O

Check for
updates

An Automata-theoretic Basis for Specification
and Type Checking of Multiparty Protocols

Felix Stutz!2®® and
Emanuele D’Osualdo’3

! MPI-SWS, Saarbriicken, Germany
felix.stutz@uni.lu
2 University of Luxembourg, Esch-sur-Alzette, Luxembourg
emanuele.dosualdo@uni-konstanz.de
3 University of Konstanz, Konstanz, Germany

Abstract. We propose the Automata-based Multiparty Protocols frame-
work (AMP) for top-down protocol development. The framework features
a new very general formalism for global protocol specifications called Pro-
tocol State Machines (PSMs), Communicating State Machines (CSMs)
as specifications for local participants, and a type system to check a
m-calculus with session interleaving and delegation against the CSM spec-
ification. Moreover, we define a large class of PSMs, called “tame”; for
which we provide a sound and complete PSPACE projection operation
that computes a CSM describing the same protocol as a given PSM
if one exists. We propose these components as a backwards-compatible
new backend for frameworks in the style of Multiparty Session Types.
In comparison to the latter, AMP offers a considerable improvement in
expressivity, decoupling of the various components (e.g. projection and
typing), and robustness (thanks to the complete projection).

Keywords: Communication protocols - Verification - Multiparty session
types - Communicating state machines - Type checking

1 Introduction

Designing correct distributed communication protocols is an important and hard
problem. Consider a finite set of protocol participants (i.e. independent pro-
cesses) whose only means of interaction between each other is asynchronous
message passing through reliable FIFO channels. The goal is to program each
participant so that some global emergent behaviour is achieved, e.g. a leader
is elected. Unfortunately, even when each participant is finite-state, the pres-
ence of unbounded delays (i.e. unbounded communication channels) makes any
non-trivial property of the emergent global behaviour undecidable [10)].

The top-down protocol design approach proposes to work around this issue
by a reversal in the methodology: instead of first programming the participants
and then checking that their global behaviour is what we desired it to be, we first
specify the desired global behaviour and then synthesize each participant’s local

© The Author(s) 2025
V. Vafeiadis (Ed.): ESOP 2025, LNCS 15695, pp.314—-346, 2025.
https://doi.org/10.1007/978-3-031-91121-7 13

AMP: An Automata-theoretic Basis for Multiparty Protocols 315

incomplete
MST Global Types —@— Local Types —@— m-calculus
‘ PROJECTION ‘ TYPING
AMP Tame) PSMs /—\ DF CSM fl—\ m-calculus
(Tame) &)

complete

Fig. 1: The components of top-down frameworks.

specification so that local behaviour gives rise to the correct global behaviour
by construction. Each participant’s concrete implementation is then checked
against its local specification, which (a) can be achieved by static means like type
systems, and (b) makes the verification of the implementation local and modular.

Multiparty Session Types (MSTs) [37] is one of the most prominent and exten-
sively studied formalisms supporting this top-down design methodology. The key
components of the framework, depicted in Fig. 1, are: (1) Global Types: a dedi-
cated language to specify correct global behaviour; (2) Local Types: a dedicated
language to specify each participant’s actions in the protocol; (3) Programs:
a programming language (typically a m-calculus) to express concrete implemen-
tations of each participant of the protocol.

Imagine, as a simple example, we want to specify a centralised leader elec-
tion protocol, where an arbiter a selects a leader among p and q and the selected
participant communicates the win to the other. A possible global type repre-
senting the protocol is G = (a—p:sel.p—q:win) + (a—q:sel . q—p:win) where
a—q:sel says that a sends sel and q receives it and + denotes branching. The
local type of p would then be (p<a?sel.prqglwin)+p<q?win where p<a?sel means
“p receives message sel from a” and g <p?win means “p sends message win to q”.
Thus, p is supposed to listen for a message from a or from qg; in the former case
it would then communicate the win to q, in the latter, just concede. A program
implementation may consist of a process for each participant; the process for the
arbiter a may implement any specific policy for selecting the leader (e.g. always
choose p), as long as the communications follow the protocol.

The relationship between the three representations of the protocol, i.e. global
types, local types, and programs, is delicate. First, the global type and the local
types should give rise to the same behaviour; however it is not always possible
to capture the behaviour of a global type with local types. Suppose, for instance,
that we modified the leader election protocol G to G’ = (a—p:sel.q—p:lose) +
(a—q:sel .p—q:lose). While, from a global perspective, it is possible to insist
on the losing participant informing the winner that they lost, locally, the losing
participant has no way to determine whether they won or not. Therefore G’ is
not realisable by local processes: we say it is not projectable. Second, local types
are a more abstract representation of the system than programs, but we still
want to show that, when implementation details are omitted, a program only
performs communications that adhere to the local specification.

316 F. Stutz and E. D’Osualdo

In MSTs, the relationship between the three layers of the framework are en-
forced through two procedures: (i) Projection, which (when possible) extracts,
from a global type G, some local types that are guaranteed to behave as described
by G; and (ii) Type Checking, which checks that the program implementation
of each participant adheres to the behaviour specified in its local type.

In a perfect world, a framework for top-down protocol design should be:
1. Expressive: It should support as many protocols as possible.
2. Decoupled: Its components (global/local specifications, programs, projec-
tion, type checking) should depend on each other as little as possible, and
be specified independently of their algorithmic implementation, to allow for

reuse and modularity.
3. Robust: It should only reject a global specification if there is a genuine issue

with it (i.e. no false positives).

Unfortunately, the MST frameworks in the literature leave something to be
desired against this ideal picture. They all suffer from:

— Expressivity Limitations: Many legitimate protocols are rejected either
because the global specification syntax is too restricted, or because the pro-
jection algorithm cannot handle them. For example, every MST framework
we are aware of can only handle global types with directed choice, i.e. where
every branching point involves exactly one sender and one receiver. This
immediately rules out our example leader election protocol G because the
branches involve different receivers.

— Decoupling Limitations: In MSTs, the syntax of global types directly in-
fluences the definition of the projection algorithm and the syntax of the local
types, which in turn influence the type system design. Typically, changing
one of the framework’s components requires adapting (and reproving cor-
rectness of) all the others. Furthermore, many MST frameworks solely give
the intended relation between global and local types through the projection
algorithm and do not give a declarative definition.

— Robustness Limitations: The heuristic nature of the projection algo-
rithms makes it very hard to predict if a global type will be handled or
not by an MST framework, even in the case where the behaviour specified
by the global type is unproblematic.

In this paper, we propose a new foundation for top-down protocol design
machinery, dubbed AMP (Automata-based Multiparty Protocols), that achieves
the expressivity, decoupling and robustness goals.

Ezxpressivity of AMP. Figure 1 shows the components of AMP. To achieve ex-
pressivity, we propose a new general formalism for (finite-control) global protocol
specifications, which we call Protocol State Machines (PSMs). The formalism is
based on automata which are given semantics in terms of (finite and infinite) sets
of words, over an alphabet of send (p>q!m) and receive (q<p?m) actions. PSMs
remove many of the restrictions of global types, while retaining their character:
they specify the expected behaviour from a global perspective, and satisfy some
basic correctness properties by construction (e.g. every send is eventually re-
ceived, no type mismatches, etc). Owing to their generality, PSMs can represent

AMP: An Automata-theoretic Basis for Multiparty Protocols 317

any global type, but can go well beyond them: they also strictly subsume High-
Level Message Sequence Charts (HMSCs). For maximizing expressivity at the
local level, we adopt Communicating State Machines (CSMs) as the formalism
for local protocol specifications. They are a canonical representation for decen-
tralised asynchronous communication and as such do not impose constraints over
what can be represented. Finally, to maximise expressivity at the program level,
we consider a m-calculus with session interleaving and delegation.

Decoupling of AMP. In AMP, decoupling is achieved through its handling of
projection and type checking. For projection, the framework merely specifies
the semantic requirements that a correct projection algorithm needs to satisfy:
essentially that it produces a deadlock-free CSM which represents the same lan-
guage as the input PSM. This limits the impact of projection on global and local
specifications, and leaves open any algorithmic/manual strategy to achieve the
projection goal. (We discuss how AMP proposes to actually implement projec-
tion in the discussion of robustness). For example, scenarios in which the user
provides both the PSM and the CSM and a proof that they represent the same
language and the CSM satisfies desirable properties (like deadlock freedom) or
where an algorithm infers a PSM from a CSM, are both compatible with our
framework thanks to this declarative approach to projection. This treatment is
in line with some MST works where the fundamental property of projection is
expressed in terms of some behavioural equivalence between local and global
types. For type checking, decoupling is achieved by defining the type system by
depending exclusively on programs and CSMs. The standard guarantees of sub-
ject reduction, communication safety and session fidelity are proven by appealing
to properties of CSMs. This demonstrates how effective CSMs are in providing
a clean decoupled interface between projection and type checking.

Robustness of AMP. Finally, we demonstrate how robustness can be achieved
in AMP, by identifying a large class of PSMs, called Tame PSMs, for which
we provide a decidable, sound and complete projection operation. Tame PSMs
extend the reach of sound and complete projection beyond global types and can
handle a large class of HMSCs as well as protocols that cannot be expressed as
either global types nor HMSCs. The main constraint that makes a PSM tame is
what we call sender-driven choice: that at any branching point, the sender in all
the branches is the same participant and takes distinct actions in the branches.
Our projection algorithm builds on a recently proposed complete projection for
sender-driven global types [48]. Thanks to a surprising reduction, we manage to
extend the algorithm to tame PSMs while keeping the complexity in PSPACE.
Due to the fact that our projection operation is complete, only protocols that do
not admit any valid projection will be rejected: those are protocols which simply
cannot be implemented by local processes. We also show that our class is in a
sense “maximally robust™ lifting the sender-driven restriction makes projection
undecidable, even for global types. AMP is also robust in the sense that one can
select the desired guarantees of the type system and check whether they can be
enforced by checking (syntactic) properties of the global protocol, pinpointing
exactly which guarantee is provided by a PSM. Finally, we show that the frame-

318 F. Stutz and E. D’Osualdo

work is backwards-compatible with MSTs: not only can we encode global types
into PSMs and project them, we also pinpoint the (simple) conditions under
which our projection yields CSMs which are equivalent to local types.

Contributions. In summary:

— We propose PSMs as an expressive general formalism for (finite-control)
global protocol specifications.

— We propose CSMs as a canonical model for local protocol specifications and
specify their desired relationship with PSMs declaratively.

— We define the first session type system based on CSMs, pinpointing exactly
the properties of the CSM that are needed to provide each of the desired
guarantees; these properties can be enforced by construction by ensuring the
PSMs conform to some simple checks.

— We define Tame PSMs (encompassing all directed and sender-driven global
types) and give a sound and complete projection algorithm for them.

— We show that sender-driven choice is a necessary restriction even for global
types: projection is undecidable otherwise.

— We characterise which class of PSMs corresponds to global types, and which
CSMs correspond to local types, giving us full backward-compatibility with
standard MST theory.

We think of AMP as a backend for top-down protocol design tools with
the following workflow. Any specific tool, e.g. Scribble [71], provides a dedicated
syntax for types and processes. Then, a global specification is compiled to a PSM
(where the compiler guarantees its tameness, which would be trivial for global
types) and invokes the projection of AMP, producing a CSM. This could be
re-translated for user consumption, but also be used to drive typing using AMP.
Failure of projection can be directly translated by the frontend to an explanation
of why the protocol is flawed and must be repaired. Given the generality of PSMs,
it should also be easier to experiment with extensions of the frontend language.

All proofs, omitted details, and additional examples can be found in [62].

2 Motivation and Key Ideas

In this section, we give an informal overview of the key ideas behind AMP before
proceeding with the formal development from Section 3.

