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Abstract

The accurate and efficient simulation of large (bio)molecular systems with quantum me-
chanical fidelity represents a grand challenge in computational science. Ab initio quantum
chemistry methods provide accuracy but remain prohibitively expensive at realistic scales,
whereas classical force fields achieve efficiency but sacrifice accuracy. Machine learning
force fields (MLFFs) promise to close this gap, yet their predictive power is often limited
by locality assumptions that miss the long-range effects governing the structure, dynamics,
and function of complex (bio)molecular systems. This thesis develops a framework for
general-purpose MLFFs that preserves quantum mechanical fidelity while scaling to large
systems by combining quantum-mechanical data, efficient atomic representations, and
models explicitly designed to capture long-range interactions.

To advance model development beyond small molecules, we introduce two quantum mechan-
ical datasets that span the chemical space of cellular components: MD22 and QCell. MD22
offers a benchmark featuring molecular dynamics trajectories for six biomolecular units
and two supramolecular complexes. It represents a significant increase in system size (up
to 370 atoms) and conformational flexibility, and is specifically designed to probe nonlocal
correlations. To support the training of broadly applicable, general-purpose models, QCell
takes this a step further by significantly expanding coverage across all major classes of
biomolecules, with ~500k diverse fragments of carbohydrates, nucleic acids, lipids, as well
as noncovalent dimers and ion-water clusters.

We then make collective effects tractable in global MLFFs that couple all atomic degrees
of freedom by developing an efficient interatomic descriptor. The resulting algorithm, re-
duced descriptor gradient-domain machine learning (rGDML), automatically constructs the
minimal set of interatomic features required to capture long-range fluctuations, converting
the quadratic growth of global descriptors into linear scaling. rGDML improves accuracy
over both local and baseline global models, and its efficiency and stability are demon-
strated through a 50 ns molecular dynamics simulation of a tetrapeptide. Its enhanced
interpretability enables systematic analysis across MD22 molecules, revealing that nonlocal
features (atoms separated by up to 15 A in the studied systems) are essential to retain
overall accuracy for peptides, DNA base pairs, fatty acids, and supramolecular complexes.

Building on these insights, we introduce SO3LR, a pretrained general-purpose MLFF that
couples a fast SO(3)-equivariant neural network for semi-local interactions with universal,
physically grounded pairwise potentials for short-range repulsion, long-range electrostatics,
and dispersion. SO3LR is trained on a diverse set of four million neutral and charged
molecular complexes computed at the PBEO+MBD level of quantum mechanics, ensuring
broad coverage of covalent and noncovalent interactions. The model scales to 200k atoms
on a single GPU and achieves reasonable to high accuracy across the chemical space of
organic (bio)molecules. We validate this performance with polyalanine simulations from
300 to 800 K, accurate structural and spectroscopic observables across both high and low
vibrational frequencies for a solvated protein, and consistent local and global structural
properties for a glycoprotein and a lipid bilayer.

This thesis establishes a complete route from data to long-range-aware, general-purpose
MLFFs that bring quantum accuracy to the biomolecular scale. The synthesis of machine
learning and physics marks the beginning of realistic modeling of biological processes with
quantum-level fidelity, with important implications for understanding health and disease.
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Chapter 1

Introduction

The structure and dynamics of biological macromolecules are governed by the forces acting
between their constituent atoms. These forces drive the system across a multidimensional
potential-energy surface (PES), giving rise to emergent phenomena such as protein folding,
ligand binding, membrane organization, and viral capsid assembly. The ability to model
this energy landscape with high fidelity is therefore not merely a computational challenge
but a central route to understanding disease mechanisms, designing novel therapeutics, and
engineering biomaterials with controlled function [1|. For decades, however, progress has
been constrained by an apparent trade-off between simulation accuracy and computational
efficiency.

At one end of the spectrum lie methods of ab initio quantum mechanics (QM). By solving, in
approximation, the Schrodinger equation for a given arrangement of nuclei, QM approaches
provide a predictive and physically grounded description of the PES. Consistent with this
description, the forces are calculated as the gradient of the energy, directly reflecting the
underlying electronic structure. This accuracy comes at a steep computational cost, with
formal scaling that is typically cubic or worse with system size. As a result, direct ab initio
molecular dynamics remains intractable for the system sizes and time scales required to
capture many biologically relevant events, which often involve tens of thousands of atoms
and microsecond to millisecond timescales.

At the opposite end is classical molecular mechanics, which employs empirical force fields.
These models replace the explicit quantum-mechanical calculation with a fixed analytical
energy function composed of bonded and non-bonded terms. Their simplicity underpins
their outstanding efficiency, with effectively linear scaling in system size and the ability
to simulate entire organelles or viruses [2, 3]. This efficiency is obtained at the expense
of physical fidelity. Fixed functional forms and parameterizations limit the description
of essential quantum-mechanical effects such as electronic polarization, charge transfer,
and the many-body interactions. Rather than constituting a controlled approximation to
the true Born—Oppenheimer PES, classical force fields define an alternative model with
intrinsically limited accuracy and transferability to new chemical environments [4].

In recent years, machine learning force fields (MLFFs) have emerged as a promising way to
mitigate this long-standing trade-off [5]. By learning the high-dimensional PES directly
from QM reference data, MLFFs can, in principle, approach quantum accuracy at a cost
comparable to classical force fields. Realising this promise in a robust and transferable way,
however, requires addressing three interconnected challenges:



1. Data. The performance and reliability of any MLFF are critically dependent on the
quality, diversity, and physical relevance of its underlying QM training data. At the
outset of this work, significant gaps existed in the available datasets, particularly for
large, flexible systems where nonlocal interactions are important and for entire classes
of biomolecules such as lipids, carbohydrates, and nucleic acids.

2. Representation. To enable learning, molecular geometries must be mapped to
numerical descriptors. These representations have either been computationally scalable
but physically incomplete (local, short-range) or physically more complete but poorly
scaling with system size (global, fully coupled).

3. Scaling and long-range physics. An MLFF should respect basic physical sym-
metries and capture interactions across all relevant length scales, from covalent
bonding to long-range electrostatics and dispersion, while remaining efficient enough
for large-scale biomolecular simulations. This requires architectural choices and
model decompositions that avoid uncontrolled extrapolation when moving from small
training systems to realistic biological assemblies.

This thesis presents a series of contributions addressing these challenges. Chapter 2
provides the theoretical background on molecular simulations and machine learning force
fields. Chapter 3 introduces the MD22 dataset, a benchmark designed to probe the role
of nonlocal interactions in larger and more flexible molecules, and demonstrates a new
algorithm for scaling the global sSGDML model to such systems. Chapter 4 describes the
QCell dataset, a chemically diverse QM dataset spanning the building blocks of all major
biomolecular classes. Chapter 5 addresses the representation problem by introducing the
rGDML method, which achieves effectively linear scaling for a compressed global descriptor
while retaining essential nonlocal information. Chapter 6 presents the SO3LR model,
a pretrained MLFF that combines an SO(3)-equivariant neural network with universal
pairwise force fields for long-range interactions, delivering accuracy and transferability for
large-scale biomolecular simulations. Finally, Chapter 7 summarizes the main results and
outlines directions for future research.

Taken together, these contributions help to narrow the traditional trade-off between accuracy
and efficiency in (bio)molecular simulation and provide a coherent framework for constructing
predictive, QM-informed force fields that can accelerate discovery in chemistry, biology,
and medicine.



Chapter 2

Theoretical Background

In this chapter, we introduce the theoretical foundations of molecular simulations and
machine learning force fields (MLFFs) that underpin the developments presented in this
thesis. We begin with the quantum-mechanical description of molecules and its standard
approximations, proceed through classical molecular mechanics, and then discuss modern
ML-based models, with emphasis on those used and extended in Chapters 3—6.

2.1 Foundations of molecular simulations

2.1.1 Quantum description and the Born—Oppenheimer surface

At the fundamental level, a molecular system of electrons and nuclei is described by the
non-relativistic, time-independent Schrédinger equation

HU(r,R)=E¥(r,R), (2.1)

where U(r,R) is the total many-body wavefunction, r and R denote electronic and nuclear
coordinates, and H is the full molecular Hamiltonian containing kinetic-energy operators
and Coulomb interactions [6].

Practical electronic structure calculations almost universally rely on the Born—-Oppenheimer
approximation, which exploits the large mass ratio between nuclei and electrons to decouple
their motion. The molecular wavefunction is factorized as

\I/(I', R) ~ 1/10(1°; R) X(R)7 (2'2>

with ¥y (r; R) representing the electronic ground state for clamped nuclei at positions R,
and x(R) the nuclear wavefunction. Assuming the electrons adapt instantaneously to
the nuclear motion allows one to neglect non-adiabatic couplings, yielding the electronic
Schrédinger equation

He(r; R) tho(r; R) = Eo(R) ¢o(r; R). (2.3)
Here, Ey(R) defines the ground-state Born—-Oppenheimer potential-energy surface (PES)
governing the nuclear motion. In principle, Eq. (2.3) provides the exact PES, but a
direct solution is computationally intractable for most systems of chemical interest because
the underlying Hilbert space grows exponentially with system size. Consequently, all
electronic structure methods and machine learning force fields discussed in this thesis aim
to approximate this surface efficiently.
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2.1.2 Classical dynamics and statistical ensembles

Given a potential-energy surface E(R), classical molecular dynamics (MD) integrates
Newton’s equations of motion

2
m% _ F(R) = —~VRE(R), (2.4)

to generate trajectories of the nuclear coordinates. In the absence of coupling to an external
reservoir, these equations define Hamiltonian dynamics that conserve the total energy and
sample the microcanonical (NVE) ensemble, characterized by the phase-space distribution

pavE(T) < 6(E — Hy(T)), (2.5)

where I' = (R, P) denotes a microstate in phase space and H,, is the classical nuclear
Hamiltonian |7].

In many applications, one wishes to simulate at fixed temperature or pressure. This
is achieved by augmenting Eq. (2.4) with additional degrees of freedom or stochastic
terms that model coupling to a heat or pressure bath. Extended-system methods of the
Nosé-Hoover type and their generalizations provide deterministic equations of motion
that generate canonical (NVT) or isothermal-isobaric (NPT) ensembles, while Langevin
dynamics introduces stochastic and frictional forces that drive the system towards a
prescribed temperature [7-10]. In all cases, the equations of motion are constructed such
that the target equilibrium ensemble is preserved as a stationary distribution in phase
space.

The connection to macroscopic or experimentally accessible observables is made through
statistical averages. Given an observable A(T), its equilibrium expectation value in a chosen
ensemble with distribution p(I") is

) = [ v p(r) A, (2.6)

which, under ergodic dynamics, is estimated by a time average along an MD trajectory. For
example, structural properties such as the radial distribution function g(r) are computed
as histograms of interatomic distances averaged over snapshots. Dynamical quantities are
accessed via time-correlation functions. For instance, the self-diffusion coefficient D can be
determined from the long-time limit of the mean squared displacement (Einstein relation)

1 2
D= lim &(\Rz'(t) - Ri(0)]%), (2.7)
while vibrational spectra are obtained from the Fourier transform of the velocity autocorre-
lation function (v(¢) - v(0)).

In the remainder of this thesis, we will repeatedly use this framework: forces derived from a
given potential-energy surface are propagated in time by MD, and ensemble or time averages
of suitable microscopic observables are compared to quantum-mechanical reference data
and, where available, to experimental measurements. The reliability of these macroscopic
predictions is therefore directly tied to the accuracy of the underlying potential E(R),
motivating the development of high-fidelity machine learning force fields.

4
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Figure 2.1: Hierarchy of atomistic simulation methods. Reproduced with permission
from Ref. 11. () Nature Publishing Group.

2.1.3 Electronic structure methods

The potential-energy surface of a molecular system is obtained from solutions to the
electronic Schrodinger equation, Eq. (2.3). For all but the simplest systems, however, exact
solutions are out of reach and practical calculations rely on systematic approximations.
Electronic structure methods are commonly grouped into two broad families: wavefunction-
based approaches and density-functional theory (DFT). Wavefunction methods construct
explicit approximations to the many-electron wavefunction, ranging from mean-field Hartree—
Fock to correlated post-Hartree—Fock expansions, while DFT reformulates the problem in
terms of the ground-state electron density as the fundamental variable. Together, these
approaches span a wide range of computational cost and accuracy, as summarized in Fig. 2.1.

Wavefunction-based methods.

Wavefunction methods can, in principle, be systematically improved towards the exact
solution by including electron correlation, at the price of rapidly increasing computational
cost. The Hartree-Fock (HF) approximation serves as the standard mean-field starting
point. While HF treats exchange interactions exactly, it neglects the instantaneous repulsion
between electrons; its formal cost scales as O(N*) with system size N. To recover these
missing many-body effects, Post-HF strategies such as Mgller—Plesset perturbation theory
(MP2) [12] and Coupled-Cluster (CC) theory [13] are employed, forming a hierarchy that
targets the Full Configuration Interaction (FCI) limit. The “gold standard” of this hierarchy,
CCSD(T) [14] (coupled-cluster with single and double excitations augmented by perturbative
triples) exhibits a formal scaling of O(NT). Consequently, canonical implementations are
typically restricted to molecules containing at most a few dozen atoms.

These high-level methods can routinely reach so-called chemical accuracy (total energy
errors of less than 1 kcal/mol) for small and medium-sized molecules and are often treated
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as de facto reference standards. Over the past decade, a combination of explicitly correlated
techniques, density fitting, and reduced orbital and auxiliary spaces (e.g. frozen natural
orbitals and related schemes) has significantly extended the practical reach of CCSD(T),
making it possible to obtain near basis-set-limit interaction energies for non-covalent com-
plexes containing on the order of 50-75 atoms and a few thousand orbitals on modern
high-performance computing architectures [15]. Nevertheless, even these advanced imple-
mentations remain restricted to relatively small fragments compared to typical biomolecular
and condensed-phase systems and are therefore primarily used as benchmarks and training
data for more scalable approaches.

Density-functional theory.

Density-functional theory (DFT) offers a more favorable accuracy—efficiency trade-off for
larger systems by reformulating the electronic structure problem in terms of the ground-state
electron density p(r) rather than the many-electron wavefunction [6]. The Hohenberg—
Kohn theorems guarantee that the ground-state energy can be written as a functional
E[p] of the density and that there is a one-to-one correspondence between the external
potential vext(r) and p(r). This formal framework is realized through the Kohn-Sham (KS)
construction, which maps the interacting many-electron problem onto an auxiliary system
of non-interacting electrons moving in an effective local potential

*%VQ + Vext (1) + vn[p](r) + viclpl(r) | di(r) = eii(r), (2.8)

where vy 18 the external potential due to the nuclei, vy is the classical Hartree (Coulomb) po-
tential, and vy is the exchange—correlation potential derived from the exchange—correlation
energy functional Ey.[p]. The electron density is obtained self-consistently from the oc-
cupied KS orbitals as p(r) = >.7°|¢:i(r)|>. The exact form of Ex[p] is unknown and
must be approximated, and the choice of this functional is the dominant source of error in
Kohn—Sham DFT and therefore a crucial modeling decision.

The key approximation in practical DFT calculations is thus the choice of Fy.[p]. A
convenient organizing principle is “Jacob’s ladder” [16], in which successive rungs introduce
additional ingredients derived from the density and the Kohn—Sham orbitals:

1. Local spin density approzimation (LSD): functionals that depend only on the local
value of p(r) and are constructed from the uniform electron gas.

2. Generalized gradient approxzimations (GGAs): functionals that depend on p(r) and
its gradient Vp(r), improving the description of inhomogeneous systems.

3. Meta-GGAs: functionals that add further local ingredients such as the kinetic energy
density, providing greater flexibility and enabling the enforcement of additional exact
constraints.

4. Hybrid functionals: approaches that mix a fraction of exact Hartree-Fock exchange
with a semi-local functional (GGA or meta-GGA), which often reduces self-interaction
errors and improves the description of charge localization, band gaps, and reaction
barriers.

5. Double hybrids and RPA-type approaches: functionals that supplement a hybrid
description with an explicit perturbative correlation term or employ the random-
phase approximation for correlation, offering higher accuracy at a cost approaching
that of low-order wavefunction methods.
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Independent of their place on Jacob’s ladder, functionals also differ in their degree of
empiricism: some are constructed primarily to satisfy known exact conditions with minimal
parameter fitting (e.g. PBE [17], PBEO [17, 18], SCAN [19]), while others are more heavily
parameterized against experimental data or high-level calculations. For the reference
calculations in this thesis, we utilize minimally empirical functionals, specifically PBE and
PBEO. Further justification for this choice is detailed in Section 4.1.2.

Long-range interactions and many-body dispersion.

Many properties of molecular and condensed-phase systems are controlled by interactions
acting well beyond covalent bond lengths, including electrostatics, induction, and van
der Waals (vdW) dispersion [20, 21|. Although semi-local and hybrid density-functional
approximations (DFAs) recover most of the total electronic energy, they miss a substantial
fraction of the long-range correlation contribution and often fail to bind weakly interacting
systems quantitatively. A classic example is that standard DFAs capture nearly all of the
total energy of rare-gas dimers but only a small fraction of their interaction energy [20].
As a result, conventional DF'T can misrepresent interactions in molecular crystals, layered
materials, and biomolecular complexes [22].

Long-range correlation is therefore often added to DFT explicitly, for example through
atom-pairwise London-type terms (e.g. DFT-D [23]|, TS [24], XDM |25, 26]). These
electronic-structure-based schemes obtain dispersion coefficients and effective vdW radii
from the underlying density or Kohn—Sham orbitals; this introduces some environment
dependence and improves transferability over fixed-parameter force fields, but they remain
fundamentally pairwise-additive and thus neglect collective screening and higher-order
many-body effects |22, 27, 28|.

The many-body dispersion (MBD) formalism provides an efficient route to include these
collective long-range correlations within DFT [21, 29]. MBD represents each atom by an
effective polarizable quantum oscillator and couples these oscillators through a dipole-dipole
interaction tensor, so that the resulting collective normal modes describe correlated charge-
density fluctuations across the entire system. Change in zero-point energy of oscillators due
to dipolar interactions yields a many-body dispersion energy that naturally incorporates
screening and non-additivity to infinite order, while retaining a computational cost that
scales approximately as O(N?). In this thesis, such DFA+MBD schemes are employed as
reference methods for training ML models.

2.1.4 Empirical potentials

Classical force fields, also called empirical potentials or molecular mechanics models, provide
inexpensive, empirical representations of molecular potential-energy surfaces and are widely
used when explicit quantum-mechanical treatments are too costly. In these models, one
forgoes an explicit electronic description and instead represents atoms as point masses inter-
acting through simple analytical functions [30-32]. The functional forms are parametrized
to reproduce selected reference data, which may include experimental observables (e.g.,
equilibrium bond lengths, vibrational frequencies, heats of vaporization, densities, lattice
constants) and/or quantum-chemical benchmarks (e.g., atomization energies, conforma-
tional energetics, ab initio forces, or potential-energy scans of dimers and torsions) [4, 33].
Modern biomolecular force fields typically rely on a carefully calibrated balance of both
types of data.



2.1 Foundations of molecular simulations

The potential energy in a molecular-mechanics model is written as a sum of contributions
associated with different classes of bonded and nonbonded interactions:

UR)= > kP (ri—roa)+ > K™ (0; — 00,)°
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where r;, 0;, and ¢; denote bond lengths, angles, and dihedral angles, respectively, r;; is
the distance between atoms i and j, €;; and o;; are Lennard-Jones parameters, and ¢; are
fixed partial charges. The first three terms represent bonded interactions (covalent bond
stretching, angle bending, and torsional rotations), while the last term accounts for pairwise
nonbonded van der Waals and electrostatic interactions. Long-range Coulomb interactions
are usually evaluated with Ewald or particle-mesh Ewald techniques (PME, SPME) to
maintain accuracy while achieving favorable O(Nlog(N)) scaling with system size [34-36].

The simplicity of such fixed-topology, fixed-charge models underpins their efficiency and
enables simulations of biomolecular assemblies containing hundreds of thousands to millions
of atoms on microsecond and longer timescales. Classical force fields such as AMBER [32],
CHARMM |30], and OPLS [31] have become the workhorses of biomolecular simulation and
have been instrumental in establishing molecular dynamics as a “computational microscope”
for proteins, nucleic acids, and membranes [1|. The first molecular dynamics simulation of a
folded protein, bovine pancreatic trypsin inhibitor, already demonstrated that an empirical
potential can yield a time-averaged structure close to the X-ray model and provide detailed
information on the magnitude, spatial correlations, and decay of internal fluctuations
that are inaccessible to static experimental structures [37]. Since then, increasingly refined
parametrizations have made large-scale biomolecular simulations almost routine in structural
biology and materials science [33, 38].

At the same time, it is important to recognise the approximations inherent in classical
force fields, which ultimately limit their accuracy and transferability [4, 33]. The fixed
functional form in Eq. (2.9) assumes that the PES can be decomposed into a small number
of simple bonded and pairwise nonbonded terms, so that higher-order many-body couplings
are either neglected altogether or absorbed into fixed, environment-independent parameters.
Electronic degrees of freedom are not treated explicitly; their effects on bonding, lone
pairs, polarization, and charge transfer are encoded in effective quantities (7o, ki, €5, 0ij,
¢i) rather than emerging from an underlying electronic structure calculation. Standard
biomolecular force fields also assume a fixed covalent topology and typically employ non-
polarizable point charges, so they cannot describe bond breaking and formation and may
struggle in strongly heterogeneous or highly polar environments.

A variety of extensions relax some of these assumptions. Polarizable force fields introduce in-
duced dipoles or Drude oscillators to account for electronic response (for example AMOEBA
and related models) [39, 40[; reactive force fields such as ReaxFF add bond-order-dependent
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terms to enable bond rearrangements [41]; and coarse-grained models like MARTINT trade
atomic detail for efficiency to access much larger length and time scales, up to cellular
level [42, 43]. These approaches expand the reach of empirical potentials, but they retain
a prescribed functional form and are usually parametrized for specific classes of systems,
which limits their transferability across different chemistries and thermodynamic conditions.

These challenges motivate the development of alternative potential-energy models. In this
thesis, machine learning force fields trained on quantum-mechanical data are employed
to approximate the underlying Born—Oppenheimer surface while retaining much of the
computational efficiency of classical models. Such machine learning force fields aim to
capture short- and medium-range many-body effects, reduce reliance on fixed topologies
and hand-crafted atom types, and offer a route toward more transferable and systematically
improvable potentials.

2.2 Machine learning force fields

2.2.1 General workflow

Machine learning force fields (MLFFs) have emerged over the past two decades as a promising
route to bridge the accuracy gap between classical force fields and quantum-mechanical
methods [5]. The basic idea is to replace the explicit electronic structure calculation by a
flexible statistical model that learns the mapping from nuclear configurations to energies
and forces, using data from high-level quantum calculations as a reference. Once trained,
the ML model serves as a surrogate for the underlying ab initio method, delivering energies

and forces with near-quantum accuracy at a cost that approaches that of classical force
fields.

Machine learning offers essentially unrestricted functional flexibility. Sufficiently expressive
neural networks and kernel methods serve as universal approximators capable of representing
arbitrarily complex relationships within training data. For atomistic modeling, this flexibility
means that many-body effects and subtle environmental dependencies can be learned directly
from quantum-mechanical reference data rather than being imposed through fixed analytical
functional forms. This versatility is, however, a double-edged sword: while it allows MLFFs
to capture patterns inaccessible to traditional empirical potentials, it also increases the risk
of overfitting and learning spurious correlations (i.e., the Clever Hans effect!) that degrade
transferability. Therefore, careful model design, regularization, and validation are essential
to ensure the learned PES remains physically meaningful and robust.

The general workflow for constructing and using an MLFF is illustrated in Fig. 2.2 and
consists of four main stages:

1. Data generation. A set of reference atomic configurations is generated and then
evaluated using a chosen electronic structure method to obtain energies, forces, and
other observables (e.g., stress tensors). The quality and diversity of this dataset are
crucial, as they define the domain of validity of the final MLFF.

2. Representation (descriptor). Each configuration is converted into a numerical
representation or descriptor to serve as input for the ML model. This descriptor is
often designed to encode relevant physical symmetries, such as translational, rotational,

'The name comes from “Clever Hans,” a horse in early-1900s Germany that appeared to solve arithmetic
problems but was later shown to respond to subtle, unintentional cues from humans rather than genuinely
understanding mathematics.
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Figure 2.2: General MLFF workflow. Schematic illustration of data generation, representa-
tion, and learning steps in the construction of a machine learning force field. Reproduced with
permission from Ref. 44. (©) Wiley.

and permutation invariance, to improve accuracy. Examples include local atomic
environment descriptors or graph-based representations.

3. Learning algorithm. A supervised learning model (e.g., a neural network or kernel
method) is trained on the reference data by minimizing a loss function. This step
involves selecting hyperparameters and regularization to manage model complexity
and prevent overfitting. Often, data generation and training are performed iteratively
in an active-learning loop to optimize the reference calculations.

