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PreLog: A Pre-trained Model for Log Analytics

VAN-HOANG LE, The University of Newcastle, Australia and Chongqing University, China
HONGYU ZHANG∗, Chongqing University, China

Large-scale software-intensive systems often produce a large volume of logs to record runtime status and
events for troubleshooting purposes. The rich information in log data enables a variety of system management
and diagnosis tasks. Over the years, many approaches have been proposed for automated log analytics.
However, these approaches usually design separate models for each specific task, which cannot be generalized
to other tasks. They are also not robust when dealing with logs from heterogeneous sources. In this paper,
we propose PreLog, a novel pre-trained model for log analytics. PreLog is pre-trained on a large amount of
unlabelled log data to capture the semantic meaning of logs. We design two log-specific pre-training objectives,
including entry-level and sequence-level objectives, which enable PreLog to better understand the hidden
structure and semantics of logs. To perform downstream log analytics tasks, we leverage a prompt tuning
paradigm to convert downstream tasks’ objectives into a similar form as the pre-training stage. We have
conducted extensive experiments on two main log analytics tasks (i.e., log parsing and log-based anomaly
detection). Experimental results show that PreLog achieves better or comparable results in comparison with
the state-of-the-art, task-specific approaches. PreLog is cost-effective and can be uniformly applied to many
log analytics tasks through the prompt tuning paradigm.

CCS Concepts: • Computing methodologies → Machine learning; • Information systems → Data
management systems.

Additional Key Words and Phrases: Log Data, Log Analytics, Pre-training, Log Parsing, Log-based Anomaly
Detection
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1 INTRODUCTION
Software logs are semi-structured data printed by logging statements (e.g., printf(), logInfo())
in source code. Logs allow engineers to better understand system behaviours and diagnose prob-
lems. The rich information included in log data enables a variety of system management and
diagnosis tasks, such as analyzing usage statistics [10, 56], ensuring application security [71, 76],
and diagnosing errors [46, 51]. Therefore, log data plays an important role in the maintenance,
operation, and development of large-scale software systems.
With the ever-increasing scale and complexity of software systems such as data center and

cloud services, a large amount of logs is routinely generated by most components (e.g., web
servers, databases). To avoid the error-prone and time-consuming manual work, many data-driven
approaches [25, 36, 38, 97] have been proposed to analyze logs. For example, He et al. [36] and Du
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163:2 Van-Hoang Le and Hongyu Zhang

et al. [24] proposed to extract event templates and parameters from raw log messages by mining
the heuristic characteristics of log data. Du et al. [25] and Zhang et al. [98] proposed DeepLog and
LogRobust to detect anomalies from software logs.

Despite the progress, it is still challenging to effectively analyze the log data. We have identified
the following three main challenges:

• Existing log analytics methods [51, 67, 98] are specifically designed for a certain type of log
analytics tasks. Although effective, they require much effort to train a model from scratch
with a significant amount of labelled log data, which is scarce and costly to obtain [25, 52].

• Like other software artifacts, logs are constantly evolving. Developers may frequently modify
logging statements in source code, leading to changes to log data over time. Empirical studies
find that 20-40% of the logging statements change throughout the whole lifetime [47] and up
to 30% logs are modified in the latest version [98].

• Logs are heterogeneous across different software systems and different logging frame-
works [62]. Different software systems and frameworks have distinct rules and policies
to generate logs. To achieve good performance, current methods require to re-train their
models when dealing with logs from new sources [62, 100].

In recent years, pre-trained language models (LMs) such as BERT [21], GPT [79], and BART [57]
have significantly improved the performance of a variety of natural language processing (NLP) tasks.
These pre-trained models learn effective contextual representations from massive unlabelled text
optimized by self-supervised objectives, such as masked language modelling [21, 61]. The success of
pre-trained models in NLP also promotes the rapid development of these models in other fields such
as data operation [31, 85] and software development [32, 90]. For example, Tu et al. [85] proposed
Unicorn, a unified pre-trained model to support common matching tasks in data integration. Gu
et al. [31] applied pre-trained models for Text-to-SQL translation to enable data querying for
non-technical users. Recently, there have been some studies that apply pre-trained NLP models
to log analytics [66, 74]. For example, NeuralLog [51] and LogStamp [83] utilize the pre-trained
BERT [21] model in anomaly detection and log parsing, respectively. Some recent studies (e.g.,
LogBERT [34], Logsy [74]) train language models on log data for anomaly detection. However, they
are proposed as task-specific models for anomaly detection, and cannot be generalized for other
log analytics tasks (e.g., log parsing) due to the differences between the tasks’ training objectives.
Moreover, when applying to new datasets, they must retrain the detection models from scratch
with a large amount of labelled data, which is often unavailable in practice.

Existing log analytics studies only attempt to solve a single task for log analytics, such as log
parsing [15] or anomaly detection [45]. Unifying multiple log analytics tasks is in urgent demand
yet not well-explored. Therefore, in this paper, we propose PreLog, a pre-trained model with
contrastive learning that unifies different log analytics tasks into a single framework. PreLog adopts
the sequence-to-sequence Transformer [87] architecture and is pre-trained on a large amount of
unlabelled log data. We design two pre-training objectives, including entry-level and sequence-level
objectives, to not only teach the model to learn the robust semantic representations of logs but also
force the model to understand the common types of log evolution [47]. Particularly, the entry-level
pre-training objective simulates the changes to logging statements by corrupting the original inputs
and then forces the model to reconstruct them. The sequence-level pre-training objective simulates
the unstable log sequences caused by the changes in log sequences during log evolution. It guides
the model to learn effective and robust representation for log sequences with contrastive learning.
The pre-trained PreLog model is then leveraged for downstream tasks by a prompt tuning paradigm.
By converting the training objectives of downstream tasks into the next token prediction task,
which is similar to the objective of the pre-training phase, PreLog can be easily applied to different
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downstream tasks without introducing any new model parameters or re-training the model from
scratch.

We pre-train the PreLog model on a corpus consisting of 12 log datasets collected from a variety
of software systems with more than 215 million tokens in total. We then evaluate the proposed
model on two representative log analytics tasks (log template generation and log-based anomaly
detection) on public log datasets. The extensive experimental results show that PreLog achieves
better or comparable results in comparison with state-of-the-art, task-specific methods. Compared
to task-specific log analytics methods, the advantages of PreLog are four-fold: (1) PreLog learns
general log patterns from diverse data sources during the pre-training stage, thus enabling it to
effectively handle the heterogeneity of log data, (2) the proposed pre-training objectives allow
PreLog to handle unstable log events and log sequences caused by evolving logging statements
that arise during software maintenance, (3) prompt tuning requires less data compared to training
task-specific models from scratch, making PreLog a cost-effective solution when dealing with
limited labelled log data, and (4) PreLog can be better generalized to different log analytics tasks as
it converts the training objectives of these tasks into a similar form as the pre-training stage.