2.1 Global Specifications via Protocol State Machines

Our first goal is to define an expressive formalism for specifying global proto-
cols, that is also constrained enough to make it tractable for top-down protocol
development. One of the most accomplished such formalisms, used in MSTs, is
global types. Figure 2 shows an example of a global type, represented in Figure 3
as an HMSC.

The term p—q:m; indicates the transmission of message m; from p to q.
The symbol 0 denotes termination of the protocol. Recursion can be specified

AMP: An Automata-theoretic Basis for Multiparty Protocols 319

by binding a recursion variable X with ¢X and using X subsequently to jump
back to where X was bound. Branching is denoted by +. In the example, p can
pick between three branches by sending different messages to q. Subsequently,
q sends messages to r in all branches: 1 in the top and middle branch and 3 in
the bottom branch. Participant r is supposed to send messages v; or vs in the
top and middle branch while it receives from p in the bottom branch, which also
recurses using X.

What makes these formalisms tractable? Their first key characteristic is that,
as a specification tool, they allow the user to (a) adopt a global point of view,
describing what coordination between all the participants is induced by the pro-
tocol; (b) express this coordination without enumerating all possible interleav-
ings of the send and receive events that can happen due to the asynchronous
nature of communication, e.g. p—q:m; indicates the send of the message imme-
diately followed by its receipt, although in any asynchronous implementation,
the receipt might happen at a much later point, after other independent events
took place. In Fig. 2, r may lag behind arbitrarily while p and q keep sending
messages. The second key characteristic of global types and HMSCs is that they
are finite-control: their control structure can be described using a finite graph.
This makes it possible to algorithmically manipulate them, e.g. for verifying they
satisfy some desirable properties, or for extracting local protocol specifications.

Our aim is to distil these two characterising features and remove any other
restriction that is not necessary, to obtain a more expressive global specification
formalism. To do this, we take a language-theoretic view of protocols, where
a protocol is seen as the set of sequences of send and receive events that are
considered compliant with it. More precisely, a send event p>q!m records that p
sent the message m to q; a receive event q<p?m records that q received message m
from p. A protocol specification is the language of desired finite or infinite words
of events. For the purpose of this section, we will focus on finite words, but the
technical development considers both finite and infinite words.

Not all languages over these events are meaningful in the context of protocols.
First, the sequences of events might not be feasible when using FIFO channels
(e.g. prq!l-q<p?2 is not FIFO); we write FIFO for the language of all words that
satisfy FIFO order. Second, if prqlmy - r>qlmso - q<ap?my -q<r?ms is accepted
by a procotol, it ought to also accept r>qlms-p>qlmy-q<p?my - q<r?mes as this
kind of reorderings are induced by the scheduling of participants and network
delays which are out of the control of participants. We write C(L) for the closure
of the language L under such reorderings. Thus a language L C FIFO represents
the global interaction patterns of the protocols; moreover L can specify only some

v
s p—>q:m1.q—>r:1.r—>p:v1.g p,.a =|p, r pm q4 r
. —q: .q—r:l.r—p: . — |
Iz p—qimz.q—r:l.r—opivs I I, I ¥ l ;,1
p—q:ms.q—r:3.p—rivy. X —r —

Fig. 2: Example global type. Fig. 3: A protocol as an HMSC.

320 F. Stutz and E. D’Osualdo

p>aqlmy :qﬂp?ml q>r!l r<q?l r > plug p<r?vq :
p>qlmg q <dp?mg qb>r!l r<q?l r > plug p < r?ug

> O—0—0—=0—=0—">0

|

g<dp?msg q>r!3 r<q?3 p > rlug r 4p?vg

p>glmg O O O O Oﬁ)
Fig.4: A PSM encoding for the protocol of Fig. 2.

of these interactions and get all the ones that should also be possible under the
asynchronous semantics by declaring the full set of acceptable words to be C(L).

Now, to obtain a finite-control formalism, we propose to express such a “core”
language L for the protocol C(L) using a finite state machine M with £(M) = L.
Since FIFO is not regular, the only feasible way of ensuring £(M) C FIFO is by
requiring M to keep track of which sent messages are still pending, which a
finite-state machine can only do up to some maximum capacity for the send
buffers. We thus arrive at the requirement that £(M) C FIFOp, where FIFOp is
the set of words respecting FIFO but where the number of pending sends never
exceed B € N at any point in time. Note that FIFOp is regular.

Building on these observations, we define a Protocol State Machine (PSM)
to be a finite state machine M recognising words of send and receive events,
with £L(M) C FIFOp for some B € N. Fig. 4 shows the protocol of Fig. 2 as
a PSM. Interpreted as a mere automaton M, it recognises a language L(M) of
words with at most one pending send at all time. (We call M 31-PSM because
the total number of messages in flight is at most 1; if we allowed 1 message
per channel, it would be called a 1-PSM.) As a PSM, however, M denotes the
language C(L(M)), which admits words with unbounded channel behaviours and
is not even regular in general. For instance, C(L(M)) includes words starting with
(p>qlms-q<p?ms-qrr!3-prrlvg)™” - (r<q?3-r<p?vs)™... where r is running
at a lower rate than the other participants, and leaves n pending sends from p
and from q before it consumes them.

PSMs achieve a substantial gain in expressivity while retaining the key char-
acteristics of global types. In terms of expressivity, every global type can be
encoded as a X 1-PSM; furthermore PSMs can be used to encode HMSCs, which
strictly subsume global types because the latter cannot specify simultaneous
message exchanges between a pair of participants [63]. PSMs can even repre-
sent protocols that are outside the reach of HMSCs. Consider, for example, the
PSM in Fig. 5. In that protocol, p commits to some integer (abstracted as the
label int) at the beginning by sending it to r and sends a go signal to q. Note
that here we use the paired send and receive notation p—q:ok to emit the two
events in sequence. Then q and r engage in some negotiation of arbitrary length
until q decides to exit the loop, at which point r is finally allowed to receive the
message sent by p. No HMSC can represent such protocol: the matching events
p > rlint and r < p?int are separated by an arbitrary number of events (with no
opportunity for reordering up to C(-)); since matching events in HMSCs need
to belong to the same basic block, such block would also need to contain the
arbitrarily many events in between, which is impossible.

AMP: An Automata-theoretic Basis for Multiparty Protocols 321

p > rlint p—q:go q—rr:ok r < p7int

>O0——0— o—0

q—r:int i r—q:int

Fig. 5: A protocol not expressible as an HMSC. Transitions labelled with p—q:m
should be interpreted as emitting the sequence p>qlm - q<p?m.

Of course, this level of generality would be pointless if we were not able to
provide for it in the other components of top-down protocol design. We start by
studying the first crucial component: projection.

2.2 From Global to Local Specifications: Projection

When considering projection, our first concern is the goal of decoupling: we want
to define a general interface for projection, such that both different algorithmic
implementations of projection can be used without altering the design of the rest
of the framework; and such that typing is not dependent on global specifications
(nor projection details).

In AMP, the key to decoupling is in choosing Communicating State Ma-
chines (CSMs) as the formalism for local specifications. A CSM { A, }oep asso-
ciates a finite state automaton A, to each participant p € P, where transitions
can either send or receive on the channels of p; the semantics of {A;}pep is
defined on configurations that include the local states for each participant and
an (unbounded) FIFO buffer for each channel. They induce a FIFO language
L({Ap}pep) over send/receive events, by considering as final the configurations
where all the participants are in final local states and all the buffers are empty.
CSMs thus represent a canonical general model of finite-control asynchronous
protocol implementations.

Per se, this is not a particularly original choice: MST’s local types have been
linked to CSMs of a certain shape before [23, 60|, and HMSC-based work used
them as local specifications. What AMP demonstrates is that it is possible to
build the entire top-down methodology around CSMs (with fewer restrictions),
including a session type system, gaining both in expressivity and in decoupling.

Having fixed our model for local behaviour, we can ask when it defines be-
haviour consistent with a global specification. We say a CSM { A, }oep is a pro-
jection of a PSM M if {Ap }pep is deadlock-free and L({Ap }oer) = C(L(M)).

r D> plv
pbaqlmy :qu?vl © q<dp?mq : qp>r!l © raq?l pvl
A A r > plv
p p>aqlmg p<dr?ug 1 q<4p?my Ar 2
> O—>© > >
ph :p>r!v3 qﬂh :ql>r!3 rm :p<1r?v3

Fig. 6: Example CSM.

322 F. Stutz and E. D’Osualdo

We focus on the (projection) synthesis problem, producing a CSM as result. The
corresponding decision problem is the projectability problem, which simply asks
if there exists such a CSM. Notably, projectability can have lower complexity.

Even for simple protocols, projection can be tricky. Take the example of
Fig. 2: r can never distinguish between the top two branches, as its only obser-
vations would be to have received 1 from g. The instance of the protocol with
m1 # meo and v; # ve would thus not be projectable. If ms = mg then q would
not be able to send the appropriate message to r. Therefore, the only projectable
instances with no redundant branches are the ones where my, mo, and mg are
pair-wise distinct and v; = wvy. Figure 6 shows a candidate projection of the
PSM in Fig. 2. If my = mg or v; # vo, the PSM is not projectable, and in fact
the CSM can reach a deadlock.

Given CSMs are Turing-complete models, it is unsurprising that checking if
a given CSM is a projection of a given PSM is undecidable. The key advantage
of the top-down approach boils down to the fact that it is nevertheless often
possible to efficiently compute a valid projection from a global specification.
This is precisely the goal of the projection operation. A projection operation
(-)] is a function taking a PSMs as input and returning either L or a CSM; it
is a sound projection if for all PSM M, if M| = {A,}pep then {A }pep is a
projection of M; it is a complete projection if for all projectable M, M| = L.

The MST literature proposed a number of sound but incomplete projection
algorithms for global types. Incompleteness makes MST frameworks lack robust-
ness: a projectable global type might still be rejected by the framework because
the projection is unable to handle it; this leaves the user in the awkward posi-
tion of having to build a mental model for the projection algorithm to be able to
design viable global types. Li et al. [48] proposed the first sound and complete
projection algorithm for sender-driven global types. Its PSPACE complexity
stems from the need for determinisation. Their evaluation, though, showed that
these corner cases will likely not occur in reality. This provides initial evidence
that robustness is achievable without compromising efficiency.

As is to be expected, the jump in expressivity by adopting PSMs cannot come
for free: the problem of computing a sound and complete projection for PSMs is
in general undecidable, a fact inherited from being able to encode HMSCs. This
does not defeat us, however: one of our main positive results is the definition of
a very large class of PSMs, called Tame PSMs, that enjoys sound and complete
PSPACE projection. A PSM is tame if it satisfies three constraints: (a) a tech-
nical refinement of the notion of the bound B for buffers, (b) that final states
have no outgoing transitions, and (c) sender-driven choice: at each branching
point, there is a single sender taking distinct actions.

Our proof works by reducing the problem to an instance of projectabil-
ity of MSTs with sender-driven choice, which was proven to be decidable in
PSPACE [48]. Our reduction is surprising because it produces a transformed pro-
tocol which is different from the original one: the encoded protocol language is
different and involves additional participants and additional message exchanges;
and yet its synthesized local specifications can be transformed back to local spec-

AMP: An Automata-theoretic Basis for Multiparty Protocols 323

ifications for the original protocol. Due to the mismatch in expressivity between
PSMs and global types, it is necessary that the reduction modifies the protocol
semantics. Furthermore, we show the reduction preserves the complexity class,
giving us a PSPACE algorithm for projectability of sender-driven PSMs.

Despite being a restriction, Tame PSMs are still much more general than
global types: every sender-driven global type gives rise to a Tame PSM; moreover,
every example given so far is tame. While the first two constraints (a) and (b) are
not severe, the third condition (c¢) imposes a genuine restriction on expressivity.

