we showed that any implementation would cause a violation to proto-
col �delity or deadlock-freedom. In other words, if a protocol violates CC, then no implementation
exists. Having established that CC precisely characterizes implementable protocols, we combine
these observations to yield the following corollary:

Corollary 4.20 (Canonical implementation is all you need). A protocol is implementable if

and only if the canonical implementation implements it.

For an implementable protocol, this fact serves as a criterion for synthesizing implementations:
any implementation that is canonical will su�ce. For the general class of protocols, synthesis is
undecidable. However, for many expressive fragments of protocols that still feature in�nite data,
e.g. corresponding to symbolic �nite automata [20, 77] and certain classes of timed and register
automata [5, 13], one can simply use o�-the-shelf determinization algorithms to compute canonical
implementations [4, 84, 85].

5 Checking Implementability

Having established that CC is precise for protocol implementability, we next present sound and
relatively complete algorithms to check CC for several protocol classes. We start with the most
general case of symbolic protocols before considering decidable classes of �nite-state protocols.

5.1 Symbolic Protocols

In the remainder of the section, we �x a symbolic protocol S = ((, ',�, B0, d0, �). We assume that the
concretization of S is a GCLTS (De�nition 3.1). Additionally, we de�ne two copies of the symbolic
protocol, denoted S1 and S2 that we will use in describing our symbolic implementability check.
Each copy S8 = ('8 , (,�8 , d8 , B0, �) with 8 ∈ {1, 2} is obtained from S by renaming each register A to a
fresh register A8 , each unique communication variable G to G8 , and substituting the new register and
communication variables into the transition constraints and initial register assignment accordingly;
the control states remain the same.
Because symbolic protocols describe concrete protocols with in�nitely many states and transi-

tions, implementability cannot be checked explicitly using our CC characterization for protocols,
i.e. by iterating over all states and transitions. Instead, we present symbolic conditions that are
valid on the symbolic protocol if and only if its concrete protocol is implementable.

Theorem 5.1 (Symbolic Implementability). S is implementable if and only if it satis�es Symbolic

Send Coherence, Symbolic Receive Coherence, and Symbolic No Mixed Choice.

We now present these symbolic conditions, starting with Symbolic Send Coherence.
Send Coherence �rst requires us to characterize pairs of states in a protocol that are simultane-

ously reachable for each participant on some pre�x in its local language. In the symbolic setting,
this amounts to the following: given a participant and a pair of control states (B1, B2) in the symbolic
protocol, characterize the register assignments for pairs of concrete states (B1, d1), (B2, d2) that are
in the respective control states. The predicate prodreachp (B1, Ĩ1, B2, Ĩ2) describes this for each p ∈ P
where Ĩ ğ are vectors of the registers in '8 obtained by ordering them according to some �xed total
order. We de�ne this predicate as a least �xpoint as follows.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 131. Publication date: April 2025.

Characterizing Implementability of Global Protocols with Infinite States and Data 131:17

De�nition 5.2 (Simultaneous reachability in product symbolic protocol). Let p ∈ P be a participant
and let B1, B′1, B2, B

′
2 ∈ (. Then,

prodreachp (B
′
1, Ĩ

′

1, B
′
2, Ĩ

′

2) v` (B
′
1 = B0 ' B

′
2 = B0 ' Ĩ

′

1 = d0 ' Ĩ
′

2 = d0)

((
∨

(B1, r→s:G1 {i1 }, B
′
1) ∈�1

(B2, r→s:G2 {i2 }, B
′
2) ∈�2

p=r(p=s

∃G1G2Ĩ1Ĩ2 . prodreachp (B1, Ĩ1, B2, Ĩ2) ' i1 ' i2 ' G1 = G2)

((
∨

(B1, r→s:G1 {i1 }, B
′
1) ∈�1 ' p≠r'p≠s

∃G1Ĩ1 . prodreachp (B1, Ĩ1, B
′
2, Ĩ

′

2) ' i1)

((
∨

(B2, r→s:G2 {i2 }, B
′
2) ∈�2 ' p≠r'p≠s

∃G2Ĩ2 . prodreachp (B
′
1, Ĩ

′

1, B2, Ĩ2) ' i2) .

The second top-level disjunct in the de�nition after the base case handles the cases where S1
and S2 synchronize on a common action involving p. The remaining two disjuncts correspond to
the cases where either S1 or S2 follows an Y transition.

Given a pair of simultaneously reachable states (B1, d1), (B2, d2) in p, Send Coherence now checks
whether all values G1 that can be sent to some q in (B1, d1) can also be sent from (B2, d2), modulo
following Y transitions to reach the actual state where p can send to q. We thus need to express
Y-reachability. We formalize the dual: the predicate unreachYp,q (B2, Ĩ2, G1) expresses that p cannot
reach any state where it may send G1 to q, by following Y transitions from symbolic state (B2, Ĩ2).
This is formulated as a greatest �xpoint as follows:

De�nition 5.3 (Y-unreachability of psending G to q). For p, q ∈ P and B ∈ (, let

unreachYp,q (B, Ĩ, G) va (
∧

(B, p→q:~{i }, B′) ∈�

¬i [G/~]) ' (
∧

(B, r→t:~{i }, B′) ∈�
p≠r'p≠t

∀~ Ĩ
′ . i ⇒ unreachYp,q (B

′, Ĩ ′, G)) .

The �rst conjunct checks that whenever p reaches a state with an outgoing send transition to q,
it cannot send the value G because the transition constraint i is not satis�ed. The second conjunct
checks that every outgoing Y transition is either disabled (¬i holds) or following the transition
does not reach an appropriate send state.
We combine the auxiliary predicates into our Symbolic Send Coherence condition.

De�nition 5.4 (Symbolic Send Coherence). A symbolic protocol S satis�es Symbolic Send Coher-

ence when for each transition B1
p→q:G1 {i1 }
−−−−−−−−−→ B′1 ∈ �1 and state B2 ∈ (, the following is valid:

prodreachp (B1, Ĩ1, B2, Ĩ2) ' i1 ' unreach
Y
p,q (B2, Ĩ2, G1) =⇒ § .

A keen reader may have noticed that because the symbolic characterization of Send Coherence
involves a greatest �xpoint, it is a liveness property. Thus, proving Send Coherence, in general,
involves a termination argument. To see this, consider the two protocols shown in Figs. 14 and 15.
Consider the pair of states (@1, [2 ↦→ 0]) and (@3, [2 ↦→ 0]) which are simultaneously reachable for r
in both protocols. The send transition for r enabled in @1 needs to be matched with a corresponding
send transition in an Y-reachable state from @3. The only candidate states for this match in both
protocols are those at control state @4. These states are reachable from @3 if and only if the loop in
@3 terminates, which it does in Fig. 14 but not in Fig. 15.

Receive Coherence is conditioned on two simultaneously reachable states (B1, Ĩ1) and (B2, Ĩ2) for
a participant q. It checks that if q can receive G from p in the �rst state, q cannot also receive G as the
�rst message from p in the second state, in which it can also receive from a di�erent participant r,
unless p sending G causally depends on q �rst receiving from r. We thus need to de�ne a predicate
that captures whether G1 may be available as the �rst message from q to p, while tracking causal

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 131. Publication date: April 2025.

131:18 E. Li, F. Stutz, T. Wies, D. Zu�erey

@0

@1

@2

@3

@4

@5

p→q :1

{
1 = 0
'2′ = 0

}

r→p :G {¦}

p→q :1

{
1 > 0
'2′ = 0

}

p→q :2

{
2 < 1

'2′ = 2 + 1

}

p→q :exit{2 g 1}

r→p :G {¦}

Fig. 14. Example where states @1 and @3 satisfy

Send Coherence for r.

@0

@1

@2

@3

@4

@5

p→q :1

{
1 = 0
'2′ = 0

}

r→p :G {¦}

p→q :1

{
1 > 0
'2′ = 0

}

p→q :2

{
2 g 0

'2′ = 2 + 1

}

p→q :exit{2 < 0}

r→p :G {¦}

Fig. 15. Example where states @1 and @3 violate

Send Coherence for r.

dependencies. We introduce a family of predicates availp,q,B (G1, B2, Ĩ2) for this purpose. Here, B
is used to track the causal dependencies. B tracks the set of participants that are blocked from
sending a message because their send action causally depends on q �rst receiving from r. The
predicates are de�ned as the least �xpoint of the following mutually recursive de�nition.