The main contributions of this paper are as follows:

• We propose PreLog, a pre-trained model for log analytics. We also propose two log-specific
pre-training objectives that enable PreLog to effectively learn semantics and representations
of logs from heterogeneous log data.

• We leverage a prompt tuning paradigm to uniformly adapt the pre-trained PreLog to down-
stream log analytics tasks. It reduces the gap between pre-training and downstream tasks,
leading to better performance while requiring less domain knowledge than standard fine-
tuning.

• We perform extensive experiments and the results show that PreLog is effective in both
log template generation and log-based anomaly detection tasks. We release our pre-trained
model [7], which can be easily adapted to other downstream log analytics tasks.

The remainder of this paper is organized as follows. We introduce the background and related
work of our work in Section 2. Section 3 describes our approach. Section 4 presents our experimental
design, followed by experimental results in Section 5. Section 6 discusses why PreLog can work,
the challenges of adopting large language models for log analytics, and the threats to validity. We
survey related work in Section 7 and conclude this paper in Section 8.

2 PRELIMINARIES
2.1 Log Data
Logs are generated at runtime from logging statements in the source code. They record systems’
events and internal states for trouble shooting purposes. In general, logs are semi-structured text
printed by logging statements (e.g., printf(), logInfo()) in the source code. Figure 1 shows
an example of log messages printed by two logging statements in the Spark’s source code. Each
log message contains its message header and content. The message header is determined by the
logging framework, such as timestamp, component, PID, and verbosity level [100]. Log content is a
composition of constant strings written by developers and parameters recorded by systems during
runtime. The constant part reveals the event/template of a log message and remains the same for
every event occurrence. The parameter part carries dynamic runtime information (i.e., parameters),
which may vary across different event occurrences.
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# Logging statements from Spark (spark/storage/BlockManager.scala)
private def reportAllBlocks(): Unit = {

logInfo(s"Reporting ${blockInfoManager.size} blocks to the master.") 
for ((blockId, info) <- blockInfoManager.entries) {

// ...
if (info.tellMaster && !tryToReportBlockStatus(blockId, status)) 

logError(s"Failed to report $blockId to master; giving up.")
// ...

}
}

}

17/08/22 15:50:02 INFO BlockManager Reporting 12 blocks to the master.
17/08/22 15:50:46 ERROR BlockManager Failed to report rdd_5_1 to master; giving up.
17/08/22 15:52:36 ERROR BlockManager Failed to report rdd_3_3 to master; giving up.
. . .

Log Message

Logging Statements

Fig. 1. An example of logging statements and the generated logs from Spark

2.2 Log Analytics
Log analytics employs data mining and machine learning techniques to automatically explore and
analyze a large volume of log data. Figure 2 shows the common workflow of log analytics to support
log management operations. Firstly, log messages from system consoles or files are collected during
system runtime. Then, all entities/fields are extracted from raw unstructured logs (i.e., log parsing)
for indexing, compression, or querying of logs [2, 16, 60]. After parsing, data-driven approaches
are applied to analyze large volumes of log data to glean meaningful patterns and informative
trends [37]. The extracted patterns and knowledge could facilitate monitoring, administering,
and troubleshooting of software systems, which enable notifying, visualizing, and auditing of
log management platforms. As a key component, log analytics lately has become an appealing
selling-point [1, 3, 5, 8] of many industrial log management solutions [37, 100] (e.g., Splunk [8]).
In this section, we shall introduce preliminaries and related works of log parsing and log mining,
which are the core of log analytics.

Log collection

17/08/22 15:50:46 ERROR BlockManager Failed 
to report rdd_5_1 to master; giving up. 

Raw Log Message

Date 17/08/22
Time 15:50:46
Level ERROR

Component BlockManager
Template Failed to report <*> to master; giving up. 

Parameters [rdd_5_1]

H
ea

de
rs

Co
nt
en

t

Anomaly 
Detection

Failure 
Identification

Got assigned task 5

Found block 46

Dropping block 46 from ...

Ignored message: Heartbeat

5 blocks selected for drop...

Fault 
Localization

Log parsing

Auditing

Threat detection

. . .

Other Tasks

Fig. 2. The workflow of log analytics pipeline

To enable automated log analytics, log parsing is the first and foremost step [100]. It is a process
to extract the static log template parts and the corresponding dynamic parameters (or variables)
from semi-structured log messages. As the example shown in Figure 4, each log message is parsed
into log header and log content. The log header (e.g., Datetime, Component, and Level) generated by
the logging framework are generally easy to extract. The log template “Failed to report <*> to
master; giving up.” associated with parameters (e.g., “rdd_5_1”), in contrast, is often difficult to
identify [54, 100]. The ultimate goal of log parsing is to convert each log message into a specific log
template and extract the corresponding parameters [62, 100]. Existing log parsing approaches can
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be divided into two main categories. (1) Data-driven log parsing: many studies have been proposed
to leverage data-driven approaches for log parsing, including frequent pattern mining [19, 72, 86],
clustering [28, 59, 81], and heuristics [24, 36, 69]. These methods, although effective, ignore the
semantic meaning of log data, thus achieving sub-optimal results [44, 54]. (2) Deep learning-based
log parsing: recent studies [54, 83] consider semantic information from logs to formulate log parsing
as a token classification task, which is found to outperform traditional data-driven log parsers.

After parsing, logs are often grouped into sequences (i.e., series of log events that record specific
execution flows [51]) and are used in various reliability assurance tasks (i.e., log mining), such
as anomaly detection and failure diagnosis [37]. Among them, anomaly detection is the most
popular task, which aims at identifying the system’s anomalous patterns that do not conform
to expected behaviors on log data [37]. Many approaches have been proposed to apply machine
learning (ML) [14, 38, 95] and deep learning (DL) [25, 34, 73] methods for automated log-based
anomaly detection. DL-based approaches have been found to outperform traditional ML-based
approaches, which have the limitations of inflexible features and weak adaptability [51, 98]. For
example, LogRobust [98] and SwissLog [58] train an attention-based Bi-LSTM model to detect
anomalies from unstable logs with features extracted by word2vec [70] and BERT [21] models. Log
data is also used in failure diagnosis [11, 99] to help engineers understand the underlying causes
and take mitigation actions. For example, CLog [11] models log sequences with a self-attention
encoder model to identify failure types. EvLog [43] localizes individual fault-indicating logs based
on the context of their surrounding log messages. Onion [99] pinpoints incident-indicating logs by
examining their consistency, impact, and bilateral-difference.