In fact our main negative result is that sender-driven choice is in a sense
“minimal”: we prove that projectability is undecidable for global types (the most
primitive kind of PSMs) with general choice (aka “mixed choice”).

2.3 Processes and Typing

To complete the top-down toolkit, we provide a mean to check that a program
correctly implements a protocol specified as a CSM. We achieve this by defining
a CSM-based session type system for an expressive variant of m-calculus with
session interleaving and delegation. The process calculus is adapted from [59]
which represents a feature-rich modern presentation of multiparty session typing.

The type system’s main soundness argument hinges, as is standard, on a
subject reduction result: if a typable program can take a step, it remains typable.
From this, we derive two main safety correctness guarantees: typable programs
cannot produce type mismatches (i.e. receiving a message that the process is not
expecting) and terminated sessions do not leave orphan messages behind. We
further prove a progress property under standard restrictions: roughly speaking,
if the process contains only one session, then, if the type of the session is not
final, the process can take a step (among the ones allowed by the type). Global
progress in the presence of session interleaving is out of scope of this paper, but
it may be attainable by adapting the (orthogonal) analysis employed in [18, 44].

In line with our decoupling goal, the guarantees of the type system are derived
from the key properties of CSMs produced by projection (e.g. deadlock freedom).
This makes it even compatible with the bottom-up methodology of [59] which
forgoes global types and proposes to check key properties on local types directly.
If a CSM satisfying the desired properties is provided to our type system, the
corresponding guarantees apply to typable processes regardless of the existence of
a PSM representing the protocol. This also liberates the type system completely
from the choice of representation for global protocols.

Overall we obtain an expressive, decoupled and robust backend for top-down
protocol development. Finally, we also show that this backend is backwards-
compatible with MSTs: not only every sender-driven global type can be encoded
as Tame PSM, but we also prove that, when there exists a local type that is a
projection of a global type, our projection produces a CSM that can be translated
back to a local type. This shows under which conditions PSMs and global types as
well as CSMs and local types are equivalent, despite their structural differences.

324 F. Stutz and E. D’Osualdo

3 Automata-based Protocol Specifications

We start our technical development by introducing a language-theoretic view of
protocol specifications. We define protocols as special languages of words, and
use CSMs as our local specifications of such languages. Finally, we introduce
PSMs as global protocol specifications.

3.1 State Machines and Protocol Languages

Let A be a finite alphabet. The set of finite words over A is denoted by A*, the
set of infinite words by A% and their union by A*. We write € for the empty
word. For two strings u € A* and v € A, their concatenation is v - w, and we
say that u is a prefiz of v, written u < v, if there is some w € A such that
u-w = v; pref(v) denotes all prefixes of v and is lifted to languages as expected.
For a language L C A, we distinguish between the language of finite words
L, := LN A* and the language of infinite words Li,¢ := L N A%.

Definition 3.1 (State machines). A state machine A = (Q, 4,6, qo, F) is a
5-tuple with a finite set of states @QQ, an alphabet A, a transition relation 6 C @ X
(AU{e}) xQ, an initial state qo € Q from the set of states, and a set of final states
F with F C Q. If (g,a,q') € 6, we also write ¢ = ¢'. A run is a finite or infinite
sequence qo —% q1 % ..., with ¢; € Q and a; € AU{e} fori >0, such that qg
is the initial state, and for each i > 0, it holds that (q;,a;,q;+1) € 0. The trace of
such run is the word ag-ay-... € A*. A run is maximal if it ends in a final state
or is infinite. The (core) language L(A) of A is the set of traces of all mazimal
runs. If Q is finite, we say A is a finite state machine (F'SM). A state machine
is dense if for every ¢ = ¢/ € 8, the transition label = is € implies that ¢ has only
one outgoing transition. A state machine is deterministic if V(q,a,q’) € d.a # ¢
and¥(q,a,q"),(q,a,q") € §.q' = q". We call a dense state machine deterministic
if Y(q,a,q"),(q,a,q") € 0.4 = q". A state q € Q is called a sink state if it has
no outgoing transitions, i.e. Va € AU{e},q¢ € Q.(q,a,q") ¢ 6. We say a state
machine is sink-final if, for every state, it is final iff it is a sink.

A language-theoretic view of protocols. Let m € V be a finite set of messages
and p,q,... € P be a finite set of participants. The alphabet of p’s send and
receive events is the set I}, := qup,mev{PDq!m’ p<q?m}. A send event p>qlm
records that p sent the message m to q; a receive event p < q?m records that p
received message m from gq. The alphabet of all events is the set I'p := UpeP I5.
A paired event is a send event and its corresponding receive event: p—q:m =
p>qlm - q<p?m. We define the alphabet of paired events as YXp := {p—q:m |
p,q € P and m € V}. For the remainder of the paper, we fix an arbitrary set of
participants P and messages), and often write I for I'p and X for Y'p. Given a
word, we can project it to all letters of a certain shape: for instance, w{ .o is the
subword of w with all of its send events where p sends any message to q. We write
V(w) for the sequence of values in w (in the same order). In w = wy ... € I'*®°,
a send event w; = p > qlm is matched by a receive event w; = q<p?m if i < j

AMP: An Automata-theoretic Basis for Multiparty Protocols 325

and V((wy ... wi)lpq) = V(Wi ... w;)qqpe). A send event w; is unmatched if
there is no such receive event w;. A language L C I' satisfies feasible eventual
reception if for every finite word w := w; ... w, € pref(L) with an unmatched
send event w;, there is an extension w < w’ € L such that w; is matched in w”.

A sequence of send and receive events shall describe the execution of a pro-
tocol. We define when such a sequence uses channels in FIFO manner.

Definition 3.2 (FIFO Language). A word w € I'*° is FIFO-compliant if
for each prefix w' of w, it holds that V(w’lqup?_) is a prefirx of V(U/Upm!_):
for every p,q € P. We denote the set of all infinite FIFO-compliant words by
FIFOint. For finite words, we require that all send events are matched. Thus,
FIFOsy, = {w | w is FIFO-compliant and V(w} .o) = V(wlype) Vp,q € P},
We denote the (non-regular) set of all FIFO words by FIFO = FIFO;,¢ & FIFOg,.
A language L C FIFO is a called a FIFO language.

As the model of distributed implementation of a protocol, we adopt commu-
nicating state machines: parallel compositions of finite-control processes com-
municating asynchronously via point-to-point FIFO channels.

Definition 3.3 (Communicating state machines). We call A = {A;}pep
a communicating state machine (CSM) over P and V if A, is a finite state
machine with alphabet I for every p € P. The semantics of a CSM A is the
language L(A) C FIFO whose definition is standard (see [62]). Roughly, for each
pair of distinct participants p,q € P there are two FIFO channels (p,q), (q,p) €
Chan allowing communication between the participants in the two directions. The
FSM A, = (Qyp, I}, 05, qo.p, Fp) describes the possible actions of participant p. A
transition (qp,p > qlm, q,) € &, indicates that when p takes a step from g, to q,
it will send a message m to q by enqueuing it in channel (p,q). Similarly, (¢, p<
q?m, q,) € 9, prescribes the reception by p of message m from the channel (q, p).
A CSM’s run always starts with empty channels and each participant running its
respective initial state. We denote the set of all reachable configurations (from
the initial configuration) by reach(A). A deadlock of {Ap}pep is a reachable
configuration with no outgoing transition that has at least one non-empty channel
or at least one participant not in a (local) final state.

The formal definition is given in [62]. As an example, Fig. 6 shows the three
state machines constituting a CSM.

The goal of a protocol designer is to define a protocol that can be realised as
a CSM. The projectable languages are exactly those protocols which can.

Definition 3.4 (Projections and Projectability). A language L C '™ is
said to be projectable if there exists a deadlock-free CSM { A }pep such that it
generates the same language (protocol fidelity), i.e., L = L({A,}pep). We say
that { Ay }pep is a projection of L.

The asynchronous nature of CSMs makes them unable to enforce the order
between certain events without explicit synchronisation. For instance, any CSM

326 F. Stutz and E. D’Osualdo

producing a word pi>q!m-r>s!m’-w will necessarily produce also r>s!m’-p>q!m-w.
Which events can be reordered is context-dependent: the events in the word
p>qlm-q<p?m cannot be swapped, as the receive is only possible after the send.
But in p>qlm - prqlm - q<p?m the last two events can be reordered. This has
been formalised as equivalence relation by Majumdar et al. [51], which can be
seen as an instance of Lamport’s happens-before relation [46] for systems with
point-to-point FIFO channels.

Definition 3.5. The indistinguishability relation ~ C I'* x I'* is the smallest
equivalence relation such that

(1) Ifp#r, thenw-p>rqgm-r>slm’-u ~ w-reslm’-prqlm - u.

(2) Ifq# s, thenw-q<p?m-s<r?m’-u ~ w-s<ar?m/-q<p?m - u.

(3) If p #sA(p #xrVq#s), thenw-p>qglm-s<r?m’-u ~ w-s<ar?m’-p>qlm-u.
(4) If [wllgoql > [wlyprl, then w-peqlm-q<ap?m’-u ~ w-q<p?m’-p>glm-u.
We define u <. v if there is w € I'* such that u - w ~ v. Observe that u ~ v
iff u 2~ v and v X u. For infinite words u,v € I', we define u < v if for

each finite prefix v’ of u, there is a finite prefix v’ of v such that v’ <. v’'. Define
u~ v iff u X% v andv 3% u. We lift the equivalence relation ~ on words to

languages. For a language L, we define

C(L) = {w’

\/w’EF*/\EIwGF*.wELandwlww
wer ANwerlr“. welandw <% w

Lemma 3.6 ([51]). For any CSM {Ap}oer, L({Ap}per) = C(L({Ap Bper))-

Ezxample 3.7. For finite words C(-) is standard. For infinite words, though, the
situation is a bit counterintuitive. Let us consider w := (p>qlm - q<p?m)“. It
is easy to construct a CSM {{A; },cp, with FSMs A, and Ag, that accepts w.
CSMs do not promise any sort of fairness for infinite runs so there is an infinite
run for (p>qlm)“ where only Ap’s transitions are scheduled. This is why C(-) is
defined using <%, giving (p>qlm)“ € C((p>q!m - q<p?m)~).

3.2 Protocol State Machines

We now introduce PSMs as a mean to specify protocol languages from a global,
centralised perspective. The idea, shared with both global types and HMSCs, is
to specify only a core subset of the admissible executions, e.g. the ones where
there is a bounded delay between sends and matching receives, and obtain the
full set of admissible executions by closing the core language using C(-).

We adapt the notion of B-bounded from [27] to formalise the idea of “bounded
delay” between matching events.

Definition 3.8 (B-bounded and X B-bounded). Let B € N be a natural
number. A FIFO-compliant word w is B-bounded, resp. ¥B-bounded, if for ev-
ery prefivw’ of w and participants p, q € P, it holds that |w'{} ;.| — |w'}4pe| < B,
resp. > aep ([0 g = [w'Up0]) < B. We define the (regular) set of B-bounded
FIFO words: FIFOp := {w € FIFO | w is B-bounded}.

AMP: An Automata-theoretic Basis for Multiparty Protocols 327

o <e?0 e <070
o\0 () ,() ,()\
oV
0 <><: o<de?0 e o7l o > elwin e < o?win
o et O—0—Q O—>0—>0
’1
e (o] e (o]
>
AN
o7,

ey -y W] [V] [
O<O: saen W?OO/ PG | BOTNY | BETOR | BRI
(a) KLE as a PSM. (b) KLE as an HMSC.

Fig. 7: Kindergarten Leader Election (KLE).