De�nition 5.5 (Symbolic Availability).

availp,q,B (G1, B, Ĩ) v` (
∨

(B, r→t:G {i }, B′) ∈�
r∈B

r≠p(t≠q

∃G Ĩ
′ . availp,q,B∪{t} (G1, B

′, Ĩ ′) ' i)

((
∨

(B, r→t:G {i }, B′) ∈�
r∉B

r≠p(t≠q

∃G Ĩ
′ . availp,q,B (G1, B

′, Ĩ ′) ' i) ((
∨

(B, p→q:G {i }, B′) ∈�
p∉B

i [G1/G]) .

The last disjunct in the de�nition handles the cases where the message G1 from p is immediately
available to be received by q in symbolic state (B, Ĩ) and p has not been blocked from sending. The
other two disjuncts handle the cases when G1 becomes available after some other message exchange
between r and t. Here, if r is blocked, then t also becomes blocked since it depends on r sending
before it can receive (the �rst disjunct). Otherwise, no participant is added to the blocked set (the
second disjunct).

With the available message predicate in place, we can now de�ne Symbolic Receive Coherence.

De�nition 5.6 (Symbolic Receive Coherence). A symbolic protocol S satis�es Symbolic Receive

Coherence when for every pair of transitions B1
p→q:G1 {i1 }
−−−−−−−−−→ B′1 ∈ �1 and B2

r→q:G2 {i2 }
−−−−−−−−−→ B′2 ∈ �2 with

p ≠ r:
prodreachq (B1, Ĩ1, B2, Ĩ2) ' i1 ' i2 ' availp,q,{q} (G1, B

′
2, Ĩ

′

2) =⇒ § .

Finally, No Mixed Choice is conditioned on two simultaneously reachable states (B1, Ĩ1) and
(B2, Ĩ2) with outgoing send and receive transitions for a participant p.

De�nition 5.7 (Symbolic No Mixed Choice). A symbolic protocol S satis�es Symbolic No Mixed

Choice when for every pair of transitions B1
p→q:G1 {i1 }
−−−−−−−−−→ B′1 ∈ �1 and B2

r→p:G2 {i2 }
−−−−−−−−−→ B′2 ∈ �2:

prodreachp (B1, Ĩ1, B2, Ĩ2) ' i1 ' i2 =⇒ § .

We conclude this section with a discussion of how to check GCLTS assumptions, namely sink
�nality, sender-driven choice, and deadlock-freedom, on a symbolic protocol. Sink �nality can be

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 131. Publication date: April 2025.

Characterizing Implementability of Global Protocols with Infinite States and Data 131:19

Algorithm 1 Check CC for �nite protocols

² Let LTS S = ((, �sync,) , B0, �)

² Checking Send Coherence

for B1
p→q:<
−−−−−→ B2 ∈) do

for B ≠ B1 ∈ (do

if L((, �p ⊎ {Y },)p, B0, {B }) ∩ L((, �p ⊎ {Y },)p, B0, {B1}) ≠ ∅ then

1 ← §

for B3
p→q:<
−−−−−→ B4 ∈) do 1 ← 1 (

(
B

Y
=⇒
p

∗ B3

)

if ¬1 then return §

² Checking Receive Coherence

for B1
p→q:<
−−−−−→ B2, B3

r→q:<
−−−−−→ B4 ∈), B1 ≠ B2, p ≠ r do

if L((, �q ⊎ {Y },)q, B0, {B1}) ∩ L((, �q ⊎ {Y },)q, B0, {B3}) ≠ ∅ then

if availp,q,{q} (<,B4) then return §

² Checking No Mixed Choice

for B1
p→q:<
−−−−−→ B2, B3

r→p:<
−−−−−→ B4 ∈), B1 ≠ B2 do

if L((, �q ⊎ {Y },)q, B0, {B1}) ∩ L((, �q ⊎ {Y },)q, B0, {B3}) ≠ ∅ then return §

return ¦

checked directly by examining the syntax of the symbolic protocol. Sender-driven choice without
determinism can likewise be checked directly on the states of the symbolic protocol. Determinism
and deadlock freedom are undecidable in general but can both be reduced to reachability. Thus, both
our Symbolic Coherence Conditions and GCLTS assumptions can be discharged using o�-the-shelf
`CLP solvers. We leave such an implementation to future work.

We next apply our framework to decidable fragments of symbolic protocols, some of which have
been studied in the literature.

5.2 Finite Protocols

We �rst consider �nite protocols. Let S = ((, �sync,) , B0, �) be a protocol with �nite (and) . Because
(and) are �nite, we can transform CC into an imperative algorithm (see Algorithm 1) and use it to
check implementability directly. For checking Receive Coherence, we need to decide the predicate
availp,q,{q} (<, B), which is de�ned like the symbolic availability predicate availp,q,{q} (G, B, Ĩ), except
on protocols instead of symbolic protocols.
It is easy to see that Send Coherence and No Mixed Choice can be checked in time polynomial

in the size of S. However, the inclusion of availp,q,{q} (<, B) as a subroutine for checking Receive
Coherence yields the following complexity result.

Theorem 5.8. Implementability of �nite protocols is co-NP-complete.

Proof. To see that implementability is in co-NP, observe that violations of Send Coherence and
No Mixed Choice can be checked in NP, by guessing a participant p and a pair of states B1, B2 that
satisfy the respective preconditions, and verifying simultaneous reachability of B1 and B2 for p. For
Send Coherence, we guess an additional state B3 with an outgoing transition labeled with p→ q :<,
and check Y-reachability from B1 to B3. For Receive Coherence, availp,q,{q} (<, B2) can be checked in
NP by guessing a simple path in S from B2 to some state B′ with an outgoing transition labeled with
p→ q :<. We then evaluate availp,q,{q} (<, B2) along that path, which can be done in polynomial
time. We can restrict ourselves to simple paths because the blocked set B monotonically increases
when traversing a path in S. Moreover, availp,q,{q} (<, B2) is antitone in the blocked set.

We show NP-hardness of non-implementability via a reduction from the 3-SAT problem. Assume
a 3-SAT instance i =�1 ' . . . '�: . Let G1, . . . , G= be the variables occurring in i and let !8 9 be the

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 131. Publication date: April 2025.

131:20 E. Li, F. Stutz, T. Wies, D. Zu�erey

9th literal of clause �8 , with 1 f 8 f : and 1 f 9 f 3. We construct a protocol Si over participants
P = {p, q, r, x1, x1, . . . , xn, xn}, such that i is satis�able i� Si is implementable. In particular, we
ensure that Si is implementable i� availp,q,{q} (<, B) does not hold for some state B in Si . The
protocol Si is constructed from the following subprotocols:

(1) De�ne a protocol S- representing a truth assignment to variables G8 with states B1, . . . , B=+1
as follows: for every 1 f 8 f = there are two paths of four transitions each between B8 and
B8+1. The paths consist of transitions labeled with r → xi : §, r → xi : ¦, r → q : <G8 ,
q→ xi :<, and r→ xi : §, r→ xi : ¦, r→ q :<G8 , q→ xi :<, respectively.

(2) De�ne a protocol S� representing the clauses �8 with states C1, . . . , C:+1 as follows. For each
1 f 8 f : there are three paths of three transitions between each C8 and C8+1, one for each
1 f 9 f 3, labeled with r→ B :< 9 , r→ p :<A , B → p :<, where B = x if !8 9 = G and B = x if
!8 9 = ¬G for G ∈ {G1, . . . , G=}.

(3) De�ne a protocol S� with two states @′
5
and @5 and a single transition from @′

5
to @5 labeled

with p→ q :<.

(4) De�ne a protocolS) with �ve states @1, . . . , @5, and two paths from @1, respectively @1
r→p:<1
−−−−−−→

@2
r→q:<
−−−−−→ @3 and @1

r→p:<2
−−−−−−→ @4

p→q:<
−−−−−→ @5.

We merge all of the above protocols to obtain Si by identifying the state @3 with B1, B=+1 with C1
and C:+1 with @′5 . The initial state is @1 and the �nal states are {@5, @5 }.

Observe that the size of Si is linear in the size of i . Moreover, it is easy to check that Si is
indeed a GCLTS: all choices are sender-driven and deterministic, and �nal states are the only states
with no outgoing transitions, yielding sink-�nality and deadlock-freedom.

We �rst establish that availp,q,{q} (<,@3) holds in Si i� i is satis�able. Observe that the blocked
set B computed by availp,q,{q} (<,@3) along a path between B1 and B=+1 contains for each variable G8
either xi or xi. The blocked setB thus encodes a truth assignment dB for the G8 ’s where dB (G8) = ¦
i� xi ∉ B. By construction of S- , for every truth assignment d , there exists a path between B1 and
B=+1 such that d = dB for the blocked set B computed along that path.