Although effective, the existing log analytics approaches often make assumptions about specific
tasks, the characteristics of log data, and the availability of domain expertise [54, 101]. Therefore,
they require significant efforts to design task-specific models and to train a model from scratch
with a significant amount of labelled log data, which is scarce and costly to obtain [25, 52].

2.3 Pre-trained Models
Large pre-training models trained on massive corpora of unlabelled data have been shown to
perform well on a wide range of tasks, including natural language processing [21, 80], computer
vision [23, 78], and code intelligence [32, 90]. These models are pre-trained in a self-supervised
manner (i.e., pre-training) to capture sufficient domain knowledge. The pre-trained models can
then be tuned for downstream tasks.
2.3.1 Fine Tuning. Fine-tuning a pre-trained model for downstream tasks is a prevalent paradigm
in NLP field that adopts the pre-trained model in a supervised manner. A standard way to apply fine-
tuning is to add task-specific layers on top of the pre-trained model and train it with a supervised
objective such as classification. Although straightforward, the inconsistency between pre-training
and fine-tuning objectives often restrains the rich knowledge distributed in pre-trained models,
thus leading to sub-optimal results [88]. Besides, fine-tuning requires domain and task-specific
knowledge to design and optimize new parameters for additional layers.
2.3.2 Prompt Tuning. To reduce the gap between pre-training and downstream tasks, prompt
tuning (i.e., prompt-based fine tuning) has been proposed to convert the training objective of
downstream tasks into a similar form as the pre-training stage. Instead of designing a new training
objective for each downstream task, prompt tuning rewrites the input by adding a natural language
instruction to reuse the pre-training objective [29, 88].
Specifically, prompt tuning employs a prompt template 𝑓𝑝𝑟𝑜𝑚𝑝𝑡 (.) to reconstruct the original

input 𝑋 , producing new input 𝑋 . As illustrated in Figure 3, the prompt template (e.g., “[X] This
sequence is [MASK]”) is a textual string that contains two types of reserved slots, i.e., input slot
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minus normalized number..................0
Lustre mount FAILED : bglio617
fraction rounded.........................0
Node card is not fully functional

[X] This sequence [MASK]is

[X]

Label Words

faulty
clean …

Pretrained 
Model

Verbalizer
Anomaly

Natural language token

Label word’s probability

Fig. 3. An illustration of prompt tuning

[𝑋 ] and answer slot [𝑀𝐴𝑆𝐾]. The input slot [𝑋 ] is reserved to be filled with the input text, and the
answer slot [𝑀𝐴𝑆𝐾] is to be filled by predicted label words such as faulty. Prompt tuning outputs
the final class by mapping the predicted label words through a verbalizer, i.e., V , an injective
function to map each predicted label word to a class in the target class set 𝑌 :

V :𝑊 → 𝑌 (1)

where 𝑊 indicates the label word set. For the example in Figure 3, 𝑊 includes “[faulty]” for
anomalies and “[clean]” for normal. According to the flexibility of the prompt template, prompt
tuning techniques can be categorized into two types: hard prompt that uses fixed tokens and soft
prompt that uses learnable tokens to construct the prompt template.

Pre-training has been widely applied in software engineering to model source code [9, 27, 90].
Recently, some studies have been proposed to utilize the benefits of pre-training models in NLP
for log analytics. For example, NeuralLog [51] leverages a pre-trained BERT model to extract the
semantic meaning of logs for anomaly detection. LogStamp [83] performs log parsing as a token
classification problem by fine-tuning the pre-trained BERT model [21]. However, these methods
solely apply pre-trained models for feature extraction and are specifically designed for a single log
analytics task (such as anomaly detection).

Different from them, we pre-train a model on large-scale unlabelled log data. Furthermore, our
approach utilizes prompt tuning for performing unified downstream tasks into the next token
prediction task with less task-specific knowledge and domain expertise.

3 THE DESIGN OF PRELOG
In this section, we introduce our proposed model PreLog for log understanding and analysis. The
overall framework of PreLog is shown in Figure 4. It is comprised of the following components:
• Pre-trained model consists of encoder and decoder layers. Encoder layers capture the semantic
information of an input log sequence and map it into a high-dimensional embedding space.
Decoder layers reconstruct/generate the target sequence given the input log sequence.

• Pre-training objectives are to generate a similar log sequence using text corruption or sequence
manipulation as a form of data augmentation. They are used to guide the model to learn log
syntax and semantics through LM (language modelling) loss and align embedding space through
contrastive loss.

• Prompt tuning paradigm is used to convert the training objective of downstream tasks into
a similar form as the pre-training stage to unify different log analytics tasks into a standard
language modelling task (i.e., predicting the next tokens).

We first illustrate our model with a concrete example shown in Figure 4 and then introduce each
component in detail.
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1. input_userauth_request: invalid 
user ubnt [preauth]

2.pam_unix(cron:session): session 
closed for user root
………

1. ttloop: read: Connection timed out
2.kernel time sync disabled 0041

………

𝜑

1. input_[MASK]: invalid [MASK]
ubnt [preauth]

2.pam_unix( ): session 
closed for user root
………

1. pam_unix(cron:session): session 
closed for user root

2. input_userauth_request: invalid 
user ubnt [preauth] 
………

Unlabelled logs

Negative sample

En
co
de

rs

De
co
de

rs
Po

ol
in
g

Model Architecture & Optimization

Positives

	ℒ!"#$%& = 	𝜆	. ℒ'(+ℒ)'

Pre-training Objectives

Pre-training PreLog

PreLog

session closed for user TEST01 </s> check pass; user unknown </s> This sequence is [MASK]

Template: session closed for user <*>

Generation

PreLog

clean (label: normal)
faulty (label: abnormal)

Label mapping
Classification

Entry-level

Sequence-level

Transformer

Prompt Tuning PreLog

LM’s Output: ℓ
LM Loss: ℒ!"

Representation: ℛ
Contrastive Loss: ℒ#!