4. Validation and deployment. The final trained model is rigorously assessed using
independent test data and, critically, by observing its behavior during MD simulations
to confirm its accuracy and stability.

Over the past years, MLFFs have significantly evolved, transitioning from small, system-
specific models to more generalized architectures applicable across diverse chemistries and
materials. Early milestones include the Behler—Parrinello Neural Network (BPNN), which
represents the total energy as a sum of individual atomic contributions, each modeled
by a feedforward neural network operating on handcrafted local symmetry functions
(descriptors) [45]. Another prominent early approach is the Gaussian Approximation
Potential (GAP) framework, which combines kernel ridge regression with the Smooth
Overlap of Atomic Positions (SOAP) descriptor, successfully applied to systems such as
carbon [46, 47|. More recent deep-learning methods began replacing these fixed, handcrafted
descriptors with learned representations obtained through message passing on atomistic
graphs, exemplified by the SchNet model [48|. Building on this graph-based concept, highly
advanced E(3)-equivariant architectures (such as PaiNN [49], NequlIP [50], MACE [51], and
SO3krates [52, 53|) further improved data efficiency and have since established the current
state of the art in accuracy for many classes of systems.

The following subsections discuss the core ingredients common to these and other MLFFs:
the construction of suitable training datasets, the design of atomic representations, and the
choice of learning architectures.
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2.2.2 Quantum data

Reference data form the foundation of MLFF development. These data are obtained either
from ab initio molecular dynamics trajectories or from carefully curated collections of
molecular geometries that span a targeted region of chemical compound space. Both well-
designed benchmark sets and high-quality training datasets have been crucial for driving
the field forward and for providing a common, standardized ground on which different
MLFF models can be rigorously compared.

It is useful to distinguish two interconnected but conceptually distinct data regimes that
have played a central role in the evolution of MLFFs. The first is the single-system (or
configurational) regime, in which the goal is to reproduce the PES of a given molecule
or small set of molecules with the highest possible precision using as little reference
data as possible. Datasets like MD17 [54], which contains ab initio MD trajectories for
prototypical small molecules (ethanol, aspirin, and others), and its later refinements have
been instrumental in this context. They enabled systematic studies of how different models
trade-off data efficiency, stability, and accuracy for well-defined systems and have served as
standard benchmarks for many early architectures.

As MLFFs became more accurate, a second chemical space (or multi-system) regime gained
prominence. Here, the emphasis shifts from optimizing performance on a single molecule
to training on chemically diverse sets of structures so that one model can make reliable
predictions for configurations and compounds that were not explicitly included in the
training data. Representative examples include ANI-1 [55] and QM7-X [56], which provide
tightly converged DFT reference data and a wide range of physicochemical properties for
millions of small organic molecules. These datasets emphasize coverage of chemical and
conformational space and are specifically designed to foster the development of general-
purpose MLFFs with robust extrapolation behavior.

This thesis contributes to both directions. The MD22 benchmark dataset, introduced
in Chapter 3, extends the single-system regime to substantially larger and more flexible
molecules, probing the limits of MLFFs in terms of molecular size and complexity. The
QCell dataset, developed in Chapter 4, targets the multi-system regime by sampling a
broad range of biomolecular fragments. Together, these datasets provide complementary
testbeds for assessing the accuracy and generalizability of the MLFFs developed in the
subsequent chapters.

2.2.3 Atomic representations

A crucial component of any MLFF is the representation used to encode atomic structures
for input to the model. The descriptor must map a set of atomic coordinates and chemical
species to numerical features in a way that preserves the fundamental symmetries of the
underlying physics and, ideally, reflects local chemical similarity and extensivity [57]. For a
scalar property such as the total energy E, the representation and model should satisfy

E({Ri}) = E{Ri +a}) = E{QR.}) = E({Rz(;)}) (2.10)

for any translation vector a, rotation matrix Q € SO(3), and permutation 7 of identical
atoms. Translational and rotational invariance follow from the fact that the internal energy
depends solely on the relative positions of the nuclei, rather than their absolute coordinates
or orientation. Permutation symmetry arises from the indistinguishability of identical
particles. For vector and tensor properties (e.g., forces, multipole moments, stresses), the
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corresponding observables must also transform consistently (equivariantly) under these
operations.

Encoding these basic symmetries at the level of the representation and model is essential: it
reduces the effective size of the configuration space that must be explored during training,
helps enforce physical plausibility, and significantly improves accuracy.

Much of the progress in MLFFs stems from the development of increasingly sophisticated
atomic representations [57]. These are broadly categorized as global or local, a classification
that reflects the fundamental strategic choice between resolving the full topology of the
system simultaneously or decomposing it into independent atomic neighborhoods. As
detailed below, this distinction dictates the model’s intrinsic trade-off between capturing
long-range physical correlations and achieving the computational scalability required for
large systems.

Global descriptors

Global descriptors are characterized by the absence of an intrinsic cutoff for the interaction
range. A canonical example is the Coulomb matrix, which collects pairwise terms into
a matrix representation of a molecule [58]. In its original form, a molecule with nuclear
charges {Z;} at positions {R;} is represented by a matrix M with elements:

3224, i=j,

Mij = ZiZj . # . (2'11)
77 Z b
Ri—R;|” 7

where off-diagonal elements correspond to internuclear Coulomb repulsion and diagonal
elements encode a smooth fit to atomic energies as a function of nuclear charge [58|.
Permutation invariance is typically enforced either by sorting the rows and columns of M
according to their norm or by using its eigenvalue spectrum as the descriptor. Another
example is the family of explicit many-body representations, such as the SLATM descriptor,
which aggregates one-, two-, and three-body contributions into a fixed-size global vector [59].
When combined with kernel methods, these representations have achieved high accuracy
across diverse molecular chemical spaces.

The main drawback of global descriptors is their unfavorable scaling with system size,
which incurs high computational costs for both training and prediction. Extending such
representations to systems containing hundreds or thousands of atoms is challenging.
Furthermore, accommodating variable system sizes requires ad hoc architectural choices,
such as zero-padding or pooling. These limitations are particularly severe in condensed-
phase and biomolecular simulations, where one wishes to exploit linear scaling and reuse
information across chemically similar environments.

Chapter 5 revisits global descriptors in the context of the rGDML model. In this approach,
the original high-dimensional global representation is compressed to its most informative
components, retaining essential nonlocal information while improving scaling. This dimen-
sionality reduction allows the global descriptor to be extended toward larger molecules
without sacrificing the ability to describe long-range correlations.

Local descriptors

Local, atom-centred descriptors represent each atom in terms of its neighborhood within
a finite cutoff radius. This decomposition naturally enforces translational invariance and

12



Chapter 2. Theoretical Background

enables the construction of size-extensive models with linear scaling. It also facilitates the
transferability of the model to larger systems than those used in training, provided that
the relevant local environments are adequately sampled [57].

Prominent examples of local descriptors include the Behler—Parrinello atom-centred sym-
metry functions (ACSFs), which encode the radial and angular distributions of neighboring
atoms using a hand-crafted basis of functions [45, 60], and the Smooth Overlap of Atomic
Positions (SOAP) descriptor, which represents the local neighbor density via an expansion
in radial basis functions and spherical harmonics, followed by rotationally invariant contrac-
tions [47]. The FCHL (named after their developers) representation further refines these
concepts, constructing local many-body features that are tailored for kernel methods and
designed to achieve broad chemical transferability [59, 61].

More recently, the Atomic Cluster Expansion (ACE) has been developed as a complete,
systematically improvable basis for local invariant features, providing a unifying language
for many existing local representations [62]. In ACE, the environment of atom i is first
encoded in atomic base functions Af;l)m
radial-angular basis

, obtained by projecting the neighbor density onto a

ASI)m = Z Rnl(rij)yvlm(fij), (212)
JEN(i)
where R, (r) are radial basis functions, ¥}, are spherical harmonics, and the sum runs over
neighbors j within the cutoff radius. Symmetrized products of these moments are then
combined into rotation- and permutation-invariant cluster basis functions B,Si), which form
a linear expansion for the atomic energy

_ 1) pl (2) p@) B) p
By =Y cVBO+> B+ el B+ (2.13)
o ap afy

where B(® denotes the symmetrized cluster functions of increasing body order, and the
coefficients ¢(™ are fitted to reference data. In this manner, ACE provides a hierarchy of
invariant descriptors with explicit control over both body order and angular resolution.
It recovers many existing local descriptors as special or truncated cases. An important
practical feature is that the many-body expansion can be evaluated with a computational
cost that is effectively linear in the number of neighbors, despite formally including high
body orders, which makes ACE a competitive basis for developing highly accurate and
transferable interatomic potentials.

While the locality assumption is the key to the efficiency of these methods, it also constitutes
their primary physical limitation. By construction, interactions beyond the cutoff radius
are ignored, which complicates the description of long-range phenomena that decay slowly
with distance and are inherently collective [57]. Section 2.3 will discuss various approaches
to recover these missing long-range contributions.

Equivariant graph-based representations

Recent developments in MLFFs have moved beyond purely invariant descriptors toward
representations and models that are explicitly equivariant under rotations. Equivariant
neural networks achieve this by systematically constructing internal features that transform
as irreducible tensor representations of the SO(3) rotation group [49]. By utilizing specialized
layers that consistently propagate these transformation properties, these models ensure
that the output transforms consistently [63].
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Formally, let R = {R;} denote a set of atomic positions and f a feature map (or network
layer) that produces feature vectors h; = f(R) for each atom. Equivariance with respect
to a rotation Q € SO(3) means that rotating the input configuration by Q results in a
transformed feature vector that is consistent with the rotation, expressed as

f{QR:}) =D(Q) f({Ri}), (2.14)

where D(Q) is a (block-diagonal) matrix representation of Q acting on the feature space. For
scalar (rotation-invariant) features, D(Q) is the identity matrix, I, while for vector features,
it is the rotation matrix itself, Q. Higher-rank tensor features transform according to their
corresponding irreducible representations D) (Q). Equation (2.14) ensures that rotating
the input geometry rotates the tensorial features, rather than arbitrarily altering their
numerical values. This is particularly powerful when learning vector and tensor quantities
such as forces, multipole moments, and stress, and has been demonstrated to significantly
improve both data efficiency and stability compared with invariant architectures [49, 50, 53].

In this thesis, we explore both types of descriptors: sGDML is based on a global invariant
descriptor, while SO3krates employs a local, SO(3)-equivariant graph representation. This
links directly to the next subsections, which discuss kernel methods (global, system-specific,
quadratically scaling) and message-passing neural networks (local, transferable, linearly
scaling).

2.2.4 Gradient-domain machine learning

Gradient-Domain Machine Learning (GDML) is a kernel-based framework that trains
directly on atomic forces to reconstruct a smooth, global potential-energy surface (PES) [54,
64-66]. It combines the non-parametric flexibility of kernel methods with a strict enforcement
of energy conservation by construction. GDML employs an inverse-distance global descriptor
(inspired by the Coulomb matrix) to encode the molecular geometry. The resulting model
fits interatomic forces and energies with high fidelity to quantum-mechanical reference
data, while guaranteeing that the learned force field, derived from a scalar potential, is
conservative.

For small, drug-like molecules, GDML and its symmetrized extension (sGDML) have been
shown to reproduce high-level PESs with excellent accuracy (~0.3 kcal/mol for energies and
~1 keal/mol/A for forces) using ~10° training geometries [54]. This level of data efficiency
is substantially better than that of energy-only models and has established GDML as an
accurate and robust framework.

Kernel ridge regression

GDML is built upon Kernel Ridge Regression (KRR), a non-parametric method that
performs linear regression in a high-dimensional reproducing kernel Hilbert space. The core
component is a positive-definite kernel function, k(x,x’), which implicitly defines an inner
product (®(x), ®(x’)) in a feature space via the “kernel trick.”

In standard scalar KRR, one seeks a function f that minimizes the regularized squared
error over a training set {(x;,4;)}~.;. The representer theorem [67] states that the optimal
solution is a linear combination of kernel evaluations centered at the training points

N
Fx) = aik(xi,x). (2.15)
i=1

14
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The coefficients a are obtained by solving the linear system (K + AI)a = y, where
K;; = k(x;,%;) is the kernel matrix and X is a regularization parameter that governs the
trade-off between fitting accuracy and model complexity.

Kernel ridge regression in the gradient domain

The key innovation of GDML is the extension of KRR to vector-valued force fields while
strictly enforcing the condition that the force F is the negative gradient of a scalar potential
V. To achieve this, the method defines a scalar covariance kernel k(x,x’) representing the
underlying PES, and derives a matrix-valued kernel for the forces via differentiation

82

/ —_—
Cov(Fy(x), Fy(x)) = 9z, 007 o, K

(x,%). (2.16)

This operation generates a block-structured Hessian kernel matriz, Kyegs(x), which naturally
encodes the physical constraints of a conservative field.

Given a dataset of M geometries and their associated force vectors {(x;, F;)}M,, the
coefficients are determined by solving the regularized normal equations

(KHess(m) + )‘I) a=-F, (2'17)

where F is the concatenated vector of all training force components. Once the coefficients
«a have been fitted, the predicted force at a new configuration x is given by

~

M
F(X) - = Z KHess(n) (X7 Xi) Q. (218)

=1

The corresponding energy can be recovered (up to an additive constant) by integrating these
forces or by evaluating the scalar kernel expansion using the same coefficients o derived
from the force training. By operating directly in the gradient domain, GDML exploits
the fact that a single reference configuration provides 3N force constraints compared to
only one energy value. This construction yields a substantial gain in data efficiency and
guarantees that the learned model is strictly conservative (curl-free) by design.

Descriptors and kernel choice

To embed molecular geometries in a way that incorporates basic symmetries, GDML
employs a global descriptor inspired by the Coulomb matrix representation [58] but omits
nuclear charges, which are instead encoded implicitly via element-specific kernels or by
using element labels in the descriptor. For a system of N atoms with Cartesian coordinates
{r;}, the descriptor matrix D is defined as

y — 1y 5 > 7,
Dij = {HrZ vl Z j (2.19)
0, 1< 7,

so that all pairwise inverse distances appear in the strictly lower triangular part of D.
Permutation invariance is enforced by symmetrization procedures that average over relevant
permutations, as implemented in sGDML [64].

For the covariance kernel x, GDML uses members of the Matérn family, which provides
smooth, stationary kernels with tunable differentiability and spectral content. A Matérn
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kernel with parameter v = n + % and length scale o can be written in the form
K(d) = exp(— V2 g) P(d), d=|x—x|, (2.20)

where P,(d) is a polynomial of degree n

n

Po(d) = ka)'(@ (\@g)"”“. (2.21)
k=0

(2n)!

Specifically, GDML uses the v = 5/2 (i.e. n = 2) Matérn kernel, which is twice mean-square
differentiable and therefore sufficiently smooth to support stable second derivatives with
respect to all Cartesian coordinates. This ensures that the Hessian kernel blocks entering
Eq. (2.17) are well defined and numerically well behaved.

The price for this expressive, globally coupled representation is computational cost. Because
the descriptor couples all atom pairs, its dimensionality grows quadratically with system
size (O(N?)), and the Hessian kernel matrix in Eq. (2.17) scales quadratically with the
number of atoms and quadratically with the number of training geometries (O(M?2N?)).
As a result, (s)GDML models are effectively limited to molecules with a few dozen atoms
and training sets of at most a few tens of thousands of configurations. Chapter 3 extends
(s)GDML to larger molecules in the MD22 benchmark, while Chapter 5 introduces the
rGDML model, which reduces the dimensionality of the global descriptor to its most
informative components and thereby improves scaling without sacrificing the ability to
capture long-range correlations.

2.2.5 Message-passing neural networks

Graph neural networks, and in particular equivariant message-passing architectures, have
become leading approaches for constructing MLFFs [48-51, 53, 68]. In these models, a
molecular structure is encoded as a geometric graph G = (V, ), where nodes V' correspond
to atoms and edges £ connect atoms within a specified cutoff radius r¢yt. Node features
encode, for example, the chemical species and possibly charge and spin information, while
edge features encode geometric information such as interatomic distances and, in more
expressive variants, directional information (e.g., spherical harmonic expansions).

The network performs a sequence of message-passing iterations (Fig. 2.3). At each layer,
every atom (node) aggregates information from its neighbors to update its internal state
(feature vector). In this way, an atomic descriptor is not fixed a priori but is learned by the
network. A typical (invariant) message-passing layer updates the atomic feature vectors

hge) in two steps:

m) = ¢, (h{”, 0! r;;) (2.22)
4 l J4
B =g (0, 3" m)), (2.23)
JEN(9)

where ¢, and ¢y, are learned functions (typically small neural networks), r;; encodes the
relative geometry, and A (i) denotes the neighborhood of atom ¢ within the cutoff. Stacking
multiple such layers allows information to propagate over increasing distances, so that the
final atomic embeddings encode not only the immediate local but also a broader semi-local
environment.
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Figure 2.3: Message passing in a graph neural network. Schematic illustration of atoms
as nodes in a graph and iterative exchange of information along edges during message-passing
updates. Reproduced with permission from Ref. 69.

Equivariant message-passing architectures extend this idea by explicitly encoding how
internal features transform under rotations. In these models, the atomic feature vector hge)
is decomposed into scalar and tensor components that transform according to irreducible
representations of SO(3) [70]. The update functions ¢,, and ¢;, are then constrained so
that this transformation behavior is preserved across layers, ensuring that the learned
representation is equivariant. Architectures such as PaiNN [49] and NequlP [50] implement
this principle using rotation-covariant message passing and have demonstrated substantial
gains in data efficiency and accuracy compared with purely invariant networks.

(L)

After several message-passing iterations, the final atomic embeddings h;”" are used to

predict atomic contributions to the energy

€i = Pout (hEL))a (224)

where ¢oyt is a learned output function. The total energy FE is then obtained as a sum of

these contributions
E=) e (2.25)
i

Conservative forces are subsequently computed by (automatic) differentiation of E with
respect to the atomic positions. This construction naturally enforces translational and per-
mutational invariance of the energy and, in equivariant architectures, rotational covariance
of vector and tensor quantities such as forces and multipole moments.

In this thesis, we employ SO3krates as a representative equivariant message-passing model
[52, 53|. In SO3krates, each atom carries both high-dimensional invariant feature channels
and low-dimensional equivariant channels that transform under SO(3). Sparse, attention-
based update layers exchange information between these channels and aggregate messages
from neighbouring atoms defined by a local cutoff, resulting in an architecture that achieves
a favorable balance between expressiveness, stability, and computational cost. Chapter 6
extends this idea in the SO3LR model by coupling the semi-local SO3krates energy with
explicit physical models for long-range electrostatics and dispersion [71]. A more detailed
description of the SO3krates implementation is provided in Appendix A4.
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2.8 Long-range interactions in machine learning force fields

2.2.6 Model validity and generalization

General-purpose MLFFs must ultimately be judged by their predictive performance on
systems and configurations not seen during training. To rigorously assess this, one should
distinguish between two fundamental sources of error. The first is a systematic reference
error: since an ML model cannot exceed the accuracy of its training data, the chosen
electronic structure method (e.g., DFT functional, basis set) imposes a hard ceiling on
predictive performance. The second is model approximation error, which arises from limited
model capacity, finite or noisy training data, and imperfect optimization. In standard
practice, the latter is quantified by in-distribution metrics (e.g., root-mean-square error
on held-out test data), which measure how well the model interpolates within the densely
sampled regions of the training distribution.

However, low test errors do not guarantee reliability in practical applications, which often
require extrapolation to sparsely sampled or entirely new regions of configuration space.
This generalization challenge manifests in two distinct forms. Configurational generalization
refers to predicting new conformations of fixed molecular systems (e.g., in datasets like
MD17 or MD22). Chemical-space generalization, by contrast, involves predicting properties
across diverse compositions and topologies not present in the training set (e.g., in QM7-X or
QCell). In high-dimensional spaces, the boundary between interpolation and extrapolation
is subtle; models may perform well on random test splits yet fail when simulations visit
under-represented rare-event regions or thermodynamic conditions different from those in
the training set.

Consequently, it is essential to look beyond statistical test set metrics and evaluate deploy-
ment error: the discrepancy between reference and ML observables under actual simulation
conditions. Deployment error captures the model’s stability and physical fidelity in tasks
such as long MD trajectories, free-energy calculations, and transport properties. Chap-
ters 3—6 emphasize this distinction, designing datasets and models not only to minimize
in-distribution errors but also to withstand stringent out-of-distribution assessments that
reflect the realities of (bio)molecular simulations.

2.3 Long-range interactions in machine learning force fields

2.3.1 Relevance of long-range interactions

Long-range (LR) interactions, which prominently include electrostatic forces arising from
charge distributions and dispersion forces driven by electronic fluctuations, extend far
beyond the typical ~5 A cutoff radius employed in standard atomistic models. Although
the energetic contribution of these terms is often small relative to covalent bonding, their
collective influence pervades condensed and biomolecular matter, driving the collective
phenomena that are qualitatively inaccessible to local models.

For example, van der Waals dispersion is a key contributor to the cohesion of layered and
porous materials, the adsorption of molecules at surfaces, and the stability of molecular
crystals [72-74]. In aqueous systems, many-body dispersion is essential for reproducing
the experimental density and hydrogen-bond network of liquid water, correcting structural
artifacts present in local DF'T approximations |75, 76]. In the biological domain, collective
fluctuations can shift protein stability by several kcal/mol and qualitatively alter hydration
structure [77]|. In medicinal chemistry, this sensitivity is vividly illustrated by the “Magic
Methyl” effect, where the addition of a single methyl group (—CHs) can increase binding
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potency by orders of magnitude by optimizing van der Waals packing within a target protein
pocket [78].

The significance of long-range electrostatics is equally profound. Their influence extends
far beyond the mere stabilization of native structures via ion pairing and hydrogen bond
networks. Indeed, these forces underpin the dynamics of binding through electrostatic
steering, dictate the stability of transition states in enzymatic catalysis, and govern the
complex liquid-liquid phase separation observed in intrinsically disordered proteins [79].
The sensitivity of soft matter to these potentials is clearly manifested in lipid membranes,
where the artificial truncation of electrostatic terms is known to yield spurious headgroup
ordering and unphysical phase behavior [80]. Furthermore, the molecular pathology of sickle
cell anemia, the first disease understood at the molecular level, originates from a single
charge mutation 81, 82]. Similarly, the double-helix model of DNA was correctly built only
after placing the negatively charged phosphate groups on the surface [83]. These examples
underscore that the importance of long-range interactions must never be underestimated
when modeling biological phenomena.

2.3.2 Challenges of learning long-range interactions

Despite their importance, incorporating long-range interactions into MLFFs presents distinct
challenges that stem from both statistical and practical considerations.

From a statistical perspective, learning long-range interactions requires isolating a subtle
signal from a noisy background. The long-range dispersion and electrostatic energy is
often orders of magnitude smaller than local covalent and repulsive interactions. Thus,
their omission is not evident in static errors (RMSE) on test sets, in MD simulations
of small systems, or even in short MD simulations of larger systems. Nevertheless, the
gradient changes from these small energy terms can have meaningful effects on structure
and dynamics. Learning such a smooth, slowly varying signal in the presence of dominant
local fluctuations is intrinsically difficult, requiring models with high numerical resolution
and correct asymptotic behaviour (e.g., 1/r for electrostatics).

Another challenge arises from the mismatch between the scale of available training data
and the scale of intended deployment. Accurate quantum-mechanical (QM) reference
calculations are limited to systems containing at most a few hundred atoms. For instance,
a water sphere of radius 10 A contains roughly 400 atoms, approaching the upper limit for
conventional QM methods. Consequently, training data rarely sample mesoscopic, long-
wavelength collective modes that govern large conformational changes. From a machine
learning perspective, this results in an extrapolation problem. Most state-of-the-art MLFFs
rely on local descriptors with finite cutoffs, effectively truncating physics at ~5-15 A.
Without inductive biases that enforce correct physical asymptotics, models trained on small
clusters may struggle to reliably extrapolate to the “global” physics of the macroscale.

2.3.3 Approaches to learning long-range interactions

Three main strategies have emerged to handle long-range interactions in MLFFs:

Explicit /Implicit Global models

Global kernel models (e.g., sGDML) or neural networks with a global representation [84]
learn the total energy as a function of all atomic coordinates without hard cutoffs. The
primary advantage is simplicity: no specific functional form for LR interactions needs to
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be encoded. While this approach naturally captures cooperative motions, it suffers from
poor scalability, often becoming intractable for large systems. Furthermore, these models
require comprehensive training data covering all relevant long-range configurations, which
is computationally prohibitive to generate with high-level QM.