Definition 3.9 (Protocol State Machine). A dense FSM M = (Q,I,6,qo, F)
is a B-PSM if L(M) C FIFOp and L(M) satisfies feasible eventual reception.
The semantics of M defined as S(M) := C(L(M)). Moreover, M is a PSM if it
1s a B-PSM for some B.

By definition, PSMs specify FIFO languages; importantly, although the core
language L£(M) is B-bounded, the semantics C(L£(M)) includes non- B-bounded
words and will not even be regular in general. Note that, it is decidable to check
if an FSM is a B-PSM.

In [62], we show that C(-) preserves and reflects feasible eventual reception: if
L C I'*° satisfies feasible eventual reception, then C(L) does, and if C(L) satisfies
feasible eventual reception, then L does. More generally, every property that is
preserved by C(-) can be soundly checked on the core language of a PSM. If the
property is also reflected by C(-), the property holds if and only if it holds for
the core language.

Definition 3.10. A PSM M is a X1-PSM if its core language L(M) is X1-
bounded. We may abuse notation and use X'p as alphabet for X1-PSMs.

Exzample 3.11 (Kindergarten Leader Election). We consider a protocol between
two participants e (evens) and o (odds). It can be used to quickly settle a dispute
between children (hence the name). Both children pick 0 or 1 and tell each other
their pick at the same time. Child e wins if the sum is even while o wins if
the sum is odd. At the end, the loser concedes by sending the message win to
the winner. The protocol is specified as a PSM in Fig. 7a (and as an HMSC in
Fig. 7b). Note that specifying this protocol requires the ability of issuing send
and receive events independently. If one insisted on issuing send and matching
receives together, as in global types and ¥1-PSMs, one of the children would be
forced to reveal their hand first, undermining the purpose of the protocol.

4 Projection: From PSMs to CSMs

A CSM A is a projection of a PSM M, if A is a projection of S(M). In this
section, we explain two main results. The first is positive: we show that sound
and complete projection is decidable for Tame PSMs. The second is negative: we
show that the sender-driven restriction of Tame PSMs is necessary: if we drop

the restriction, projectability becomes undecidable even for sink-final >1-PSMs.
The full proofs can be found in [62].

328 F. Stutz and E. D’Osualdo

4.1 Sound and Complete Projection for Tame PSMs

The idea of the decidability result is to reduce projectability of a Tame PSM to
projectability of a (different) sender-driven global type, which can then be han-
dled using the sound and complete algorithm of [48]. Furthermore, the reduction
is such that a projection of the original PSM can be read off a projection of the
global type. Before sketching the idea behind the reduction, we define Tame
PSMs formally. Tame PSMs satisfy three conditions: they are sink-final, sender-
driven, and satisfy some more fine-grained bounds on the message queues.

Definition 4.1 (Choice restrictions for PSMs). Let M = (Q,I,6,qo, F)
be a PSM. The PSM M satisfies sender-driven choice if there is a function
\: Q — P such that for all states q,q’ such that ¢ = ¢’ with = € T, it holds that
A(q) is the sender for x, i.e., x = X(q)> ! . In addition, we say M 1is directed
iof for every state q, there is also a dedicated receiver p, i.e., all transition labels
from q are of the form X(q) >p! . Last, if there is no dedicated sender but all
transitions are still distinct, i.e. M s deterministic, we say that it satisfies mixed
choice.

Definition 4.2 (Channel bounds for PSMs). We define channel bounds
as a partial function B: Chan — N from channels to natural numbers, where
dom(f) denotes the domain of 5. Given a PSM M, we say that M respects (3 if
the following holds for every (p,q) € Chan:

— If (p,q) ¢ dom(p3), then every message from p to q is immediately followed
by a receive: for every state q and transition from q to ¢’ labelled with p>q!m,
it holds that there is a single transition from q' and it is labelled with q<p?m.

— If (p,q) € dom(B), then w,.q qap7 s B((p,))-bounded for every w € S(M).

A PSM that respects 8 with 8 = () is a PSM which only uses paired events,
just like global types do. Thus checking the condition with 8 = () is a trivial
syntactic check. For general PSMs, it is possible to generate valid channel bounds
with a sound algorithm we propose in [62]. We conjecture the algorithm to be
also complete, i.e. to always output some bounds if they exist.

Definition 4.3 (Tame PSMs). A Tame PSM is a pair (M,[) where the
PSM M 1is sender-driven, sink-final, and respects the channel bounds (3.

We can now sketch the idea behind the reduction. Fundamentally, the gap
in expressivity between Tame PSMs and sender-driven global types is that in
PSMs sends and matching receives do not need to appear one right after the
other. One can observe, however, that one could replicate the same asynchrony
of some trace pr q!m---q < p?m by introducing an intermediary participant
(p,q) that is always ready to forward messages from p to g, leading to a trace
p—(p,q):m--- (p,q)—q:m where the sends and matching receives between par-
ticipants and the intermediaries are now immediately adjacent. The channel
bounds [tell us exactly for which channels we need to introduce intermedi-
aries; moreover the bound on the buffers induced by g makes sure that these
intermediaries will not introduce any spurious dependency in the executions. To
consolidate the idea, we show how it applies to our KLE example.

AMP: An Automata-theoretic Basis for Multiparty Protocols 329

e,0)—0:0 (o, e)—e:0
-0
e,0)—0:0 (0, e) —e:l o— (o0, e):win (0, e) —e:win
>0 > O >O ~O
)—o:1 (o, e)—e:1
>0 > O >O ~O

e, 0 o: e:
e— (e, 0):win (e, 0) —o:win
e,0)—o0:1l (0, e) —e:0
;(} >

Fig. 8: Kindergarten Leader Election after the Channel-participant Encoding.

Ezxample 4.4 (Revisiting the KLE protocol). In Example 3.11, we introduced the
Kindergarten Leader Election protocol, whose communication pattern cannot
be represented as a 31-PSM/global type: both children need to commit to the
number they send before they receive the other’s message. Its PSM (Fig. 7) is
however tame: it is sink-final, sender-driven and respects (e, 0) = (o,e) = 1.
The “intermediary forwarders” idea applied to the protocol results in a protocol
where some teachers (the intermediaries) will act as depositories for the initial
choices of the two children. After committing their choice, each child is allowed
to learn from the teacher the choice of the other child. The resulting PSM is
given in Fig. 8. The names of the additional participants indicate the direction
of communication: (e, o) forwards messages from e to o. Obviously, this encoding
does not specify the same protocol. Still, our construction shows that one can
obtain a projection of the original protocol from a projection of the modified
one, by appropriately removing the forwarding actions of the teachers.

The example illustrates the simple case where 5(-) < 1; in the more general
case, the reduction is more involved and requires more intermediaries.
@ encpsm(-)

The workflow of our encoding is
visualised in Fig. 9. Given a PSM M,
one first computes its encoding
encpsm(M). Second, one synthesizes
a projection {Ap}pep of the encoded !

protocol using results from [48]. Third, fdecrsn(Ap) boep 4 © eersm©) (A, Y oer

one decodes to obtain a projection) .
fdecrsm(Ay) Joep of M. Fig.9: Workflow of encoding.

<
~
[0}
=]
(9]
U
)
=
=

oSesssoy
STSajuLks @

implements
implements

Theorem 4.5. Checking projectability of Tame PSMs is in PSPACE. One can
also synthesize a projection in PSPACE.

4.2 Mixed Choice yields Undecidable Projectability

Now, we show that the sender-driven choice restriction for Tame PSMs is neces-
sary for projectability to be decidable. General PSMs inherit undecidability of
projectability from HMSCs, which in turn was proven by Lohrey [50, Thm. 3.4].
Given our positive result for Tame PSMs, the proof for undecidability ought to
break in the presence of sender-driven choice. The original proof goes through
several (often implicitly given or omitted) automata-based transformations and
does not give any insights about where and how the transformations break under
the assumption of sender-driven choice.

330 F. Stutz and E. D’Osualdo

Theorem 4.6. The projectability problem for sink-final mixed-choice X1-PSMs
15 undecidable.

We reduce the membership problem for Turing Machines to checking pro-
jectability of a sink-final mixed-choice ¥1-PSM with five participants. Initially,
there is a branching which only two participants are involved in and learn about.
Subsequently, all participants communicate Turing machine computations in the
form of configurations in both branches. If the (projected) language of one of
the other participants is not the same for both branches, the PSM cannot be im-
plementable because they do not know which branch to comply with and easily
deadlock. We also show that the reverse is the case. Hence, we specify a language
for each branch and make both coincide if and only if the Turing Machine has no
accepting computation, which is the case if and only if the PSM is projectable.

The full proof is in [62]. We adopt the proof strategy of Lohrey to PSMs
and make every transformation explicit and carefully check which structural
properties the transformations preserve, yielding a stronger undecidability result
concerning the most rudimentary of PSMs: ¥1-PSMs.

5 Typing Programs against CSMs

We now overview the key ideas behind AMP’s type system. The formal details
and full proofs can be found in [62]. To define programs, we take inspiration
from the process calculus with session interleaving and delegation of [59]. The
syntax of AMP’s programs is reproduced in Fig. 10. The processes P represent
the static program text. As is standard, 0 is the terminated process, || denotes
parallel composition, Q[¢] denotes a sequential process running the code defined
by a finite set of definitions D. The prefixes @®;e; c[q;]!;{c;) and &;er ¢[q:] 7l (y:)
denote internal and external choice respectively, with a non-empty finite set of
indices I. The endpoint of participant p of a channel between p and g in a
session s, is denoted by s[p][q]; p can send a label [and some payload p to q
in session s by s[p|[q]!l(p), the dual reception is denoted by s[q][p|?{(z) (which
binds the payload to z). To model delegation, a process must be able to send
to another the capability to act as participant p in session s, denoted s|p]; the
receiving process will bind such capability to a variable x and use it to form
endpoints z[q]; we thus have in general send /receive actions on c[q] where ¢ can
be a variable or some s|p].

The process (vs : A) P denotes the creation of a new bound session s used
in P. The session is annotated with a (computationally irrelevant) CSM A,
taking the place of what is often a global type. So far, we treated messages in
CSMs very abstractly as elements of a finite alphabet. In processes, messages
are more structured: they have a label (from a finite set) and a payload (of some
type). The messages used by the CSM will thus be pairs [(¢) of a label [and a
payload type t, with the convention that if, from a state ¢, there are two outgoing
transitions with the same sender, receiver and label, they will agree on the type.

In applications, the payload can be of any base type (e.g. integers, strings),
or be a channel capability s[p] (for delegation). Since supporting base types is a

AMP: An Automata-theoretic Basis for Multiparty Protocols 331

cu=ux | sp|
Pu=0 | Al Py | (vs: AP | & claillliles) . Pi | & clail?lilys). P | QIe]

R:z=0| B[Ry | (vs: AR | @ clailllifei). P | & elqs]?li(ys) - P | Qld]
| s»o | err

D= (Q[{f] = iEeBI c[qz]'h(cz) Pl), D ‘ (Q[f] = i(é&] C[qz](?lz(yl) Pz), D ’ IS
Fig. 10: Syntax of AMP’s m-calculus.

simple exercise, we follow [59] and focus on the harder case of channel capabilities
as payloads. When using a CSM A = {A, },cp as a protocol specification for a
session s, it is natural to consider the (control) states @, of A, to be the local
types that can be associated to s[p|. Therefore, in our setting we will consider
the set L of the states of any A annotating the process, as the possible payload
types. For simplicity, we assume all CSMs use disjoint sets of states, so that we
can unambiguously refer to the transitions from any state ¢ by d(q).