Positive pair

Fig. 4. An overview of our framework

3.1 An Illustrative Example
In this section, we introduce our model with an illustrative example shown in Figure 4. The top side
illustrates the pre-training process of PreLog, and the bottom shows how to apply the well-trained
PreLog model on downstream tasks. Specifically, first, at each iteration, we perform text corruption
(i.e., the entry-level objective) and sequence manipulation (i.e., the sequence-level objective) to
generate the positive samples from the input log sequence (i.e., a set of log messages). With the
entry-level objective, we randomly replace some tokens with “[MASK]” or random tokens, delete
some tokens, and insert some tokens into the input log sequence. With the sequence-level objective,
we randomly shuffle/duplicate/remove some log entries from the input log sequence. Second,
we randomly select an auxiliary log sequence from different software systems to serve as the
negative sample. Then, we optimize the model using a joint loss function consisting of an LM
loss and a contrastive loss. The LM loss is used to learn the syntax and semantics of log data by
reconstructing the corrupted log sequence. The contrastive loss is used to align the representations
of logs by pulling in similar/positive samples and pushing away different/negative samples. Finally,
the well-trained model is used for log analytics. In detail, we use prompt tuning to convert the
training objectives of downstream tasks into predicting the next tokens (i.e., generation manner).
For example, in Figure 4, PreLog generates the complete log template for the log parsing task and
the label word for the anomaly detection task.

3.2 Model Architecture
PreLog follows the sequence-to-sequence architecture [57, 87]. It is based on the standard Trans-
former model [87], which contains encoder, decoder, and attention mechanism. Following [9, 57],
PreLog is designed to have six layers of encoder and six layers of decoder. The model dimension is
768, and the number of attention heads is 12. In total, it has approximately 140M parameters.

Following the work of [61, 79], we use a byte-level BPE vocabulary containing 50K subword
units to encode the input sequence into a set of tokens. Specifically, given a log sequence, we first
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163:8 Van-Hoang Le and Hongyu Zhang

tokenize it into a set of tokens (words and subwords) and separate different log messages by a
special token (i.e., “</s>”). Next, we transform this set of tokens into an augmented sequence (to be
described in the next subsection). We then pass the augmented sequence to the Transformer-based
LM and get the output (LM’s output), which captures the semantic meaning of each log message
through language modelling. We also obtain the representation of the augmented sequence as the
last hidden state of the Transformer’s encoders through a pooling layer. The pooling layer gathers
the representation vector for a log sequence as the mean of embedding vectors of the tokens. The
representation then serves as the input for contrastive learning to guide the model to enhance the
robustness of log sequence representation.

3.3 Pre-Training Objectives
We describe the pre-training objectives used in PreLog in this section. Pre-training objectives are
crucial for the model to understand the hidden structure and the semantic meaning of logs. As
shown in Figure 4, we design two log-specific pre-training objectives, including entry-level and
sequence-level pre-training objectives. Formally, given a pre-training corpus D = {𝑋1, 𝑋2, . . . , 𝑋𝑛},
where 𝑋𝑖 is the log sequence generated using fixed or sliding windows. The pre-training objective
is a function 𝜑 : 𝑋𝑖 → (𝑋𝑖 , 𝑋

+
𝑖 ) to transform the original log sequence𝑋𝑖 into augmented sequences

(1)𝑋𝑖 using text corruption (within the entry-level pre-training objective) and (2)𝑋 +
𝑖 using sequence

manipulation (within the sequence-level pre-training objective). The PreLog model is then pre-
trained to reconstruct 𝑋𝑖 from 𝑋𝑖 and align the representation of 𝑋𝑖 , 𝑋𝑖 , and 𝑋 +

𝑖 , simultaneously.

3.3.1 Entry-level pre-training objective. In practice, developers often insert/remove some words
when they update a logging statement in the source code during software maintenance, which in
turn leads to new log events (i.e., log entry) with similar meaning [98]. Therefore, we design the
entry-level pre-training objective based on text corruption [57, 68] to simulate these cases of log
instability in real-world software systems. Specifically, we adopt token masking, token deletion,
and token insertion techniques [57, 68] as the entry-level pre-training objective to corrupt the
input sequence and force the model to learn these changes. Table 1 illustrates examples of three
corrupting techniques presented in this section.

Table 1. An illustration of text corruption for the entry-level pre-training objective

Noisy Input Original Input and Target

Token Masking
session [MASK] [MASK]
user cyrus by (uid=0) session opened for

user cyrus by (uid=0)Token Deletion session _ _ user cyrus by (uid=0)

Token Insertion
session opened for

user cyrus by anything (uid=0)

Inspired by recent studies [9, 57], we randomly sample 30% tokens in each sequence to mask.
Of the selected tokens, 80% are replaced with a “[MASK]” token, 10% are left unchanged, and 10%
are replaced by a randomly selected vocabulary. Then, the model is asked to predict the original
tokens of these sampled tokens based on their local context, which has proven effective in previous
work [21, 32]. Token masking is used to learn an effective representation by discovering the
relationship between tokens in a log message through the attention mechanism. As an example,
from the original text “session opened for user cyrus by (uid=0)” in Table 1, we replace the
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whole words “opened” and “for” with the “[MASK]” tokens. Note that we mask the whole word
instead of subword as it can improve the performance of pre-training models [18].

We leverage the token deletion technique to instruct the model to learn the changes in log data
when developers remove some words from a logging statement. Specifically, random tokens are
deleted from the input. The model is then asked to recognize which positions are missing and
reconstruct the original input. Compared to masking, the model should determine which tokens
are deleted and not replaced with anything else (i.e., “[MASK]” token). Previous studies [13, 57, 91]
show that randomly removing some tokens during pre-training language models can improve
performance on many tasks such as text classification [91] and text generation [57]. Table 1 shows
an example where two words “opened” and “for” are removed from the original sequence.
Recent studies [47, 98] point out that during active development and maintenance of software

systems, developers also add new words into logging statements to explain or record more infor-
mation. To simulate these changes, we randomly insert some tokens into the original log entries.
This objective forces the model to handle the changes in log data when developers add new words
to existing logging statements. The model must give more attention to important tokens as well
as determine the noisy tokens in order to discover the semantic structure of log messages and
reconstruct the original log messages. Table 1 shows an example where we randomly insert the
word “anything” into the log message.

Formally, we train PreLog to recover the original sequence 𝑋𝑖 given the corrupted log sequence
𝑋𝑖 by minimizing the loss L𝐿𝑀 :

L𝐿𝑀 = −
∑︁
𝑋𝑖 ∈D

log 𝑃 (𝑋𝑖 | 𝑋𝑖 = 𝜑 (𝑋𝑖 )) , (2)

where the likelihood 𝑃 is estimated following the standard sequence-to-sequence decoding.