Scaling semi-local Message-Passing Neural Networks (MPNNs)

Deep MPNNSs theoretically extend the receptive field by stacking interaction layers. However,
this adds significant computational overhead and faces severe gradient and information
bottlenecks. In particular, deep networks suffer from oversmoothing [85], where node
representations become indistinguishable, and oversquashing [86], where fixed-size vectors
fail to compress information from exponentially growing neighborhoods (e.g., ~50k atoms in
a 50 A water sphere). Moreover, stacking layers does not guarantee correct asymptotics [87]
and fails to transmit interactions across a vacuum. Several approaches, such as adaptive
and spectral message-passing methods, are under active development to mitigate these
issues (88, 89].

Explicit incorporation of long-range physics (hybrid models)

This strategy augments local ML models with additional terms for electrostatics and
dispersion [68, 71, 90-94|. By enforcing physically correct asymptotic behavior (e.g.,
Coulombic decay), the ML component is relieved of learning long-range trends from limited
data. This greatly improves data efficiency and transferability, as the model no longer
requires large fragments in the training set; the parameters for the LR terms, such as partial
charges and dispersion coefficients, are themselves semi-local quantities. The primary
limitation is that analytical terms are typically pairwise, potentially neglecting anisotropic
or many-body long-range effects not captured by the local ML model.

Overall, long-range interactions remain a central challenge in MLFFs. Capturing them
requires either global models, novel architectures that adaptively handle long-range infor-
mation, or hybrid models with explicit physical terms. The rGDML model introduced in
Chapter 5 tackles the quadratic scaling of descriptors in global models, while the SO3LR
model introduced in Chapter 6 adopts a hybrid strategy, augmenting a semi-local equivariant
graph neural network with explicit electrostatics and dispersion.

2.4 Summary

This chapter has outlined the theoretical background underlying the developments presented
in the remainder of this thesis. We described how the Born—Oppenheimer approximation
defines the target potential-energy surface (PES) that MLFFs seek to approximate, and
how classical molecular dynamics employs this PES to generate trajectories from which
thermodynamic and dynamical observables can be computed. We reviewed the main classes
of electronic structure methods and classical force fields, highlighting their complementary
strengths and weaknesses in terms of accuracy, computational cost, and transferability.

Subsequently, we introduced MLFFs, in which quantum-mechanical reference data are used
to construct flexible statistical models of the PES. We emphasized the central roles of data
quality and diversity, atomic representations, and learning architectures, alongside the need
to encode basic physical symmetries directly into the model. Global kernel methods, such as
(s)GDML, exemplify accurate, system-specific models based on global descriptors, whereas
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local and message-passing neural networks provide scalable architectures that operate on
atom-centred representations suitable for large-scale systems.

Finally, we discussed the importance of long-range interactions and the challenges associated
with their modeling. We outlined strategies for incorporating long-range physics into MLFFs,
ranging from fully global models and deep semi-local message-passing neural networks
to hybrid approaches that augment short-range ML energies with explicit physical terms.
These considerations motivate the specific models and datasets developed in this thesis. In
the following chapters, we demonstrate how global kernel models (sGDML and rGDML)
and graph neural network-based architectures (SO3krates, SO3LR) address these challenges
in complementary ways, and how their respective advantages can be combined to achieve
accurate, transferable MLFFs for chemically and biologically relevant systems.
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Chapter 3

MD22 & sGDML: Global machine
learning force fields for molecules
with hundreds of atoms

Parts of this chapter have been published in this or similar form in Ref. 66:
e S. Chmiela, V. Vassilev-Galindo, O. T. Unke, A. Kabylda, H. E. Sauceda, A.
Tkatchenko, K.-R. Miiller, Science Advances 9, eadf0873 (2023).

A.K. designed the MD22 dataset, performed the reference calculations, and
contributed to the analysis and writing of the published work.

Modern machine learning force fields (MLFFs) bridge the accuracy gap between highly
efficient, but exceedingly approximate classical force fields (FF) and prohibitively expensive
high-level ab initio methods [5, 95, 96]. This optimism is based on the universal nature
of ML models, which gives them virtually unrestricted descriptive power compared to the
statically parametrized interactions in classical mechanistic FFs. Traditional ML approaches
strive towards general assumptions about the problem at hand, such as continuity and
differentiability, when constructing models. In principle, any physical property of interest
captured in a dataset can be parametrized this way, including collective interactions
that are too intricate to extract from the many-body wavefunction. As such, MLFFs
can give unprecedented insights into quantum many-body mechanisms [5]. Albeit, the
exceptional expressive power of global MLFFs goes along with a stark increase in parametric
complexity [97-99] over classical FFs.

As a trade-off, many ML models reintroduce some of the classical mechanistic restrictions
on the allowed interactions between atoms. It is unclear to which extent this departure
from unbiased ML models compromises their advantages over classical FFs. In particular,
localization assumptions are often made to allow a reduction of degrees of freedom across
large structures. For example, message-passing neural networks only allow mean-field
exchanges between local atomic neighborhoods, which leads to information loss over
long distances [100]. This causes a truncation of long-range interactions, which in local
models are assumed to have a rather small contribution to the overall dynamics of the
system. Nonetheless, it has been shown that long-range effects can play a significant
role |71, 77, 91, 101, 102], limiting the predictive power of local models in nanoscale and
mesoscale systems [103, 104]. In fact, several recent MLFF models |68, 71, 91, 92, 105-108|
introduce empirical correction terms for specific long-ranged effects (e.g. electrostatics),
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yet long-range electron correlation effects remain poorly characterized. The number of
available MLFF approaches augmented with physical interaction models indicates that we
are observing an emerging field which has not yet settled on a universal solution.

In contrast, global models [54, 58, 61, 64, 109, 110] are able to include all interaction scales,
but they face the challenge of having to couple at least a quadratic set of atom-atom
interactions (Fig. 3.1). Such scaling behavior provides a hard computational constraint
and has therefore slowed the development of global models in recent years. Current
global models are thus restricted to system sizes of only a few dozen atoms, even though
accurate ab initio reference data are available for much bigger systems. Here, we develop
a combined closed-form and iterative approach to train global MLFF kernel models for
large molecules. Our spectral analysis of these models demonstrates that the number of
effective degrees of freedom in large molecules is substantially reduced compared to N2
and can be captured using a low dimensional representation [111, 112|. Using this insight,
our large-scale framework lowers the memory and computational time requirements of the
model simultaneously. In a two step procedure, the effective degrees of freedom are solved
in closed-form, before iteratively converging the remaining fluctuations to the exact solution
for the full problem.

Our focus is on ML models based on Gaussian Processes (GPs), since they posses several
unique properties such as linearity and loss-function convexity that can be exploited in
pursuit of our goal. We demonstrate the effectiveness of our solution on the symmetric
gradient domain machine learning (sGDML) FF [54, 64]. It allows us to reliably reconstruct
sGDML FFs for significantly larger molecules and materials than previously possible [113].
Our new training scheme can handle systems that contain several hundreds of atoms,
all of which are fully coupled within the model. We demonstrate that this parametric
flexibility is indeed leveraged to let all atoms participate in generating the energy and force
predictions. Our development allows us to study supramolecular complexes, nanostructures,
as well as four major classes of biomolecular systems in stable nanosecond-long molecular
dynamics (MD) simulations. All of these systems present phenomena with far-reaching
characteristic correlation lengths. We offer these datasets as a benchmark (called MD22)
that presents new challenges with respect to system size (42 to 370 atoms), flexibility and
degree of nonlocality. As such, MD22 can be regarded as the next generation of the now
well-established MD17 dataset [54].

3.1 Large-scale sGDML algorithm

The large-scale symmetric gradient domain machine learning (sGDML) algorithm recon-
structs molecular force fields by embedding physical invariances and conservation laws into
a Gaussian process (GP) framework, enabling strong generalization from limited reference
data. It leverages the fact that many complex quantum-mechanical interactions can be
expressed through linear constraints, which GPs naturally accommodate, and employs a
kernel that models forces as gradients of a latent potential energy surface defined by a
prior mean and covariance. Training is performed directly on forces, which can be obtained
analytically from ab initio calculations via the Hellmann—Feynman theorem with minimal
computational overhead, providing a more data-efficient approach than energy-only fitting.
Despite being non-parametric, sGDML achieves high accuracy with significantly fewer
parameters than deep neural networks, making it faster to evaluate in production-scale
simulations.
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Figure 3.1: Current global MLFFs only scale to system sizes of a few dozen atoms, restricted by
the computational challenge of having to couple a quadratic amount of atom-atom interactions.
However, accurate ab initio reference data are available for much bigger systems (light blue area).
This work scales global models with ab initio accuracy to hundreds of atoms, as is demonstrated
on examples from newly developed MD22 dataset that cover units of four major classes of
biomolecules and supramolecules.

For large datasets, direct GP inference via Cholesky decomposition becomes infeasible due to
quadratic memory scaling, so sGDML adopts an iterative conjugate gradient (CG) solver that
requires only matrix-vector products, avoiding full kernel storage. Convergence is improved
by preconditioning the CG solver with a Nystrém approximation of the kernel, constructed
from a carefully chosen subset of inducing points selected using approximate statistical
leverage scores. This preconditioner reduces the condition number of the system, enabling
faster convergence without sacrificing the exactness of GP predictions. The resulting
approach maintains the numerical stability required for noise-free ab initio datasets, with
runtime and memory complexities scaling as O(mk?) and O(mk), respectively, where m
is the training size and k the number of inducing points. This combination of physically
informed kernel design, force-based training, memory-efficient iterative solvers, and effective
preconditioning allows large-scale sGDML to extend exact GP inference to systems and
datasets that would otherwise be computationally prohibitive.

3.2 MD22 benchmark dataset

Although our solver enables significantly larger training datasets than before, we focus on
the more practical example of scaling up system size. After all, the cost generating massive
reference datasets overbears any speed up that a ML model could provide. At large scales,
atomic interactions become potentially more complex, as they involve a broader spectrum
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3.2 MD22 benchmark dataset

Table 3.1: Content and computational details of the MD22 datasets. The potential energy and
atomic force labels were calculated at the PBE+MBD [17, 29| level of theory. The keywords
light and tight denote different basis set options in FHI-aims. All trajectories were sampled at a
resolution of 1 fs.

Dataset # atoms Size Temp. [K] Basis set

AcAlagNHMe 42 85,109 500 PBE+MBD/tight
Docosahexaenoic acid 56 69,753 500 PBE+MBD/tight
Stachyose 87 27,272 500 PBE+MBD/tight
AT-AT 60 20,001 500 PBE-+MBD/tight
AT-AT-CG-CG 118 10,153 500 PBE+MBD/tight
Buckyball catcher 148 6,102 400 PBE-+MBD/light
Double-walled nanotube 370 5,032 400 PBE+MBD/light

of length-scales. It is this scenario, in which the combined scalabilty and data efficiency of
a ML model is really needed.

To put the iterative sSGDML solver to the ultimate test, we have generated a new set of MD
trajectories (MD22) that cover systems of up to several hundred atoms. MD22 includes
examples of four major classes of biomolecules and supramolecules, ranging from a small
peptide with 42 atoms, all the way up to a double-walled nanotube with 370 atoms (see
Tab. 3.1). The trajectories were sampled at temperatures between 400 K and 500 K at a
resolution of 1 fs, with corresponding potential energy and atomic forces calculated at the
PBE+MBD [17, 29] level of theory. Compared to the well-established MD17 benchmark [54],
the standard deviations of the potential energies are significantly larger, varying between
~ 877 kcal mol~! (MD17: ~ 2-6 kcal mol~!). The standard deviations of the forces are
however close, between ~ 21-28 keal mol~* A=! (MD17: ~ 20-30 kcal mol~1).

We set the training dataset size for each of the systems, such that root mean squared test
error for predicting atomic forces is around 1 kcal mol~! A~!. For some systems like the
buckyball catcher (148 atoms) or the double-walled nanotube (370 atoms), this error is
already achieved with small training set sizes of only a few hundred points. Other systems,
e.g. DHA (docosahexaenoic acid) (56 atoms), stachyose (87 atoms) or the AcAlagNHMe
peptide (42 atoms) require several thousands of training points for the same force prediction
accuracy.

The corresponding energy mean absolute errors (MAEs) range between 0.39 kcal mol~!
(AcAlagNHMe) and 4.01 kcal mol~! (double-walled nanotube), which is in line with our
previous results on MD17 [54] when normalized per atom. The (independent) random
errors made for each atomic contributions to the overall energy prediction approximately
propagate as the square root of sum of squares, which causes the energy error to scale with
system size [114]. This scaling behavior is confirmed when comparing the energy MAE per
atom, which is consistently around 0.01 kcal mol~! for most datasets in our study. We
observe, that the complexity of the learning task is neither correlated with the number of
atoms, nor the simulation temperature of the reference trajectory. Rather, the difficulty
to reconstruct a force field is determined by the complexity of the interactions within the
system (see Tab. 3.2).
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Table 3.2: sGDML prediction performance on large-scale datasets. All (test) RMSE errors are
in keal mol~! (A~1) per molecule (energy) or component (forces). The training set sizes were
chosen such that the root-mean-square error (RMSE) of the force prediction is around 1 kcal
mol~' A1, ||G|| denotes the cardinality of the leveraged permutation group for each respective
dataset (see Refs. [64, 115] for details).

System # atoms ||G|| # train. % data Energy Force
Proteins - Tetrapeptide

AcAlagNHMe 42 18 6k ™% 0.50 1.21
Lipids - Fatty acid

DHA 56 6 8k 12% 1.68 1.17
Carbohydrates - Tetrasaccharide

Stachyose 87 1 8k 29% 4.52 1.07
Nucleic acids - DNA base pairs

AT-AT 60 36 3k 15% 0.90 1.12
AT-AT-CG-CG 118 96 2k 20% 1.77 1.22
Supramolecules

Buckyball catcher 148 48 600 10% 1.47 1.02
Double-walled nanotube 370 28 800 16% 4.99 0.97

3.3 Assessment of large-scale molecular force fields

3.3.1 Representation of nonlocal interactions

To investigate whether the trained sGDML models provide chemically meaningful predic-
tions, we apply sGDML to a donor-bridge-acceptor type molecule consisting of two phenyl
rings connected by an FE-ethylene moiety forming a conjugated m-system (bridge). The
phenyl rings are substituted in para-position with an electron-donating dimethylamine
group (donor) and an electron-withdrawing nitro group (acceptor), respectively. When the
phenyl rings are coplanar, electrons are delocalized over the whole molecule and can freely
“flow” from donor to acceptor. However, when the two phenyl rings are rotated against each
other, the conjugation of the m-orbitals is broken and the favorable interaction between
donor and acceptor is lost, increasing the potential energy of the molecule. A chemically
meaningful model should predict that this energy change is delocalized over the whole
m-system (as opposed to explaining it by local changes in the vicinity of the center of the
rotation).

To get a qualitative understanding of how these interactions are handled within the sGDML
model, we investigate how individual atoms contribute towards the prediction. Being
a linear combination of pairwise correlations between atoms, a partial evaluation of the
model reveals the atomic contributions to each prediction (Fig. 3.2). We observe that all
atoms in the system participate in generating the prediction with sGDML, which would
not be possible with a model that partitions the energy into localized atomic contributions.
Fig. 3.2 demonstrates that an sGDML model learns to delocalize changes in energy upon
ring rotation across the whole molecule, which is in accordance with chemical intuition.
Note that, starting from the global minimum structure of this system, rotating by 7 does
not return to the starting position (despite the apparent symmetry of the molecule), because
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Figure 3.2: Energy contributions as predicted by the sGDML FF for a donor-bridge-acceptor
type molecule (4-dimethylamino-4’-nitrostilbene). The energy profile for a full rotation around
the single bond between the acceptor and the ethylene moiety is shown. When the conjugation of
the m-system is broken upon rotating the phenyl rings by 90° against each other, the sGDML
model predicts that the energy change is delocalized across the whole molecule.

of a slight asymmetry about the central C=C bond (see overlay of structures in Fig. 3.2).
Thus, a full rotation is necessary to return to the starting point, explaining the somewhat
counter-intuitive rotational energy profile.

3.3.2 Molecular dynamics

One of the biggest advantages of employing MLFFs is that they can enable accurate large-
scale simulations. Here, we test our sGDML FFs by running nanosecond-long classical MD
and path integral MD (PIMD) simulations for the double-walled carbon nanotube saturated
with hydrogen atoms at its edges. All simulations were run at a constant temperature of
300 K with a Langevin thermostat and a time-step of 0.2 fs. The number of beads of the
PIMD simulations was set to 16.

To confirm the reliability of any MLFF, it is first and foremost essential to assess its
capability to yield stable (PI)MD simulations. In this regard, Fig. A1l shows the cumulative

potential-energy (Viiep = ﬁmp Zg:fp Vi; where Ngep is the number of completed time

steps, and V}, is the potential-energy at the k" step) along both MD and PIMD simulations.
After thermalization (roughly 500 ps for MDs and 100 ps for PIMDs), the simulations reach
equilibrium.

Next, we compare the difference in geometry fluctuations between MD and PIMD simulations
in Fig. 3.3, measured by root-mean-squared deviations (RMSDs) from the initial geometry.
The RMSDs of the PIMD present a series of peaks that are higher than those observed in
the classical MD simulation. The first of such peaks appears at ~60 ps and then there is
one every 100 ps (the highest one corresponding to a RMSD greater than 3.0 A) The origin
of these RMSD fluctuations is the relative angle of rotation (®) of the inner nanotube with
respect to the outer one (Fig. 3.3). The outer and inner nanotubes have a 7- and 4-fold
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Figure 3.3: Instantaneous root-mean squared deviation (RMSD in Angstrém; transparent lines
in the background) and angle of the relative rotation (® in degrees) between both nanotubes as
a function of simulation time (in ps). The RMSDs were computed with respect to the initial
configurations used for the simulations.

axis of rotation (the axis parallel to the nanotubes), respectively, meaning that we have
the same configuration every ~13°. However, RMSDs are dependent on atom indices and
uncoupled rotations of the nanotubes lead to a different arrangement of the atoms with
respect to each other. This causes the increments observed in RMSDs along the simulations
since no other degrees of freedom fluctuate as much as the angle ®.

Indeed, we observe a strong correlation between the RMSD variations and the evolution of
the angle @ in a scale of 360° (a full rotation). The differences in the values of ® between
the MD and PIMD simulations suggest that a coupling of nuclear quantum effects (NQESs)
and long-range interactions (resembling existing studies on the stability of different aspirin
crystal polymorphs [116]) eases the rotation of one of the nanotubes with respect to the
other. The distribution of values of ® further confirms that NQEs smoothen the rotational
profile of the nanotubes. While in the PIMD values of ® from 40° to 80° are equally
sampled, in the MD one can observe two pronounced peaks at around 60° and 80°. It is
important to note that the rather large time-scale (100 ps) between each of these rotations
indicates that this motion corresponds to low-frequency vibrational modes.

As a final demonstration of the capability of sGDML MLFF models for providing insights
into large systems, we computed the molecular vibrational spectra of the buckyball catcher
and the double-walled nanotube from both MD and PIMD simulations (Fig. A2). These
spectra correspond to velocity auto-correlation functions. The spectra feature peaks
corresponding to =C-H stretching (at around 3000 cm™!) and bending (close to 1000 cm™!)
modes, as well as those that correlate to C=C vibrations at around 500 and 1500 cm™"
accounting for expansions and contractions of the buckyball, the “hands” of the catcher and
the nanotubes (for instance, see Refs. [117, 118| for a discussion of the vibrational spectra
of the buckyball).
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Although MD and PIMD simulations provide similar spectra, the inclusion of NQEs yields
more accurate frequencies. Namely, nuclear quantum delocalization leads to a shift of the
—C-H stretching mode, which puts the peak closer to 3000 cm~!. This value is in agreement
to that of other aromatic and 7-7 interacting systems. For instance, with experimental and
theoretical values of the fundamental C-H stretching modes of benzene and the benzene
dimer (mainly the v13(B1,) mode) [119]. Hence, PIMD simulations capture some of the
anharmonic behavior of the systems and correct the overestimated value of ~ 3100 cm™! in
the classical MD. Differently to =C—H stretching, the parts of the spectra corresponding
to “long-range” vibrations (i.e., low-frequency modes) are, in general, consistent among MD
and PIMD. This agreement aligns with the fact that both the buckyball catcher and the
double-walled nanotube are relatively symmetric systems and that the differences between
configuration spaces sampled by MD and PIMD simulations are mostly of local nature.
Therefore, even though NQEs promote a low-frequency mode, such as the relative rotation
between the nanotubes, these modes are smoothed out in the low-frequency part of the
vibrational spectrum.

3.4 Conclusion

Kernel-based FFs are known to be sample efficient, but believed to be limited in their ability
to scale well with training set or system size. A key reason is the common use of direct
solvers, which factorize the kernel matrix in order to solve the associated optimization
problem to train the model. While this approach is numerically stable, it quickly incurs a
prohibitive memory and runtime complexity. This dilemma can be evaded using iterative
solvers, which essentially allow kernel-based models to be trained similar to neural networks.
However, the straightforward application of iterative solvers is difficult when large kernel
matrices are involved, due to their notoriously poor numerical conditioning.

In this work, we propose an iterative scheme that enables the robust application of sGDML
to significantly larger systems (both, in terms of training set and system size) without
introducing any approximations to the original model. This is achieved with a numerical
preconditioning scheme which drastically reduces the conditioning number of the learning
problem, enabling rapid convergence of a CG iteration. With this advance, we are now able
to apply our kernel-based model to large-scale learning tasks that have previously only been
accessible to neural networks, while carrying over the sample efficiency and accuracy of
sGDML. We attribute the latter to the model’s unique ability to represent global interactions
on equal footing with local interactions, as a series of numerical experiments demonstrate.
Now, molecular systems that exhibit phenomena with far-reaching characteristic correlation
lengths can be studied in long-timescale MD simulations.

Our technical development allows future cross-fertilization between both MLFF development
approaches: Now, kernel-based MLFFs can capitalize on the massive parallelism available
on GPUs and the software infrastructure that enabled scalability of deep neural networks.
On the other hand, modeling principles from kernel methods inspire the development of new
architectures such as transformers using self-attention [52| and pave the way out of overly
restrictive localization assumptions. The exclusive use of on-the-fly model evaluations by
iterative solvers also represents a paradigm shift in the way kernel-based MLFFs are typically
trained, which opens up new avenues for further developments. We have recently shown,
how this makes them amenable to strong differential equation constraints via algorithmic
differentiation techniques to simplify descriptor development and further improve data
efficiency [120]. With the ability to reconstruct MLFFs for larger systems, the need for
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better management of the growing set of molecular features arises. To this end, we have
recently proposed a novel descriptor pruning scheme to contract trained models and make
them easier to evaluate [121]. One could also envision a systematic construction of local
and nonlocal fragments (by generalizing from non-interacting to interacting amons [122])
that would enhance the scalability and transferability of global MLFFs. Future research
will furthermore explore our significantly better scaling behavior across a broad range of
application fields in the physical sciences.

Breakthroughs in MLFF development are often driven by the creation of benchmark datasets
that offer ever evolving challenges. Early quantum chemistry datasets such as QM7 [58],
MD17 [54], the valence electron densities for small organic molecules [123], ISO17 [124],
SN2 [68], or SchNOrb [125, 126], focused on defining useful inference problems and oppor-
tunities in quantum chemistry, whereas later benchmarks (e.g. QM7-X [56]) steered the
field towards developing more robust transferable models. This chapter presents the MD22
benchmark dataset, which offers new challenges for atomistic models with regard to molec-
ular size and flexiblity that could further advance research on novel MLFF architectures
similarly to previous datasets of quantum-mechanical calculations. Despite these advances,
MD22 focuses on a limited set of representative biomolecular and supramolecular systems.
Many chemically and biologically important motifs remain outside its scope. Realistic
modeling of the cellular environment requires datasets with broad coverage across all four
major biomolecular classes. To address this need, in the next chapter we develop the QCell
dataset, which builds upon the MD22 by extending the chemical and structural diversity of
available high-quality QM data for biomolecular fragments and assemblies.
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Chapter 4

QCell: Quantum-Mechanical Dataset
Spanning Diverse Biomolecular
Fragments

Parts of this chapter have been published in this or similar form in Ref. 127:

e A. Kabylda, S. Sudrez-Dou, N. Davoine, F. N. Briinig, A. Tkatchenko, arXiv
2510.09939 (2025).

The accurate modeling of molecular interactions in (bio)chemical systems has long been
a central challenge in computational chemistry and biophysics. Existing methods span a
spectrum of approaches that introduce tradeoffs between efficiency and accuracy. At one
end are quantum mechanical (QM) methods, ranging from highly accurate techniques such
as coupled cluster and quantum Monte Carlo to density functional approximations, which
vary from non-empirical to heavily parameterized variants trained on curated datasets.
At the other end, empirical atomistic force fields achieve high efficiency through fixed
functional forms and parameter sets. These approaches have been invaluable for simulating
the structure, dynamics, and function of biomolecules, providing either high accuracy
or access to biologically relevant timescales [38]. Recently, machine learning force fields
(MLFFs) have emerged as a promising alternative, aiming to combine the accuracy of QM
methods with the efficiency of classical force fields [5].