The paths between states C8 and C8+1 in subprotocol S� allow p to proceed and not be blocked if
one of the paths has a participant not in B, i.e. �8 is satis�ed by dB . Thus, a path from B=+1 = C1
to C:+1 = @′

5
adds p to B at C8 i� dB does not satisfy at least one of the clauses �8 . Therefore,< is

available in @3 i� there exists a B such that dB satis�es i .
It remains to show that Si is non-implementable i� availp,q,{q} (<,@3) holds in Si . We argue that

all participants except q have su�cient local information about the control �ow of the protocol to
behave accordingly. Participant r dictates the control �ow at every branching point of the protocol,
and thus is implementable. Participants x1, x1, . . . xn, xn learn the control �ow via receivingmessages
from participant r, whose labels uniquely determine their next actions: receiving ¦ means inaction,
receiving § means receive a further message from q, and receiving < means send a message
encoding its own variable name to p. Participant p is likewise informed by r about the control �ow,
and only sends< to q upon either receiving<2 or top from r. Upon receiving r’s choice of disjunct
for each clause, it anticipates a message from the participant encoding that disjunct.

Participant q, on the other hand, is not informed by r about r’s initial choice at�G1 , and can locally
choose between receptions from p or r. In the case that availp,q,{q} (<,@3) holds, there exists a path

from� to Gi in which p is not blocked. Thus, the message from p can be asynchronously reordered
to arrive in q’s channel such that both receptions are enabled, and qmay violate implementability by
receiving the message from p out of order. If availp,q,{q} (<,@3) does not hold, only one reception is
enabled, which uniquely informs q about r’s choice. In the case that the reception from p is enabled,
q terminates, otherwise it receives messages from r encoding participants to send further messages

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 131. Publication date: April 2025.

Characterizing Implementability of Global Protocols with Infinite States and Data 131:21

to, and terminates upon receiving the �nal message from p. Thus, Si is non-implementable i� q

violates Receive Coherence for the transitions @2
r→q:<
−−−−−→ @3 and @4

p→q:<
−−−−−→ @5, i.e. availp,q,{q} (<,@3)

does not hold.
We obtain that Si is non-implementable i� availp,q,{q} (<,@3) holds in Si i� i is satis�able. □

Implementability for global multiparty session types was shown in [56] to be in PSPACE, with
the matching lower bound corrected in [57]. We show that, in fact, the same 3-SAT reduction can
be adapted to show co-NP-completeness of implementability for global multiparty session types.

Global Multiparty Session Types. Global types for MSTs [56] are de�ned by the grammar:

� ::= 0 |
∑

8∈�

p→q8 :<8 .�8 | `C . � | C

where p, q8 range overP,<8 over a �nite setV , and C over a set of recursion variables. The semantics
of a global type G are de�ned using a �nite state machine GAut(G) = (&G, �B~=2 ⊎ {Y}, XG, @0,G, �G)
where &G is the set of all syntactic subterms in G together with the term 0, XG is the smallest set
containing (

∑
8∈� p→q8 :<8 .�8 , p→q8 :<8 ,�8) for each 8 ∈ � , as well as (`C .� ′, Y,� ′) and (C, Y, `C .� ′)

for each subterm `C .� ′, @0,G = G and �G = {0}.
Each branch of a choice is assumed to be distinct: ∀8, 9 ∈ � . 8 ≠ 9 ⇒ (q8 ,<8) ≠ (q9 ,< 9), and

the sender and receiver of an atomic action is assumed to be distinct: ∀8 ∈ � . p ≠ q8 . Recursion is
guarded: in `C .� , there is at least one message between `C and each C in � .

Each Y transition in GAut(G) is the only transition from the state it originates from. This makes
removing them easy, yielding a protocol SG = (&G, �sync, X

′
G
, @0,G, �G), where X ′G contains only

transitions labeled with ; ∈ �sync . It is easy to verify that SG is indeed a GCLTS.

Lemma 5.9. Implementability of global types is co-NP-complete.

Our reduction shows that deciding the availp,q,{q} (<, B) predicate for global types is in co-NP,
which refutes the polynomial time upper bound claimed in [55]. The proof of Lemma 5.9 can be
found in Appendix B of the extended version [58].

5.3 Symbolic Finite Protocols

Finally, we study symbolic representations of �nite protocols. More precisely, we consider the frag-
ment of symbolic protocols whereV is the set of Booleans and all transition constraints i are given
by propositional formulas. We show that for this class of symbolic protocols, the implementability
problem is PSPACE-complete.

Theorem 5.10. Implementability of symbolic �nite protocols is PSPACE-complete.

Proof sketch. To show that implementability is in PSPACE, we show that a witness to the
negation of CC can be checked in nondeterministic polynomial space. This follows by a reduction to
the reachability problem for extended �nite state machines, which is in PSPACE [36]. By Savitch’s
Theorem, it follows that the negation of CC is in PSPACE. Because PSPACE is closed under
complement and CC precisely characterizes implementability, it follows that implementability is
in PSPACE.
We show PSPACE-hardness of the implementability problem by a reduction from the PSPACE-

hard problem of deciding reachability for 1-safe Petri nets [27]. Let (#,"0) be a 1-safe Petri net,
with # = ((,) , �). Let" be a marking of # .
We construct a symbolic protocol that is implementable i� # does not reach " . For ease of

exposition, we present this symbolic protocol as a symbolic dependent global type G# with the
understanding that the encoding of G# as a symbolic protocol is clear.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 131. Publication date: April 2025.

131:22 E. Li, F. Stutz, T. Wies, D. Zu�erey

We �rst describe the construction ofG# . The outermost structure ofG# consists of a participant r
communicating a choice between two branches to s where the bottom branch solely consists of p
sending ; to q: G# v (r→s :<1{¦}. �C + r→s :<2{¦}. p→q :;{¦}. 0). Since p is not informed
about the choice of the branch taken by s, it will have to be able to match this send transition in
every run that follows the continuation �C of the top branch. We will construct �C such that this
match is possible i�" is reachable in # .
In �C , participants r and s enter a loop that simulates # :

�C v `B [E v "0] . +





∑
C ∈) r→s :<C {E ⇒ C−}. B [E v ((E ' ¬C−) (C+)]

r→s : restart{¦}. B [E v "0]

r→s : reach" {E ="}. p→q :;{¦}. 0

The loop variable E is a |(|-length bitvector that tracks the current marking of the net. It is initialized
to "0. Inside the loop, r has the following choices. First, it may pick any transition C ∈) of the
net and send an<C message to s, provided the transition is enabled for �ring (i.e., the input places
of C all contain a token: E ⇒ C−). After this communication, E is updated according to the �red
transition C .
The last branch of the choice in the loop is enabled if E is equal to" . Here, r can send reach" to s,

which gives p the opportunity to send the ; message to q, allowing it to match the send transition
from the lower branch in the top level choice of �# .
Finally, the middle branch allows r to abort the simulation at any point and start over. This

ensures that if the simulation ever reaches a dead state due to �ring a transition that would render
" unreachable, it can recover by starting again from"0. Thus, for all states of the simulator, p has
an Y path from that state to a state where it can send ; to q i� " is reachable from "0 in # . The
only other sender is r which makes all choices and, hence, never reaches two di�erent states along
the same pre�x trace, thus satisfying Send Coherence trivially. It follows that Send Coherence for
p holds i� " is reachable from "0 in # . To see that Receive Coherence holds, observe that no
participant receives messages from two di�erent senders. No Mixed Choice similarly holds trivially.
�# is deadlock-free because the branch in the loop of�C where r sends the restart message is

always enabled. Moreover, it is easy to see that�# is deterministic because each branch of a choice
sends a di�erent message value.
In summary, �# is a GCLTS that is implementable i� # reaches" . The size of G# is linear in

the size of # , so we obtain the desired reduction. □

6 Related Work

Table 1 summarizes the most closely related works that address the implementability problem of
communication protocols with data re�nements. We discuss these works in terms of key expressive
features and completeness of characterization.

Table 1. Comparison of related work (in chronological order)

Paper
Communication

paradigm

Branching

restrictions

History

sensitivity
Characterization

[7] asynchronous directed choice required incomplete
[6] asynchronous directed choice required incomplete
[81] synchronous directed choice required incomplete
[89] synchronous directed choice required incomplete
[34] synchronous well-sequencedness required unknown

this work asynchronous sender-driven choice not required relatively complete

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 131. Publication date: April 2025.