3.3.2 Sequence-level pre-training objective. Small changes to execution paths during software
maintenance could lead to new but similar log sequences in practice [47, 98]. We propose the
sequence-level pre-training objective based on sequence manipulation to enhance the robustness of
log representation. To this end, we apply contrastive learning [30, 35] to maximize the similarity
between the representation of semantically related log sequences (i.e., positive pairs) and minimize
the similarity between discriminate log sequences (i.e., negative samples). The essence behind this
idea is that a log analytics model should be able to (1) represent different log sequences with high
discrimination, and (2) identify semantically related log sequences [98].

Entry 1

Original log sequence

Deletion

Duplication

Entry 2 Entry 3 Entry 4 Entry 5

Entry 1 Entry 2 Entry 3 Entry 4 Entry 5

Entry 1 Entry 3 Entry 3 Entry 4 Entry 5

Disorder

Entry 1 Entry 3 Entry 5 Entry 3 Entry 4

Fig. 5. Illustration of the alteration process for the sequence-level pre-training objective
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To generate similar log sequences, we follow [58, 98] to manipulate the sequence by randomly
removing a few log entries from the original log sequence. We also duplicate and shuffle the order of
a few log entries to simulate the changes in log data in real-world scenarios. We keep the length of
this manipulated sequence 10% different from the original log sequence so that the major sequence
meaning is preserved [68]. Figure 5 illustrates this process.
For example, as shown in Figure 4, we construct the positive pair with a corrupted sequence

(entry-level) and a manipulated log sequence (sequence-level). We also select a random auxiliary
log sequence from different software systems to serve as the negative sample to further improve
the performance. The model is trained to align the positive pair originated from the same source
sequence while separating them from the negative, unrelated sample.
Formally, given a mini-batch (a small set of D) with 𝑁 samples 𝑥𝑖 , we extend it to (𝑥𝑖 , 𝑥+𝑖 , 𝑥

−
𝑖 ),

where 𝑥𝑖 (generated using text corruption) and 𝑥+𝑖 (generated by sequence manipulation) is the
positive pair. 𝑥−𝑖 is the negative sample. PreLog is trained to minimize the contrastive loss L𝐶𝐿 :

L𝐶𝐿 = −log
exp

(
sim(𝑟𝑖 , 𝑟+𝑖 )

)
𝑁∑︁
𝑗=1

(
exp

(
sim(𝑟𝑖 , 𝑟+𝑗 )

)
+ exp

(
sim(𝑟𝑖 , 𝑟−𝑗 )

) ) (3)

where 𝑟𝑖 , 𝑟+𝑖 , 𝑟
−
𝑖 are the representations of the sequence 𝑥𝑖 , 𝑥+𝑖 , 𝑥

−
𝑖 , respectively, produced by the

PreLog model. The similarity metric “sim" is cosine similarity. We choose contrastive learning for
the sequence-level objective because sequence manipulation makes it too challenging to reconstruct
the original sequence. Recent studies find that simply deleting, swapping, or duplicating text spans
(i.e., log entries in our paper) often degrades the performance of models on downstream tasks,
especially on generation tasks [26]. Hence, we leverage these sequence manipulation techniques
with contrastive learning to align semantically related sequence representations [26, 37, 50, 93].
Overall Training. PreLog uses the following loss function:

LPreLog = 𝜆 × L𝐿𝑀 + L𝐶𝐿 (4)

The full encoder-decoder model is pre-trained by minimizing the loss LPreLog to align the
representation of log sequences through contrastive learning and reconstruct the original log
sequences from corrupted sentences. 𝜆 is the weighting factor for the LM loss L𝐿𝑀 . We follow [30]
to empirically set 𝜆 = 0.1. These two pre-training objectives are used simultaneously in the
loss function defined in Equation (4). The full encoder-decoder model is utilized in downstream
applications.

3.4 Prompt Tuning PreLog
After pre-training PreLog on large-scale unlabelled data, we unify different log analytics tasks into
a standard language modelling task (i.e., predicting the next token) via prompt tuning. Specifically,
inspired by recent studies [12, 29, 88], we leverage natural-language prompts to guide the model
for downstream tasks. In this section, we describe how to apply prompt tuning to two kinds of
downstream tasks.
Classification Tasks. To apply PreLog to downstream classification tasks such as anomaly

detection [38] and failure identification [11], we leverage hard prompts to tune PreLog. Specifically,
given the input sequence 𝑋 , we add a natural language prompt at the end of the input, and let
PreLog predict the masked token “[MASK]”. After that, we map each predicted label token to a
class for each log sequence (see Figure 4). We use the same prompt template 𝑓𝑝𝑟𝑜𝑚𝑝𝑡 (𝑥) = “This
sequence is [MASK]” for all tasks and manually define verbalizerV for different tasks. We choose
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hard prompt tuning because it outperforms fine-tuning and soft prompt tuning [54, 88], especially
for log analytics [54].

Generation Tasks. PreLog has an encoder-decoder architecture where the decoder is capable of
generating the target sequence. Therefore, it can be directly applied to generation tasks such as log
template generation. The original sequence is given as input to the encoder during prompt tuning,
and the decoder generates the target sequence autoregressively. An example is shown in Figure 4.

For both tasks, we directly use PreLog’s seq2seq model without introducing any new parameters
during the tuning phase. The objective of downstream tasks is converted into the next token
prediction problem. The advantages of prompt tuning allow us to treat different log analytics
tasks in a unified way. Moreover, prompt tuning also reduces the gap between pre-training and
downstream tasks, which leads to better performance than standard fine-tuning. Compared to
existing methods, PreLog does not require re-training a new model from scratch for downstream
tasks, thus making it easier to apply on new datasets.

4 EXPERIMENTAL DESIGN
4.1 Pre-training Dataset
We pre-train PreLog on a large log corpus containing 12 real-world log datasets from multiple
sources (26.2M log messages and 8.3GB in total). Specifically, we leverage four datasets from LogPai
benchmark [39], including Proxifier, Thunderbird, Linux, and OpenStack datasets. Apart from that,
to ensure diversity, we collect eight datasets from different benchmarks such as Liberty [75] and
Cray [20]. These datasets are collected from a variety of large-scale real-world systems, including
standalone software, supercomputers, operating systems, and distributed systems. This corpus
allows the model to discover the meaning of words in different contexts, thus enabling the model
to comprehensively represent the semantic meaning of log data. After pre-processing, we obtain a
pre-training dataset of more than 215 million tokens.