However, successful MLFF applications are critically dependent on the availability of diverse
and high-quality QM datasets that faithfully represent the chemical space encountered in
(bio)molecular systems [128, 129]. Substantial progress has been made in the development
of MLFFs, fueled by datasets such as QM7-X [56], MD22 [66], Splinter [130], GEMS [102],
SPICE (131, 132], AQM [133|, QCML [134], AIMNet2 [135], and OMol25 [136], among
many others. These datasets provide extensive coverage for small molecules and proteins,
spanning broad elemental diversity, sizes, conformations, charge and protonation states.

The GEMS, QCML, and OMol25 datasets exemplify recent efforts to extend QM cov-
erage across diverse chemical and biomolecular spaces. GEMS employs a hierarchical
fragmentation strategy, combining small, transferable fragments of proteins in gas-phase
and aqueous environments with larger, system-specific fragments extending up to 18 A to
capture long-range interactions. QCML systematically maps small-molecule chemical space
by enumerating species with up to eight heavy atoms across a wide range of elements and
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electronic states, providing chemically diverse bonding motifs. OMol25 offers chemically het-
erogeneous collection spanning small molecules, biomolecular fragments, metal complexes,
and electrolytes; its biomolecular subset includes fragmented protein pockets, gas-phase
DNA/RNA fragments, protein—protein and protein-ligand complexes. Despite this progress,
significant gaps persist for three of the four major biomolecular classes, namely nucleic
acids, lipids, and carbohydrates, which together constitute roughly 40% of cellular biomass
(Fig. 4.1A).

Biomolecular chemical space possesses distinct characteristics compared to that of small
organic molecules or materials. Instead of vast elemental and topological diversity, biomolec-
ular complexity arises primarily from the conformational space accessible to a relatively
limited set of recurring chemical building blocks [137]. For instance, proteins are composed
primarily of about 20 canonical amino acids, and their intricate functions are dictated by
backbone conformations and side-chain rotamer preferences. Similarly, nucleic acids utilize
repeating sugar-phosphate backbones and four main nucleobases, with critical conforma-
tional variations in sugar pucker and backbone torsions determining their overall structure
and interactions. Polysaccharides are formed via various glycosidic linkages between a few
monosaccharide types, and their properties depend heavily on the conformations around
these linkages. Lipids typically combine a finite set of head groups and fatty acid tails,
whose composition and flexibility determine membrane behavior.

In this context, we introduce the QCell dataset, a collection of quantum mechanical data
that covers the three major biomolecular classes beyond proteins: lipids, carbohydrates,
and nucleic acids, along with relevant ion clusters, water molecules, and non-bonded dimers.
The dataset includes 525k newly generated biomolecular fragments, ranging from 2 to 402
atoms, computed at the PBEO-+MBD(-NL) level of theory (Fig. 4.1C). By focusing on
fundamental building blocks, the QCell dataset provides an accurate quantum description
of the semi-local chemical environments and interaction motifs that recur in larger, more
complex biological assemblies.

The chemical element distribution in QCell focuses mainly on biologically relevant elements
(H, C, N, O, P, and S) with additional coverage of important biological ions (Na™, K, C1~,
Mg?", Ca?"). This composition provides deeper conformational sampling of the specific
chemical environments most relevant to biomolecular systems and allows the QCell dataset
to serve as a specialized complement to existing datasets like QCML [134], QM7-X [56],
AQM [133], and GEMS [102]. When combined, they provide extended coverage of chemical
space relevant to (bio)molecular simulation, comprising over 41 million data points and
spanning 82 chemical elements. The consistent use of the PBEO+MBD(-NL) level of
theory across these datasets facilitates their integration into unified training sets for MLFF
development. By expanding the coverage to core biomolecular components, QCell enables
the development of more comprehensive and transferable MLFFs capable of modeling
diverse biological systems.

4.1 Methods

The QCell dataset was generated using a multi-step workflow (Fig. 4.1B): (1) curating a
library of biomolecular building blocks and generating initial 3D structures; (2) performing
extensive conformational sampling using molecular dynamics or dedicated conformer-
generation tools; (3) selecting representative fragments from the resulting ensembles; (4)
briefly optimizing the selected fragments with the semi-empirical DFTB+MBD method;
and (5) running high-quality quantum-mechanical PBEO+MBD(-NL) calculations.
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Figure 4.1: Overview. A) Composition of a bacterial cell by weight, with a breakdown of
the chemical constituents [137]; about 40% of these compounds are not properly covered in
existing datasets. B) Multi-step workflow used to construct QCell, beginning with the selection
of building blocks, followed by conformational sampling and fragment selection, pre-optimization
with DFTB+MBD, and finally hybrid PBE0+MBD(—NL) calculations. C) Coverage of molecular
species at the PBEO+MBD(-NL) level of theory, including entries from existing databases and
newly generated QCell data for nucleic acid fragments, lipids, sugars, solvated ions, and dimers.

4.1.1 Generation of representative fragments

The current subsection describes steps 1-4 for each molecular class, detailing the specific
methods used for initial structure generation, conformational sampling, fragment selection,
and pre-optimization.

Nucleic Acids. Solvated double-helical DNA heptamers in canonical A-, B-, and Z-DNA
forms [138, 139] with Na™ counterions were built using Nucleic Acid Builder [140] and
simulated with the OL21 force field [141]. The central base-pair triplets covered all base-pair
combinations. Each system was equilibrated for 1 ns in NVT, with the temperature ramped
from 100 K to 300 K in 10 ps steps, then run for 10 ns in NPT at 300 K.

From the heptamer trajectories, snapshots saved every 100 ps were used to extract central
double-stranded trimer fragments. These trimers were then simulated for 10 ps in NPT at
300 K with strong positional restraints on nucleotide atoms to relax the surroundings. In
addition to trimers, solvated DNA base pair dimers were taken from Ref. 142, and a subset
of smaller gas-phase RNA fragments were taken from OMol25/rna which were processed
from BioLiP2 [136, 143].

Lipids. Initial structures of lipid membranes composed of POPC, POPE, POPG, and
POPS phospholipids were generated with the CHARMM-GUI Membrane Builder [144].
These lipids provide a representative set of phospholipid head groups with a palmi-
toyl-oleoyl—glycerol fatty-acid backbone. To probe sterol-lipid interactions that significantly
influence membrane packing and dynamics, we also prepared mixed membranes containing
cholesterol: POPC and POPS bilayers were generated at a 3:1 phospholipid-to-cholesterol
ratio.
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The selected membranes were simulated with the Lipid21 force field [145]. Equilibration
involved 20 ps of NVT at 100 K followed by 100 ps of NPT at 300 K using an anisotropic
XY-Z barostat. During equilibration, heavy atoms were restrained with a harmonic potential
of 5kcal/mol/A2. A 500ns production simulation was then performed.

The resulting trajectories were sampled randomly over 25000 frames, from which fatty acid
monomers, dimers and trimers, 1000 per -mer and each phospholipid type, were selected
for subsequent steps. Multimers were identified based on geometric proximity: molecules
with geometric centers within 5 A were considered dimers, and those within 6 A of a dimer
were classified as part of a trimer. For cholesterol-containing fragments, only those clusters
including at least one cholesterol molecule were retained.

Carbohydrates. A library of 52 common monosaccharides, including both pentose and
hexose structures in a and § anomeric configurations, was used to construct disaccharides
in PyMOL [146]. Additionally, we sampled saccharide-peptide linkages, including N-
glycosylation involving arginine residues and O-glycosylation involving threonine and serine.
These glycosylated residues were capped with ACE and NME groups to mimic peptide
termini. In total, 2959 disaccharide structures were generated, representing one unique
combination of pentose/hexose and «//f configuration for each glycosidic linkage and 150
saccharide—peptide molecules.

Conformers were generated with the CREST [147-149] program, employing a 12 kcal/mol
maximum energy threshold. The resulting ensembles were clustered by linkage dihedral
angles, and cluster representatives were selected to ensure broad conformational coverage,
retaining at most 100 conformers per amino acid linkage and 20 per disaccharide.

Tons and Water. Solvated ion systems were prepared by placing a single ion at the center
of a water box. Bulk water and monovalent ions (Na™, C1~, K") in water were simulated
in LAMMPS [150] under NPT using the MBpol force field implemented in MBX [151, 152].
Temperature was maintained at 298 K with a Nosé-Hoover thermostat, pressure at 1 bar
with a Nosé-Hoover barostat, and the time step was 0.5 fs. Divalent ions (Ca®" and Mg®")
were simulated for 50 ns under NPT with the AMBER force field [32, 153].

To capture solvation effects across different hydration levels, bulk water and water-ion
clusters were cut to contain 1-100 water molecules. Trajectories were sampled every 5 ps
for monovalent ions and bulk water, and every 10 ps for divalent ions.

General MD settings. All molecular mechanics simulations were carried out using
OpenMM [154] under NPT conditions at 300 K, with a 2 fs time step. A Langevin thermostat
was applied with a friction coefficient of 1 ps™!, and pressure was maintained at 1 atm using
a Monte Carlo barostat. For solvated biomolecules, the TIP3P water model [155] was used,
with Na™ ions serving as the counterions.

Summary and pre-optimization Overall, fragments ranged in size from 2 to 402 atoms,
with larger fragments chosen to represent important biological motifs such as DNA base-
pair stacking and lipid packing interactions. The selected fragments were pre-optimized
using the DFTB+MBD method to avoid high-energy clashes [156]. In addition to that,
motivated by the importance of dimers in the early stages of developing general-purpose
machine-learned force field SO3LR [157|, we also sourced DES370K dimers from Ref. 158
for further calculations.
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Table 4.1: Composition of the QCell dataset shown alongside existing PBEO+MBD(-NL)
datasets (separated by a double line). Structures are gas-phase unless denoted as solvated (solv.).
Abbreviations: bp (base pair), FA (fatty acid), chol. (cholesterol), frag. (fragments).

Dataset Type Size Atoms Elements Theory level Basis set

Small molecules

QCML  Small molecules 33.5m 2-36 79 elements PBEO+MBD-NL  tight
QM7-X  Small organic molecules 42m 623 H,C,N,O,S, Cl PBE0O+MBD tight

AQM Drug-like molecules 60k 2-92 H,C,N,O,F, P, S Cl PBEO+MBD tight
Proteins

GEMS  Bottom-up frag. (solv.) 2.7m 2-120 H,C,N, O, S PBE0+MBD def2-TZVPP
SPICE  Dipeptides 34k 26-60 H,C,N,O,S PBE0+MBD tight

GEMS  Top-down frag. (solv.) 12k 162-321 H, C, N, O, S PBEO+MBD def2-TZVPP

Nucleic acids

QCell DNA duplex (2 bp, solv.) 5.3k 186-246 H, C, N, O, Na, P PBEO+MBD-NL  intermediate
QCell DNA duplex (3 bp, solv.) 9.5k 297-382 H, C, N, O, Na, P PBEO+MBD-NL  intermediate
QCell  RNA frag. 20k 14282 H, C, N, O, Na, Mg, S, P PBEO+MBD-NL intermediate
Lipids

QCell FA clusters (1-3) 12k 125-402 H, C, N, O, P PBEO+MBD intermediate
QCell FA clusters (1-2) + chol. 4k 148-342 H,C,N, O, P PBEO+MBD intermediate
Carbohydrates

QCell Disaccharides 59k 35-75 H, C, N, O PBEO+MBD tight

QCell Glycosidic linkages 15k 3852 H,C,N,O PBEO+MBD tight
Ions/Water

QCell Solvated ions 25k 4-301 H, O, Na, Cl, K, Mg, Ca PBE0O+MBD-NL tight

QCell Water clusters 5k 6-303 H, O PBEO+MBD-NL  tight
Non-covalent dimers

QCell DES370K dimers 371k 2-34 20 elements PBEO+MBD-NL  tight

QCell New 526k 2-402 20 elements PBEO+MBD(-NL) -

Total 41m  2-402 82 elements PBEO+MBD(-NL) -

4.1.2 Quantum mechanical calculations

Within the landscape of electronic structure methods, density functional theory (DFT)
offers one of the best tradeoffs between efficiency and accuracy and is widely used for
generating large QM datasets. DFT provides a hierarchy of approaches that vary in
accuracy and theoretical sophistication, as described by the “Jacob’s ladder” [16]. Each
rung of Jacob’s ladder represents a higher level of refinement: local density approximation
(LDA), generalized gradient approximation (GGA), meta-GGA, hybrid functionals, and
advanced formulations such as the random phase approximation or double-hybrid functionals.
Ascending the ladder generally improves accuracy but also increases computational cost.

Separate from this hierarchy, functionals also differ in their degree of empiricism. Minimally
empirical functionals (such as PBE [17] or SCAN [19]) are constructed from physical
constraints with little or no fitting to reference data, while highly empirical functionals are
trained on large datasets of experimental or high-level quantum chemical results. Highly
empirical methods can achieve impressive accuracy for systems similar to their training
data; however, their transferability to new or unseen systems raises concerns. In particular,
the reliability of highly empirical functionals in molecular dynamics simulations remains
unclear.
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Moreover, advanced empirical functionals are typically optimized against coupled cluster
data, which is considered a gold standard for small- to medium-sized molecules. However,
there is an ongoing debate on how well this method performs for larger systems, where
electronic complexity increases. Recently, it has been shown that the most accurate quantum-
mechanical methods, CCSD(T) and quantum Monte Carlo, agree for ligand—pocket motifs
within 0.5 kcal/mol [159], but can struggle to provide consistent reference data for larger
molecules or supramolecular complexes with extended 77 interactions. Specifically, the
disagreement in the binding energy of a 132-atom buckyball ring complex between the two
methods can be up to 12kcal/mol [160].

For this reason, in the current dataset we employed the non-empirical hybrid PBEO
functional with a many-body treatment of dispersion interactions to accurately capture
non-covalent interactions MBD(-NL) [17, 18, 29, 161]. Single-point hybrid DFT calculations
were performed with the FHI-aims code [162, 163]. For systems involving ions, many-body
dispersion interactions were described using the MBD-NL method due to its superior
performance for charged systems, while neutral systems employed the MBD approach.
Calculations used “tight” basis sets for small- and medium-sized systems and “intermediate
basis sets for subsets containing molecules with more than 350 atoms (see Tab. 4.1). Scalar-
relativistic corrections were included via the atomic ZORA formalism for subsets containing
ions. The self-consistent field convergence criteria were set to the following values (or
tighter): 1072 eV for the total energy, 1073 eV for the eigenvalue sum, 1075 electrons/A:3
for the charge density, and 10~% eV /A for the forces. The iteration limit was set to 200,
and unconverged calculations were discarded.

7

4.2 Data records

The resulting QCell dataset contains a total of 525,881 QM calculations for biomolecular
fragments spanning diverse conformations (Tab. 4.1).

The QCell dataset is provided in five HDF5 archive files hosted on a Zenodo data repository
and is organized according to the classes listed in Tab. 4.1 (lipids, carbohydrates, nucleic
acids, ions/water, and dimers) [164]. Each molecule in the HDF5 files includes the 34-35
properties listed in Tab. 4.2. A README file is also provided, containing technical usage
details and examples illustrating how to access the information stored in the archives (see
the h6_to_extxyz.py file).

4.3 Technical validation

To ensure the reliability and consistency of structures in the QCell dataset, we validated
the structural diversity across biomolecular classes. Our analysis focused on key geometric
descriptors.

Nucleic acids. For DNA fragments, we analyzed intra-strand phosphate—phosphate (P-P)
distances and backbone bending angles (Fig. 4.2A). These parameters directly reflect the
global geometry of DNA helices: P-P distances measure the spacing of the sugar—phosphate
backbone, while bending angles characterize backbone flexibility and helical form. The
distributions reproduce the expected values for A-, B-; and Z-DNA (P-P peaks and bending
angles spanning canonical ranges), confirming that the QCell captures the conformational
diversity of real nucleic acids [165, 166].

38



Chapter 4. QCell: Quantum-Mechanical Dataset Spanning Diverse Biomolecular Fragments

Table 4.2: List of properties stored in the QCell dataset.

eigenvalues varies for each molecule.

The number of Kohn—Sham
h; ratios are present only in MBD data, whereas Cg

and ag ratios appear only in MBD-NL data. File-level information is contained in metadata
(metadata/free_atom_energy and metadata/fhi_aims_settings).

# Symbol Property HDF5 key Unit Shape
Structure

1 Z Atomic numbers atomic_numbers — (N)

2 R Atomic positions positions A (N, 3)
Energies

3 FEiot Total energy total_energy eV O

4  FErorm Formation energy formation_energy eV 0
Total energy components:

5 Y€ Sum of KS eigenvalues sum_of _eigenvalues eV )

6 AFExc XC energy correction Xc_energy_correction eV 0

7 AVxc XC potential correction xc_potential_correction eV O

8 Epa Free-atom electrostatic energy free_atoms_elec eV O

9 AFEy Hartree energy correction hartree_correction eV )
10  Eugw van der Waals dispersion energy vdw_energy eV O
Derived energy quantities:
11 Eyn Kinetic energy kinetic_energy eV )
12 B Electrostatic energy electrostatic_energy eV O
Decomposition of the XC energy:
13  Egp Hartree-Fock energy hf_energy eV 0
14 E, Exchange energy X_energy eV 0O
15 E. Correlation energy c_energy eV O
16  Exc Total XC energy total_xc_energy eV )
Forces
17 Fiot Total forces total_forces eV/A (N, 3)
Total forces components:
18  Fur Hellmann—Feynman forces hellmann_feynman_forces eV/ A (N, 3)
19 Fin Tonic forces ionic_forces eV/A (N, 3)
20  Fou Multipole forces multipole_forces eV/A (N, 3)
21 Furx HF exchange forces hf_exchange_forces eV/A (N, 3)
22 Fpulay Pulay+GGA forces pulay_gga_forces eV/A (N, 3)
23 Foaw van der Waals forces vdw_forces eV/A (N, 3)
Dipoles and Multipoles
24 Dipole vector dipole exA (3
25 Qiot Total quadrupole moment quadrupole ex A (3)
26 Qe Electronic quadrupole moment electronic_quadrupole ex A (3)
27 Qion Ionic quadrupole moment ionic_quadrupole e x A? (3)
Electronic structure
28 FEuomo HOMO energy homo_energy eV )
29  Erumo LUMO energy lumo_energy eV 0
30 Egap HOMO-LUMO gap homo_lumo_gap eV 0
31 {e:} Kohn—-Sham eigenvalues ks_eigenvalues eV (*
Other / Atomic properties
32 Q Total charge charge e 0
33 h; Hirshfeld ratios hirshfeld_ratios — (N)
34 Cg Atomic Cg ratios c6_ratios — (N)
35 ap Atomic polarizability ratios a0_ratios — (N)
36 — Source tag source — (text)
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4.8 Technical validation
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Figure 4.2: Structural distributions across (bio)molecular datasets, with representative structures.
A) Distribution of intra-strand phosphate—phosphate distances (left) and backbone bending angles
(middle) in DNA trimers, compared to reference values of A-; B-, and Z-DNA [165, 166]. B)
Radius of gyration distribution of fatty acid fragments with more than 300 atoms. C) Distribution
of O/N-glycosidic linkage dihedrals in carbohydrates. D) Pair distance distributions for ions and
water [167-170].

Lipids. For lipids, we examined the radius of gyration of fatty acid fragments, which
provides a measure of chain extension and packing (Fig. 4.2B).

Carbohydrates. Carbohydrate conformations are primarily governed by N/O-glycosidic
torsional angles, which determine linkage geometry and flexibility. Thus, we verified that the
structures span the full torsional space, reproducing all major rotameric states (Fig. 4.2C).

Tons/Water. To assess solvation and intermolecular structure, we analyzed radial distri-
bution functions (RDFs, Fig. 4.2D). RDFs quantify the probability of finding neighboring
atoms at a given distance and directly reflect solvation-shell organization. The monovalent
ion—oxygen and O—O peaks in water match experimental hydration distances [167, 168, 170].
For the divalent ions Mg?" and Ca?", the RDF peaks are slightly shifted relative to experi-
mental values, reflecting that the initial structures were generated using empirical force-field
simulations. Despite these deviations, the distributions capture the correct solvation-shell
organization and remain within physically meaningful ranges.

Machine learning models. To evaluate the dataset in a realistic application, we trained
a state-of-the-art machine learning force field on all subsets listed in Tab. 4.1 and measured
its accuracy on held-out test configurations. As a representative model, we employed the
SO3LR architecture (SO3krates with long-range terms) [53, 157|, which is particularly well
suited for biomolecular systems because it explicitly incorporates long-range electrostatic and
dispersion interactions, as well as electronic degrees of freedom, and can therefore describe
charged and open-shell structures. The model was trained to predict formation energies
and atomic forces from atomic numbers, coordinates, and electronic state information (total
charge and spin multiplicity). Fig. 4.3 summarizes the force mean absolute errors (MAEs)
across different molecular classes and model sizes. The errors decrease systematically with
increasing model capacity, reaching values below 1kcal/mol/ A for most subsets. This
highlights both the internal consistency of the QCell and the ability of modern MLFFs to
generalize across chemically diverse systems.
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Chapter 4. QCell: Quantum-Mechanical Dataset Spanning Diverse Biomolecular Fragments
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Figure 4.3: Test set errors for machine learning force fields. Force mean absolute errors
[kcal /mol/A] for SO3LR models of increasing size (small, medium, large) across all the training
subsets, illustrating systematic error reduction with model capacity and consistent data quality
across chemically diverse systems.

4.4 Conclusion

This chapter addresses the critical data bottleneck that has hindered the development
of truly general-purpose machine learning force fields for biomolecular simulation. We
introduced the QCell dataset, a comprehensive and diverse collection of over 525,000 new
quantum-mechanical calculations spanning the fundamental building blocks of all four
major biomolecular classes: proteins, lipids, carbohydrates, and nucleic acids, along with
relevant ions and water clusters. By employing a consistent and high-quality PBEO+MBD(-
NL) level of theory, QCell accurately describes the semi-local chemical environments and
interaction motifs that recur throughout complex biological assemblies. It serves as a
complement to existing datasets, contributing to a combined resource of over 40 million
datapoints that covers a broad chemical space relevant to life sciences. Ultimately, QCell
provides the essential foundation required to train the next generation of accurate and
transferable MLFFs, paving the way for models capable of simulating complex, heterogeneous
(sub)cellular environments with quantum fidelity.

While QCell addresses the challenge of chemical diversity through a systematically con-
structed quantum-mechanical dataset for biomolecular fragments, the training of global
machine learning force fields for large molecules remains limited by the scaling and re-
dundancy of fully coupled representations. The following chapter therefore introduces
a reduced global descriptor that preserves essential nonlocal information while enabling
efficient learning for extended molecular systems.
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Chapter 5

rGDML: Efficient interatomic
descriptors for accurate machine
learning force fields of extended
molecules

Parts of this chapter have been published in this or similar form in Ref. 121:

e A. Kabylda, V. Vassilev-Galindo, S. Chmiela, I. Poltavsky, A. Tkatchenko, Nature
Communications 14, 3562 (2023).

Reliable atomistic force fields are essential for the study of dynamics, thermodynamics,
and kinetics of (bio)chemical systems. Machine learning force fields (MLFFs) are lately
becoming a method of choice for constructing atomistic representations of energies and
forces |5, 45, 50, 54, 64, 71, 95, 171-181]. Contrary to traditional computational chemistry
methods, MLFFs use datasets of reference calculations to estimate functional forms which
can recover intricate mappings between molecular configurations and their corresponding
energies and/or forces. This strategy has allowed to construct MLFFs for a wide range of
systems from small organic molecules to bulk condensed materials and interfaces with energy
prediction errors below 1 kcal/mol with respect to the reference ab initio calculations |5,
54, 64, 106, 113, 171, 182-188|. Applications of MLFFs already include understanding
the origins of electronic and structural transitions in materials [182], computing molecular
spectra [106, 183-185|, modeling chemical reactions [186], and modeling electronically
excited states of molecules [187, 188]. Despite these great successes of MLFFs, many open
challenges remain [5, 189, 190]. For instance, the applicability of MLFF models to larger
molecules is limited, partly due to the rapid growth in the dimensionality of the descriptor
(i.e. a representation used to characterize atomic configurations).