In particular, if the protocol specified by A can delegate channels of a session
following some CSM B, then the message alphabet of A will include states of B.
When the CSMs are obtained through projection, it is natural to first obtain B
so we can refer to its states in writing the PSM that projects to A. We thus
assume there is an acyclic “delegation partial order” between the CSMs of a
process: B < A means that A can use the states of B in its messages.

The semantics of the calculus is defined on runtime configurations R (defined
in Fig. 10), which are processes which additionally contain message queues s » o
for each active session s. Here o is a map from pairs of participants to sequences
of messages. The reduction semantics is standard (cf. [62]). The only reduction
rules we highlight here are the ones leading to an error configuration:

Viel.o(q,p)=10{)...Nl; #1 o(p,q) # € for some p,q
gls[p][qi]?li(yi) P || s»o— err (vs: A) s » o — err

The first rule models unsafe communication: a process is stuck because all the
queues it is waiting to receive from are not empty, but the labels of the first
messages do not match any of the cases the process is expecting. The second
rule models orphan messages: a session where all participants terminated but
that has still non-empty message queues. The safety guarantees of our type
system will rule out both cases. Note that [58, 59] focuses on communication
safety. In addition, they consider S-deadlock freedom, which implies no orphan
messages, but is an undecidable property that needs to be checked and is not
necessarily transferred to processes by the type system: the property only holds
if there is only one session, in which case much stronger conditions transfer. In
our setting, deadlock freedom is transferred throughout by projection and the
type system, yielding no orphan messages.

Figure 11 shows the crucial rules of AMP’s type system. The typing judge-
ment @ | A+ P uses a process P, a typing context © for the types of the param-
eters € of sequential processes Q[¢] (the definitions of which are typed separately

332 F. Stutz and E. D’Osualdo

©1AFP end(q)
—— PT-0 PT-END
©iI0F0 Oic:q, AP

0(q) ={(p<ai?li(pi),qi) | i € I} Viel.O1Ac:qi,yi:pit P

PT-&
Oi1Ac:qk é&l clai]?li(ys) - P

6(q) 2 {(prailli(pi),qi) |1 €1} Vicel.O1Ac:qi,{c;i:pitjeny F P

PT-®
e A, c:q, {Ci : pi}ie] H ‘669[C[ql]'lz<cz> . Pl

As = {s[p] : init(Ap) }renm O1A AP P

T-v
O 1A (vs: AP

Fig. 11: Typing rules for processes; init(-) denotes a CSM’s initial state.

against ©); a typing context A associating the variables x and the channel ca-
pabilities s[p| occurring free in P, with some CSM state ¢ € L. Rule PT-0 says
that a terminated process is typable in the environment with no capabilities.
Rule PT-END permits to discard the capabilities that have terminated: end(q)
holds for final states with no outgoing receive transition. Rules PT-& and PT-®
deal with communication. Assume ¢ = s[p|. According to PT-&, to receive a mes-
sage as participant p in session ¢, we look for the type ¢ of ¢ in the typing context
and check the CSM transitions d(q) are all receives {(p < q;?l;(pi),qi) | i € I}.
Then the process needs to be able to receive any branch i, resulting in the
continuation P; which is typed in the context extended with the corresponding
payload type y; : p;, and with the type of ¢ changed to g;. According to PT-, to
send, as ¢ with type ¢, a message non-deterministically picked from a number of
branches ¢ € I, we have to make sure ¢ allows each branch, including matching
the types of the payloads. Then each branch i continues as P; which is typed in
a context where ¢ has type ¢; and we lost ownership of the payload c¢;. Finally,
PT-v types a new session s used by P, by adding to the context a new binding
slp] : gp for each participant p of the CSM A annotating the session, with ¢,
being the initial state of p in A.

The first correctness criterion for the type system is to prove subject re-
duction: if a process is typable, then every configuration reachable from it will
be typable. Thus, to state subject reduction, we need to define when a run-
time configuration is typable. For this purpose, we define a second judgement
© 1 A 2 F R that includes a third typing context (2 used to type session mes-
sage queues: associating to each channel s[p|[q] a sequence of message types I(q)
(label and payload type). The key to make typing of runtime configurations an
inductive invariant, is the following rule:

(7, &) € reach(A) A% = {slp] : ffp}pGPA
0f = {slplia] = €, Dbpacrs O A A% 2.0 F R

RT-v
1A 2F(vs: AR

AMP: An Automata-theoretic Basis for Multiparty Protocols 333

The main difference between RT-v and PT-v is that the typing context is not
populated with capabilities associated to initial states; instead the prover can
pick any CSM configuration (¢,&) —where ¢ collects the local state of each
participant, and £ the contents of the message queues— that is reachable from
the initial configuration of A. The states and the queues are used to initialise
the typing context to type the process R using the restricted session.

In what follows we assume the definitions D can be typed according to ©. We
say a process/runtime configuration is well-annotated if every CSM appearing in
it is (1) deadlock-free, and (2) satisfies feasible eventual reception. Here, anno-
tated indicates that the CSMs have no computational meaning but well shows
the need for certain guarantees, which our type system can preserve. Note that a
process is automatically well-annotated if the CSMs are obtained via projection.

Theorem 5.1 (Subject Reduction). Given a well-annotated R, if © 1 () |
0FRand R— R, then© 1010+ R

Corollary 5.2 (Type Safety). For a well-annotated R, if © 1)1 0 = R and
R —* R/, then R’ does not contain err.

For progress, the situation is more delicate: just like in [59] and most other
MST systems, allowing session interleaving may introduce inter-session depen-
dencies that are not modelled in the global protocol (which only pertains intra-
session dependencies). We thus prove progress under these assumptions: (i) there
is only one session running, and (ii) that each of its participants is implemented
by a distinct process, and (iii) the CSM annotating it is sink-final. To encode
these extra restrictions, we define a “Session Fidelity” variant of the typing judge-
ment © | A 2 Fgr R which uses a subset of the rules of + to enforce the
restrictions above. Let /13 and Qg be defined as in the premises of RT-v.

Theorem 5.3 (Progress). Let (7€) be a configuration of a sink-final, deadlock-
free CSM A satisfying feasible eventual reception. If © | AZ 1 (% Fsp R, and
(q, &) can take a step, then there exist some R’ and (¢’,¢"), such that R — R/,
(7,6) — (q",€'), and © 1 A%, 1 82, Fsp R

Progress hinges on deadlock freedom of the CSM. In general, any (language)
property of a PSM that is preserved and reflected by C(-) holds for its projec-
tion. However, as for progress, it is not necessarily easy to make the type system
enforce the preservation of these properties at the global process level and re-
quires careful treatment. [18] demonstrated how Kobayashi-style techniques [44]
that can be used to show progress in the presence of session interleaving. We
conjecture a similar system can be added on top of AMP’s type system.

6 Applications of AMP to MST Frameworks

Standard (expression-based) global types from MST frameworks can be seen as
restricted special cases of PSMs. What is gained from using AMP for global types
seen as PSMs? Is anything lost in doing so? In this section, we evaluate AMP as

334 F. Stutz and E. D’Osualdo

a backend for projection/typing of standard global types. The key consequences
of our results are:

(a) Every sender-driven global type is a tame sink-final 31-PSM.

(b) Tame sink-final ¥1-PSMs can be represented as a sender-driven global type.

(c) Every collection of (expression-based) local types { Ly }oep can be expressed
as a CSM {Ap }pep and vice versa.

(d) AMP’s projection is deadlock-free by construction, but MSTs typically insist
on freedom of a stricter notion of deadlock which we call soft deadlock. We
show AMP’s projection can also be set to ensure soft deadlock freedom,
without losing completeness.

These results help us settle two open questions:

— Expression-based global /local types are equi-expressive with respect to state-
machine-based global /local specifications.
— Allowing mixed-choice in global types makes projectability undecidable.

Here, we give an overview while [62] presents the results in detail.

Global and local types. In most MST frameworks, protocols are specified using
expression-based global types (G), which get projected to expression-based local
types (L). Their syntax is specified as follows:

G:=0 | Zpiﬁqi:mi.Gi | uX.G | X (global types)

icl
L:=01| & qi!m;.L; | &I qi?mi.L; | pX.L | X (local types)
i€l S

where 0 explicitly denotes termination and pX binds a recursion variable X. The
remaining operators specify how messages are exchanged: for local types, sending
and receiving are separate actions, while for global types they are specified in
a single paired event. Typically only deterministic global types are considered,
i.e. where every >, ; pi—qi:m;.G; has no i # j with p;—q;:m; = p;j—q;:m;.
The choice restrictions we discussed, can be imposed on global types, e.g. sender-
driven choice requires that, for ., pi—qi;:m;. Gy, for all 4,5 € I, p; = p;.

The standard semantics of global types has been given as a transition system,
or as sets of traces. In both cases, the semantics allows reordering of events that
are not causally related, e.g. p—q:1.r—s:2.0 allows r and s to communicate
before p and q. This is formalised, in the presentation of [48, 51, 60] (which we
adopt here) as defining the semantics of a global type to be a set of traces closed
under the indistinguishability relation ~. With this view, it is immediate to
represent any global type as a PSM. Given the restricted format of global types,
the PSMs corresponding to translations of global types (like the one in Fig. 4)
are %1-PSMs with a specific shape: they are tree-like, sink-final and recursion
only happens at leaves and to ancestors [60]. On the face of it, it is unclear
whether every ¥1-PSM can be modelled as global type.

Theorem 6.1. For every sink-final X1-PSM M, there is a global type GAut(M)
with the same core language (and hence the same semantics). If M is non-
deterministic (mized-choice, sender-driven, or directed, resp.), then GAut(M)
is non-deterministic (mized-choice, sender-driven, or directed, resp.).

AMP: An Automata-theoretic Basis for Multiparty Protocols 335

The main idea of Theorem 6.1 is that one can see a global type as a special
regular expression, and thus we can adapt techniques like Arden’s lemma and
Brzozowski derivatives to the case of PSMs. The key difficulty in the proof
lays in showing the branching conditions are preserved: the standard automata
transformations change the branching structure, and we need to produce new
variants that do.

Similarly, local types can be directly read as the FSMs of a CSM. We can
also provide an inverse transformation (preserving branching).

Theorem 6.2. Let Ay be a sink-final FSM over I, without mized-choice states
for a participant p. One can construct a local type Ly for p with L(Ly) = L(Ap).

Deadlocks and protocol termination. In MSTs, local types can only terminate
with a 0, which signals at the same time that it is valid to stop the protocol, and
that there is no further potential action. This implies that for a global type to
be projectable into local types, all the participants need to know unambiguously
when the protocol terminated globally. In contrast, using CSMs, it is possible
to mark as final a state with outgoing transitions. Consider for instance the
(directed) global type G := (p—q:m1.p—r:im1.0)+ (p—q:ms2.0). AMP’s projec-

r<ap?my

tion would produce the FSM -O———0 as the projection for r. It contains a
non-sink final state: r is not informed of which branch was taken and needs to
be prepared to terminate, or receive one more message.

AMP’s projection produces deadlock-free CSMs, where deadlocks are defined
as configurations which cannot take a step, but their queues are not empty or
some participant is in a non-final state. Projections to local types ensure the
absence of another type of deadlock: a soft deadlock, i.e. a configuration that is a
deadlock, or that cannot take a step but where some participant is in a non-sink
state. Is the possibility of soft deadlocks desirable? We argue that this depends
on the domain of application: in distributed computing, it would be fine if a
server kept listening for incoming requests while, in embedded computing, it can
be key that all participants eventually stop. We can show that it is possible to
use AMP in both scenarios, without giving up on completeness.

Definition 6.3 (Strong Projectability). A language L C I'* is said to be
strongly projectable if there exists a CSM { By }oep such that { By }ocp is free
from soft deadlocks (soft deadlock freedom), and L is the language of {Bp }poecp
(protocol fidelity). We say that { By }pep is a strong projection of L.