4.2 Downstream Tasks and Evaluation Metrics
4.2.1 Log Parsing as a Generation Task. To demonstrate the generation ability of PreLog, we
formulate the log parsing task as a log template generation task. The task aims to generate a log
event template from a raw log message. We conduct experiments on 16 datasets originally from
the LogPai benchmark [100], which consists of log data from 16 different systems spanning from
distributed systems, supercomputers, operating systems, mobile systems, server applications, to
standalone software. Each of them contains 2,000 manual-labelled log messages, which do not
appear in the pre-training dataset. Recent studies [49, 62] point out that there are some errors in
the original datasets, therefore, we use the corrected version of these 16 datasets from [54] in our
evaluation.

To evaluate the effectiveness and robustness of our proposed method, we apply four evaluation
metrics, including:

Group Accuracy (GA): Group Accuracy [100] is the most commonly used metric for log parsing.
The GA metric is defined as the ratio of “correctly parsed" log messages over the total number of
log messages, where a log message is considered “correctly parsed" if and only if it is grouped with
other log messages consistent with the ground truth.

Parsing Accuracy (PA): Parsing Accuracy (or Message Level Accuracy [62]) is defined as the ratio
of “correctly parsed" log messages over the total number of log messages, where a log message
is considered to be “correctly parsed" if and only if every token of the log message is correctly
identified as template or parameter.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 163. Publication date: June 2024.



163:12 Van-Hoang Le and Hongyu Zhang

Edit Distance (ED): Edit Distance assesses the performance of template extraction in terms of
string comparison [73]. It calculates the minimum number of actions needed to convert one template
into another. We apply normalized Edit Distance [65], which computes the mean Edit Distance of
all compared template pairs in the dataset (parsed templates vs ground truth templates).

Accuracy with Unseen Logs (uPA): We follow [54] to evaluate the Parsing Accuracy on unseen log
data. Those log events appearing only once in a dataset are considered as unseen [54]. To compute
the uPA metric, we extract those log messages whose corresponding log templates only appear
once and then compute the Parsing Accuracy on these log messages.
GA and ED are used to measure the effectiveness of the proposed method in terms of under-

standing the semantic and lexical meaning. PA and uPA, on the other hand, measure the robustness
when dealing with heterogeneous and unseen log data.

4.2.2 Anomaly Detection as a Classification Task. Log-based anomaly detection is one of the most
important topics in log analytics. In this task, the model aims to detect the existence of system
anomaly given a set of log messages. We formulate this task as a binary classification problem
(anomalous or normal) to evaluate the classification ability of PreLog. We conduct experiments on
three public datasets, namely HDFS, BGL, and Spirit, which are not used in the pre-training dataset.
These datasets have been used by many studies to demonstrate the effectiveness of those proposed
methods [51, 52, 73].
We follow recent studies [38, 52, 98] to generate log sequences from the HDFS dataset using

session windows [38], and to generate log sequences from BGL and Spirit datasets using a fixed
window of 20 log lines [52]. Then, we randomly sample a small proportion (i.e., 2k log sequences,
around 0.3-0.8% of the dataset) of labelled logs from a dataset as training data and use the rest
for testing. We repeat this process five times and report the average results to avoid bias from
randomness.

To measure the performance of our framework, we leverage the Precision, Recall, and F-measure
metrics:

• Precision: the percentage of correctly detected abnormal log sequences amongst all detected
abnormal log sequences by the model.
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃

𝑇𝑃+𝐹𝑃 .
• Recall: the percentage of log sequences that are correctly identified as anomalies over all real
anomalies.
𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃

𝑇𝑃+𝐹𝑁 .
• F-Measure: the harmonic mean of Precision and Recall.
𝐹 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙 .

TP (True Positive) is the number of abnormal log sequences that are correctly detected by the
model. FP (False Positive) is the number of normal log sequences that are wrongly identified as
anomalies. FN (False Negative) is the number of abnormal log sequences that are not detected by
the model.

4.3 ResearchQuestions
In this study, we aim to investigate the following three research questions (RQs) through experi-
mental evaluation:

RQ1: How effective and robust is PreLog on the log template generation task?
RQ2: How effective and robust is PreLog on the anomaly detection task?
RQ3: How do different pre-training objectives contribute to PreLog?
RQ4: How does PreLog perform for other log analytics tasks?
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Table 2. Comparison with the state-of-the-art log parsers with 32 labelled samples

Spell Drain Logram SPINE LogPPT PreLog

GA PA ED uPA GA PA ED uPA GA PA ED uPA GA PA ED uPA GA PA ED uPA GA PA ED uPA

HDFS 1.000 0.487 0.983 1.000 0.998 0.999 0.985 1.000 0.930 0.961 0.978 0.000 0.809 0.622 0.726 0.000 1.000 0.942 0.993 0.500 1.000 0.943 0.994 1.000
Hadoop 0.778 0.203 0.505 0.290 0.948 0.378 0.793 0.406 0.694 0.195 0.509 0.072 0.931 0.294 0.838 0.319 0.994 0.912 0.983 0.797 0.968 0.789 0.944 0.812
Spark 0.905 0.337 0.843 0.368 0.920 0.376 0.945 0.421 0.470 0.274 0.854 0.158 0.887 0.337 0.889 0.368 1.000 0.999 0.999 0.842 1.000 0.967 0.939 0.789

Zookeeper 0.964 0.750 0.959 0.316 0.967 0.795 0.974 0.421 0.956 0.805 0.952 0.105 0.989 0.753 0.949 0.421 1.000 0.990 0.990 0.947 1.000 0.993 0.998 0.984
BGL 0.787 0.275 0.760 0.227 0.963 0.463 0.833 0.409 0.702 0.260 0.683 0.045 0.923 0.376 0.816 0.318 0.610 0.801 0.837 0.591 0.950 0.905 0.983 0.682
HPC 0.654 0.575 0.637 0.600 0.932 0.683 0.580 0.800 0.933 0.649 0.565 0.400 0.900 0.650 0.943 0.400 0.990 0.926 0.947 0.900 0.994 0.942 0.941 0.900

Thunderbird 0.844 0.036 0.658 0.316 0.955 0.177 0.720 0.558 0.554 0.097 0.595 0.042 0.603 0.051 0.488 0.463 0.680 0.933 0.818 0.747 0.675 0.885 0.812 0.737
Windows 0.992 0.004 0.954 0.150 0.997 0.465 0.937 0.550 0.694 0.141 0.881 0.050 0.684 0.154 0.755 0.350 0.996 0.999 1.000 0.950 0.717 0.894 0.994 0.850
Linux 0.605 0.114 0.501 0.232 0.876 0.210 0.592 0.737 0.186 0.125 0.441 0.032 0.545 0.113 0.624 0.474 0.934 0.880 0.985 0.842 0.994 0.924 0.979 0.842