A descriptor used to encode the molecular configurations determines the capability of an
MLFF to capture the different types of interactions in a molecule. Therefore, descriptors are
designed to contain features that emphasize particular aspects of a system or to highlight
similar chemical or physical patterns across different molecules or materials. Many different
descriptors have been proposed to construct successful MLFFs for specific subsets of the
vast chemical space [47, 57-59, 61, 62, 64, 173, 191-194|. However, there is no guarantee
that a given descriptor is capable of accurately describing all relevant features throughout
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high-dimensional potential-energy surfaces (PESs) that characterize flexible molecular
systems [189]. The main challenge here is to balance the number of features required for
a given ML model to describe simultaneously the interplay between short and long-range
interactions. One possible approach to address this challenge is to increase the complexity of
descriptors by adding explicit features to model specific interactions [92, 189|. However, such
solution usually yields descriptors that are high-dimensional and inefficient for large systems.
As an alternative solution, several approaches have been proposed to generate reduced
descriptors, targeting specific properties of interest [195-199]. Such reduced descriptors
have led to insights into complex materials, and this approach has also been applied to
MLFFs, specifically to reduce ACSFs and SOAP representations [200-203].

The descriptors discussed above correspond to local MLFF models, where only a certain
neighborhood of atoms is considered within a specified cutoff distance. Such locality approx-
imation is usually employed in MLFFs to enhance their transferability and applicability for
larger systems than the given training set. However, as a downside, accounting for long-range
interactions requires additional effort. Therefore, some recent MLFF models [71, 91, 92, 106—
108, 204] have integrated correction terms to account for certain long-range effects (e.g.
electrostatics), but long-range electron correlation effects are still not well characterized.
It is evident that the field of MLFF combined with physical interaction models is rapidly
growing and developing, but a definitive solution to these challenges has not yet been
found. In general, ML models should be able to correctly describe i) the nonadditivity of
long-range interactions, ii) the strong dependence of such interactions on the environment
of interacting objects, and iii) the nonlocal feedback effects that give rise to their multiscale
nature. Addressing these features requires the development of flexible yet accurate and
efficient MLFFs that do not rely on strictly predefined functional forms for interactions or
impose characteristic length scales.

Alternatively, one can switch to so-called global descriptors, such as the Coulomb matrix,
where all interatomic distances are considered. Unfortunately, such global descriptors scale
quadratically with system size. In addition, reducing the descriptor dimensionality in
global models is an unsolved challenge. For example, it is evident that most short-range
features (e.g. covalent bonds, angles, and torsions) should be preserved when constructing
accurate MLFFs. In fact, the number of local features scales linearly with the system size.
In contrast, the number of nonlocal (long-range) features scales quadratically and a general
coarse-graining procedure to systematically reduce nonlocal features does not exist yet.

To address these challenges, in this work we propose an automatic procedure for identifying
the essential features in global descriptors that are most relevant for the description
of large and flexible molecules. We apply the developed approach to identify efficient
representations for various systems of interest, including a small molecule, a supramolecular
complex, and units of all four major classes of biomolecules (i.e. proteins, carbohydrates,
nucleic acids, and lipids): aspirin (21 atoms), buckyball catcher (148 atoms), alanine
tetrapeptide (AcAlasNHMe, 42 atoms), lactose disaccharide (45 atoms), adenine-thymine
DNA base-pairs (AT-AT, 60 atoms), and palmitic fatty acid (50 atoms). Employing the
reduced descriptor results in an improvement of prediction accuracy and a two- to four-fold
increase in computational efficiency. Moreover, an analysis of the features that are selected
by our reduction procedure suggests that these features follow certain patterns that are
explained by both interaction strength and statistical information they provide about
atomic fluctuations. In particular, while most short-ranged features are essential for the
PES reconstruction, a linearly scaling number of selected nonlocal features are enough for
an ML model to describe collective long-range interactions.
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Figure 5.1: Overview of the descriptor reduction scheme. a, c Graph representation of
global and reduced descriptors for AcAlagNHMe, and its decomposition into short- and long-range
features with corresponding scaling with the number of atoms, n. The color of nodes indicates
atom type: H - white, C - grey, N - blue, O - red. The color of the edges indicates average
distance between atoms. b, d Interaction map of global and reduced Machine Learning Force
Fields (MLFFs). Each square in the heatmaps represents a given pair of atoms in the molecule
(atom indices start from 0). The colorbar is in log scale normalized to the 0-1 range and goes
from dark magenta (small) to yellow (large) for the average contributions to the force prediction.
e Performance of the global and reduced models: energy (in keal /mol) and force (in kcal/mol/A)
root mean square errors (RMSEs) as a function of the size of the descriptor (upper panel). The
RMSE values were calculated on a test set of ~80k points, distinct from the training (1k) and
validation sets (1k). Decomposition of the descriptors by short- and long-range features (lower
panel). Descriptor sizes in x-axis go from 1 to 0, where 1 corresponds to a default global descriptor
and 0 to an empty descriptor. f Feature analysis in the global (denoted as ML) and reduced
models (denoted as MLy x, where X indicates the descriptor size). Hydrogen atom highlighted in
yellow keeps interactions with atoms highlighted in purple. The arrow indicates transition of the
employed descriptor from default global to substantially reduced ones.

5.1 Reduced GDML algorithm

The quadratic scaling of global descriptors with molecular size, especially their long-range
part, becomes a considerable challenge with the increasing number of atoms. For molecules
containing just a few dozen of atoms, such descriptors are, in fact, substantially over-defined.
For example, the number of degrees of freedom (DOF) uniquely defining a configuration of
a molecule with N atoms is 3N — 6. At the same time, the Coulomb matrix and related
global descriptors contain N (N — 1)/2 DOFs. Thus, such descriptors will span a much
larger space than what is effectively needed, making ML models harder to optimize and
compromise their performance/accuracy. In the case of a complete interatomic inverse
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5.1 Reduced GDML algorithm

distances descriptor (a simplified version of the Coulomb matrix [58]), the interatomic
interactions can be visualized as a fully connected graph with atoms as nodes and descriptor
features as edges. For example, Fig. 5.1a shows such a descriptor for the AcAlagNHMe
molecule containing 861 features. Each edge of the graph represents a dimension in the
descriptor space, where an ML model should be trained.

The large dimensionality of the descriptor significantly complicates the learning task. The
interaction map (Fig. 5.1b) shows how the (s)GDML model interprets the interatomic
interactions when the entire global interatomic inverse distance descriptor is employed
(values are averaged over 1000 configurations, see Methods for further details). As a
projection of complex many-body forces into atomic components, this partitioning is
non-unique and is mainly determined by the chosen descriptor. In turn, the simpler the
descriptor space, the more straightforward the task for the ML model. One can see that
the interaction map shown in Fig. 5.1b is rather non-uniform and complex, meaning the
(s)GDML model needs to be able to reproduce a complex mapping between the descriptor
(861 dimensions) and force (126 dimensions) spaces.

5.1.1 Reduced descriptors

The automatized descriptor reduction procedure proposed in this work significantly simplifies
the learning task and noticeably decreases the complexity of the interaction map. To reduce
the size of the descriptor, we employ a definition of similarity between system states, which
plays a pivotal role in kernel-based ML models. Namely, we assume that the least important
descriptor features for the similarity measure can be omitted without losing generality in an
MLFF model (see Methods for further details). The reduced descriptor space of the optimal
ML model (344 features) is shown as a graph in Fig. 5.1c. Interestingly, the short-range
part (236 features) of the graph is practically unaltered by the reduction procedure. In
contrast, a small fraction of long-range features (108 out of 574 in the full descriptor)
enables an accurate account of all relevant long-range forces while greatly simplifying the
interaction map (Fig. 5.1d). The reduced descriptor still completely and uniquely represents
the molecular configurations. For AcAlasNHMe, we can remove up to 60% of the initial
global descriptor while preserving the accuracy of the (s)GDML model (Fig. 5.1e). This is
a remarkable result since many approaches for reducing the dimensionality of the learning
task (e.g. low-rank approximations of the kernel matrix) typically lead to performance
degradation because the model has to compensate for omitted features in some arbitrary
reduced representation [205].

We also analysed the features that are kept to interpret the content of the reduced descriptor
(Fig. 5.1f). One sees that the reduced descriptors are not a simple localization because
features’ importance is not necessarily correlated with the distance between atoms. The
proposed selection scheme considers both the strength of the interactions between atoms and
the information the features provide about the molecular structure. The latter means that
the optimal nonlocal features depend on the training dataset and the respective sampled
region of PES. As a possible future outlook, one could consider switching from selecting
atom-centered nonlocal features from the initial global descriptor to projecting them into
more efficient and general collective coordinates. This would provide us with effective
interaction centers for large molecules, similar to those employed by the TIP4P [206] or
Wannier centroid [204] models of water. In turn, this would enable the construction of
automatized coarse-grained representations preserving the MLFFs accuracy, a long-desired
tool for simulating complex and large systems.
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Figure 5.2: Accuracy of the models with reduced descriptors. Energy (in kcal/mol) and
force (in keal/mol/A) root mean square errors (RMSEs) as a function of the size of the descriptor.
RMSEs of Gradient Domain Machine Learning (GDML) models for aspirin (a), AcAlagNHMe (b),
AT-AT (c), and the buckyball catcher (d) trained on 300, 500, 800, 1000, and 3000 configurations.
Descriptor sizes in x-axis go from 1 to 0, where 1 corresponds to a default global descriptor and 0
to an empty descriptor.

5.2 Assessment and analysis of the rGDML model

The proposed descriptor reduction scheme is general and applicable to a wide range of
systems. Fig. 5.2 shows GDML performance curves of energy and forces for aspirin,
AcAlagNHMe, AT-AT, and the buckyball catcher as a function of the size of the descriptor
for different sizes of the training set. The aspirin molecule represents a rather small semi-
rigid molecule, for which one can already build accurate and data-efficient MLFFs [50,
54, 61, 64, 71, 171, 207]. The other molecules represent large and flexible systems that
constitute a challenge for existing ML models. For each of these systems, GDML models
with 300, 500, 800, and 1000 training points were trained using descriptors of different sizes.
For the AcAlagNHMe molecule, due to its size and flexibility, we have also constructed the
model using 3000 training points.

For a small molecule such as aspirin (210 features in the original descriptor), the descriptor
showing the lowest RMSEs is the default global descriptor. Nevertheless, removing up
to 30% of the descriptor only slightly affects the predictions of the model. Whereas, for
AcAlagNHMe (861 features), AT-AT (1770 features), and the buckyball catcher (10878
features) one can significantly reduce the size of the descriptor while obtaining even more
reliable predictions regardless of the training set size (Fig. 5.2b-d). For instance, models
trained on 1000 training samples with a descriptor size reduced by 60% provide energy
and force RMSEs that are up to 2.2kcal/mol and 0.2kcal/mol/A lower than those of the
models employing default global descriptors. The different behavior in prediction accuracy
with decreasing size of the descriptor between aspirin and other bigger molecules is mainly

47



5.2 Assessment and analysis of the rtGDML model

Interatomic distances Average contribution to force prediction
MLLoca\

a Ac-Ala3-NHMe

C
0 25
0 10 20 30 40 50 00 10 20 30 40 50

C  Buckyball catcher
140 § 140

105 VY 105
70 70

35

35

0 0

0 35 70 105 140

I i
P K
0 35 70 105 140 00 35 70 105 140

2i Lk tp
0 35 70 105 140

Figure 5.3: Complexity of interaction patterns. Heatmaps of average interatomic distances
(in A) and average contributions (in log scale normalized to the 0-1 range) of each atom to the
force prediction of all atoms computed from 3000 configurations of AcAlagNHMe (a), AT-AT (b),
and 1000 configurations of the buckyball catcher (c). Each square in the heatmaps represents a
given pair of atoms in the molecule (atom indices start from 0). The scale goes from yellow (short
distances) to dark magenta (long distances) for interatomic distances, and from dark magenta
(small contributions) to yellow (large contributions) for the contributions to the force prediction.

caused by the differences in their size. Indeed, with increasing molecule size, the quadratic
redundancy of the feature space offers greater reduction potential. Therefore, reducing the
number of features contained in a global descriptor should be a routine task for building
ML models of large molecules.

5.2.1 Improved description of interactions

The improved accuracy of models trained using reduced descriptors is a consequence of
how well those models describe the interatomic interactions. Fig. 5.3 shows the interac-
tion heatmaps and interatomic-distance heatmaps averaged over 1000 conformations for
AcAlagNHMe, AT-AT, and the buckyball catcher. For each of the molecules, we use the
following GDML models trained with 1000 configurations: i) the MLgjopq; model, ii) a model
trained using a % descriptor mimicking a local descriptor by removing all features involving
distances greater than 5.0 A (the typical value for the cutoff radius in local descriptors)
in at least one configuration in the dataset (MLpoeq1), and iii) a MLRgeguced model. We
remark that the prediction accuracy of our reduced models for large molecules is superior
to state-of-the-art kernel-based local GAP/SOAP [175] ML model (Fig. A3).

For the MLgiopq models (containing 861 features for AcAlasNHMe, 1770 for the AT-AT,
and 10878 for the buckyball catcher) the contributions are evenly distributed among different
pairs of atoms regardless of the distance between them. This allows the model to effectively
capture long-range interactions, but as a downside may degrade the ability to optimally
resolve all short-range ones. Conversely, the MLy ., models (with a size equal to 33%,
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17%, and 15% of the size of the default global descriptor for AcAlasNHMe, AT-AT, and
the buckyball catcher, respectively) only rely on the local environment of the molecule.
This is confirmed by the contributions of the atoms to the force prediction of other atoms,
which are directly related to the magnitude of the corresponding interatomic distances.
Thus, the MLj . models offer a more adequate description of short-range interactions
but completely neglect those interactions arising from distances greater than the selected
cutoff. One of the drastic consequences of such neglect is the instability of MD simulations
performed using these local MLFFs. Finally, the ML gegyceq models offer an improvement
over both MLgope; and MLy cq; models by achieving an adequate description of the local
environment of the molecule and, at the same time, keeping the relevant information for
describing nonlocal interactions. Therefore, using a reduced descriptor leads to ML models
that provide a balanced, faithful description of all essential interactions in a given system.

We further compare the transferability of the global and reduced models by training them on
compact structures and testing on extended structures of the tetrapeptide (and vice-versa).
To do that, we split the tetrapeptide dataset based on the distance between the furthest
atoms (ranges from ~ 8 to 14 A) with a threshold of 12A (and 9.5 A). The comparison of
the force and energy RMSEs shows that the reduced models are more accurate than global
models when dealing with unseen outlier extended or compact structures of the tetrapeptide
(see Tab. A3). This suggests that overdetermined global ML model underperforms due to
conflicting information from excessive features and that the model with a reduced descriptor
indeed provides an improved description of interactions.

5.2.2 Efficiency and stability of reduced-descriptor models

The models obtained using reduced descriptors, together with the increment in accuracy
provide up to a ten-fold increase in efficiency during training and four-fold during deployment
(Tab. A4). Improvement in efficiency results from the fact that there are less noisy features
in the reduced model, which leads to lower per-iteration costs. For training, such efficiency
can only be obtained with a recently developed iterative solver [66], while the evaluation
speedup is always present when using the GDML model.

We also checked the stability of molecular dynamics simulations employing reduced models.
We found that optimally reduced models for AcAlasNHMe (MLpggg with 3000 training
points, 0.3 fs timestep) and the buckyball catcher (MLpgg 2 with 1000 training points, 0.5 fs
timestep) are stable and the corresponding energy is conserved during the dynamics at
300 K for 3 ns.

In complex systems, long simulations can be unstable due to incomplete dataset even
with the default global descriptor. For example, AT-AT shows degraded stability when
encountering rare/new configurations that are not well sampled in the dataset (decomposes
due to leaving the planar configuration or due to hydrogen transfer from T to A). Still, we
find that simulations can remain stable for 3 ns with the default MLz ¢ and the reduced
ML g5 models (1000 training points, 0.1 fs timestep). Further stability depends on the
accuracy of the underlying original model. Thus, with increasing complexity of the PES,
one should consider using active learning to detect “dark” states and adding them to the
training process regardless of the employed descriptor.

Models with substantially reduced descriptors can only describe a smaller part of the PES
and lead to artificial behaviour (e.g. steric clashes or fragmentation). Such artifacts happen
with a higher probability in flexible molecules where atom pairs corresponding to removed
features might come close, and their relative position cannot be neglected anymore. For
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Figure 5.4: Steered dynamics between folded and extended states of the tetrapeptide.
The tetrapeptide undergoes unfolding due to an external force acting parallel to the connecting line
between two terminal carbon atoms. The gyration radius, averaged over 30 runs, is represented
by the solid lines, with the shaded areas indicating the standard error.

example, we encounter steric clashes in AcAlagNHMe when using MLy 4 trained on 1000
configurations at 0.5 fs timestep, even though test errors are lower than those of the global
MLEg1, o model. Therefore, smaller prediction errors do not always lead to a more reliable
ML model when tested in an extended simulation of several nanoseconds (see also Ref. 208).

In order to further demonstrate the stability and the broad applicability of reduced GDML
models, we study the evolution of the tetrapeptide molecule from a compact to an extended
structure under a constant external force of 10 pN applied in opposite directions to the
two terminal carbon atoms (Fig. 5.4). Statistics were collected using 30 simulations with
different initial velocities following the Boltzmann distribution at 300 K (Fig. A5). We
ran simulations using the global and reduced models trained with 5000 training points. In
addition, we ran simulations at two levels of theory - PBE and PBE+MBD - and used the
resulting data for validation (see Methods for further details). We measured the structural
compactness using the gyration radius and compared the dynamical properties of the
models. As expected, due to the absence of attractive dispersion interactions in the PBE
simulations, the tetrapeptide unfolded faster than in the PBE+MBD ones (on average it
took ~550 and ~750 fs, respectively, to reach R, = 3.8 A) Both the global and reduced
models agreed well with the PBE4+MBD results, indicating their accuracy and reliability.
Also, this confidently shows that the reduced model preserves all the information needed to
describe long-range interactions with ab initio accuracy.

After confirming the reliability of the reduced model, we further investigated the con-
formational space of the tetrapeptide to enhance our understanding of its behavior. To
achieve this, we conducted multiple simulations in parallel, with an accumulated time of
50 ns (Fig. A6). This approach allowed us to obtain a converged folding and unfolding
distribution, which was visualized using the 12 angle in the probability distributions for
the central residue. Our analysis reveals that the tetrapeptide populates the extended state
with a probability of 13% on the 50 ns time scale (Fig. A7).
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Figure 5.5: Analysis of relevant interatomic features. a Distributions of average distance
of pairwise features and average contribution of features to the force prediction for AcAlagNHMe,
AT-AT and the buckyball catcher using bivariate kernel density estimate plots (Machine Learning
models: global - green, reduced before retraining - gray, reduced after retraining - green). The
marginal charts on the top and right show the distribution of the two variables using density
plot. The average values were obtained from all configurations in the datasets. The x-axis is in
log scale normalized to the 0-1 range. b Decomposition of the reduced descriptor by short- and
long-features for AcAlagNHMe, the AT-AT, and the buckyball catcher. Pairwise features with
the average distance below 5 A across all configurations in the dataset are counted as short-range
(green line), long-range otherwise (blue line). Dashed green line represent number of short-range
features in the global descriptor. Descriptor sizes in x-axis go from 1 to 0, where 1 corresponds to
a default global descriptor and 0 to an empty descriptor.

5.2.3 Relevance of interatomic descriptor features

The importance of descriptor features is not always related to the magnitude of their
contribution to the model predictions (Fig. 5.5a). As expected, the features contributing
the most to the force predictions (above 0.5-0.6 a.u.) in the global model are all included
in the reduced descriptor (see the top marginal plots). These strongly contributing features
are primarily associated with short interatomic distances. In contrast, the selected features
corresponding to medium- and long-range interatomic distances span almost all contribution
ranges. For instance, some weakly contributing features that describe an average distance as
large as 15 A are included in the reduced descriptor of the AT-AT system. The distribution
of the selected features is skewed towards the weak contributions upon increasing the
molecular size (compare gray density distribution of three molecules in top marginal plots,
Fig. 5.5a). Interestingly, the distribution of the contribution of the selected features is
significantly shifted towards larger values after retraining the ML model (center marginal
plots, Fig. 5.5a).

Further analysis reveals that contribution of particular features in the global model can
range from linear to stochastic with respect to the interatomic distance (Fig. A8a). The
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proportion of stochastic features increases with the size of the systems and the size of
training set (Fig. A8b). In the reduced models after retraining most of the selected features
have a high coefficient of determination, R? (Fig. A8c). Contribution of “linear” features
to the force prediction decreases quadratically with distance (slope = -2), suggesting the
prominence of Coulombic contributions to the interatomic forces.

These findings are general and valid for all descriptor reduction degrees. Although we do not
rely on any characteristic lengthscale, we show the effect of descriptor reduction approach
on different types of interactions as conventionally defined when imposing lengthscales.
Fig. 5.5b shows a decomposition of the reduced descriptor in short- and long-range features
for different descriptor sizes. We consider the feature as short-ranged if the distance between
two atoms across all configurations in the dataset is below 5 A, and long-ranged otherwise.
In all the cases, feature selection removes prevalently long-range features and 10-20% of the
local features that always lic under 5 A (compare dashed and solid green lines in Fig. 5.5b).
Nevertheless, we emphasize that removing local features might worsen the stability in
flexible systems and the best-practice solution is to keep them all in the reduced descriptor.

We construct our datasets using dynamics simulations at the PBE4+MBD level of theory
(see Methods for further details). However, long-range descriptor features are also kept
in PBE calculations, as the PBE functional includes both long-range electrostatics and
polarization, despite the semi-local nature of the exchange-correlation term. When we
account for MBD, up to 22% of removed features can change depending on the degree
of reduction (~5% for the optimal MLp 4—0.¢ models). This is consistent with the fact
that MBD contribution to the energy is relatively small compared to the PBE energy.
Nevertheless, MBD contribution can greatly influence the dynamics of chemical systems,
particularly in the case of large and flexible molecules. For example, MBD is essential
for accurately evaluating the stability of aspirin polymorphs [116], standing molecules on
surfaces [209], and interlayer sliding of 2D materials [210]. Therefore, it is essential to
perform PBE+MBD calculations in order to generate a reliable dataset in the first place.

5.2.4 Analysis of patterns in relevant interatomic features

We analyze particular atoms and their selected chemical environment in the reduced
descriptors to identify the trends in the features that an ML model considers essential. To
make our results general for a wide range of (bio)molecules, we include in our discussion
lactose and palmitic acid. Fig. 5.6 shows examples of such features for all of our test systems.
One can see some general patterns. For example, shielded atoms (C, N, O) in backbone
chains usually keep solely local features (Fig. 5.6a, e, d). Most interactions between the
first-, second-, and third-nearest neighbors are intact. Such behavior is expected and reflects
the importance of the local environment in describing interatomic interactions.

The outer atoms are responsible for accounting for the relevant nonlocal features in the
molecules (Fig. 5.6¢, d and Fig. 5.1f). The flexibility of the molecule defines the number of
such features in the reduced descriptor. For instance, outer hydrogen atoms in semi-rigid
molecules (e.g. lactose) only require local information in the descriptor. In contrast, flexible
molecules (e.g. AcAlagNHMe and palmitic acid) present a combination of short-range
features to describe local bond fluctuations and a substantial number of nonlocal features
for accurately characterizing essential conformational changes, such as the folding and
unfolding of peptide chains (Fig. 5.6¢, e, f).

There are more complex patterns like those observed in the AT-AT base pairs and the
buckyball catcher (Fig. 5.6¢, b). In the former, two hydrogen atoms in the imidazole ring
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a Lactose b Buckyball catcher

C AT-AT

d Palmitic acid

e Ac-Ala3-NHMe W

Figure 5.6: Examples of features in the reduced descriptors. The features were obtained
from the reduced ML gg 3 descriptor for lactose (a), AT-AT (c), palmitic acid (d) and AcAlasNHMe
(e); the ML g2 descriptor for buckyball catcher (b). Root mean square errors as a function of
the descriptor size for lactose and palmitic acid can be found in Fig. A4. Atoms highlighted in
yellow keep in the reduced descriptor the features that correspond to interactions with purple
atoms. Outline colors on reference atoms highlighted in yellow indicate their chemical symbols
(hydrogen - no outline, carbon - grey, nitrogen - blue, oxygen - red).

of adenine retain contrasting sets of features. This is because some features contained in an
optimal descriptor depend on the phenomena sampled in the datasets (e.g. MD trajectories
at certain temperatures). In the buckyball catcher, the reduced descriptor reveals that the
symmetry of the system is important. Only a few features from the catcher are needed to
effectively describe the interaction with any atom in the buckyball (and vice-versa).

5.2.5 Linear scaling of descriptors with molecular size

As a result of the descriptor reduction procedure, we obtain reduced descriptors that scale
linearly with the number of atoms (Fig. 5.7). This is achieved by revealing a minimal
complete set of nonlocal features that describe long-range interactions. The number of
such features is similar to the number of short-range ones (Fig. 5.5b). Therefore, reduced
descriptors not only scale linearly with the system size but also the corresponding prefactor
(~10) is a few orders of magnitude smaller to that of local descriptors (~ 1000). However,
we must note that the Hessian of the GDML model is still of the same size (3N x 3N,
where N is the number of atoms), though many of the entries are omitted in the reduced
model (as shown in Fig. 5.3). This noticeably reduces the computational cost of global
ML models (up to a factor of four for studied systems) and paves the road to constructing
efficient global MLFFs for systems consisting of hundreds of atoms.