Theorem 6.4. Let G be a projectable global type. Then, the subset construction
¢ (G,p) [48, Def.5.4] is sink-final for every participant p if and only if there is
a CSM that is a strong projection of G and this CSM satisfies feasible eventual
reception or every of its state machines is deterministic.

If we aim for a strong projection of a projectable global type, we construct
the global type’s subset construction and check if it is sink-final. If it is not, there
is no strong projection of it. If this is undesirable, the protocol needs redesigning.
Theorem 6.2 can yield local types and LAut(L) is the FSM for a local type L.

336 F. Stutz and E. D’Osualdo

Undecidability for mixed-choice. Finally, these results together with our results
from Section 4.2, can settle the open question of whether we can project mixed-
choice global types algorithmically.

Corollary 6.5. Both the projectability problem and the strong projectability prob
lem for mized-choice global types are undecidable.

7 Related Work

Multiparty session types. Inspired by linear logic [33], Honda [36] proposed bi-
nary sessions types for sessions with two participants. Multiparty session types
[37] extended the idea to multiple participants. Deniélou and Yoshida [23] were
the first to extensively explore the relation between CSMs and local types, but
their projection is not complete and only supports directed choice; moreover
the approach was found to be somewhat flawed [59]. MSTs have been incorpo-
rated into a number of programming languages [3, 17, 42, 47, 49, 54, 57|. They
have also been applied to various other domains like operating systems [25],
web services [71], distributed algorithms [45], timed systems [8|, cyber-physical
systems [52], and smart contracts [22]. A number of works are devoted to mech-
anising MST meta-theory [14, 40, 41, 64]. Our results could potentially extend
the expressivity of the types involved in these applications.

MST projectability/projection. Via a reduction to globally-cooperative HMSCs,
Stutz [60] proved MST projectability to be decidable for the class of global types
that can —but do not have to— terminate (called O-reachable). Li et al. [4§]
provided a direct MST projection algorithm that is complete for sender-driven
global types, providing a PSPACE upper bound. Our results use a reduction
to these later developments. The global specifications in [48] can be shown to
be special cases of Tame »1-PSMs so our results strictly expand the reach of
their results. For example, the protocols of Figs. 5 and 7 are all tame, yet out of
the reach of both works. We also clarify the discrepancy between the notion of
deadlock in global types and in [48] (cf. Section 6). Finally, [48, 60] do not have
a type system, providing no way to link properties of projections with the ones
of processes. Preliminary versions of some of our results appeared in the PhD
thesis of the first author [61].

The almost totality of asynchronous MST works can only handle directed
choice. An exception is [12], where unrestricted global types are considered (with-
out a type system). They propose an incomplete projection algorithm that is
correct with respect to a different notion of correct projection than the standard
one we adopt and generalise. We refer to [51] for a survey on choice restrictions.

Hu and Yoshida [38] propose a scheme with global types and an incom-
plete projection, where the global types are not safe by construction and the
restrictions on choice only appear at the local types. The safety of global types
is ensured by a combination of model-checking with message buffers of size 1,
and syntactic restrictions that ensure that any unsafety that might arise, will
be visible in the 1-bounded executions. For PSMs satisfying the syntactic re-
strictions, the same approach could be applied. The types of [38] also include

AMP: An Automata-theoretic Basis for Multiparty Protocols 337

connect /disconnect actions, which can be emulated in AMP by excluding dead-
locks (but not soft deadlocks) and using non-sink final states.

Choreography automata and languages. Choreography Automata [4] are syntac-
tically similar to ¥1-PSMs, but do not employ any closure operation, requiring
the user to specify all the allowed interleavings, and preventing finite state rep-
resentations for many common communication patterns. In addition, Majumdar
et al. [51] showed that their conditions for projectability are flawed for the asyn-
chronous case (fixes for the synchronous case appeared in [31, p.8]). Barbanera
et al. [5] applies a language-theoretic approach to a limited class of synchronous
choreographies (with no claim of completeness of projection).

Bottom-up MSTs. A number of MST-based works deviate from the top-down
approach. For instance, [59] proposes a type system that only requires local types
and not a global type. The typing ensures some operational correspondence be-
tween local types and processes, making it possible to model check local types
to determine properties of the program. Their local types in the asynchronous
setting are Turing-powerful, and therefore model checking is of limited use. By
virtue of the decoupling achieved by our type system, AMP can be used in a
bottom-up way too: safety of the CSM used to type a process, implies safety
of the process, regardless of whether the CSM is obtained by projection or just
given. Dagnino et al. [21] and Castellani et al. [13] also use a bottom-up strategy
by reconstructing a so-called deconfined global type from the parallel compo-
sition of local programs of a single session. Deconfined global types are not
automatically safe, and checking their safety is shown to be undecidable.

Ezxtensions for MSTs. A number of extensions for MSTs have been considered
(see [7] for a survey), including: parametrisation [16, 24|, dependent types |24,
66, 67|, graduality [39], fault-tolerance [6, 70]. Context-free session types [43, 65]
specify binary sessions that are not representable with finite-control. It would be
interesting to consider projection for PSMs generated by pushdown automata.

Distributed synthesis. In automata theory, distributed synthesis seeks a way to
transform a sequential specification into an equivalent distributed implementa-
tion, which is close in spirit with the idea of extracting local types from global
types. One of the few positive results in this area is Zielonka’s theorem [72],
which shows that every regular trace language can be recognised by a so-called
“asynchronous automaton”. Despite their name, asynchronous automata can be
seen as a parallel composition of participants interacting through synchronous
actions. In contrast, PSMs and CSMs represent non-regular FIFO languages,
giving rise to a harder challenge.

High-level message sequence charts. HMSCs were defined in an industry stan-
dard [69], inspiring extensive academic research |26, 28, 29, 53, 56]. Projectability
has been studied for HMSCs under the name “safe realisability” [2, 30, 50|, and
was shown to be undecidable in general [50]. Several restrictions of HMSCs have
been proposed to make projectability decidable. For a detailed survey, we refer
to [60]. Compared to PSMs, HMSCs only model finite runs; their PSM encod-
ing equips them with an infinite run semantics. With our developments, it is

338 F. Stutz and E. D’Osualdo

fairly straightforward to obtain a projection operation for sender-driven, sink-
final HMSCs that respect some channel bounds. This class is incomparable to
any of the decidable HMSC classes proposed in the literature. Since our type
system only depends on CSMs, regardless of how they are obtained, AMP can
type check a program against a projectable HMSC.

Choreographic programming. Choreographic programming [19, 32, 35] adopts
the top-down approach even more radically than MSTs. In choreographic pro-
gramming, the endpoint projection (EPP) aims at synthesizing a fully-featured
program implementation directly from the global specification. As a result, the
global specification describes the local computation alongside the communica-
tion structure (requiring infinite-state formalisms). In choreographies, one typi-
cally works with non-finite-control-state global specifications, so the hopes for a
complete and decidable EPP are slim, justifying giving up on completeness. By
only considering local computation in processes, the MST /AMP approach avoids
this issue. Nevertheless, our results could still be useful for EPP when applied to
the pure communication structure of choreographies. Notably, our method can
project examples that cannot be projected using EPPs from the literature. Con-
sider the choreography if p.x then (p—q: .q—s:) else (p—s: .s—q:),
where message payloads are irrelevant and hence omitted and p.x denotes non-
deterministic choice by p. The example is syntactically valid in [20] and can be
easily encoded as a global type with sender-driven choice. However, their EPP
would be undefined for q and s: it uses the merge from [11], which can only merge
same sender receives. Our results would instead produce the desired projection.
Communicating state machines. CSMs are the canonical automata model for
distributed systems. They have been studied in the context of model checking
projections and do not apply a top-down methodology. The verification problem
is undecidable in general since CSMs are Turing-powerful [10]. Several strategies
to yield decidable classes have been proposed: assuming channels are lossy [1],
restricting the communication topology [55, 68|, or only allowing half-duplex
communication for two participants [15]. The concept of existential bounded-
ness [27] was initially defined for CSMs and yields decidability of control state
reachability. The same holds for synchronisability [9, 34|, which, intuitively, re-
quires that every execution can be re-ordered (up to ~) into phases of sends
and receives such that messages can only be received in the same phase. Global
types can only express 1-synchronisable and half-duplex communication [63].

Acknowledgments. The authors thank Anca Muscholl and Jorge A. Pérez for their
discussions. This work was partially supported by the Luxembourg National Research
Fund (FNR) under the grant agreement C22/IS/17238244/AVVA and by the ERC
Consolidator Grant for the project “PERSIST” under the EU’s Horizon 2020 research
and innovation programme (grant No. 101003349).

1

2|

8]

Bibliography

Abdulla, P.A., Bouajjani, A., Jonsson, B.: On-the-fly analysis of systems
with unbounded, lossy FIFO channels. In: Hu, A.J., Vardi, M.Y. (eds.)
Computer Aided Verification, 10th International Conference, CAV’98, Van-
couver, BC, Canada, June 28 - July 2, 1998, Proceedings, Lecture Notes
in Computer Science, vol. 1427, pp. 305-318, Springer (1998), https://doi.
org/10.1007/BFb0028754

Alur, R., Etessami, K., Yannakakis, M.: Realizability and verification of
MSC graphs. Theor. Comput. Sci. 331(1), 97-114 (2005), https://doi.org/
10.1016/j.tcs.2004.09.034

Ancona, D., Bono, V., Bravetti, M., Campos, J., Castagna, G., Deniélou,
P., Gay, S.J., Gesbert, N., Giachino, E., Hu, R., Johnsen, E.B., Martins,
F., Mascardi, V., Montesi, F., Neykova, R., Ng, N., Padovani, L., Vas-
concelos, V.T., Yoshida, N.: Behavioral types in programming languages.
Found. Trends Program. Lang. 3(2-3), 95-230 (2016), https://doi.org/10.
1561,/2500000031

Barbanera, F., Lanese, 1., Tuosto, E.: Choreography automata. In: Bliudze,
S., Bocchi, L. (eds.) Coordination Models and Languages - 22nd IFIP WG
6.1 International Conference, COORDINATION 2020, Held as Part of the
15th International Federated Conference on Distributed Computing Tech-
niques, DisCoTec 2020, Valletta, Malta, June 15-19, 2020, Proceedings, Lec-
ture Notes in Computer Science, vol. 12134, pp. 86-106, Springer (2020),
https://doi.org/10.1007/978-3-030-50029-0 6

Barbanera, F., Lanese, 1., Tuosto, E.: Formal choreographic languages. In:
ter Beek, M.H., Sirjani, M. (eds.) Coordination Models and Languages -
24th IFIP WG 6.1 International Conference, COORDINATION 2022, Held
as Part of the 17th International Federated Conference on Distributed Com-
puting Techniques, DisCoTec 2022, Lucca, Italy, June 13-17, 2022, Proceed-
ings, Lecture Notes in Computer Science, vol. 13271, pp. 121-139, Springer
(2022), https://doi.org/10.1007/978-3-031-08143-9 8

Barwell, A.D., Scalas, A., Yoshida, N., Zhou, F.: Generalised multiparty
session types with crash-stop failures. In: Klin, B., Lasota, S., Muscholl,
A. (eds.) 33rd International Conference on Concurrency Theory, CONCUR
2022, September 12-16, 2022, Warsaw, Poland, LIPIcs, vol. 243, pp. 35:1—
35:25, Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik (2022), https:
//doi.org/10.4230/LIPIcs. CONCUR.2022.35

Bejleri, A., Domnori, E., Viering, M., Eugster, P., Mezini, M.: Compre-
hensive multiparty session types. Art Sci. Eng. Program. 3(3), 6 (2019),
https://doi.org/10.22152 /programming-journal.org/2019/3 /6