Android 0.921 0.245 0.903 0.294 0.885 0.750 0.962 0.784 0.795 0.436 0.555 0.314 0.755 0.139 0.754 0.431 0.890 0.802 0.984 0.765 0.840 0.614 0.781 0.747
HealthApp 0.639 0.154 0.666 0.387 0.901 0.375 0.564 0.903 0.833 0.679 0.728 0.419 0.847 0.445 0.896 0.484 1.000 0.789 0.791 0.935 1.000 0.676 0.786 0.839
Apache 1.000 0.978 0.995 — 1.000 0.978 0.995 — 1.000 0.972 0.994 — 1.000 0.276 0.804 — 1.000 0.994 0.999 — 1.000 0.994 0.999 —
Proxifier 0.527 0.478 0.735 — 0.527 0.527 0.787 — 0.504 0.000 0.380 — 0.036 0.272 0.734 — 1.000 0.999 1.000 — 1.000 0.999 1.000 —
OpenSSH 0.556 0.378 0.946 — 0.789 0.593 0.909 — 0.802 0.928 0.934 — 0.676 0.253 0.919 — 0.628 0.975 0.997 — 1.000 0.747 0.986 —
OpenStack 0.764 0.000 0.667 — 0.733 0.105 0.698 — 0.823 0.071 0.565 — 0.330 0.011 0.102 — 1.000 0.918 0.998 — 0.969 0.940 0.986 —

Mac 0.778 0.055 0.718 0.141 0.803 0.453 0.813 0.511 0.700 0.307 0.725 0.074 0.710 0.209 0.716 0.215 0.906 0.663 0.912 0.548 0.831 0.587 0.746 0.615

Average 0.794 0.317 0.777 0.360 0.887 0.520 0.818 0.625 0.723 0.431 0.709 0.143 0.726 0.309 0.747 0.354 0.914 0.905 0.952 0.806 0.933 0.862 0.929 0.816

Note: “—" denotes there are no unseen logs on these datasets

4.4 Implementation and Environment
We pre-train the PreLog model starting from a pre-trained checkpoint [57] on 4 Nvidia Tesla V100
GPUs for 100,000 steps. The effective batch size is maintained at 256 sequences × 1024 tokens
≈ 260,000 tokens/batch. We use Adam optimizer with a linear learning rate decay schedule for
optimization. The total training time was approximately 7 days. All experiments are done with
Fairseq [77], HuggingFace [92], and OpenPrompt [22] libraries. For prompt tuning, we train with a
5e-5 maximum learning rate. We use a maximum of 2,000 training updates for all tasks. For the
template generation task, we use beam-search with a beam size of 8.

5 EXPERIMENTAL RESULTS
5.1 RQ1: Performance on Log Parsing
In this section, we evaluate the accuracy of log parsing performed by PreLog. We compare PreLog
with Spell [24], Drain [36], Logram [19], and SPINE [89], i.e., the top-performing data-driven log
parsers. We also compare with LogPPT [54], i.e., the current state-of-the-art deep learning based
log parser. For each dataset, we randomly select 32 samples for prompt tuning (1.6% of the dataset)
using an adaptive random sampling algorithm [54]. For a fair comparison, we follow LogPPT to
extend unsupervised baselines, i.e. Spell, Drain, Logram, and SPINE, to include those 32 labelled
samples in their parsing process. We also use those 32 labelled samples to train LogPPT. To avoid
bias caused by randomness, we repeat the evaluation process five times and report the average
results. Table 2 shows the comparison with the existing methods.

From the results, we can see that our model outperforms existing methods or achieves comparable
results on almost all datasets in all evaluation metrics. Specifically, in terms of Group Accuracy,
PreLog exceeds the baselines by 2.08% (LogPPT) to 29.05% (Logram) on average. PreLog achieves
the best GA on 9 out of 16 datasets. It also achieves a GA of over 0.9 on 12 datasets and 1.0 accuracy
on seven datasets. In terms of PA and ED, PreLog is 1.66-2.79x and 1.14-1.31x better than the
data-driven baselines, respectively. PreLog can obtain results comparable to LogPPT, the current
state-of-the-art, by achieving 95% of LogPPT’s accuracy. Note that we simply tune PreLog by asking
the model to generate the template given a raw log message. The obtained results are comparable
to those of LogPPT, which is specifically designed for the log parsing task. In terms of uPA, PreLog
achieves the best average uPA of 0.816, 1.01-5.71x better than the baselines. Among 12 datasets
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that contain unseen logs, PreLog achieves the best results on 7 of them. The high results in terms
of GA and ED confirm that PreLog is able to recognize similar log messages and generate the
corresponding log templates effectively. Moreover, the high PA and uPA demonstrate the robustness
of PreLog when dealing with different types and unseen log messages.

4 8 16 32 64 128
Number of samples

0.5

0.6

0.7

0.8

0.9

1.0

Group Accuracy (GA)

Parsing Accuracy (PA)

Edit Distance (ED)

Unseen Accuracy (uPA)

Fig. 6. Results with different numbers of labelled samples

PreLog requires a small amount of labelled data to tune the model. To evaluate the sensitivity of
PreLog to the amount of labelled data, we conduct an experiment using different numbers of labelled
log samples. Figure 6 shows the results, which indicate that the model’s performance witnesses a
small drop when less data is used for tuning. For example, the average GA and PA values obtained
by PreLog drop from 0.933 and 0.862 (with 32 labelled samples) to 0.910 and 0.836 (with 16 labelled
samples), respectively. The performance of PreLog can be improved if more labelled samples are
provided, and it is noticeable that PreLog achieves good results when we tune it with 16 or more
labelled samples.

In summary, the experimental results indicate that PreLog is effective and robust in generating
log templates across heterogeneous log sources.

5.2 RQ2: Performance on Anomaly Detection
In this section, we evaluate the ability of PreLog on the anomaly detection task. We employ the
prompt template 𝑓𝑝𝑟𝑜𝑚𝑝𝑡 (.) defined in Section 3.4, and a verbalizer defined as follows:

V =

{[faulty] → anomaly
[clean] → normal (5)

As our method performs anomaly detection in a supervised manner, we compare PreLog with
CNN [63], LogRobust [98], and NeuralLog [51], which are the state-of-the-arts on anomaly detec-
tion [52]. We tune the hyper-parameters of these baselines for each dataset to achieve the best
results. Table 3 shows the results.
The results show that PreLog achieves the best results on HDFS, BGL, and Spirit datasets.