Linear-scaling electronic structure methods, such as linear scaling density functional theory,
are valuable tools for ab initio simulations of large systems. These methods assume that
the electronic structure has a short-range nature and achieve linear-scaling by truncating
elements beyond a given cutoff radius or below a given threshold [211]. In contrast, our
approach does not impose any localization constraints - selected features span a wide range
of distances and contributions. Descriptor reduction procedure allows us to find the right
low-dimensional embedding of the high-dimensional PES. Furthermore, the linear-scaling
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Figure 5.7: Scaling of the default and reduced global descriptors. Dots represent reduced
descriptors for the molecules used in this study.

electronic structure methods are less accurate than the original O(N?) approaches by
design. The models trained with reduced descriptors provide predictions with equal or
better accuracy than the original models since the deprecated features, as we have shown,
constitute noise in the model.

5.3 Conclusion

Efficient modeling of large molecules requires descriptors of low dimensionality that include
relevant features for a particular prediction task. Our results show that beyond increasing
the efficiency, such descriptors improve the accuracy of ML models compared to those
constructed with default global or local descriptors. This is the consequence of simplifying
the interaction patterns which should be learned by ML models in the reduced descriptor
spaces. The resulting MLFFs allow long-time molecular dynamic simulations demonstrating
stable behavior in the regions of the PES represented in the training sets.

A detailed analysis of the nonlocal descriptor features relevant for accurate energy /force
predictions shows non-trivial patterns. These patterns are related to the molecular structure
and composition, balancing the strength of the interactions associated with the descriptor
features and statistical information about atomic fluctuations these features provide. In
particular, we show that the descriptor features related to interatomic distances as large
as 15 A can play an essential role in describing nonlocal interactions. Our examples cover
units of all four major classes of biomolecules and supramolecules, making the conclusions
general for a broad range of (bio)chemical systems.

The key outcome of the proposed descriptor reduction scheme is the linear scaling of the
resulting global descriptors with the number of atoms. We found that global descriptors
for large molecules are over-defined and equally accurate models can be constructed with
just a handful of long-range features that describe collective long-range interactions. This
behavior seems to be general for large molecular systems, provided that reliable reference
data is available.
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Overall, our work makes substantial advances in the broad domain of machine learning force
fields. These advances include (i) demonstrating the potential for linear scaling in global
MLFFs for large systems, (ii) analyzing the nonlocal interatomic features that contribute
to accurate predictions, and (iii) demonstrating the accuracy, efficiency, and stability of
reduced models in long time-scale molecular dynamics simulations. As such, this is a critical
step for building accurate, fast, and easy-to-train MLFFs for systems with hundreds of
atoms without sacrificing collective nonlocal interactions.

The rGDML framework demonstrates that global machine learning force fields can be
made both accurate and computationally tractable by compressing nonlocal descriptors to
their physically relevant components. Extending such approaches to chemically diverse,
large-scale biomolecular simulations, however, ultimately requires models that combine
transferable local learning with explicit, physically grounded long-range interactions, which
motivates the hybrid architecture introduced in the next chapter.

95






Chapter 6

SO3LR: Molecular Simulations with
a Pretrained Neural Network and
Universal Pairwise Force Fields

Parts of this chapter have been published in this or similar form in Ref. 157:

e A. Kabylda, J. T. Frank, S. S. Dou, A. Khabibrakhmanov, L. M. Sandonas, O.
T. Unke, S. Chmiela, K.-R. Miiller, A. Tkatchenko, Journal of the American
Chemical Society 147, 37, 33723 (2025).

The desire to perform quantitative molecular dynamics simulations based solely on nu-
clear charges and electron numbers has been expressed by many researchers, including
Schrodinger [212], Dirac [213], and Feynman [214]. Despite a century filled with ground-
breaking advances, this vision has yet to be fully realized in the realm of molecular
simulations. Existing approaches often make significant trade-offs concerning Efficiency,
Accuracy, Scalability, or Transferability (EAST) [215]. In this work, we argue that several
methodological advances in the field of atomistic modeling have coalesced to bring us closer
to achieving fully quantitative, quantum-accurate molecular simulations. While the journey
toward this ultimate goal may be lengthy and complex, it is a pursuit that is undeniably
worthwhile and requires a collaborative community-based effort.

A key challenge in molecular simulations is the construction of an atomistic force field model
that satisfies the EAST requirements mentioned above [4, 5, 33, 190, 216-219]. Traditionally,
force fields are obtained either from approximate but fast mechanistic expressions, or
accurate but computationally prohibitive ab initio electronic structure calculations. Both
approaches compromise either accuracy or efficiency, restricting the scope of problems that
can be addressed. Recently, machine-learned force fields (MLFFs) have started to bridge
this gap by exploiting statistical models with high flexibility [5, 95, 190, 219, 220]. Unlike
classical force fields, MLFFs exhibit unprecedented transferability across chemical space;
however, scalability with system size remains an issue.

Many challenges remain to be addressed to enable EAST-compliant and MLFF-driven
general molecular simulations. Among these we mention the development of data and
computationally efficient semilocal interatomic interaction models [45, 46, 50-52, 60, 61, 68,
71, 171], explicit treatment of (many-body) long-range interactions [94, 190, 221], building
datasets with comprehensive coverage of chemical space [55, 56, 131, 133, 158, 222-225|,
and development of modern GPU-enabled molecular simulation frameworks [226-228|.
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Within this work, we take decisive steps towards solving the aforementioned challenges
for organic (bio)molecules. Our solution combines recent advances from chemical and
computational physics, machine learning (ML), and established techniques from the force
field community. Semi-local interactions are described by the SO3krates ML model [53]
using a many-body anharmonic treatment. The physical pairwise terms include short-
range Ziegler-Biersack-Littmark repulsion [229], long-range electrostatic interactions, and
a recently derived universal interatomic van der Waals (vdW) dispersion potential [230].
Complementarity between the different terms is achieved through careful parametrization on
a curated and comprehensive dataset of 4M molecular structures computed with essentially
non-empirical and widely applicable PBEO+MBD functional, leading to the SO3LR model
(we suggest pronunciation “solar”).

We demonstrate the applicability and stability of SO3LR in nanosecond-long simulations
of small biomolecular units, polyalanine systems, bulk water, crambin protein, N-linked
glycoprotein, and a lipid bilayer. SO3LR can be scaled to simulations involving up to
~200k atoms with a latency of ~3 us/atom/step on a single H100 GPU, thus approaching
sizes and timescales relevant for realistic biomolecules.

6.1 SO3LR components

Generally applicable molecular simulations can be directly related to an accurate description
of interactions across systems and length-scales. To achieve these objectives, SO3LR
decomposes the potential energy into four contributions (Fig. 6.1A):

Epot = Ezpy, + FEsosk + Eglec + EDisp, (6.1)
—— ~—— —_——
short-range  semi-local long-range

where Fyzpy, is a short-ranged term inspired by Ziegler-Biersack-Littmark (ZBL) repulsion
between nuclei (see Supporting Information for more details), Egosk is the semi-local many-
body potential learned by the SO3krates model, and Egjec and Ep;sp are the long-ranged
electrostatic and dispersion energies, respectively. All potential terms influence each other,
and a careful optimization procedure based on a diverse dataset of ~4 million points ensures
a broad applicability. The proposed combination of model design, dataset curation and
joint optimization, resolves the trade-offs in the EAST requirement and is described in the
following paragraphs.

6.1.1 SO3krates

The cornerstone of our approach, which enables high computational efficiency and accuracy
(EAST), is the SO3krates model [52, 53] — an MLFF based on an equivariant graph neural
network (a compact introduction into invariance and equivariance is given in the Supporting
Information). Given atomic positions R, atomic numbers Z, total charge @), and total spin
S, it predicts atomic quantities

E;, qi, hi = SO3krates(R, Z,Q, S), (6.2)

where E; are atomic energies, ¢; are partial charges and h; are Hirshfeld ratios (ratio of
effective and free-atom volume, Vegr/Viree) [231]. The semi-local energy contribution is then
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A Reference data SO3LR Framework Proteins Carbohydrates
4M PBEO+MBD fragments

(ﬁ % %
@* Og epuision

SO3krates
g neural .
a E & R Nucleic Acids
GEMS QM7-X DES15k SPICE
Bottom-up AQM dipeptides
B Small biomolecules Water Protein Glycoprotein Lipid bilayer
Secondary structure RDF IR Spectra RMSD Electronic density

Carbohydrate

Figure 6.1: Overview of the SO3LR model and simulation results. (A) SO3LR combines
the SO3krates neural network with physically inspired interactions, including ZBL repulsion,
electrostatics, and a universal pairwise van der Waals potential for dispersion which interact
directly with the neural network model. All building blocks are jointly trained on a carefully
curated data set which covers a broad range of chemical space and interaction classes. SO3LR
enables simulations of small biomolecular units of all four major types of biomolecules, and
large-scale simulations of three types. (B) This includes large-scale simulations of liquid water,
protein, glycoprotein, and a lipid bilayer.

calculated as the sum over the atomic energies

N
Esosc = »_ Ei. (6.3)

The predicted atomic energies contain information about atoms in the direct local neighbor-
hood and beyond via mean field updates, which is why we refer to the energy prediction
as semi-local. The mean-field nature of these updates cannot account for all types of
interactions and is limited by an effective cutoff, which is upper bounded by the local cutoff
times the number of update steps (the effective cutoff in SO3LR is 13.5 A).

6.1.2 Long-range dispersion and electrostatics

To improve the description of long-range effects and extend the description beyond semi-local
environments, we explicitly incorporate electrostatics and universal pairwise interatomic
vdW potentials. Both partial charges and vdW parameters depend on the atomic envi-
ronment and are predicted by the SO3krates neural network. As shown in Fig. A18, the
distributions of Hirshfeld ratios and partial charges for AcAla;sNHMe exhibit substantial
element- and environment-specific variability. For example, Hirshfeld ratios for hydrogen
span a broad range from 0.55 to 0.8, partial charges of oxygen and nitrogen range from -0.4
to -0.3. The contributions of these long-range interactions to atomic forces are computed
using automatic differentiation tools, hence the variation of charges and vdW parameters
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with atomic displacements are fully accounted for. Both long-range terms follow the correct
pairwise asymptotic decay. This is an important requirement for the scalability (EAST) to
length scales that exceed those covered by the training data.

Dispersion interactions are calculated using universal pairwise interatomic vdW potentials
derived from quantum Drude oscillators (QDO) [230]:

Episp = — ZZ 2n 2n ) (6.4)

1<j n= 3 dZ]

where C;Zl are long-range interatomic dispersion coeflicients, and R?ﬂj are the vdW radii
of the Becke-Johnson damping function [232]. The radii are defined based on atomic
polarizabilities as [233]

4.—4/3 T
ano o+ o
Rdﬂj ’vadW = 2v ( (117:?; 4 5 ]) 7 (6.5)

where ag is the Bohr radius, o = € /4meghe is the fine-structure constant, with v being
a single tunable parameter in the dispersion module that controls the damping strength.
Atomic polarizabilities c; and dipole-dipole dispersion coefficients Cj “ are obtained using
the Tkatchenko-Scheffler method [24]| with the ML-predicted leshfeld ratios h;, whereas
the scaling relations from the QDO model [230, 234| are applied to generate higher-order
dispersion coefficients Cj ‘7 and Ch

Electrostatic interactions are modeled using a damped Coulomb potential

erf(ry; /o
Exlec = Z QZQJW7 (66)

1<j K

where ¢; are the ML-predicted partial charges, and o is a hyperparameter that controls
the damping strength. We remark that the semi-local SO3k module has the capacity to
accurately describe multipolar interactions, hence we limit our model to leading-order
electrostatics.

Coupling between long-range and semi-local energy contributions arises from the structure of
the potential energy prediction (Eq. 6.1). The long-range modules have a non-zero energy
contribution for all atomic pairs, including those within the local cutoff of the MLFF. As
such, the functional forms of the long-range potentials alter the potential which is learned
by the SO3krates model. The choice of damping hyperparameters v and ¢ controls the
fine balance between semi-local, electrostatic and dispersion interactions. In principle,
SO3krates can learn to correct for arbitrary choices of ¢ and v up to the local cutoff;
however, damping particularly impacts dynamical behavior in MD simulations, although
the overall model performance remains largely unaffected. This can be attributed to the
fact that semi-local and long-range interactions are coupled nonlinearly through parameter
and hyperparameter optimization in both modules. Hence, the damping hyperparameters
were fine-tuned on the S66x8 benchmark dataset [235].

6.1.3 Optimization on diverse training data

All SO3LR modules are jointly optimized on a diverse dataset that spans a broad chemical
space and various interaction classes. This enables transferability (EAST) between all four
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major types of biomolecules.

The comprehensive dataset has been a key factor in the development of our MLFF. It is a
collection of extensive quantum mechanical data from both small and large molecules, as
well as non-covalent systems with and without explicit solvation. To this end, we combined
five datasets: 2.7M bottom-up GEMS fragments [102], 1M QM7-X molecules [56], 60k AQM
gas-phase molecules [133], 33k SPICE dipeptides [131], and 15k DES molecular dimers [158]
(Fig. A9 and Tab. A5 for more details). The first three datasets were originally computed
at the PBEO+MBD level of theory [18, 29|. For consistency, we recomputed the remaining
two datasets using the same reference method.

The PBEO+MBD method combines the non-empirical hybrid functional with an explicit
treatment of many-body long-range dispersion interactions. This level of theory has been
shown to yield excellent agreement with both high-level quantum chemistry methods and
experimental data. Its accuracy has been demonstrated for a wide range of systems,
including polypeptides [236, 237|, supramolecular complexes [160], and molecular crystals
[238, 239].

The datasets are complementary in terms of conformational space and chemical diversity,
covering 8 elements predominantly present in biosystems (H, C, N, O, F, P, S, and Cl).
Specifically, the QM7-X dataset encompasses the chemical space of small organic molecules,
while the AQM dataset includes medium-sized drug-like molecules. DES molecular dimers
were incorporated to improve the description of non-covalent interactions. SPICE dipeptide
structures were added to enhance the accuracy for the protein-containing systems. Lastly,
the GEMS bottom-up dataset contains gas-phase and explicitly micro-solvated protein
fragments, as well as structures with gas-phase water clusters.

A natural and fundamental question concerns whether the 4M molecular conformations
used to train SO3LR adequately span the chemical space relevant to (bio)molecular systems.
Although a comprehensive assessment of this coverage remains an open challenge for
future investigation, approximate estimates offer valuable insight. For example, chemically
accurate simulations of medium-sized peptides, such as alanine tetrapeptide, have been
demonstrated using fewer than 1,000 conformations when using SO3krates as the underlying
MLFF [53]. Extrapolating this to the entire combinatorial space of tetrapeptides composed
of the 20 natural amino acids yields a naive estimate of approximately 160M conformations
required for complete coverage. This is a significant overestimate, primarily because of
the high redundancy of local chemical environments [122], a property that underpins the
transferability of foundational MLFF models across families of molecules or materials.

Indeed, a meaningful measure of chemical diversity can be captured by the number of
orbits — distinct equivalence classes of atoms that possess identical local environments across
different molecular configurations [240]. The number of orbits depends on the effective
distance cutoff used to build molecular subgraphs. For the alanine tetrapeptide, there are
10 orbits up to second neighbors, meaning that 100 conformations per orbit is a sufficient
training size. We took several datasets with published geometries (the dataset used to train
SO3LR, SPICE [131], GDB-13 [222]) and calculated the number of orbits by building graphs
up to second neighbors. By doing so, we obtained a range of 10,000 — 50,000 orbits for
molecular datasets containing 8-10 atomic species. This preliminary analysis demonstrates
that between 1M and 5M molecular configurations should be enough to cover a broad
chemical space of (bio)molecular systems. This analysis of course holds true only because
SO3LR uses message passing and an explicit physical model for long-range interactions,
meaning that only shorter-range orbits need to be accurately captured by the graph neural
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network architecture.

Optimization of the model parameters is done by minimizing a combined loss
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where F, are atomic forces, ji are molecular dipoles, and h; are Hirshfeld ratios, with
A as trade-off parameters between the individual loss terms. The Hirshfeld ratios and
partial charges are predicted by SO3krates (Eq. 6.2), and the forces are obtained as the
gradient w.r.t. the atomic positions of the potential energy (Eq. 6.1). The partial charges
are indirectly trained based on dipole moments, instead of direct fitting to reference partial
charges. This approach reduces the model’s sensitivity to the choice of charge-equilibration
scheme and enhances transferability [241]. It should be noted that the model is trained
on forces, rather than on energies and forces, which ensures accuracy of relative energy
predictions only. Further training details can be found in the Supporting Information.

6.2 SO3LR evaluation

A force field that is truly EAST-compliant should be able to accurately simulate systems of
varying nature and size. To demonstrate the capabilities and limitations of SO3LR, we first
evaluate its performance in test and benchmark sets to assess its precision in predicting
forces, binding energies, dipole moments, and Hirshfeld ratios. This is followed by an
analysis of the dynamics of small biomolecular units from the MD22 benchmark dataset [66].
We then investigated the folding and stability of polyalanine systems in vacuo, which
depend on a delicate interplay of various interactions. Before transitioning to simulations of
larger biosystems, we performed a detailed analysis of water dynamics. Finally, we extend
the evaluation to large-scale molecular dynamics simulations of more complex systems,
including a protein, a glycoprotein, and a lipid bilayer, all in explicit water (Fig. 6.1B).

6.2.1 Test set and benchmark errors

We begin the evaluation of the model by analyzing its accuracy w.r.t. quantum mechanical
reference data (Tab. 6.1). The test set comprises 10k randomly sampled structures from
each of the QM7-X and GEMS bottom-up fragments (all other training sets were fully
utilized during training). Furthermore, we recalculated 100 random structures from six
MD22 reference molecules at the PBEO+MBD /tight level of theory and we evaluated the
model using ~300 AcAla;sNHMe structures and ~5600 top-down fragments of crambin
that were used in the training of system-specific models in [102].

The model demonstrates good performance in predicting forces, dipole moments, and
Hirshfeld ratios. A closer examination of Tab. 6.1 reveals two key observations. First,
fragments from curved carbon-based systems, such as the buckyball catcher and double-
walled nanotube, are absent from the training set, which is reflected in the increased errors.
This suggests that further expansion of the data set would be necessary to achieve complete
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Table 6.1: Root Mean Square Error of the model on various test sets. Force (eV/A), dipole
moment vector (e x A), and Hirshfeld ratios. Dash indicates no data.

Dataset Size # atoms Force Dipole Hirsh. rat.
QMT7-X 10000 6-23  0.069 0.031 0.012
GEMS bottom-up 10000 2-120  0.086 0.048 -
AcAlagNHMe 100 42 0.052 0.051 0.012
DHA 100 56 0.053 0.072 0.012
AT-AT 100 60  0.168 0.238 0.025
Stachyose 100 87  0.105 0.119 0.016
Buckyball Catcher 100 148  0.384 4.030 0.029
Nanotube 100 370  0.717 2.950 0.039
AcAla;sNHMe 312 162  0.055 - -
Crambin top-down 5624 230-321  0.057 - -
TorsionNet500 12000 13-37  0.088 0.061 0.019

transferability across the chemical space. However, the molecular dynamics simulations
of the six MD22 molecules remain stable, as discussed in the following subsection. It is
important to note that the commonly reported MD22 errors |50, 51, 53| correspond to
system-specific models, which evaluate the performance in distribution and are therefore
lower. Second, by comparing the errors of AcAlagNHMe, AcAla;sNHMe, and crambin top-
down fragments, which are identical, we conclude that the SO3LR model is scalable to large
solvated protein fragments and that long-range modules effectively describe intermolecular
interactions, despite being trained only on small fragments.

To assess the model’s accuracy on conformational energetics, we evaluated torsional energy
profiles using the TorsionNet500 benchmark [242], recomputed at the PBE0O+MBD level
of theory (Fig. A19). The model achieves a mean absolute error (MAE) of 1.03 kcal/mol,
demonstrating accurate performance across diverse torsional motifs commonly encountered
in biosimulations. It should be mentioned that the absence of certain functional groups,
such as triazole and trifluoromethylthio moieties, in the training set significantly increases
the average errors.

To evaluate the quality of electrostatic interactions, we benchmarked partial charge predic-
tion using the QM7b and AlphaML datasets, which were computed at the LR-CCSD /d-
aug-cc-pVDZ level of theory [243]. SO3LR accurately predicts dipole moments with mean
absolute errors (MAE) of 0.13D in magnitude and 5.1° in angle orientation (Fig. 6.2A).
This performance is comparable to hybrid DFT at the B3LYP /d-aug-cc-pVDZ level of
theory, which attains 0.09 D [243|. Our training set contains molecules from the QMT7x
dataset, which includes perturbed structures from QM7b. The AlphaML benchmark, on
the other hand, contains a wider set of compounds, including DNA /RNA nucleobases,
amino acids, carbohydrates, drugs, and hydrocarbons. Both B3LYP /d-aug-cc-pVDZ and
PBEO+MBD/tight methods yield an MAE of 0.10 D on this dataset, while SO3LR achieves
an MAE of 0.14D (Fig. 6.2A), showcasing transferable and accurate prediction of dipole
moments, which is crucial to calculate reliable electrostatic interactions.

Next, we evaluate noncovalent interaction energies on a comprehensive SAPT10k benchmark
computed at the SAPT2+(3)(CCD)/aug-cc-pVTZ level of theory [244]. It consists of 70
subsets, featuring challenging binding motifs dominated by electrostatics and/or dispersion
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Figure 6.2: Evaluation of the SO3LR long-range modules’ performance. (A) Evaluation of the
model on dipole moment prediction for 7k QM7b molecules and AlphaML showcase database [243].
(B) Performance of the model evaluated on the unseen SAPT10k dataset [244], separated into
neutral and charged subsets.

interactions and offering substantial diversity across chemical space. We exclude 34 out of
9982 complexes because they contain atom types beyond the 8 elements our model was
trained on (hence, predictions on those structures are not meaningful). Overall, the model
performs well, achieving sub-chemical accuracy with a MAE of 0.90 kcal/mol (Fig. 6.2B).
Rare outliers with errors up to 40kcal/mol include complexes with exotic molecules absent
from the training set, such as CIF, P(CNO)3, PHoNO,. Recalculation of these outliers at
the PBEO-+MBD level confirms the errors arise from missing training data rather than from
the reference method (Fig. A11). This is a remarkable performance overall, particularly
since part of the error comes from the difference between the CCD and PBEO+MBD
reference levels.

6.2.2 Small biomolecular units

Molecular dynamics simulations are the ultimate test for evaluating force fields. We
simulated six molecular systems from the MD22 benchmark, encompassing four major
biomolecule types and two supramolecular complexes: the AcAlagNHMe tetrapeptide,
stachyose tetrasaccharide, AT-AT DNA base pairs, docosahexaenoic fatty acid (DHA), the
Buckyball Catcher, and the double-walled nanotube. The first two systems underwent
500 ps of simulation at 500 K to compare with the PBE4+MBD references computed at 500 K,
other systems were simulated at 300 K. The model demonstrated robust conformational
exploration across all molecules. In particular, the free-energy surface exploration of
tetraalanine and stachyose closely aligns with MD22 ab initio results, computed at the
PBE+MBD level of theory, as shown in Ramachandran plots (Fig. 6.3). Note that in this
figure we report only short molecular dynamics simulations to match the length of DFT
simulations, and the comparison between PBE+MBD and SO3LR dynamics is only provided
as a guide to the eye. Full 500 ps trajectories are shown in Fig. A12 [245]. The tetrapeptide
explores all ‘allowed’ (¢/1) regions found in experimental protein structures [245]. The
buckyball catcher and double-walled nanotube complexes remained stable (Fig. A13),
despite larger errors on the test set. This highlights the stability of SO3LR, even when
applied to systems far outside its training domain. Overall, these results suggest that our
model can reliably explore conformational landscapes of small molecules even in the absence
of the system-specific training data.
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Figure 6.3: Simulations of small biomolecular fragments. Ramachandran plots (¢/v¢ dihedrals)
for (A) AcAlagNHMe and (B) stachyose from the MD22 dataset [66]. PBE+MBD and SO3LR
simulations at 500 K with 85 ps for AcAlasNHMe and 27 ps dynamics for stachyose. SO3LR
simulations of 500 ps are shown in Fig. A12. Trajectory is sampled every 1fs. The Boltzmann-
inverted scale is shown in kcal/mol. The comparison between PBE+MBD from MD22 and SO3LR
(trained on PBEO+MBD) is only shown as a guide to the eye.
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Figure 6.4: Simulations of polyalanines. (A) Secondary structural motifs observed along a
typical folding trajectory of AcAla;sNHMe at 300 K in gas phase. (B) Secondary structural motifs
observed along a trajectory of AcAla;sLysH" at 500K in gas phase, starting from the folded
a-helix conformation.