Characterizing Implementability of Global Protocols with Infinite States and Data 131:23

Expressivity. All existing works in Table 1 e�ectively require history-sensitivity, which means
that a “predicate guaranteed by a [participant p] can only contain those interaction variables that
[p] knows” [7], see also [6, Def. 2]. As discussed in §4, syntactic approaches to analyzing variable
knowledge is overly conservative, and as a result no prior work can handle protocols such as
the example in Fig. 12. In a similar vein, Zhou et al. [89] impose the syntactic restriction that all
participants in a loop must be able to update all loop registers, which rules out loops like the one
in the two-bidder protocol (Fig. 1).
Furthermore, all prior works except for [34] employ the directed choice restriction, which is

strictly less general than sender-driven choice. Many of these works also feature separate constructs
for selecting branches and sending data. In our symbolic protocols, this is not necessary because
selecting branches can be modeled with equality predicates, as demonstrated by Fig. 7. Gheri et al.
[34] generalize choreography automata, which are �nite-state LTSs with communciation events
as transition labels but without �nal states. One major di�erence between our work and theirs
lies in the treatment of interleavings. Unlike our protocol semantics, which are closed under the
indistinguishability relation ∼, inspired by Lamport’s happened-before relation, choreography
automata languages do not include any interleavings not present in the language. Setting aside
asynchronous traces, the protocol p→q :<. r→s :<. 0 in our setting would need to be represented
as p→ q :<. r→ s :<. 0 + r→ s :<. p→ q :<. 0 in their setting, and the following protocol
`C . p→ q :<. r→ s :<. C does not admit a representation as a choreography automaton. The
branching behaviors are restricted with a well-sequencedness condition [34, Def. 3.2], a condition
that has since been re�ned because it was shown to be �awed [29]. Majumdar et al. [61] showed
that well-formedness conditions on synchronous choreography automata do not generalize soundly
to the asynchronous setting.

Asynchronous communication is more challenging to analyze in general because it easily gives
rise to in�nite-state systems. Zhou [88] conjectures that the framework in [89] “can be extended to
support asynchronous communication”, but does not conjecture if and how the projection operator
would change. Due to directed choice, the same projection operator may remain sound under
asynchronous semantics, because it rules out protocols where participants have a choice to receive
from di�erent senders. However, it will also likely inherit the same sources of incompleteness
present in the synchronous setting.
In contrast to all aforementioned works, several works [9, 10, 17] allow to specify send and

receive events separately with “decon�ned” global types. Decon�ned global types are speci�ed as
a parallel composition of local processes, and then checked for desirable correctness properties,
which were shown to be undecidable [17].

Completeness. Implementability is a thoroughly-studied problem in the high-level message se-
quence chart (HMSC) literature. HMSCs are a standardized formalism for describing communication
protocols in industry [82] and are well-studied in academia [30–32, 64, 74]. In the HMSC setting,
implementability is called safe realizability, and is de�ned with respect to the implementation model
of communicating �nite state machines [8]. Similar to our setting, a canonical implementation
exists for any HMSC [1, Thm. 13]; unlike our setting, it is always computable. Therefore, existing
work has focused less on synthesis and more on checking implementability. Despite having only
�nite states and data, HMSC implementability was shown to be undecidable in general [59]. Various
fragments have since been identi�ed in which the problem regains decidability. Lohrey [59] showed
implementability to be EXPSPACE-complete for bounded HMSCs [3, 68] and globally-cooperative
HMSCs [33, 66]. These fragments restrict the communication topology of loops to be strongly and
weakly connected respectively. For HMSCs where every two consecutive communications share a
participant, implementability was shown to be PSPACE-complete [59].

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 131. Publication date: April 2025.

131:24 E. Li, F. Stutz, T. Wies, D. Zu�erey

In contrast, works that study comparably expressive protocol fragments to ours often sidestep
the implementability question. Instead, implementability is addressed in the form of syntactic
well-formedness conditions, as mentioned above, or indirectly through synthesis. None of the prior
works attempted to show completeness; it was later shown in [56, 78] that all but Gheri et al. [34]
are incomplete. Several works [6, 7, 81, 89] synthesize local implementations using the “classical”
projection frommultiparty session types. One kind of merge operator, called the plain merge, allows
only the two participants in a choice to exhibit di�erent behavior on each branch, a condition
which is breached by our two-bidder protocol (Fig. 1). Zhou et al. [89] proves the soundness of
projection with plain merge, but implements a more permissive variant called full merge in the
toolchain. However, the projected local types are not guaranteed to be implementable: both Fig. 11
and Fig. 12 are projectable in [89]. Thus, the implementability problem is deferred to local types.

Our results show that synthesis is “as possible as” the determinization of the non-deterministic
underlying automata fragment. This means that implementations can be synthesized even for
expressive classes of protocols that correspond to e.g. symbolic �nite automata [20, 77] and certain
classes of timed and register automata [5, 13] due to the existence of o�-the-shelf determinization
algorithms for these classes [4, 84, 85].
Scalas and Yoshida [76] check safety properties of collections of local types by encoding the

properties as `-calculus formulas and then model checking the typing context against the speci-
�cation. They focus primarily on �nite-state typing contexts under synchronous semantics, and
thus all properties in their setting are decidable. For the asynchronous setting, only three sound
approximations of safety are proposed, one of which bounds channel sizes and thus falls back into
the �nite-state setting.

Next, we discuss further related works on choreographic programming and binary session types.

Choreographic Programming. Choreographic programming [15, 35, 43] describes global message-
passing behaviors as programs rather than protocols, and therefore incorporate many more pro-
gramming language features that are abstracted away in our model, such as computation and
mutable state, in addition to features that our model cannot express, such as higher-order computa-
tions and delegation. Endpoint projection for choreographic programs, which shares a theoretical
basis with multiparty session type projection, then generates individual, executable programs
for each participant. The question of implementability, though undecidable in the presence of
such expressivity, remains relevant to the soundness of endpoint projections. We discuss three
approaches to endpoint projection. Pirouette [42] requires the programmer to specify explicit
synchronization messages to ensure that “di�erent locations stay in lock-step with each other”,
and conservatively rejects programs that are underspeci�ed in this regard. Pirouette provides a
mechanized proof of deadlock freedom for endpoint projections in Coq. Note that the claims of
soundness and completeness in [42] are not with respect to implementability, but with respect to the
translation via endpoint projection. HasChor [77] rules out non-implementability by automatically
incorporating location broadcasts when a choice is made. No formal correctness claims are made
in [77]. Jongmans and van den Bos [50] allow if- and while- statements to be annotated with a con-
junction of conditional choices for each participant, which expresses decentralized decision-making
in protocols. They show that their endpoint projection for well-formed choreographies guarantees
deadlock freedom and functional correctness. All aforementioned choreographic programming
works assume a synchronous network.

Binary Session Types with Re�nements. Finally, we brie�y mention work on binary session types
with re�nements and data dependencies. In the binary setting, implementability is a less interesting
problem due to the inherent duality between the two protocol participants; the distinction between

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 131. Publication date: April 2025.

Characterizing Implementability of Global Protocols with Infinite States and Data 131:25

global and local types is no longer meaningful. Gri�th and Gunter [38] re�ne binary sessions
with basic data types, and shows decidability of the subtyping problem. Gommerstadt et al. [37]
applies a similar type system for runtime monitoring of binary communication. Thiemann and
Vasconcelos [80] propose a label-dependent binary session type framework which allows the
subsequent behavior of the protocol to depend on previous labels, which are drawn from a �nite set.
Das and Pfenning [22] study the undecidable problem of local type equality, and provide a sound
approximate algorithm. Das et al. [21, 23] further apply binary session types with re�nements to
resource analysis of blockchain smart contracts and amortized cost analysis.
Actris [39] embeds binary session types into the Iris framework [51]. The framework assumes

asynchronous communication with FIFO channels, and can verify programs that combine message-
passing concurrency and shared-memory concurrency. Actris has been extended with session type
subtyping (Actris 2.0 [40]) and with linearity to prove both preservation and progress (LinearAc-
tris [49]). Multris [41] is an extension of Actris in Iris to the multiparty setting. The message-passing
layer of Multris is more restricted than Actris: Multris assumes synchronous communication and
prohibits choice over channels: choices can only be made about message values between a given
sender and receiver. Multris takes a bottom-up approach [76] to correctness: given a collection of
local types, the type system checks that they can be safely combined. Multris guarantees protocol
�delity but not progress.

Data-Availability Statement

The extended version of this paper containing complete proofs can be found at [58].

Acknowledgments

This work is supported in parts by the National Science Foundation under the grant agree-
ment 2304758 and by the Luxembourg National Research Fund (FNR) under the grant agreement
C22/IS/17238244/AVVA.We thank the anonymous OOPSLA reviewers for their comments which im-
proved the paper, and for identifying an erroneous claim in an earlier draft related to the complexity
analysis of MST implementability.