Bocchi, L., Murgia, M., Vasconcelos, V.T., Yoshida, N.: Asynchronous timed
session types - from duality to time-sensitive processes. In: Caires, L. (ed.)
Programming Languages and Systems - 28th European Symposium on

340

19]

[10]

11

[14]

18]

F. Stutz and E. D’Osualdo

Programming, ESOP 2019, Held as Part of the European Joint Confer-
ences on Theory and Practice of Software, ETAPS 2019, Prague, Czech
Republic, April 6-11, 2019, Proceedings, Lecture Notes in Computer Sci-
ence, vol. 11423, pp. 583-610, Springer (2019), https://doi.org/10.1007/
978-3-030-17184-1 21

Bouajjani, A., Enea, C., Ji, K., Qadeer, S.: On the completeness of verifying
message passing programs under bounded asynchrony. In: Chockler, H.,
Weissenbacher, G. (eds.) Computer Aided Verification - 30th International
Conference, CAV 2018, Held as Part of the Federated Logic Conference,
FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part II, Lecture
Notes in Computer Science, vol. 10982, pp. 372-391, Springer (2018), https:
//doi.org/10.1007/978-3-319-96142-2 23

Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM
30(2), 323-342 (1983), https://doi.org/10.1145/322374.322380

Carbone, M., Honda, K., Yoshida, N.: Structured communication-centered
programming for web services. ACM Trans. Program. Lang. Syst. 34(2),
8:1-8:78 (2012), https://doi.org/10.1145/2220365.2220367

Castagna, G., Dezani-Ciancaglini, M., Padovani, L.: On global types and
multi-party session. Log. Methods Comput. Sci. 8(1) (2012), https://doi.
org/10.2168 /LMCS-8(1:24)2012

Castellani, 1., Dezani-Ciancaglini, M., Giannini, P.: Asynchronous sessions
with input races. In: Carbone, M., Neykova, R. (eds.) Proceedings of
the 13th International Workshop on Programming Language Approaches
to Concurrency and Communication-cEntric Software, PLACESQETAPS
2022, Munich, Germany, 3rd April 2022, EPTCS, vol. 356, pp. 12-23 (2022),
https://doi.org/10.4204/EPTCS.356.2

Castro-Perez, D., Ferreira, F., Gheri, L., Yoshida, N.: Zooid: a DSL for
certified multiparty computation: from mechanised metatheory to certified
multiparty processes. In: Freund, S.N., Yahav, E. (eds.) PLDI ’21: 42nd
ACM SIGPLAN International Conference on Programming Language De-
sign and Implementation, Virtual Event, Canada, June 20-25, 2021, pp.
237-251, ACM (2021), https://doi.org/10.1145/3453483.3454041

Cécé, G., Finkel, A.: Verification of programs with half-duplex communi-
cation. Inf. Comput. 202(2), 166-190 (2005), https://doi.org/10.1016/j.ic.
2005.05.006

Charalambides, M., Dinges, P., Agha, G.A.: Parameterized, concurrent ses-
sion types for asynchronous multi-actor interactions. Sci. Comput. Program.
115-116, 100-126 (2016), https://doi.org/10.1016 /j.scico.2015.10.006
Chen, R., Balzer, S., Toninho, B.: Ferrite: A judgmental embedding of ses-
sion types in rust. In: Ali, K., Vitek, J. (eds.) 36th European Conference on
Object-Oriented Programming, ECOOP 2022, June 6-10, 2022, Berlin, Ger-
many, LIPIcs, vol. 222, pp. 22:1-22:28, Schloss Dagstuhl - Leibniz-Zentrum
fiir Informatik (2022), https://doi.org/10.4230/LIPIcs. ECOOP.2022.22
Coppo, M., Dezani-Ciancaglini, M., Yoshida, N., Padovani, L.: Global
progress for dynamically interleaved multiparty sessions. Math.

[19]

[20]

[21]

22]

23]

[24]

[25]

[26]

[27]

AMP: An Automata-theoretic Basis for Multiparty Protocols 341

Struct. Comput. Sci. 26(2), 238-302 (2016), https://doi.org/10.1017/
S0960129514000188

Cruz-Filipe, L., Montesi, F.: A core model for choreographic programming.
Theor. Comput. Sci. 802, 38-66 (2020), https://doi.org/10.1016/j.tcs.2019.
07.005

Cruz-Filipe, L., Montesi, F., Peressotti, M.: Communications in choreogra-
phies, revisited. In: Haddad, H.M., Wainwright, R.L., Chbeir, R. (eds.)
Proceedings of the 33rd Annual ACM Symposium on Applied Computing,
SAC 2018, Pau, France, April 09-13, 2018, pp. 1248-1255, ACM (2018),
https://doi.org/10.1145/3167132.3167267

Dagnino, F., Giannini, P., Dezani-Ciancaglini, M.: Deconfined global types
for asynchronous sessions. In: Damiani, F., Dardha, O. (eds.) Coordina-
tion Models and Languages - 23rd IFIP WG 6.1 International Conference,
COORDINATION 2021, Held as Part of the 16th International Federated
Conference on Distributed Computing Techniques, DisCoTec 2021, Val-
letta, Malta, June 14-18, 2021, Proceedings, Lecture Notes in Computer
Science, vol. 12717, pp. 41-60, Springer (2021), https://doi.org/10.1007/
978-3-030-78142-2 3

Das, A., Balzer, S., Hoffmann, J., Pfenning, F., Santurkar, I.: Resource-
aware session types for digital contracts. In: 34th IEEE Computer Security
Foundations Symposium, CSF 2021, Dubrovnik, Croatia, June 21-25, 2021,
pp. 1-16, IEEE (2021), https://doi.org/10.1109/CSF51468.2021.00004
Deniélou, P., Yoshida, N.: Multiparty session types meet communicating
automata. In: Seidl, H. (ed.) Programming Languages and Systems - 21st
European Symposium on Programming, ESOP 2012, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS
2012, Tallinn, Estonia, March 24 - April 1, 2012. Proceedings, Lecture Notes
in Computer Science, vol. 7211, pp. 194-213, Springer (2012), https://doi.
org/10.1007/978-3-642-28869-2 10

Deniélou, P., Yoshida, N., Bejleri, A., Hu, R.: Parameterised multiparty
session types. Log. Methods Comput. Sci. 8(4) (2012), https://doi.org/10.
2168 /LMCS-8(4:6)2012

Fahndrich, M., Aiken, M., Hawblitzel, C., Hodson, O., Hunt, G.C., Larus,
J.R., Levi, S.: Language support for fast and reliable message-based com-
munication in singularity OS. In: Berbers, Y., Zwaenepoel, W. (eds.) Pro-
ceedings of the 2006 EuroSys Conference, Leuven, Belgium, April 18-21,
2006, pp. 177-190, ACM (2006), https://doi.org/10.1145/1217935.1217953
Gazagnaire, T., Genest, B., Hélouét, L., Thiagarajan, P.S., Yang, S.: Causal
message sequence charts. In: Caires, L., Vasconcelos, V.T. (eds.) CON-
CUR 2007 - Concurrency Theory, 18th International Conference, CON-
CUR 2007, Lisbon, Portugal, September 3-8, 2007, Proceedings, Lecture
Notes in Computer Science, vol. 4703, pp. 166-180, Springer (2007), https:
//doi.org/10.1007/978-3-540-74407-8 12

Genest, B., Kuske, D., Muscholl, A.: On communicating automata with
bounded channels. Fundam. Inform. 80(1-3), 147-167 (2007), URL http:
/ /content.iospress.com /articles /fundamenta-informaticae /fi80-1-3-09

342

28]

[29]

32|

33]

[34]

[35]

[36]

F. Stutz and E. D’Osualdo

Genest, B., Muscholl, A.: Message sequence charts: A survey. In: Fifth In-
ternational Conference on Application of Concurrency to System Design
(ACSD 2005), 6-9 June 2005, St. Malo, France, pp. 2-4, IEEE Computer
Society (2005), https://doi.org/10.1109/ACSD.2005.25

Genest, B., Muscholl, A., Peled, D.A.: Message sequence charts. In: Desel,
J., Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri
Nets, Advances in Petri Nets [This tutorial volume originates from the
4th Advanced Course on Petri Nets, ACPN 2003, held in Eichstatt, Ger-
many in September 2003. In addition to lectures given at ACPN 2003,
additional chapters have been commissioned|, Lecture Notes in Computer
Science, vol. 3098, pp. 537558, Springer (2003), https://doi.org/10.1007/
978-3-540-27755-2 15

Genest, B., Muscholl, A., Seidl, H., Zeitoun, M.: Infinite-state high-level
mscs: Model-checking and realizability. J. Comput. Syst. Sci. 72(4), 617
647 (2006), https://doi.org/10.1016/j.jcss.2005.09.007

Gheri, L., Lanese, 1., Sayers, N., Tuosto, E., Yoshida, N.: Design-by-contract
for flexible multiparty session protocols. In: Ali, K., Vitek, J. (eds.) 36th Eu-
ropean Conference on Object-Oriented Programming, ECOOP 2022, June
6-10, 2022, Berlin, Germany, LIPIcs, vol. 222, pp. 8:1-8:28, Schloss Dagstuhl
- Leibniz-Zentrum fiir Informatik (2022), https://doi.org/10.4230/LIPICS.
ECOOP.2022.8

Giallorenzo, S., Montesi, F., Peressotti, M., Richter, D., Salvaneschi, G.,
Weisenburger, P.: Multiparty languages: The choreographic and multitier
cases (pearl). In: Mgller, A., Sridharan, M. (eds.) 35th European Conference
on Object-Oriented Programming, ECOOP 2021, July 11-17, 2021, Aarhus,
Denmark (Virtual Conference), LIPIcs, vol. 194, pp. 22:1-22:27, Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik (2021), https://doi.org/10.4230/
LIPIcs. ECOOP.2021.22

Girard, J.: Linear logic. Theor. Comput. Sci. 50, 1-102 (1987), https://doi.
org/10.1016,/0304-3975(87)90045-4

Giusto, C.D., Laversa, L., Lozes, E.: On the k-synchronizability of systems.
In: Goubault-Larrecq, J., Konig, B. (eds.) Foundations of Software Science
and Computation Structures - 23rd International Conference, FOSSACS
2020, Held as Part of the European Joint Conferences on Theory and Prac-
tice of Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceed-
ings, Lecture Notes in Computer Science, vol. 12077, pp. 157-176, Springer
(2020), https://doi.org/10.1007/978-3-030-45231-5 9

Hirsch, A.K., Garg, D.: Pirouette: higher-order typed functional choreogra-
phies. Proc. ACM Program. Lang. 6(POPL), 1-27 (2022), https://doi.org/
10.1145/3498684

Honda, K.: Types for dyadic interaction. In: Best, E. (ed.) CONCUR
'93, 4th International Conference on Concurrency Theory, Hildesheim,
Germany, August 23-26, 1993, Proceedings, Lecture Notes in Computer
Science, vol. 715, pp. 509-523, Springer (1993), https://doi.org/10.1007/
3-540-57208-2 35

[37]

38]

[39]

[40]

[41]

42]

43]

|44]

[45]

|46]

147]

48]

AMP: An Automata-theoretic Basis for Multiparty Protocols 343

Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session
types. In: Necula, G.C., Wadler, P. (eds.) Proceedings of the 35th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2008, San Francisco, California, USA, January 7-12, 2008, pp. 273—
284, ACM (2008), https://doi.org/10.1145/1328438.1328472