6.2.3 Polyalanine systems

We further investigate polyalanines, focusing on the folding of extended AcAla;sNHMe and
the stability of the folded AcAla;sLysH" at elevated temperatures. These systems present
significant challenges due to the delicate interplay of hydrogen bonding, polarization, and
dispersion interactions. Previous attempts to simulate them without incorporating top-down
fragments either failed to correctly fold AcAla;sNHMe or overstabilized the a-helix, and in
some cases, predicted diminished stability for AcAlajsLysH™ [102, 246].

For each system, we performed four runs of 500 ps. The extended AcAla;sNHMe structure
folded in all cases (Fig. 6.4A and Fig. A14A). The timescales and folding mechanisms were
similar to those observed in Ref. 102: initially, the peptide primarily consists of turns, then
passes through a “wavy” intermediate, and finally folds into a helical form with dynamic
transitions between - and 3;1g-helices. The latter is particularly noteworthy, as empirical
force fields tend to overestimate the stability of a-helices [247, 248|.

For the folded AcAla;sLysH", we observe that the a-helical motifs are preserved up to
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500-600 K (Fig. 6.4B and Fig. A14B). These findings agree with experimental measurements,
which observe scattering cross sections for AcAla;sLysH" consistent with an a-helical
structure up to ~725K when subject to interactions with the helium buffer gas [249].
Direct comparison with gas-phase experiments would have to explicitly include the helium
environment and quantum nuclear effects. Overall, the two polyalanine systems provide a
good evaluation of scalability to medium-sized systems in dynamics, complementing the
observed scalability in terms of test errors.

6.2.4 Liquid water

Liquid water plays a crucial role in biosystems, making it an essential subject for SO3LR’s
evaluation. We performed a simulation of a water box containing 4096 water molecules
in the NPT ensemble. Observables were averaged over 300 ps following an initial 200 ps
equilibration phase. Our analysis focused on three aspects: radial distribution function,
density, and self-diffusion coefficient.

The oxygen-oxygen radial distribution function shows the expected shell structure (Fig. A15),
which indicates, however, that the liquid phase is slightly overstructured. Increasing the
temperature to 330 K allows for an approximate treatment of missing nuclear quantum
effects and improves agreement with the experimental data [75, 169]. The water density
varies between 1.04 and 0.97 g/cm? for long-range cutoffs of 10-20 A (Fig. A16). We adopted
a cutoff of 12 A for all subsequent biosimulations in explicit water, balancing accuracy and
computational efficiency. The calculated self-diffusion coefficient is 0.079 A® /ps at 300 K
and 0.224 A” /ps at 330 K with the 12 A long-range cutoff. For comparison, the experimental

diffusion coefficient at room temperature is 0.23 A’ /ps [250].

The SO3LR results agree well with explicit ab initio molecular dynamics using the
PBEO+vdW functional [75]. This is notable given that the training set contains only
gas-phase water clusters with at most 40 molecules (~10k clusters or ~0.26% of the
combined dataset). It is known that ab initio MD simulations with the PBE0+vdW
functional struggle to fully capture many experimental properties of water, mainly due to
the tetrahedral H-bond arrangement that amplifies the slight overestimation of PBEO for
individual hydrogen bonds [75]. Consequently, the MLFF performance cannot and should
not exceed the accuracy of the underlying ab initio calculations. The description of water
could be improved by using higher-level ab initio data, such as coupled-cluster or quantum
Monte Carlo methods, and by explicitly incorporating nuclear quantum effects in MD
simulations. For biomolecules in water, hydrogen bonding is just one of many contributing
interactions, and we have shown that accurate biomolecular dynamics can be carried out
with MLFFs trained on PBEO+MBD data provided that the density of water is correctly
reproduced [102].

6.2.5 Large biomolecules

Finally, we showcase the potential of SO3LR by simulating large biomolecules in explicit
water. The selected systems encompass various classes of biomolecular components, each
characterized by distinct structural and functional properties that can be validated against
existing simulations or experimental data. The systems include the crambin protein,
glycoprotein (PDB: 1K7C), and the POPC lipid bilayer.

For crambin (25k atoms including water), we compute the power spectrum from 125 ps of
dynamics at a temporal resolution of 2.5 fs, after 1 ns equilibration period. The experimental
water vibrations at 1640 cm~! and 3200-3600 cm ! are reproduced in SO3LR with better
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Figure 6.5: Simulations of explicitly solvated biomolecules. (A) Power spectrum of crambin in
water obtained from 125 ps of dynamics. AmberFF and GEMS results are taken from Ref. 102.
(B) Root mean square deviation (RMSD) of Crambin, excluding hydrogen atoms, between
conformations sampled at times ¢t and ¢t + At averaged over three 3ns runs. The inset shows an
overlay of frames from the SO3LR trajectory and NMR-derived protein structures [251]. (C)
Two-dimensional Uniform Manifold Approximation and Projection (UMAP) [252] embedding of
a crambin simulation trajectories. The same latent space projection is used across all subplots.
(D) RMSD of protein and carbohydrate segments of glycoprotein averaged over three 500 ps
runs. (E) Tail group NMR order parameters from SO3LR simulation of the 128 POPC Lipid
Bilayer and from experiment [253]. The standard deviation is shown with background color.
(F) Single GPU performance. SO3LR latencies were measured based on liquid water molecular
dynamics using JAX-MD [227] in the NVT ensemble on an H100 80 GB GPU. The slope is
3.25 x 107%s/atom/step. Latencies for MACE-OFF(S) and AIMNet2 were measured on A100
and H100, respectively, and are taken from Refs. 246, 254.

agreement than GEMS, AMOEBA and AmberFF (Fig. 6.5A). We further examine the root
mean square deviation RMSD(t, t+At) averaged over three 3 ns simulations, indicating
that SO3LR shows slightly increased protein mobility on longer timescales, consistent
with the GEMS model (Fig. 6.5B). We find that the overall structure stays folded during
the simulation, without any indication of unfolding or bond breaking (Fig. A17). To
visualize conformational space sampling, we applied the two-dimensional uniform manifold
approximation and projection (UMAP) [252]. The projection of the paths reveals that
SO3LR and GEMS sample the conformational space more extensively than AmberFF and
AMOEBA (Fig. 6.5C), which aligns well with the high conformational variability derived
from NMR measurements [251].

Table 6.2: POPC Lipid Bilayer Structural Properties: bilayer thicknesses Dy (A) and area
per lipid (AQ)

Source Daa S/lipid
Experiment [255] 36.5 64.3 + 1.3
Lipid21 [145] 38.50 £ 0.20 63.92 4+ 0.09
CHARMM36/LJ-PME [256] 37.3 + 0.30 65.4 + 0.5
SO3LR 37.0 58.0 £ 0.1
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For glycoprotein (48k atoms including water) we conducted a 500 ps simulation at 300 K.
This system, which comprises both protein and carbohydrate segments, presented a chal-
lenge for SO3LR due to the absence of carbohydrates in its training data. Despite this,
the model successfully inferred increased carbohydrate flexibility, as evidenced by the
greater RMSD observed for the carbohydrate segment compared to the protein segment
(Fig. 6.5D). These findings align with the results of the CHARMM force field specifically
tuned for carbohydrates [257|. However, the simulation revealed limitations in sampling
conformations of the N-linkage. Specifically, the Cv-CB-Ca-N dihedral, located at the
protein-carbohydrate junction, can adopt three conformations: g+ (60°), anti (180°), and
g— (300°). Our simulation only sampled the anti-conformation out of these three possible
states. Longer simulations would be required to determine whether the model can explore
other conformations without carbohydrate-protein linkages in the training set.

Lastly, we modeled a homogeneous POPC lipid bilayer (33k atom system consisting of
128 lipids and 5120 water molecules). We performed a 500 ps simulation at 303 K and
examined the structural properties: area per lipid, bilayer thickness, and lipid tail order
parameters. These properties are critical measures of the accuracy of lipid simulations
and are highly sensitive to factors such as hydrophilic attraction between head groups,
hydrophobic repulsion between lipid tails, and interactions with surrounding water molecules.
We found that SO3LR is in good agreement with experimental data and with empirical
force fields specifically fine-tuned to lipid simulations (Tab. 6.2). The 10% underestimation
of the area-per-lipid likely stems from the isotropic NPT ensemble currently used in SO3LR
simulations, compared to the semi-isotropic NPT used for empirical force fields. NMR
lipid tail order parameters are another important quantitative measure that describe the
degree of order within the acyl chains of lipids in a bilayer. The order parameters averaged
over the last 250 ps suggest that the bilayer structure is in suitable agreement with NMR
experiments (Fig. 6.5E) [253].

To assess the computational performance of SO3LR, we conducted NVT simulations of water
boxes ranging from 1,536 to 192,000 atoms using JAX-MD on a single GPU (Fig. 6.5F). The
measured scaling corresponds to a slope of 3.25 x 107%s/atom/step, enabling simulations
of 2.6 ns/day for a 10,000-atom system using a 1fs timestep. This performance allows
nanosecond-scale simulations of large solvated systems on standard hardware. However,
simulations of intricate conformational changes that occur on millisecond timescales, such as
solvated protein folding, remain beyond reach at present. The current SO3LR model, with
128 features, 3 interaction layers, and a 4.5 A local cutoff, was designed to balance accuracy
and speed. These hyperparameters can be systematically adjusted to trade accuracy for
performance: smaller models can be trained to accelerate simulations while maintaining
chemical fidelity [258]. Notably, the presented SO3LR model was trained on a single GPU
using a modest computational budget of 86 GPU hours.

6.3 Conclusion

A long-held vision in the atomistic simulation community is the development of force fields
with a unified functional form that can be applied across diverse chemical spaces — such
as solvents, proteins, DNA, RNA, sugars, and lipids. These force fields should closely
approximate quantum-mechanical behavior while remaining efficient and scalable enough to
model realistic biomolecular complexes under various conditions (e.g., pressure, temperature,
and external environments). In this work, we presented significant advancements towards
fulfilling these criteria through the SO3LR model, which is embedded within an openly
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accessible and fully transparent framework. This framework integrates reliable and diverse
quantum-mechanical datasets [56, 102, 131, 133, 158], a fast and stable SO3krates machine
learning architecture [53], universal long-range interaction modules [230], a JAX-MD
simulation engine [227], and robust analysis tools. Together, these components facilitate
quantum-accurate molecular simulations across an extended molecular chemical space.

Our developments aim towards enabling general molecular simulations and similar goals
have been pursued by the seminal efforts in the empirical force field community over many
decades [30-32, 259-264]|. SO3LR achieves chemical accuracy and yields an 8-fold improve-
ment compared to AMBER for polyalanine [102] when benchmarked on the PBEO-+MBD
atomic forces (Force MAE of 0.9 vs 7.6kcal/mol/A). At the same time, SO3LR is (only)
about 40 times slower on a single GPU than GROMOS [102]. Our extended assessment
on energies, forces, dipoles, polarizabilities, as well as our analysis of nanosecond-long MD
trajectories demonstrates that SO3LR is highly transferable throughout biochemical space
and scalable to hundreds of thousands of atoms. Such transferability and scalability are
achieved without the need to specify atom types, impose harmonic constraints, or introduce
bespoke functional forms for interatomic interactions in different biomolecular entities.
The bottom-up training on quantum mechanical data ensures that our simulations are
transferable to a wider range of conditions than previously possible. This is confirmed by
polyalanine simulations from 300 to 800 K, accurate structural and spectroscopic observables
for high and low vibrational frequencies obtained for solvated crambin, as well as the local
and global structural properties for the 1K7C glycoprotein and the POPC lipid bilayer. The
toolset developed in this work complements the existing and quickly growing machinery of
successful biomolecular modeling tools. Our presented advancements would not have been
possible without building on a wealth of existing landmark methods, many of which were
developed by the empirical force field community.

One noteworthy component of our proposed SO3LR model is a successful combination of
explicit physical knowledge, such as short- and long-range force modules, coupled with
a semi-local many-body potential. Importantly, all of these contributions are carefully
balanced by SO3LR via learning from data. Thus, the known physical interactions do not
need to be learned from data, but SO3LR can — under the correct hard-coded inductive
biases (repulsion, electrostatics, and dispersion energies) — focus its nonlinear expressive
power mainly on learning both: the complex many-body contributions and the appropriate
balance of the diverse energy terms from Eq. 6.1.

Despite recent progress in establishing “foundation models” for atomistic systems [246,
254, 265, 266], many challenges remain in achieving truly general molecular simulations.
While the SO3LR model shows broad applicability, it has several limitations that may
guide future work. The model’s predictive accuracy is tied to its training data, possibly
leading to suboptimal performance for underrepresented chemical environments such as
curved carbon systems and specific functional groups (notably dynamical simulations
remain stable). Therefore, development of robust uncertainty quantification to reliably
detect when the model is far in extrapolation regime is a priority. Similarly, incorporating
large-scale quantum mechanical datasets covering over 80 elements (e.g., QCML [134],
MPTrj [267], and OMol25 [136]), as well as expanding DFT+MBD training sets to include a
broader spectrum of (bio)chemical entities such as ions, sugars, lipids, DNA, supramolecules
and diverse solvents would be highly beneficial for developing more transferable models
applicable to (bio)molecules, materials and their interfaces. Furthermore, future versions of
SO3LR will integrate particle-mesh Ewald (PME) summation for long-range electrostatics,
leveraging recent implementations in JAX-MD [268]. Several other key areas for enhancing
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the SO3LR model include: (i) generating higher-level coupled cluster [64] or quantum Monte
Carlo [269] reference data for small fragments, (ii) refining long-range interaction modules
to effectively account for anisotropic many-body interactions |77, (iii) optimizing SO3LR
for multi-GPU architectures [270], (iv) extending simulations to treat nuclear quantum
effects [207, 271] beyond classical Newtonian molecular dynamics. This is a non-exhaustive
list of research directions, all of which are subject of ongoing efforts in the community.

As atomistic simulations are highly sensitive to the intricacies of the underlying force fields
and simulation parameters, it is imperative to establish a standardized set of benchmarks for
quantum-accurate machine learning force fields. Such benchmarks will ensure reproducibility
of results and enable robust modeling of experimentally relevant phenomena across realistic
time and length scales.
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Chapter 7

Summary and Outlook

The central challenge motivating this thesis is the decades-old compromise between accuracy
and efficiency in molecular simulation, which has long forced a choice between the intractable
rigor of quantum mechanics and the limited fidelity of classical approximations. This work
demonstrates that this trade-off is no longer inevitable. We have shown that a new
generation of machine learning force fields (MLFFs), built upon a foundation of curated
data, efficient representations, and integrated physical principles, can deliver quantum
accuracy to large (bio)molecules at a computationally tractable cost.

7.1 Summary

Each chapter of this thesis met one of the abovementioned challenges, together they provide
a blueprint for next-generation MLFFs. The key contributions can be summarized as
follows:

e In Chapter 3, we established the need for models that capture collective long-
range interactions. This began with the introduction of MD22, a benchmark dataset
comprising a handful of large, flexible molecules specifically chosen to exhibit strong
nonlocal correlation effects. Using MD22 as a testing ground, we developed a large-
scale training extension of the global kernel-based model sGDML that, for the first
time, enabled a global MLFF to be trained on systems with hundreds of atoms.

e In Chapter 4, we addressed the data bottleneck hindering transferable MLFFs for
biomolecules by building the QCell dataset. QCell is a comprehensive and chemically
diverse quantum-mechanical database spanning the fundamental building blocks
beyond proteins: nucleic acids, lipids, and carbohydrates, along with noncovalent
dimers and ion-water clusters. By covering all major (bio)chemical classes, QCell
provides the data to train general-purpose MLFFs applicable across the full spectrum
of biomolecular systems.

e In Chapter 5, we addressed the scaling limitations of global models by developing
the reduced Gradient-Domain Machine Learning (rGDML) method. This approach
employs a novel algorithm to identify a minimal subset of critical long-range features,
effectively eliminating the O(IN?) bottleneck of traditional global descriptors. tGDML
thus preserves the physical completeness and accuracy of a global representation with
a linear scaling descriptor.
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e Finally, in Chapter 6, we introduced a unifying advance in the form of the SO3LR
model, a pretrained general-purpose MLFF that combines an SO(3)-equivariant
network for semi-local many-body interactions with explicit, physics-based long-range
electrostatics and dispersion. SO3LR demonstrated transferability and accuracy
across a wide range of biomolecular systems, including proteins, glycoproteins, lipid
bilayers, enabling quantum-accurate molecular dynamics across broad chemical space.

7.2 Outlook

The framework developed in this thesis opens numerous exciting avenues for future research.
While we have made significant strides in accuracy, scalability, and transferability, the
journey toward a truly universal model of molecular interactions is ongoing. The following
directions represent promising next steps that build upon the work described here:

e Automated active learning workflows. The creation of the MD22 and QCell
datasets was a manual effort. The future of MLFF development lies in creating
fully automated, closed-loop workflows. These “self-driving” simulation engines
would use active learning to explore the vast chemical and conformational space,
identifying regions where the current model is uncertain and automatically launching
new quantum-mechanical calculations to improve it. This would accelerate the
creation of robust and comprehensive models.

e Multi-scale modeling. Even with linear-scaling MLFFs, simulating cellular-level
processes across biologically relevant timescales remains unattainable. A promising
path forward is the development of hybrid models that seamlessly couple different
levels of resolution. In such settings, regions of primary interest can be described
using all-atom MLFFs, their immediate environment using coarse-grained descriptions,
and the extended surroundings using implicit or continuum representations, with all
components dynamically and consistently coupled. In parallel, integrating general-
purpose MLFFs with generative models offers a route toward efficient exploration
of complex conformational landscapes, enabling rapid access to rare or collective
structural rearrangements.

e Applications to grand biological problems. The ultimate test of these new
methods is their application to outstanding challenges in simulating complex chemical
and biological systems. Promising targets include characterizing the conformational
ensembles and aggregation pathways of intrinsically disordered proteins implicated
in neurodegenerative diseases, elucidating complete catalytic cycles of multi-domain
enzymes, modeling RNA folding pathways and ribozyme catalysis, and resolving
glycan recognition in immune receptors and viral entry mechanisms.

In conclusion, the work presented in this thesis has provided a comprehensive set of solutions
to the key challenges that have limited the predictive power of atomistic simulations. By
addressing the problems of data generation, atomic representation, and long-range-aware
architectures, we have developed a new generation of general-purpose machine learning
force fields that successfully bridge the gap between quantum-mechanical accuracy and the
efficiency required for large-scale simulation. These contributions help advance toward ab
initio modeling of living matter.

72



Appendices

The appendices provide supplementary methodological details, extended analyses, and
additional validation results for the datasets and models introduced in Chapters 3—6. Parts
of the appendices reproduce or adapt supplementary material from Refs. 66, 121, 127, 157.

A1l Supplementary Information Chapter 3: MD22 & sGDML
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Figure A1l: The cumulative potential-energy (in kcal mol~!) as a function of simulation time
(in ps) for the buckyball catcher and the double-walled nanotube, along classical MD and PIMD
simulations obtained with sGDML FFs. The simulations were carried out until the cumulative
energy remained approximately constant. The classical MD plots contain zoomed-in sections
spanning a simulation time equivalent to the length of the PIMD trajectories.
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Figure A2: Molecular spectra of the double-walled nanotube and the buckyball catcher, as
obtained from the velocity autocorrelation function for MD and PIMD simulations. For the sake
of consistency, the MD trajectories have been cropped to the same length for this plot. The final

length was determined by the total number of steps in the PIMD simulations and does not affect
their convergence.
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MLFF training and parameters. The SO3LR (SO3krates with long-range terms) [53,
157] small, medium, and large models were trained using the hyperparameters listed in
Tab. Al. A combined loss on forces, dipole moments, Hirshfeld ratios, and energies was
employed with weighting factors of 100:10:10:1, respectively. The QCML and QM7-X
subsets were sampled 10x less frequently to ensure balanced training. Training used the
AdamW optimizer with an exponential learning rate decay by a factor of 0.99 every 1M
steps. The global norm of gradient updates was clipped at 100, and a general robust loss
with o = 1.0 was applied [272]. A 10 A long-range cutoff, electrostatics damping coefficient
of 0 = 4, and dispersion damping coefficient of v = 1.2 were used. All models were trained

on A100 for 180 GPUh.

Table A1l: Training hyperparameters of the MLFF models.

Parameter Small Medium  Large
Cutoff radius (A) 4.5 5.0 5.0
Feature dimension (H) 128 256 512
Message-passing layers (T") 2

Number of heads (h) 4

Maximal degree (L) 4 4

Radial basis functions (k) 32 64 128
Batch size (B) 128 128 64
Learning rate 5x107% 1x107* 1x107*
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A3 Supplementary Information Chapter 5: rGDML

Interaction Heatmaps. We use corresponding GDML (ver. 0.4.11) models trained and
validated on 1000 different configurations to calculate interaction heatmaps (Fig. 5.1b,
d and Fig. 5.3). Heatmaps consist of pairwise contributions, Flk , averaged over many
configurations from the dataset (3000 configurations for the AcAlagNHMe and AT-AT;
1000 configurations for the buckyball catcher).

The trained GDML force field estimator collects the contributions of the 3N partial
derivatives (N - number of atoms) of all M training points to compile the prediction:

F(x) = Z Z (ai)j a‘;w (x,%;), (A1)

i=1 j=1

where F(x) is a vector containing the 3NN forces predicted for molecular geometry x. A
partial evaluation of this sum yields the contribution of a single atom k to the force
prediction on all atoms (atom indices start from 0):

M 3k+3 P
Fhx) =) Y (), 3z, VE (x,%;) - (A2)
i=1 j=3k+1 J

To obtain the contribution of atom k to the force prediction on atom I, Flk, we compute
the norm of the force components of vector F*(x) that correspond to an atom I:

3 , /2
sz:{Z(Fk(X):ws)} . (A3)

s=1

Descriptor Reduction. The procedure starts from a pre-trained kernel-based ML model
(MLoprig), with a default global (containing all n features) descriptor x. Importantly, we do
not require a highly accurate and thus computationally expensive ML model at this stage
(see Methods for further details).

The significance of the n-th feature in the descriptor is obtained by comparing the prediction
results on a subset of test configurations between the full ML,,;4 and the ML,,;, with the n-
th feature set to zero for all configurations (ML ). Thus, we assume separability between
the features in the descriptor, but this does not imply their independence. Therefore, more

advanced and computationally expensive reduction techniques can also be applied [273, 274].

This procedure is performed separately for all features in the descriptor. All other parameters
of the ML,;;y model remain unchanged when obtaining the ML . predictions. Therefore,
the only difference between the models is in the definition of similarity between system
states. The loss function

N

L = 3 (MLarig05) = MLy ()" (A4)

where N is the number of test configurations, and serves as a measure of the importance of
a particular feature n in the descriptor. The descriptor features where the loss L,, is the
smallest are the least important for the model and can be removed from the descriptor. As
soon as our analysis is performed on a representative subset of configurations, we ensure
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that we preserve all the descriptor features relevant for modeling the given PES. However,
setting a threshold under which one can consider a feature as irrelevant is not trivial. The
values of L,, depend on i) the predicted property, ii) the system(s) for which the model is
trained, and iii) the reference data used for training. In the study, we consider every 10th
percentile of all L,, values (10th to 90th). As a final step, a new ML model is trained and
tested after removing from the default descriptor all the features whose corresponding L,
are below a selected percentile.

Reference Datasets. Molecular dynamics simulations at PBE+MBD level of theory with
a step size of 1 fs were used to construct the reference datasets. Tab. A2 includes additional
information about the datasets. Calculations were done either with i-PI [275] wrapped with
FHI-aims [276] to compute forces and energies or with FHI-aims code alone.

Table A2: Settings of the MD simulations of the datasets used in the work. Temperature is
given in K. PBE stands for the Perdew-Burke-Ernzerhof functional [277] and MBD stands for
many-body dispersion [73, 278]. Coefficient refers to the friction coefficient (in fs) for the global
Langevin thermostat, and to the effective mass (in cm~!) for the Nosé-Hoover thermostat.

Molecule Basis set Temp. Thermostat Coef.
AcAlagNHMe tight 500 Global Langevin 2
AT-AT tight 500 Global Langevin 2
Buckyball catcher light 400 Nosé-Hoover 1700
Lactose light 500 Nosé-Hoover 1700
Palmitic acid light 500 Nosé-Hoover 1700

Computational Details for ML Models. The ML models were built with GDML [54, 64]
and GAPs [175] with the SOAP representation [47]. GDML models were trained using
a numerical solver with an initial value of 70 inducing points. All models were validated
using 1000 configurations and hyperparameter search o was performed individually for each
system and training size to ensure optimal model selection (from 10 to 1000). No symmetries
were considered in the models for a fair comparison between the default descriptor and
those with a reduced size. GAP/SOAP models were trained using 12 radial and 6 angular
functions for the descriptor. The cutoff radius was set to 5 A. Parameter § was set to 0.25,
the atom o was set to 0.3, and the default os for energy and forces were set to 0.001 and
0.1, respectively. These calculations were performed with the QUIP program package [279]
through the quippy python interface [280].