References

[1] Rajeev Alur, Kousha Etessami, and Mihalis Yannakakis. 2003. Inference of Message Sequence Charts. IEEE Trans.

Software Eng. 29, 7 (2003), 623–633. https://doi.org/10.1109/TSE.2003.1214326
[2] Rajeev Alur, Kousha Etessami, and Mihalis Yannakakis. 2005. Realizability and veri�cation of MSC graphs. Theor.

Comput. Sci. 331, 1 (2005), 97–114. https://doi.org/10.1016/J.TCS.2004.09.034
[3] Rajeev Alur and Mihalis Yannakakis. 1999. Model Checking of Message Sequence Charts. In CONCUR ’99: Concurrency

Theory, 10th International Conference, Eindhoven, The Netherlands, August 24-27, 1999, Proceedings (Lecture Notes in

Computer Science, Vol. 1664), Jos C. M. Baeten and Sjouke Mauw (Eds.). Springer, 114–129. https://doi.org/10.1007/3-
540-48320-9_10

[4] Nathalie Bertrand, Patricia Bouyer, Thomas Brihaye, and Pierre Carlier. 2018. When are stochastic transition systems
tameable? J. Log. Algebraic Methods Program. 99 (2018), 41–96. https://doi.org/10.1016/J.JLAMP.2018.03.004

[5] Nathalie Bertrand, Amélie Stainer, Thierry Jéron, and Moez Krichen. 2015. A game approach to determinize timed
automata. Formal Methods Syst. Des. 46, 1 (2015), 42–80. https://doi.org/10.1007/S10703-014-0220-1

[6] Laura Bocchi, Romain Demangeon, and Nobuko Yoshida. 2012. A Multiparty Multi-session Logic. In Trustworthy

Global Computing - 7th International Symposium, TGC 2012, Newcastle upon Tyne, UK, September 7-8, 2012, Revised

Selected Papers (Lecture Notes in Computer Science, Vol. 8191), Catuscia Palamidessi and Mark Dermot Ryan (Eds.).
Springer, 97–111. https://doi.org/10.1007/978-3-642-41157-1_7

[7] Laura Bocchi, Kohei Honda, Emilio Tuosto, and Nobuko Yoshida. 2010. A Theory of Design-by-Contract for Distributed
Multiparty Interactions. In CONCUR 2010 - Concurrency Theory, 21th International Conference, CONCUR 2010, Paris,

France, August 31-September 3, 2010. Proceedings (Lecture Notes in Computer Science, Vol. 6269), Paul Gastin and François
Laroussinie (Eds.). Springer, 162–176. https://doi.org/10.1007/978-3-642-15375-4_12

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 131. Publication date: April 2025.

131:26 E. Li, F. Stutz, T. Wies, D. Zu�erey

[8] Daniel Brand and Pitro Za�ropulo. 1983. On Communicating Finite-State Machines. J. ACM 30, 2 (1983), 323–342.
https://doi.org/10.1145/322374.322380

[9] Ilaria Castellani, Mariangiola Dezani-Ciancaglini, and Paola Giannini. 2022. Asynchronous Sessions with Input
Races. In Proceedings of the 13th International Workshop on Programming Language Approaches to Concurrency and

Communication-cEntric Software, PLACES@ETAPS 2022, Munich, Germany, 3rd April 2022 (EPTCS, Vol. 356), Marco
Carbone and Rumyana Neykova (Eds.). 12–23. https://doi.org/10.4204/EPTCS.356.2

[10] Ilaria Castellani, Mariangiola Dezani-Ciancaglini, and Paola Giannini. 2024. Global Types and Event Structure Semantics
for Asynchronous Multiparty Sessions. Fundam. Informaticae 192, 1 (2024), 1–75. https://doi.org/10.3233/FI-242188

[11] David Castro-Perez, Raymond Hu, Sung-Shik Jongmans, Nicholas Ng, and Nobuko Yoshida. 2019. Distributed pro-
gramming using role-parametric session types in go: statically-typed endpoint APIs for dynamically-instantiated
communication structures. Proc. ACM Program. Lang. 3, POPL (2019), 29:1–29:30. https://doi.org/10.1145/3290342

[12] David Castro-Perez and Nobuko Yoshida. 2023. Dynamically Updatable Multiparty Session Protocols: Generating
Concurrent Go Code from Unbounded Protocols. In 37th European Conference on Object-Oriented Programming, ECOOP

2023, July 17-21, 2023, Seattle, Washington, United States (LIPIcs, Vol. 263), Karim Ali and Guido Salvaneschi (Eds.).
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 6:1–6:30. https://doi.org/10.4230/LIPICS.ECOOP.2023.6

[13] Lorenzo Clemente, Slawomir Lasota, and Radoslaw Piórkowski. 2022. Determinisability of register and timed automata.
Log. Methods Comput. Sci. 18, 2 (2022). https://doi.org/10.46298/LMCS-18(2:9)2022

[14] Mario Coppo, Mariangiola Dezani-Ciancaglini, Luca Padovani, and Nobuko Yoshida. 2015. A Gentle Introduction to
Multiparty Asynchronous Session Types. In Formal Methods for Multicore Programming - 15th International School

on Formal Methods for the Design of Computer, Communication, and Software Systems, SFM 2015, Bertinoro, Italy, June

15-19, 2015, Advanced Lectures (Lecture Notes in Computer Science, Vol. 9104), Marco Bernardo and Einar Broch Johnsen
(Eds.). Springer, 146–178. https://doi.org/10.1007/978-3-319-18941-3_4

[15] Luís Cruz-Filipe and Fabrizio Montesi. 2020. A core model for choreographic programming. Theor. Comput. Sci. 802
(2020), 38–66. https://doi.org/10.1016/j.tcs.2019.07.005

[16] Zak Cutner, Nobuko Yoshida, and Martin Vassor. 2022. Deadlock-free asynchronous message reordering in rust
with multiparty session types. In PPoPP ’22: 27th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, Seoul, Republic of Korea, April 2 - 6, 2022, Jaejin Lee, Kunal Agrawal, and Michael F. Spear (Eds.). ACM,
246–261. https://doi.org/10.1145/3503221.3508404

[17] Francesco Dagnino, Paola Giannini, and Mariangiola Dezani-Ciancaglini. 2021. Decon�ned Global Types for Asyn-
chronous Sessions. In Coordination Models and Languages - 23rd IFIP WG 6.1 International Conference, COORDINATION

2021, Held as Part of the 16th International Federated Conference on Distributed Computing Techniques, DisCoTec 2021,

Valletta, Malta, June 14-18, 2021, Proceedings (Lecture Notes in Computer Science, Vol. 12717), Ferruccio Damiani and
Ornela Dardha (Eds.). Springer, 41–60. https://doi.org/10.1007/978-3-030-78142-2_3

[18] Haitao Dan, Robert M. Hierons, and Steve Counsell. 2010. Non-local Choice and Implied Scenarios. In 8th IEEE

International Conference on Software Engineering and Formal Methods, SEFM 2010, Pisa, Italy, 13-18 September 2010,
José Luiz Fiadeiro, Stefania Gnesi, and Andrea Maggiolo-Schettini (Eds.). IEEE Computer Society, 53–62. https:
//doi.org/10.1109/SEFM.2010.14

[19] Loris D’Antoni, Tiago Ferreira, Matteo Sammartino, and Alexandra Silva. 2019. Symbolic Register Automata. In
Computer Aided Veri�cation - 31st International Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019,

Proceedings, Part I (Lecture Notes in Computer Science, Vol. 11561), Isil Dillig and Serdar Tasiran (Eds.). Springer, 3–21.
https://doi.org/10.1007/978-3-030-25540-4_1

[20] Loris D’Antoni and Margus Veanes. 2017. The Power of Symbolic Automata and Transducers. In Computer Aided

Veri�cation - 29th International Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part I (Lecture

Notes in Computer Science, Vol. 10426), Rupak Majumdar and Viktor Kuncak (Eds.). Springer, 47–67. https://doi.org/10.
1007/978-3-319-63387-9_3

[21] Ankush Das, Stephanie Balzer, Jan Ho�mann, Frank Pfenning, and Ishani Santurkar. 2021. Resource-Aware Session
Types for Digital Contracts. In 34th IEEE Computer Security Foundations Symposium, CSF 2021, Dubrovnik, Croatia,

June 21-25, 2021. IEEE, 1–16. https://doi.org/10.1109/CSF51468.2021.00004
[22] Ankush Das and Frank Pfenning. 2020. Session Types with Arithmetic Re�nements. In 31st International Conference on

Concurrency Theory, CONCUR 2020, September 1-4, 2020, Vienna, Austria (Virtual Conference) (LIPIcs, Vol. 171), Igor
Konnov and Laura Kovács (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 13:1–13:18. https://doi.org/10.
4230/LIPICS.CONCUR.2020.13

[23] Ankush Das and Frank Pfenning. 2022. Rast: A Language for Resource-Aware Session Types. Log. Methods Comput.