Hu, R., Yoshida, N.: Explicit connection actions in multiparty session types.
In: Huisman, M., Rubin, J. (eds.) Fundamental Approaches to Software
Engineering - 20th International Conference, FASE 2017, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS
2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, Lecture Notes in
Computer Science, vol. 10202, pp. 116-133, Springer (2017), https://doi.
org/10.1007/978-3-662-54494-5 7

Igarashi, A., Thiemann, P., Tsuda, Y., Vasconcelos, V.T., Wadler, P.: Grad-
ual session types. J. Funct. Program. 29, el7 (2019), https://doi.org/10.
1017/S0956796819000169

Jacobs, J., Balzer, S., Krebbers, R.: Connectivity graphs: a method for
proving deadlock freedom based on separation logic. Proc. ACM Program.
Lang. 6(POPL), 1-33 (2022), https://doi.org/10.1145/3498662

Jacobs, J., Balzer, S., Krebbers, R.: Multiparty GV: functional multiparty
session types with certified deadlock freedom. Proc. ACM Program. Lang.
6(ICFP), 466495 (2022), https://doi.org/10.1145/3547638

Jespersen, T.B.L., Munksgaard, P., Larsen, K.F.: Session types for rust.
In: Bahr, P., Erdweg, S. (eds.) Proceedings of the 11th ACM SIGPLAN
Workshop on Generic Programming, WGPQICFP 2015, Vancouver, BC,
Canada, August 30, 2015, pp. 13-22, ACM (2015), https://doi.org/10.1145/
2808098.2808100

Keizer, A.C., Basold, H., Pérez, J.A.: Session coalgebras: A coalgebraic view
on regular and context-free session types. ACM Trans. Program. Lang. Syst.
44(3), 18:1-18:45 (2022), https://doi.org/10.1145/3527633

Kobayashi, N.: A new type system for deadlock-free processes. In: CON-
CUR, Lecture Notes in Computer Science, vol. 4137, pp. 233-247, Springer
(2006), https://doi.org/10.1007/11817949 16

Kouzapas, D., Gutkovas, R., Voinea, A.L., Gay, S.J.: A session type
system for asynchronous unreliable broadcast communication. CoRR
abs/1902.01353 (2019), URL http://arxiv.org/abs/1902.01353

Lamport, L.: Time, clocks, and the ordering of events in a distributed
system. Commun. ACM 21(7), 558-565 (1978), https://doi.org/10.1145/
359545.359563

Lange, J., Ng, N., Toninho, B., Yoshida, N.: A static verification frame-
work for message passing in go using behavioural types. In: Chaudron,
M., Crnkovic, I., Chechik, M., Harman, M. (eds.) Proceedings of the 40th
International Conference on Software Engineering, ICSE 2018, Gothen-
burg, Sweden, May 27 - June 03, 2018, pp. 1137-1148, ACM (2018),
https://doi.org/10.1145/3180155.3180157

Li, E., Stutz, F., Wies, T., Zufferey, D.: Complete multiparty session type
projection with automata. In: Enea, C., Lal, A. (eds.) Computer Aided

344

[52]

[56]

[57]

F. Stutz and E. D’Osualdo

Verification - 35th International Conference, CAV 2023, Paris, France,
July 17-22, 2023, Proceedings, Part III, Lecture Notes in Computer Sci-
ence, vol. 13966, pp. 350-373, Springer (2023), https://doi.org/10.1007/
978-3-031-37709-9 17

Lindley, S., Morris, J.G.: Embedding session types in haskell. In: Mainland,
G. (ed.) Proceedings of the 9th International Symposium on Haskell, Haskell
2016, Nara, Japan, September 22-23, 2016, pp. 133-145, ACM (2016), https:
//doi.org/10.1145/2976002.2976018

Lohrey, M.: Realizability of high-level message sequence charts: closing the
gaps. Theor. Comput. Sci. 309(1-3), 529-554 (2003), https://doi.org/10.
1016/j.tcs.2003.08.002

Majumdar, R., Mukund, M., Stutz, F., Zufferey, D.: Generalising projection
in asynchronous multiparty session types. In: Haddad, S., Varacca, D. (eds.)
32nd International Conference on Concurrency Theory, CONCUR 2021,
August 24-27, 2021, Virtual Conference, LIPIcs, vol. 203, pp. 35:1-35:24,
Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik (2021), https://doi.org/
10.4230/LIPIcs. CONCUR.2021.35

Majumdar, R., Pirron, M., Yoshida, N., Zufferey, D.: Motion session types
for robotic interactions (brave new idea paper). In: Donaldson, A.F. (ed.)
33rd European Conference on Object-Oriented Programming, ECOOP
2019, July 15-19, 2019, London, United Kingdom, LIPIcs, vol. 134, pp.
28:1-28:27, Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik (2019),
https://doi.org/10.4230/LIPIcs. ECOOP.2019.28

Mauw, S., Reniers, M.A.: High-level message sequence charts. In: Cavalli,
A.R., Sarma, A. (eds.) SDL 97 Time for Testing, SDL, MSC and Trends
- 8th International SDL Forum, Evry, France, 23-29 September 1997, Pro-
ceedings, pp. 291-306, Elsevier (1997)

Neykova, R., Hu, R., Yoshida, N., Abdeljallal, F.: A session type provider:
compile-time API generation of distributed protocols with refinements in
f#. In: Dubach, C., Xue, J. (eds.) Proceedings of the 27th International
Conference on Compiler Construction, CC 2018, February 24-25, 2018, Vi-
enna, Austria, pp. 128-138, ACM (2018), https://doi.org/10.1145/3178372.
3179495

Peng, W., Purushothaman, S.: Analysis of a class of communicating finite
state machines. Acta Informatica 29(6/7), 499-522 (1992), https://doi.org/
10.1007/BF01185558

Roychoudhury, A., Goel, A., Sengupta, B.: Symbolic message sequence
charts. ACM Trans. Softw. Eng. Methodol. 21(2), 12:1-12:44 (2012), https:
//doi.org/10.1145/2089116.2089122

Scalas, A., Yoshida, N.: Lightweight session programming in scala. In: Kr-
ishnamurthi, S., Lerner, B.S. (eds.) 30th European Conference on Object-
Oriented Programming, ECOOP 2016, July 18-22, 2016, Rome, Italy,
LIPIcs, vol. 56, pp. 21:1-21:28, Schloss Dagstuhl - Leibniz-Zentrum fiir In-
formatik (2016), https://doi.org/10.4230/LIPIcs. ECOOP.2016.21

[58]

[59]

[60]

[61]

62]

[63]

|64]

[65]

|66]

67]

AMP: An Automata-theoretic Basis for Multiparty Protocols 345

Scalas, A., Yoshida, N.: Less is more: multiparty session types revisited.
Technical Report 6. Imperial College London (2018), URL https://www.
doc.ic.ac.uk/research/technicalreports/2018 /DTRS18-6.pdf

Scalas, A., Yoshida, N.: Less is more: multiparty session types revisited.
Proc. ACM Program. Lang. 3(POPL), 30:1-30:29 (2019), https://doi.org/
10.1145/3290343

Stutz, F.: Asynchronous multiparty session type implementability is de-
cidable - lessons learned from message sequence charts. In: Ali, K., Sal-
vaneschi, G. (eds.) 37th European Conference on Object-Oriented Program-
ming, ECOOP 2023, July 17-21, 2023, Seattle, Washington, United States,
LIPIcs, vol. 263, pp. 32:1-32:31, Schloss Dagstuhl - Leibniz-Zentrum fiir
Informatik (2023), https://doi.org/10.4230/LIPIcs. ECOOP.2023.32

Stutz, F.: Implementability of Asynchronous Communication Protocols -
The Power of Choice. Ph.D. thesis, Kaiserslautern University of Technology,
Germany (2024), URL https://kluedo.ub.rptu.de/frontdoor/index/index/
docld /8077

Stutz, F., D’Osualdo, E.: An automata-theoretic basis for specification
and type checking of multiparty protocols. CoRR abs/2501.16977 (2025),
https://doi.org/10.48550 /arXiv.2501.16977

Stutz, F., Zufferey, D.: Comparing channel restrictions of communicating
state machines, high-level message sequence charts, and multiparty session
types. In: Ganty, P., Monica, D.D. (eds.) Proceedings of the 13th Interna-
tional Symposium on Games, Automata, Logics and Formal Verification,
GandALF 2022, Madrid, Spain, September 21-23, 2022, EPTCS, vol. 370,
pp. 194-212 (2022), https://doi.org/10.4204/EPTCS.370.13

Thiemann, P.: Intrinsically-typed mechanized semantics for session types.
In: Komendantskaya, E. (ed.) Proceedings of the 21st International Sym-
posium on Principles and Practice of Programming Languages, PPDP
2019, Porto, Portugal, October 7-9, 2019, pp. 19:1-19:15, ACM (2019),
https://doi.org/10.1145/3354166.3354184

Thiemann, P., Vasconcelos, V.T.: Context-free session types. In: Garrigue,
J., Keller, G., Sumii, E. (eds.) Proceedings of the 21st ACM SIGPLAN
International Conference on Functional Programming, ICFP 2016, Nara,
Japan, September 18-22, 2016, pp. 462-475, ACM (2016), https://doi.org/
10.1145/2951913.2951926

Toninho, B., Caires, L., Pfenning, F.: Dependent session types via intuition-
istic linear type theory. In: Schneider-Kamp, P., Hanus, M. (eds.) Proceed-
ings of the 13th International ACM SIGPLAN Conference on Principles and
Practice of Declarative Programming, July 20-22, 2011, Odense, Denmark,
pp. 161-172, ACM (2011), https://doi.org/10.1145/2003476.2003499
Toninho, B., Yoshida, N.: Depending on session-typed processes. In: Baier,
C., Lago, U.D. (eds.) Foundations of Software Science and Computation
Structures - 21st International Conference, FOSSACS 2018, Held as Part
of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, Lecture

346

[69]

[70]

F. Stutz and E. D’Osualdo

Notes in Computer Science, vol. 10803, pp. 128-145, Springer (2018), https:
//doi.org/10.1007/978-3-319-89366-2 7

Torre, S.L., Madhusudan, P., Parlato, G.: Context-bounded analysis of con-
current queue systems. In: Ramakrishnan, C.R., Rehof, J. (eds.) Tools
and Algorithms for the Construction and Analysis of Systems, 14th In-
ternational Conference, TACAS 2008, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2008, Budapest,
Hungary, March 29-April 6, 2008. Proceedings, Lecture Notes in Computer
Science, vol. 4963, pp. 299-314, Springer (2008), https://doi.org/10.1007/
978-3-540-78800-3 21

Union, I.T.: Z.120: Message sequence chart. Tech. rep., International
Telecommunication Union (October 1996), URL https://www.itu.int /rec/
T-REC-Z.120

Viering, M., Hu, R., Eugster, P., Ziarek, L.: A multiparty session typing
discipline for fault-tolerant event-driven distributed programming. Proc.
ACM Program. Lang. 5(O0OPSLA), 1-30 (2021), https://doi.org/10.1145/
3485501

Yoshida, N., Hu, R., Neykova, R., Ng, N.: The scribble protocol language.
In: Abadi, M., Lluch-Lafuente, A. (eds.) Trustworthy Global Computing -
8th International Symposium, TGC 2013, Buenos Aires, Argentina, Au-
gust 30-31, 2013, Revised Selected Papers, Lecture Notes in Computer
Science, vol. 8358, pp. 22-41, Springer (2013), https://doi.org/10.1007/
978-3-319-05119-2 3

Zielonka, W.: Notes on finite asynchronous automata. RAIRO Theor.
Informatics Appl. 21(2), 99-135 (1987), https://doi.org/10.1051/ITA/
1987210200991

Open Access. This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution, and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the

chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted

use,

you will need to obtain permission directly from the copyright holder.