Molecular Dynamics Simulations. External-force DFT calculations were performed
using the FHI-aims electronic structure software [162| in combination with the externalforce
option in the Atomic Simulation Environment package [281]. We used the PBE and
PBE+MBD [17, 29| level of theory with the intermediate basis set. Trajectories were
generated with a resolution of 0.5 fs and sampled at 300 K using a Langevin thermostat
with a friction coefficient of 1-1073.

To evaluate the performance of machine learning models, we utilized both the MLgjopai
and MLgg g models trained on 5000 configurations with the same settings. To ensure
stability during 17 parallel simulation dynamics, each averaging around 3 ns (total time of
50 ns), we utilized a time step of 0.3 fs and a Langevin thermostat with a 1-10~* friction
coefficient. The first configuration of AcAlasNHMe from the dataset was used as a starting
configuration in all calculations.
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Prediction Accuracy of Models Trained with Global, Local and Reduced descrip-
tors. Here we compare the performance of an ML model trained using an reduced descriptor
to ML models trained using global and local descriptors. Fig. A3 shows distributions of
force errors for default GDML models (MLgiopq:), GDML models using reduced descriptors
(with 40% of the original features) as obtained from the results in Fig. 5.2 (ML), and
GAP/SOAP models with a cutoff of 5 A (MLgoap) trained on 1000 training configurations
for the AcAlagNHMe, the AT-AT dimer, and the buckyball catcher. Force error histograms
show that the accuracy of the local MLgo 4 p models, with respect to the MLgjopq and MLy
ones, is lower with the increasing size and flexibility of the molecule. MLgpap models start
with an almost equal distribution as all other models for AcAlasNHMe (Fig. A3A) but show
considerably bigger errors than the MLgjopq and ML,y models for the buckyball catcher
(Fig. A3C). The lower accuracy of the local models is the result of neglecting nonlocal
interactions that become prominent for the larger and more flexible systems. Regarding
the ML,y models, they present almost the same population of small force errors [under an
absolute value of 1.0kcal /mol/A| as the MLgiobar model, while having a lower frequency
of larger errors. For instance, errors above absolute values of 3.0 and 1.0kcal/mol/A
for the AT-AT dimer (Fig. A3B) and the buckyball catcher (Fig. A3C), respectively, are
more common with the MLgjopq model. Hence, ML models constructed using reduced
descriptors provide more reliable predictions than typical global and local ML models when
reconstructing complex PESs.
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Figure A3: Histogram of force errors [in kcal/mol/A] of the global (MLgiepa;), optimally
reduced (ML geduced), and Gaussian Approximation Potential/Smooth Overlap of Atomic Positions
(GAP/SOAP, MLgopap) models for AcAlagNHMe (a), the AT-AT dimer (b), and the buckyball
catcher (c). The size of the descriptor of the models is given in the legend box of the figures.
Upper row: section of the distribution of errors between -5 and 5 kcal/mol/ A; lower row: section
of the distribution in the tail from 5 to 8 (a, b) and from 3 to 8 (c) keal/mol/A.
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Table A3: Performance comparison of global and reduced models. Energy and Force root mean
square errors (E RMSE and F RMSE) are reported in kcal/mol and kcal/mol/A, respectively.
The definitions of compact and extended training sets are explained in this subsection. The
Gradient Domain Machine Learning model with default global descriptor is denoted as MLgjopai,
and the model with a descriptor reduced by 60% is denoted as MLgg.4.

Training set Model E RMSE F RMSE E RMSE F RMSE
selected from oade extended extended compact compact
compact MLgiobal 14.0 4.31 1.64 2.41
compact MLEo.4 7.55 3.55 1.47 2.24
extended MLGlobal 1.74 2.44 4.72 3.09
extended MLRo .4 1.53 2.29 3.05 2.67

Prediction of outlier data. We investigated the performance of global and reduced models
trained on “extended” structures when tested on “compact” structures of the tetrapeptide.
To perform the comparison, we have split the dataset based on the distance between the
furthest atoms in each structure (ranges from ~8 to 14 A).

We selected a threshold of 12 A which separates clusters of compact and extended structures.
With this threshold, we split the dataset into dataset 1 (maz(R;;) < 12A, ~80% of the
initial dataset - 69k structures) and dataset 2 (maz(R;;) > 12 A, 20% - 16k structures).
We used 1000 points for the training and 1000 for the validation of the models from the
dataset 1 (training set - compact) and used all structures from the dataset 2 for testing
(E/F RMSE extended).

To check how global and reduced models trained on “extended” structures perform on
“compact” structures we repeated the same procedure with a threshold of 9.5 A, resulting in
the dataset 3 (maz(R;;) > 9.5 A, ~80% of the initial dataset) used for training (training set
- extended) and dataset 4 (maz(R;;) < 9.5 A, 20%) used for testing (E/F RMSE compact).

The comparison of the Force/Energy RMSEs shows that the reduced models are more
accurate than global models when dealing with “unseen” outlier structures. We can attribute
such an improvement to the ability of reduced models to obtain a better description of the
environments of the molecule. This means that reduced models can better identify similar
structural moities between “compact” and “extended” structures while keeping the relevant
information for describing nonlocal interactions.
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Table A4: Relative deployment speed of the models trained on 1000 configurations. Descriptor
sizes go from 1 to 0, where 1 corresponds to a default global descriptor and 0 to an empty
descriptor.

Descriptor size AcAlagNHMe AT-AT Buckyball Catcher

1 1.00 1.00 1.00
0.9 1.06 1.04 1.10
0.8 1.19 1.17 1.23
0.7 1.32 1.28 1.33
0.6 1.48 1.47 1.50
0.5 1.68 1.72 1.77
0.4 1.93 2.06 2.10
0.3 2.22 2.56 2.63
0.2 2.62 3.22 3.83
0.1 3.17 4.23 4.90
a Lactose b Palmitic acid
w ! train 500 w train 500
g”% 34 train 1000 g?(_) 6 train 1000
e x g
& &
1 T T T T T T T T T T
4.0 6.0
5 B 5
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§ §2.4— § ga‘o—
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Descriptor size Descriptor size

Figure A4: Accuracy of the models during the course of reduction. Energy (in kcal/mol) and
force (in keal /mol/A) root means square errors (RMSE) as a function of the size of the descriptor
for lactose (a) and palmitic acid (b) trained with 500 and 1000 training examples (green and
orange colors, respectively). Descriptor sizes in x-axis go from 1 to 0, where 1 corresponds to a
default global descriptor and 0 to an empty descriptor.
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Figure A5: Ramachandran plots from 30 external-force simulations of AcAlasNHMe at 300 K
employing the PBE+MBD (a) and PBE (b) level of theory, as well as MLgiobar (€) and MLgg 6
(d) models trained on 5000 data points. Light grey dot represent starting configuration.
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Figure A6: Ramachandran plots with angles ¢/ defined in (a). Ramachandran plots show the
initial dataset of AcAlagsNHMe - 85 ps, computed at the PBE+MBD level of theory (b), along
with the resulting 50 ns dynamics obtained with the reduced MLy ¢ model trained on 5000 data
points (c). The color represents the population of the bins on a log scale normalized to the 0-1
range. Orange and purple dots indicate compact and extended structures, respectively.
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a Example of linear and stochastic feature
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Figure A8: Analysis of the scale of the contribution with respect to distance of particular

features in the global and reduced models. Example of linear and stochastic features (a), linearity
of features in global (b) and reduced (c) models.
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A4 Supplementary Information Chapter 6: SO3LR

Reference calculations. All reference calculations were performed at the PBEO+MBD
level of theory using the FHI-aims code [162, 163|. “Tight” settings were applied for basis
functions and integration grids. Energies were converged to 107%eV and the force accuracy
was set to 1072 eV /A. The self-consistent field (SCF) optimization convergence criteria
were 1075 eV for the sum of eigenvalues and 10~ electrons/ A® for the charge density. The
Zenodo repository contains the relevant settings file.

Table A5: Properties present in the combined datasets.

Dataset Size Forces Dipoles Hirsh. rat.
GEMS bottom-up  2.7m v v X
QM7-X 1m v v v
AQM 60k v v v
SPICE Dipeptides 33k v v v
DES15k 15k v v v
108 108 108 108 ——
10° 10° 106 106
2104 104 104 104
) 102 102 H H 102 102 H
100 L, ‘ : 100 L4 : : 1004 : : ‘Dloﬂwww‘
0 50 100 0 20 40 0 20 40 60 HCNOFFPSC
Number of Atoms Number of Heavy Atoms Maximum Distance [A] Atom Type

Figure A9: Statistics on a combined dataset of 3.9 million molecular fragments. Histograms of
the number of atoms, number of heavy atoms, maximum distance in each fragment, and atom

types.

SO3krates. The SO3krates neural network contains two sets of features: High-dimensional
invariant atomic features H = {hy,...,hx|h; € R”} and low-dimensional equivariant
atomic features X = {x1,..., &N |x; € R(L+1)2}, where L denotes the maximal degree of
the spherical harmonic used in the network. For a compact and formal introduction into
invariance and equivariance see subsection “Symmetry and Equivariance”.

Initial invariant atomic features encode information about the atomic types Z, the total
charge @ and the multiplicity S of the system. Whereas the atomic types are defined for
each atom in the system, the total charge and multiplicity is defined per molecule. On a
high level initial features are calculated as

hE(” =ez+teqg+tes, (A5)

where each summand is a H-dimensional embedding vector for each atom ¢ in the system.
Atomic numbers are encoded as

e; z = Embed(z;), (A6)

where “Embed” is an embedding function that takes an atomic number z; € N and returns
a H-dimensional embedding vector.
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Following the strategy described in Ref. 71, total charge and multiplicity are encoded as

k. if U>0 it >0
pi = Embed(Z), k=4 t" =" LU ET=
k_ifU <0 v_ ifU <O

U ln <1 +expp)] - k/\/ﬁ)
Z;‘Vﬂ In <1 +expp] - k/\/ﬁ)

a; = s ei’\p = MLP(CL{UZ'),

where k,v € R are trainable parameters, and “Embed” is another embedding function
for atomic numbers and “MLP” is a two-layered multi-layer perceptron (MLP) network.
Separate parameters are used for charge ¥ = ) and spin ¥ = S embeddings and also for
positive and negative values of ¥, indicated by the subscripts “4” and “—", respectively.
Since S is always equal or larger than zero, only the positive terms are used. Additionally,
the MLP does not use any bias terms, such that MLP(av) = 0 if av = 0. The described
encoding procedure globally distributes the information about the total charge and the spin
state, using per-atom weighting factors a;.

The low-dimensional equivariant features are initialized to all-zeros i.e., @ = 0. This ensures
that equivariance is preserved throughout the network. Alternative embedding schemes
could be employed to embed equivariant features, i.e., an initial neighborhood scan as done
in the original publications or in other equivariant MPNN approaches [52, 53|.

After creating initial atomic features (’H[tzo], X [tzo]) they are iteratively refined via T fast
equivariant MP layers as

(%£t+1]’ )(i[“r”) = FastEquivMP [H[t], X1 Grl, (A8)

where Gr = (R, £) denotes a geometric graph, containing information about the atomic
positions R and the inter-atomic connectivity via “Edges” £. Edges are determined based
on a local cutoff radius rcyt around each atom, and atoms lying within the cutoff sphere
are considered a neighbor of the central atom, i.e., they share an edge. Here we use a
cutoff of reut = 4.5 A, greatly exceeding covalent bond lengths. In contrast to classical FFs,
which often assume a fixed connectivity, a geometric graph is re-constructed for every set
of atomic positions, such that breaking and forming of atomic bonds is handled naturally.

Each layer “FastEquivMP” layer consists of two phases. In the first phase, information from
neighboring atoms is aggregated. In the second phase, the high-dimensional invariant and
the low-dimensional equivariant features exchange information on a per-atom basis. This
design ensures low computational cost while maintaining the benefits of equivariant feature
representations. For full information the reader is referred to the original publication in
Ref. 53.

[T]

The final invariant features h;

as

€ R are used to predict the total energy of the molecule

N
Esosc = 3 MLP (hET]), (A9)
=1

with a two-layer MLP outputing a scalar energy contribution for each atom in the molecule.
Forces are obtained as the gradient w.r.t. atomic positions F; = —V FEgosi using automatic
differentation.
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Ziegler-Biersack-Littmark repulsion. The short-range repulsion between nuclei is
modeled via a term inspired by the ZBL repulsion |71, 229]:

EzpL = k Z Z ]fcut TU)

i JEN; Tij

\ (A10)
. Z cme—amrij(Zf-i-Zf)/d
m=1

where k. is the Coulomb constant, Z; are the atomic numbers, and a.,, ¢, p, and d are
free parameters. The term N; denotes the neighborhood of the i-th atom, and feu is a
cutoff function that smoothly transitions between one and zero when atoms leave (or enter)
the neighborhood. The ZBL term ensures a correct description of nuclear repulsion, which
improves the stability of the potential for short bond-distances.

Partial charges and Dipoles. Following Ref. 71, partial charges are obtained as

~ 1 N -
G =4z, + G+ (Q - ijl(qzj + Qj)) : (A11)

1]

where ¢; € R are predicted from the final atomic representations hE € R¥ via a two-layered
MLP network with silu nonlinearity and gz, € R is an element dependent bias. The charge
correction with the total charge ) ensures charge conservation. The partial charges can be
used to predict molecular dipole moments (used in the loss function, see Eq. 6.7):

N
=Y i, (A12)
=1

where 7; € R3 are the atomic positions (assumed to be centered).

Long-range cutoff. For large structures with tens to hundreds of thousands of atoms,
considering all pairs of atoms becomes computationally infeasible and necessitates the
introduction of a long-range cutoff. Additionally, if simulations are performed in a box
(e.g. with water) the largest meaningful long-range cutoff is directly connected to the box
size. As such, the system under investigation and the simulation parameters, determine
different values for the long-range cutoff. To account for this, we carefully designed a
switching function for the long-range potentials, which allows to choose between different
cutoff values up to no long-range cutoff at the time of simulation. The choice does not
affect the first two terms in Eq. 6.1 or intermediate properties, partial charges and Hirshfeld
ratios, which are used as inputs to calculate the last two terms.

Both the dispersion and the electrostatic potential have infinite range and take on a non-zero
value at the long-range cutoff (Fig. A10). This results in a discontinuity in the forces at the
cutoff value, leading to energy drift during MD simulations [282]. To ensure smoothness of
the PES at the long-range cutoff we modify the pairwise electrostatic potential as

a(r) = ‘—”qﬂ o) - ums(r) + (1= fow(r)) - urs(r), (A13)

where ugg(r) is the energy-shifted potential, upg(r) is the force-shifted potential (see below)
and fsy(r) is a switching function that smoothly interpolates between 1 and 0 on a given
interval from rqy, to 7og. By switching between the energy- and the force-shifted terms, the
potential remains unaltered within the short-range cutoff (which maintains the learned
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Figure A10: Switching electrostatic interactions. The model was trained with a damped
erf(r;; /4)/r;; electrostatic potential on gas-phase data, with a 100 A long-range cutoff that recovers
all neighbors and a 4.5 A short-range cutoff. In simulations with periodic boundary conditions,
we employ a long-range cutoff of 12 A to balance accuracy and computational efficiency. The
potential at short-range should be the same as the one the model was trained with to maintain the
learned balance between different terms. Simultaneously, the potential should smoothly transition
to zero at the long-range cutoff to ensure that the potential is the exact integral of the force
and to avoid introducing discontinuities in the forces. Therefore, we smoothly switch between
the energy-shifted (blue curve) and force-shifted (orange curve) potentials to obtain the final
potential (green curve). Dispersion interactions are smoothly energy-shifted starting 2 A before
long-range cutoff.

balance between different terms, as there was no long-range cutoff during training) while
smoothly transitioning to zero at the long-range cutoff (Fig. A10). The shifted potentials
are given as [282, 283]

~Ju(r) —u(Re), r<R.
ugs(r) = {07 R, (A14)
and
_Ju(r) —w(Re) —u(r — Re) -u/(Re), r <R
ups(r) = {0’ o R, (A15)

where u(r) is the unmodified pairwise electrostatic potential (Eq. 6.6) and R, is the
long-range cutoff. Dispersion interactions are smoothly switched to zero as

0(r) = few(r) - v(r), (A16)

where v(r) is the pairwise potential in Eq. 6.4. The switching function parameters (7o,
Toff) Were set to (R, x 0.45, R.) for electrostatic interactions and (R, — 2, R.) for dispersion
interactions. The parameters were chosen to prevent clumping artifacts at the 10 A long-
range cutoff.
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Training details. SO3krates model (v1.0) was trained on a combined loss of forces, dipole
moments, and Hirshfeld ratios with a weighting factor of 10:1:1, respectively. We used the
AMSCrad optimizer [284] with an initial learning rate of 1073 and an exponential learning
rate decay every 500k steps by a factor of 0.85. The global norm of the gradient updates is
clipped at 10.

The model uses a 4.5 A cutoff, feature dimension of H = 128, and a maximal degree of
L = 4 for the Euclidean variables and T = 3 message passing layers, electrostatics damping
coefficient of o = 4, and dispersion damping coefficient of v = 1.2. After each attention
update, a two-layered multi-layer perceptron with silu nonlinearity refines the invariant
features. This increases the number of trainable parameters and thus model expressiveness,
which is important in the large data regime. To stabilize training and improve gradient
flow, layer normalization [285] is applied to the invariant features after the attention and
the interaction block. The model was trained on a single A100 GPU for 86 h (corresponding
to 5.125M gradient steps) with a batch size of B = 200.

Binding energy calculation. Binding energy was calculated as the difference between
the bound dimer and the non-interacting monomers (separated by a distance larger than
the long-range cutoff) with charges assigned for each monomer in isolation. The GitHub
repository contains an example script, demonstrating the binding energy computation.

150 SO3LR Binding Energy 50 SO3LR Outliers (> 10 kcal/mol)
@ Outliers > 10 kcal/mol (N: 63) @® SO3LR (MAE: 14.27, N: 63)
All Data (MAE: 0.90, N: 9948) @® PBEO+MBD (MAE: 1.25, N: 63)
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Figure A11: SAPT10k outliers analysis. Outlier structures with binding energy errors >10
kcal/mol (left) include exotic molecules such as CIF, P(CNO)3, and PH3;NO;. Recalculation of
the SO3LR outliers (63 dimers) at the PBEO+MBD /tight level (right) yields a mean absolute
error (MAE) of 1.25kcal/mol, with a maximum error of 5.33kcal/mol. These results confirm that
the errors arise from the absence of these motifs in the training set, rather than from limitations
of the reference theory.

Simulation details. All simulations were conducted using the NVT ensemble for gas-phase
systems (with a long-range cutoff of 100 A) and the NPT ensemble for periodic systems (with
a long-range cutoff of 12 A), with a timestep of 0.5 fs. Nosé-Hoover Chains (3 chains) were
used for thermostat and barostat coupling, as implemented in JAX-MD [227], with default
parameters: 1000 timesteps for the barostat and 100 timesteps for the thermostat [8-10].
Prior to simulation, all structures were pre-optimized using the FIRE algorithm [286].
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MD22 molecules and polyalanines. Gas-phase simulations for stachyose and AcAlagNHMe
were performed for 500 ps at 500 K, and for other MD22 molecules at 300 K. Simulations
of AcAla;sNHMe folding were carried out at 300 K (with initial velocities sampled from

a Maxwell-Boltzmann distribution at 600 K). AcAlajsLysH" was simulated at 500-800 K
with a step of 100 K, each for 500 ps. Secondary structure assignment of polyalanines was
performed using the STRIDE algorithm [287].

-90 0 90 -90 0 90 -90 0 90 -90 0 90
2 b2 b3 [}

Figure A12: Simulations of small biomolecular fragments. Ramachandran plots (¢/v dihedrals)
for (A) AcAlagNHMe and (B) stachyose molecules from the MD22 dataset. SO3LR simulations
at 500 K for 500 ps. Trajectory is sampled every 1fs. The Boltzmann-inverted scale is shown in
kcal /mol.
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Figure A13: Simulation of structures from the MD22 dataset. Snapshots of the simulation at
0ps, 250 ps and 500 ps (left) and the corresponding radial distribution function g(r) computed
over frames sampled every 1ps (right) for the (A) buckyball catcher, (B) AT-AT, (C) DHA,
and (D) double-walled nanotube. Simulations were performed for 500 ps at 300 K.
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Figure A14: Polyalanine simulation. Secondary structural motifs of (A) four folding trajectories
of extended AcAla;sNHMe at 300K in the gas phase and (B) four trajectories starting from the
folded AcAla;sLysH" at 500, 600, 700, and 800 K. STRIDE was used for secondary structure
assignment [287].
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A4 SOSLR

Water simulations. Simulations were run for 500 ps, with observables averaged over the
final 300 ps. The diffusion coefficient was determined from the positions of oxygen atoms
using Einstein diffusion equation [288, 289]. Double-precision was employed to enhance
numerical stability.

4.0
354 —— 298 K exp (D =0.23A2/ps)
' = 300 K PBE
3.01 —— 300 K PBEO
25 —— 300 K PBEO+TS
’: — = 2
320 300 K (D =0.079 A2/ps)
> 330 K (D=0.224A2%/ps)
1.5
1.0 == \ —
0.5
0.0 : ! ! ! !
2.0 3.5 4.0 45 5.0 5.5 6.0
Distance [A]

Figure A15: Oxygen-oxygen radial distribution function for bulk water. The SO3LR values
were calculated from NPT molecular dynamics simulations of 4096 water molecules, run for 500 ps,
with observables averaged over the final 250 ps. DFT values (PBE, PBEO, PBE0+TS) were taken
from Ref. 75. The diffusion coefficients of water at 300 and 330 K, obtained using the model with
a 12 A long-range cutoff, are specified in the legend. The experimental values were taken from
Refs. 169, 250.
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¥ Density
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Long-range cutoff [A]
Figure A16: Dependence of the water density on long-range cutoff at 300 K. We investigated the
convergence of the density as a function of the cutoff for long-range interactions (see ’long-range

cutoff” subsection). The water density varies between 1.04 and 0.97 g/cm?® for long-range cutoffs
of 10-20 A.
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Crambin. The initial structure was obtained from PDB ID: 2FD7 [290], with mutated
residues reverted to the wild-type sequence. The system was solvated with 8205 explicit
water molecules. Simulations were performed for 3 ns at 300 K, excluding the first 0.5 ns for
equilibration. The root mean square deviation of Crambin, RMSD(t, t+At), was obtained
excluding hydrogen atoms from three 3 ns runs. Power spectra were computed from atomic
velocities sampled over a 125 ps trajectory with a time resolution of 2.5 fs using schnetpack
package [172, 291].

RMSD of Crambin

2.0
1.51
<
9, 1.0
=
o«
—— trajectory 0
0.5 1 .
—— trajectory 1
—— trajectory 2
O-O T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Time [ns]

Figure A17: Crambin RMSD. Root mean square deviations of three crambin trajectories
simulated with SO3LR with respect to the initial frame.

Glycoprotein. The starting structure was taken from the PDB ID: 1K7C [292]. 15008
water molecules were used for solvating the system and the pH was set to 3.7 to guarantee
charge neutralization. The RMSD was calculated based on three runs of 500 ps.

POPC Lipid bilayer. The starting structure, consisting of 128 lipids and 5120 water
molecules, was obtained from Ref. 145. The system was equilibrated over 250 ps using a
combination of geometry relaxations and NVT simulations. Observables were then averaged
over an additional 250 ps at 303 K in an isotropic NPT ensemble implemented in JAX-MD.
The initial box dimensions were adjusted manually to mimic semi-isotropic NPT ensemble.
The area per lipid was calculated from the simulation box dimensions. Bilayer thickness
(Dgm), derived from electron density profiles, and NMR order parameters were both
calculated using CPPTRAJ [293|. Double-precision was employed to enhance numerical
stability.
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Figure A18: Hirshfeld ratio and partial charge distribution for the AcAla;sNHMe. Both
quantities are dynamically changing and are predicted by the SO3LR model.
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Figure A19: TorsionNet500 Benchmark. Comparison of energies predicted by SO3LR with the
TorsionNet500 benchmark [242], recomputed at the PBEO+MBD level of theory. A Histogram
of Pearson R coefficients, with additional metrics shown in the inset. B Torsional profiles for
six molecules. The absence of certain functional groups (e.g., triazole and trifluoromethylthio

groups) in the training set leads to higher average errors. In contrast, torsional profiles commonly
encountered in biosimulations are predicted accurately.
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