Sci. 18, 1 (2022). https://doi.org/10.46298/LMCS-18(1:9)2022
[24] Jan de Muijnck-Hughes and Wim Vanderbauwhede. 2019. A Typing Discipline for Hardware Interfaces. In 33rd

European Conference on Object-Oriented Programming (ECOOP 2019) (Leibniz International Proceedings in Informatics

(LIPIcs), Vol. 134), Alastair F. Donaldson (Ed.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany,

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 131. Publication date: April 2025.

Characterizing Implementability of Global Protocols with Infinite States and Data 131:27

6:1–6:27. https://doi.org/10.4230/LIPIcs.ECOOP.2019.6
[25] Romain Demangeon, Kohei Honda, Raymond Hu, Rumyana Neykova, and Nobuko Yoshida. 2015. Practical interruptible

conversations: distributed dynamic veri�cation with multiparty session types and Python. Formal Methods Syst. Des.

46, 3 (2015), 197–225. https://doi.org/10.1007/S10703-014-0218-8
[26] Volker Diekert and Grzegorz Rozenberg (Eds.). 1995. The Book of Traces. World Scienti�c. https://doi.org/10.1142/2563
[27] Javier Esparza and Mogens Nielsen. 1994. Decidability Issues for Petri Nets - a survey. J. Inf. Process. Cybern. 30, 3

(1994), 143–160.
[28] Manuel Fähndrich, Mark Aiken, Chris Hawblitzel, Orion Hodson, Galen C. Hunt, James R. Larus, and Steven Levi. 2006.

Language support for fast and reliable message-based communication in singularity OS. In Proceedings of the 2006

EuroSys Conference, Leuven, Belgium, April 18-21, 2006, Yolande Berbers and Willy Zwaenepoel (Eds.). ACM, 177–190.
https://doi.org/10.1145/1217935.1217953

[29] Alain Finkel and Étienne Lozes. 2023. Synchronizability of Communicating Finite State Machines is not Decidable.
Log. Methods Comput. Sci. 19, 4 (2023). https://doi.org/10.46298/LMCS-19(4:33)2023

[30] Thomas Gazagnaire, Blaise Genest, Loïc Hélouët, P. S. Thiagarajan, and Shaofa Yang. 2007. Causal Message Sequence
Charts. In CONCUR 2007 - Concurrency Theory, 18th International Conference, CONCUR 2007, Lisbon, Portugal, September

3-8, 2007, Proceedings (Lecture Notes in Computer Science, Vol. 4703), Luís Caires and Vasco Thudichum Vasconcelos
(Eds.). Springer, 166–180. https://doi.org/10.1007/978-3-540-74407-8_12

[31] Blaise Genest and Anca Muscholl. 2005. Message Sequence Charts: A Survey. In Fifth International Conference on

Application of Concurrency to System Design (ACSD 2005), 6-9 June 2005, St. Malo, France. IEEE Computer Society, 2–4.
https://doi.org/10.1109/ACSD.2005.25

[32] Blaise Genest, Anca Muscholl, and Doron A. Peled. 2003. Message Sequence Charts. In Lectures on Concurrency and

Petri Nets, Advances in Petri Nets [This tutorial volume originates from the 4th Advanced Course on Petri Nets, ACPN 2003,

held in Eichstätt, Germany in September 2003. In addition to lectures given at ACPN 2003, additional chapters have been

commissioned] (Lecture Notes in Computer Science, Vol. 3098), Jörg Desel, Wolfgang Reisig, and Grzegorz Rozenberg
(Eds.). Springer, 537–558. https://doi.org/10.1007/978-3-540-27755-2_15

[33] Blaise Genest, Anca Muscholl, Helmut Seidl, and Marc Zeitoun. 2006. In�nite-state high-level MSCs: Model-checking
and realizability. J. Comput. Syst. Sci. 72, 4 (2006), 617–647. https://doi.org/10.1016/j.jcss.2005.09.007

[34] Lorenzo Gheri, Ivan Lanese, Neil Sayers, Emilio Tuosto, and Nobuko Yoshida. 2022. Design-By-Contract for Flexible
Multiparty Session Protocols. In 36th European Conference on Object-Oriented Programming, ECOOP 2022, June 6-10, 2022,

Berlin, Germany (LIPIcs, Vol. 222), Karim Ali and Jan Vitek (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
8:1–8:28. https://doi.org/10.4230/LIPICS.ECOOP.2022.8

[35] Saverio Giallorenzo, Fabrizio Montesi, Marco Peressotti, David Richter, Guido Salvaneschi, and Pascal Weisenburger.
2021. Multiparty Languages: The Choreographic and Multitier Cases (Pearl). In 35th European Conference on Object-

Oriented Programming, ECOOP 2021, July 11-17, 2021, Aarhus, Denmark (Virtual Conference) (LIPIcs, Vol. 194), Anders
Møller and Manu Sridharan (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 22:1–22:27. https://doi.org/10.
4230/LIPIcs.ECOOP.2021.22

[36] Patrice Godefroid and Mihalis Yannakakis. 2013. Analysis of Boolean Programs. In Tools and Algorithms for the

Construction and Analysis of Systems - 19th International Conference, TACAS 2013, Held as Part of the European Joint

Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings (Lecture Notes in

Computer Science, Vol. 7795), Nir Piterman and Scott A. Smolka (Eds.). Springer, 214–229. https://doi.org/10.1007/978-
3-642-36742-7_16

[37] Hannah Gommerstadt, Limin Jia, and Frank Pfenning. 2018. Session-Typed Concurrent Contracts. In Programming

Languages and Systems - 27th European Symposium on Programming, ESOP 2018, Held as Part of the European Joint

Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings (Lecture

Notes in Computer Science, Vol. 10801), Amal Ahmed (Ed.). Springer, 771–798. https://doi.org/10.1007/978-3-319-89884-
1_27

[38] Dennis Gri�th and Elsa L. Gunter. 2013. LiquidPi: Inferrable Dependent Session Types. In NASA Formal Methods, 5th

International Symposium, NFM 2013, Mo�ett Field, CA, USA, May 14-16, 2013. Proceedings (Lecture Notes in Computer

Science, Vol. 7871), Guillaume Brat, Neha Rungta, and Arnaud Venet (Eds.). Springer, 185–197. https://doi.org/10.1007/
978-3-642-38088-4_13

[39] Jonas Kastberg Hinrichsen, Jesper Bengtson, and Robbert Krebbers. 2020. Actris: session-type based reasoning in
separation logic. Proc. ACM Program. Lang. 4, POPL (2020), 6:1–6:30. https://doi.org/10.1145/3371074

[40] Jonas Kastberg Hinrichsen, Jesper Bengtson, and Robbert Krebbers. 2022. Actris 2.0: Asynchronous Session-Type Based
Reasoning in Separation Logic. Log. Methods Comput. Sci. 18, 2 (2022). https://doi.org/10.46298/LMCS-18(2:16)2022

[41] Jonas Kastberg Hinrichsen, Jules Jacobs, and Robbert Krebbers. 2024. Multris: Functional Veri�cation of Multiparty
Message Passing in Separation Logic. (2024). https://jihgfee.github.io/papers/multris_manuscript.pdf

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 131. Publication date: April 2025.

131:28 E. Li, F. Stutz, T. Wies, D. Zu�erey

[42] Andrew K. Hirsch and Deepak Garg. 2021. Pirouette: Higher-Order Typed Functional Choreographies. CoRR

abs/2111.03484 (2021). arXiv:2111.03484 https://arxiv.org/abs/2111.03484
[43] Andrew K. Hirsch and Deepak Garg. 2022. Pirouette: higher-order typed functional choreographies. Proc. ACM

Program. Lang. 6, POPL (2022), 1–27. https://doi.org/10.1145/3498684
[44] Kohei Honda, Eduardo R. B. Marques, Francisco Martins, Nicholas Ng, Vasco Thudichum Vasconcelos, and Nobuko

Yoshida. 2012. Veri�cation of MPI Programs Using Session Types. In Recent Advances in the Message Passing Interface -

19th European MPI Users’ Group Meeting, EuroMPI 2012, Vienna, Austria, September 23-26, 2012. Proceedings (Lecture

Notes in Computer Science, Vol. 7490), Jesper Larsson Trä�, Siegfried Benkner, and Jack J. Dongarra (Eds.). Springer,
291–293. https://doi.org/10.1007/978-3-642-33518-1_37

[45] Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2008. Multiparty asynchronous session types. In Proceedings of the

35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2008, San Francisco, California,

USA, January 7-12, 2008, George C. Necula and Philip Wadler (Eds.). ACM, 273–284. https://doi.org/10.1145/1328438.
1328472

[46] RaymondHu andNobuko Yoshida. 2016. Hybrid Session Veri�cation Through Endpoint API Generation. In Fundamental

Approaches to Software Engineering - 19th International Conference, FASE 2016, Held as Part of the European Joint

Conferences on Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings

(Lecture Notes in Computer Science, Vol. 9633), Perdita Stevens and Andrzej Wasowski (Eds.). Springer, 401–418.
https://doi.org/10.1007/978-3-662-49665-7_24

[47] Raymond Hu and Nobuko Yoshida. 2017. Explicit Connection Actions in Multiparty Session Types. In Fundamental

Approaches to Software Engineering - 20th International Conference, FASE 2017, Held as Part of the European Joint

Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings (Lecture Notes

in Computer Science, Vol. 10202), Marieke Huisman and Julia Rubin (Eds.). Springer, 116–133. https://doi.org/10.1007/978-
3-662-54494-5_7

[48] Keigo Imai, Rumyana Neykova, Nobuko Yoshida, and Shoji Yuen. 2020. Multiparty Session Programming With Global
Protocol Combinators. In 34th European Conference on Object-Oriented Programming, ECOOP 2020, November 15-17,

2020, Berlin, Germany (Virtual Conference) (LIPIcs, Vol. 166), Robert Hirschfeld and Tobias Pape (Eds.). Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 9:1–9:30. https://doi.org/10.4230/LIPICS.ECOOP.2020.9

[49] Jules Jacobs, Jonas Kastberg Hinrichsen, and Robbert Krebbers. 2024. Deadlock-Free Separation Logic: Linearity
Yields Progress for Dependent Higher-Order Message Passing. Proc. ACM Program. Lang. 8, POPL (2024), 1385–1417.
https://doi.org/10.1145/3632889

[50] Sung-Shik Jongmans and Petra van den Bos. 2022. A Predicate Transformer for Choreographies - Computing
Preconditions in Choreographic Programming. In Programming Languages and Systems - 31st European Symposium on

Programming, ESOP 2022, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS

2022, Munich, Germany, April 2-7, 2022, Proceedings (Lecture Notes in Computer Science, Vol. 13240), Ilya Sergey (Ed.).
Springer, 520–547. https://doi.org/10.1007/978-3-030-99336-8_19

[51] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from
the ground up: A modular foundation for higher-order concurrent separation logic. J. Funct. Program. 28 (2018), e20.
https://doi.org/10.1017/S0956796818000151

[52] Nicolas Lagaillardie, Rumyana Neykova, and Nobuko Yoshida. 2022. Stay Safe Under Panic: A�ne Rust Programming
with Multiparty Session Types (Artifact). Dagstuhl Artifacts Ser. 8, 2 (2022), 09:1–09:16. https://doi.org/10.4230/DARTS.
8.2.9

[53] Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a Distributed System. Commun. ACM 21, 7 (1978),
558–565. https://doi.org/10.1145/359545.359563

[54] Julien Lange, Nicholas Ng, Bernardo Toninho, and Nobuko Yoshida. 2018. A static veri�cation framework for message
passing in Go using behavioural types. In Proceedings of the 40th International Conference on Software Engineering,

ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018, Michel Chaudron, Ivica Crnkovic, Marsha Chechik, and Mark
Harman (Eds.). ACM, 1137–1148. https://doi.org/10.1145/3180155.3180157

[55] Elaine Li, Felix Stutz, and Thomas Wies. 2024. Deciding Subtyping for Asynchronous Multiparty Sessions. In Pro-

gramming Languages and Systems - 33rd European Symposium on Programming, ESOP 2024, Held as Part of the

European Joint Conferences on Theory and Practice of Software, ETAPS 2024, Luxembourg City, Luxembourg, April 6-11,

2024, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 14576), Stephanie Weirich (Ed.). Springer, 176–205.
https://doi.org/10.1007/978-3-031-57262-3_8

[56] Elaine Li, Felix Stutz, Thomas Wies, and Damien Zu�erey. 2023. Complete Multiparty Session Type Projection with
Automata. In Computer Aided Veri�cation - 35th International Conference, CAV 2023, Paris, France, July 17-22, 2023,

Proceedings, Part III (Lecture Notes in Computer Science, Vol. 13966), Constantin Enea and Akash Lal (Eds.). Springer,
350–373. https://doi.org/10.1007/978-3-031-37709-9_17

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 131. Publication date: April 2025.

Characterizing Implementability of Global Protocols with Infinite States and Data 131:29

[57] Elaine Li, Felix Stutz, Thomas Wies, and Damien Zu�erey. 2023. Complete Multiparty Session Type Projection with
Automata. CoRR abs/2305.17079 (2023). https://doi.org/10.48550/ARXIV.2305.17079 arXiv:2305.17079

[58] Elaine Li, Felix Stutz, Thomas Wies, and Damien Zu�erey. 2025. Characterizing Implementability of Global Protocols
with In�nite States and Data. arXiv:2411.05722 [cs.PL] https://arxiv.org/abs/2411.05722

[59] Markus Lohrey. 2003. Realizability of high-level message sequence charts: closing the gaps. Theor. Comput. Sci. 309,
1-3 (2003), 529–554. https://doi.org/10.1016/J.TCS.2003.08.002

[60] RupakMajumdar, MadhavanMukund, Felix Stutz, and Damien Zu�erey. 2021. Generalising Projection in Asynchronous
Multiparty Session Types. In 32nd International Conference on Concurrency Theory, CONCUR 2021, August 24-27, 2021,

Virtual Conference (LIPIcs, Vol. 203), Serge Haddad and Daniele Varacca (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 35:1–35:24. https://doi.org/10.4230/LIPICS.CONCUR.2021.35

[61] RupakMajumdar, MadhavanMukund, Felix Stutz, and Damien Zu�erey. 2021. Generalising Projection in Asynchronous
Multiparty Session Types. CoRR abs/2107.03984 (2021). arXiv:2107.03984 https://arxiv.org/abs/2107.03984

[62] Rupak Majumdar, Marcus Pirron, Nobuko Yoshida, and Damien Zu�erey. 2019. Motion Session Types for Robotic
Interactions (Brave New Idea Paper). In 33rd European Conference on Object-Oriented Programming, ECOOP 2019, July

15-19, 2019, London, United Kingdom (LIPIcs, Vol. 134), Alastair F. Donaldson (Ed.). Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 28:1–28:27. https://doi.org/10.4230/LIPIcs.ECOOP.2019.28

[63] Rupak Majumdar, Nobuko Yoshida, and Damien Zu�erey. 2020. Multiparty motion coordination: from choreographies
to robotics programs. Proc. ACM Program. Lang. 4, OOPSLA (2020), 134:1–134:30. https://doi.org/10.1145/3428202

[64] Sjouke Mauw and Michel A. Reniers. 1997. High-level message sequence charts. In SDL ’97 Time for Testing, SDL, MSC

and Trends - 8th International SDL Forum, Evry, France, 23-29 September 1997, Proceedings, Ana R. Cavalli and Amardeo
Sarma (Eds.). Elsevier, 291–306.

[65] Fabrizio Montesi. 2023. Introduction to Choreographies. Cambridge University Press. https://doi.org/10.1017/
9781108981491

[66] Rémi Morin. 2002. Recognizable Sets of Message Sequence Charts. In STACS 2002, 19th Annual Symposium on Theoretical

Aspects of Computer Science, Antibes - Juan les Pins, France, March 14-16, 2002, Proceedings (Lecture Notes in Computer

Science, Vol. 2285), Helmut Alt and Afonso Ferreira (Eds.). Springer, 523–534. https://doi.org/10.1007/3-540-45841-7_43
[67] Madhavan Mukund. 2002. From Global Speci�cations to Distributed Implementations. Springer US, Boston, MA, 19–35.

https://doi.org/10.1007/978-1-4757-6656-1_2
[68] Anca Muscholl and Doron A. Peled. 1999. Message Sequence Graphs and Decision Problems on Mazurkiewicz Traces.

In Mathematical Foundations of Computer Science 1999, 24th International Symposium, MFCS’99, Szklarska Poreba,

Poland, September 6-10, 1999, Proceedings (Lecture Notes in Computer Science, Vol. 1672), Miroslaw Kutylowski, Leszek
Pacholski, and Tomasz Wierzbicki (Eds.). Springer, 81–91. https://doi.org/10.1007/3-540-48340-3_8

[69] Rumyana Neykova, Laura Bocchi, and Nobuko Yoshida. 2017. Timed runtime monitoring for multiparty conversations.
Formal Aspects Comput. 29, 5 (2017), 877–910. https://doi.org/10.1007/S00165-017-0420-8

[70] Rumyana Neykova, Raymond Hu, Nobuko Yoshida, and Fahd Abdeljallal. 2018. A session type provider: compile-time
API generation of distributed protocols with re�nements in F#. In Proceedings of the 27th International Conference on

Compiler Construction, CC 2018, February 24-25, 2018, Vienna, Austria, Christophe Dubach and Jingling Xue (Eds.).
ACM, 128–138. https://doi.org/10.1145/3178372.3179495

[71] Rumyana Neykova and Nobuko Yoshida. 2017. Multiparty Session Actors. Log. Methods Comput. Sci. 13, 1 (2017).
https://doi.org/10.23638/LMCS-13(1:17)2017

[72] Nicholas Ng, Nobuko Yoshida, and Kohei Honda. 2012. Multiparty Session C: Safe Parallel Programming with Message
Optimisation. In Objects, Models, Components, Patterns - 50th International Conference, TOOLS 2012, Prague, Czech

Republic, May 29-31, 2012. Proceedings (Lecture Notes in Computer Science, Vol. 7304), Carlo A. Furia and Sebastian Nanz
(Eds.). Springer, 202–218. https://doi.org/10.1007/978-3-642-30561-0_15

[73] Xinyu Niu, Nicholas Ng, Tomofumi Yuki, ShaojunWang, Nobuko Yoshida, andWayne Luk. 2016. EURECA compilation:
Automatic optimisation of cycle-recon�gurable circuits. In 26th International Conference on Field Programmable

Logic and Applications, FPL 2016, Lausanne, Switzerland, August 29 - September 2, 2016, Paolo Ienne, Walid A. Najjar,
Jason Helge Anderson, Philip Brisk, and Walter Stechele (Eds.). IEEE, 1–4. https://doi.org/10.1109/FPL.2016.7577359

[74] Abhik Roychoudhury, Ankit Goel, and Bikram Sengupta. 2012. Symbolic Message Sequence Charts. ACM Trans. Softw.

Eng. Methodol. 21, 2 (2012), 12:1–12:44. https://doi.org/10.1145/2089116.2089122
[75] Alceste Scalas, Ornela Dardha, Raymond Hu, and Nobuko Yoshida. 2017. A Linear Decomposition of Multiparty

Sessions for Safe Distributed Programming. In 31st European Conference on Object-Oriented Programming, ECOOP

2017, June 19-23, 2017, Barcelona, Spain (LIPIcs, Vol. 74), Peter Müller (Ed.). Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 24:1–24:31. https://doi.org/10.4230/LIPICS.ECOOP.2017.24

[76] Alceste Scalas and Nobuko Yoshida. 2019. Less is more: multiparty session types revisited. Proc. ACM Program. Lang.

3, POPL (2019), 30:1–30:29. https://doi.org/10.1145/3290343

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 131. Publication date: April 2025.

131:30 E. Li, F. Stutz, T. Wies, D. Zu�erey

[77] Gan Shen, Shun Kashiwa, and Lindsey Kuper. 2023. HasChor: Functional Choreographic Programming for All
(Functional Pearl). CoRR abs/2303.00924 (2023). https://doi.org/10.48550/ARXIV.2303.00924 arXiv:2303.00924

[78] Felix Stutz. 2023. Asynchronous Multiparty Session Type Implementability is Decidable - Lessons Learned from
Message Sequence Charts. In 37th European Conference on Object-Oriented Programming, ECOOP 2023, July 17-21,

2023, Seattle, Washington, United States (LIPIcs, Vol. 263), Karim Ali and Guido Salvaneschi (Eds.). Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 32:1–32:31. https://doi.org/10.4230/LIPICS.ECOOP.2023.32

[79] Felix Stutz. 2024. Implementability of Asynchronous Communication Protocols - The Power of Choice. Ph. D. Dissertation.
Kaiserslautern University of Technology, Germany. https://kluedo.ub.rptu.de/frontdoor/index/index/docId/8077

[80] Peter Thiemann and Vasco T. Vasconcelos. 2020. Label-dependent session types. Proc. ACM Program. Lang. 4, POPL
(2020), 67:1–67:29. https://doi.org/10.1145/3371135

[81] Bernardo Toninho and Nobuko Yoshida. 2017. Certifying data in multiparty session types. J. Log. Algebraic Methods

Program. 90 (2017), 61–83. https://doi.org/10.1016/J.JLAMP.2016.11.005
[82] International Telecommunication Union. 1996. Z.120: Message Sequence Chart. Technical Report. International

Telecommunication Union. https://www.itu.int/rec/T-REC-Z.120
[83] Hiroshi Unno, Tachio Terauchi, Yu Gu, and Eric Koskinen. 2023. Modular Primal-Dual Fixpoint Logic Solving for

Temporal Veri�cation. Proc. ACM Program. Lang. 7, POPL (2023), 2111–2140. https://doi.org/10.1145/3571265
[84] Margus Veanes and Nikolaj S. Bjørner. 2012. Symbolic Automata: The Toolkit. In Tools and Algorithms for the

Construction and Analysis of Systems - 18th International Conference, TACAS 2012, Held as Part of the European Joint

Conferences on Theory and Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24 - April 1, 2012. Proceedings

(Lecture Notes in Computer Science, Vol. 7214), Cormac Flanagan and Barbara König (Eds.). Springer, 472–477. https:
//doi.org/10.1007/978-3-642-28756-5_33

[85] Margus Veanes, Peli de Halleux, and Nikolai Tillmann. 2010. Rex: Symbolic Regular Expression Explorer. In Third

International Conference on Software Testing, Veri�cation and Validation, ICST 2010, Paris, France, April 7-9, 2010. IEEE
Computer Society, 498–507. https://doi.org/10.1109/ICST.2010.15

[86] Nobuko Yoshida. 2024. Programming Language Implementations with Multiparty Session Types. In Active Object

Languages: Current Research Trends, Frank S. de Boer, Ferruccio Damiani, Reiner Hähnle, Einar Broch Johnsen, and
Eduard Kamburjan (Eds.). Lecture Notes in Computer Science, Vol. 14360. Springer, 147–165. https://doi.org/10.1007/978-
3-031-51060-1_6

[87] Nobuko Yoshida, Raymond Hu, Rumyana Neykova, and Nicholas Ng. 2013. The Scribble Protocol Language. In
Trustworthy Global Computing - 8th International Symposium, TGC 2013, Buenos Aires, Argentina, August 30-31, 2013,

Revised Selected Papers (Lecture Notes in Computer Science, Vol. 8358), Martín Abadi and Alberto Lluch-Lafuente (Eds.).
Springer, 22–41. https://doi.org/10.1007/978-3-319-05119-2_3

[88] Fangyi Zhou. 2024. Re�ning Multiparty Session Types. Ph. D. Dissertation. Imperial College London.
[89] Fangyi Zhou, Francisco Ferreira, Raymond Hu, Rumyana Neykova, and Nobuko Yoshida. 2020. Statically veri�ed

re�nements for multiparty protocols. Proc. ACM Program. Lang. 4, OOPSLA (2020), 148:1–148:30. https://doi.org/10.
1145/3428216

[90] Wieslaw Zielonka. 1987. Notes on Finite Asynchronous Automata. RAIRO Theor. Informatics Appl. 21, 2 (1987), 99–135.
https://doi.org/10.1051/ITA/1987210200991

Received 2024-10-16; accepted 2025-02-18

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA1, Article 131. Publication date: April 2025.

	Abstract
	1 Introduction
	2 Overview
	3 Preliminaries
	3.1 Global Communicating Labeled Transition Systems (GCLTS)
	3.2 Symbolic Protocols with Dependent Refinements

	4 Characterizing Protocol Implementability
	4.1 Soundness
	4.2 Completeness
	4.3 Synthesis

	5 Checking Implementability
	5.1 Symbolic Protocols
	5.2 Finite Protocols
	5.3 Symbolic Finite Protocols

	6 Related Work
	Acknowledgments
	References