Compared to CNN and LogRobust, NeuralLog and PreLog achieve better results since they leverage
the semantic meaning of the raw log messages, thus they can avoid the errors of log parsing [51].
CNN and LogRobust rely on a log parser for pre-processing, so their performance is affected by
log parsing errors [51, 52]. Another reason is that, by pre-training on a large amount of log data,
PreLog can capture the semantic meaning of log sequences more effectively, thus leading to better
results.
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Table 3. Comparison with the state-of-the-art anomaly detection methods

Dataset Metric CNN LogRobust NeuralLog PreLog

HDFS
Precision 0.824 0.831 0.861 0.897
Recall 0.997 0.974 1.000 1.000
F-measure 0.902 0.897 0.925 0.946

BGL
Precision 0.876 0.878 0.955 0.967
Recall 0.996 0.988 0.988 0.982
F-measure 0.932 0.930 0.971 0.974

Spirit
Precision 1.000 0.997 0.997 1.000
Recall 0.996 0.996 0.999 0.996
F-measure 0.997 0.996 0.998 0.998

We next evaluate the robustness of PreLog when dealing with unstable logs. As described in
Section 1, like other software artifacts, logs are always evolving. Therefore, we follow recent
work [58, 98] to create two common scenarios of unstable logs, including:
• Unstable log events: We randomly insert/remove a few words into/from original log events in
advance. The motivation behind this setting is that developers often insert or remove some
words when they update a logging statement in the source code leading to the appearance of
new log events [98].

• Unstable log sequences: Log sequences are likely to be changed during the process of log
evolution or collection [98]. Therefore, we follow [41, 98] to randomly remove, duplicate, or
shuffle some unimportant log lines from the original log sequences to simulate the unstable log
sequences.
For both scenarios, we first randomly collect 50,000 normal and 1,500 abnormal log sequences

from the testing set of the BGL dataset. The percentage of anomalies is 3%, which is close to that of
the original BGL dataset. Then, we inject the unstable log data into it with injection ratios from 5%
to 20%. A detailed explanation of this process is presented in Section 3.3. Tables 4 and 5 show the
results.

Table 4. Experimental results on synthetic BGL dataset of unstable log events

Injection Ratio Metric CNN LogRobust NeuralLog PreLog

5%
Precison 0.614 0.683 0.755 0.900
Recall 0.996 0.985 0.917 0.988
F-measure 0.760 0.807 0.829 0.942

10%
Precison 0.594 0.501 0.656 0.897
Recall 0.993 0.953 0.983 0.985
F-measure 0.743 0.657 0.787 0.939

15%
Precison 0.657 0.507 0.643 0.891
Recall 0.995 0.970 0.988 0.986
F-measure 0.791 0.666 0.779 0.936

20%
Precison 0.567 0.581 0.632 0.889
Recall 0.995 0.920 0.985 0.987
F-measure 0.722 0.597 0.770 0.936
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Table 5. Experimental results on synthetic BGL dataset of unstable log sequences

Injection Ratio Metric CNN LogRobust NeuralLog PreLog

5%
Precison 0.690 0.693 0.864 0.903
Recall 0.996 0.985 0.991 0.988
F-measure 0.816 0.814 0.923 0.943

10%
Precison 0.676 0.689 0.861 0.915
Recall 0.996 0.985 0.991 0.988
F-measure 0.805 0.811 0.921 0.950

15%
Precison 0.667 0.693 0.893 0.912
Recall 0.996 0.985 0.991 0.988
F-measure 0.799 0.814 0.909 0.936

20%
Precison 0.657 0.688 0.763 0.905
Recall 0.995 0.985 0.991 0.988
F-measure 0.791 0.810 0.862 0.945

From the results, we can see that PreLog performs better and more stable than other approaches.
With the increasing injection ratio of unstable log events, the performance of related approaches
has declined within different degrees. However, PreLog still maintains a consistently high accuracy
(F-measure ranging from 0.936 to 0.942 with unstable log events and from 0.936 to 0.950 with
unstable log sequences) under high injection ratios. For example, PreLog can achieve an F-measure
of 0.936 when performing with 20% unstable log events. We also observe that NeuralLog can retain
a relatively good performance because it can capture the semantic information embedded in log
messages via the pre-trained BERT model. However, PreLog achieves much better results than
NeuralLog. The reason is that PreLog is pre-trained with two log-specific objectives, which can
enhance the robustness and effectiveness of the representation of log sequences.

Overall, the experimental results show that PreLog is effective and robust for log-based anomaly
detection on both stable and unstable log data.

5.3 RQ3: Ablation Study
In this section, we evaluate the contributions of the major components in our proposed model.
Specifically, we evaluate the effectiveness of each pre-training objective when the model is trained
without it. Table 6 shows the average results with log parsing.

Table 6. Ablation study results of log parsing

GA PA ED uPA

Full PreLog 0.933 0.862 0.929 0.816
w/oEntry-level Obj. 0.906 0.828 0.861 0.749
w/oSequence-level Obj. 0.891 0.836 0.901 0.804

We can see that PreLog exhibits a significant drop in performance when one of the pre-training
objectives is excluded. For example, the GA and ED values drop by 4.5% and 3.01% when PreLog is
trained without the sequence-level objective. Overall, both pre-training objectives are important
for log parsing. The entry-level objective is essential for capturing the syntax information of logs,
while the sequence-level objective is vital for grouping logs with the same templates.
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Table 7. Ablation study results (F-measure) of anomaly detection on stable logs

HDFS BGL Spirit
Full PreLog 0.946 0.974 0.998
w/oEntry-level Obj. 0.913 0.954 0.993
w/oSequence-level Obj. 0.912 0.958 0.996

Table 8. Ablation study results (F-measure) of anomaly detection on unstable BGL logs

Injection Ratio 5% 10% 15% 20%

Unstable
Event

Full PreLog 0.942 0.939 0.936 0.936
w/oEntry-level Obj. 0.832 0.839 0.821 0.824
w/oSequence-level Obj. 0.875 0.882 0.868 0.860

Unstable
Sequence

Full PreLog 0.943 0.950 0.936 0.945
w/oEntry-level Obj. 0.876 0.878 0.878 0.878
w/oSequence-level Obj. 0.865 0.869 0.867 0.863

We next evaluate the contributions of the two proposed pre-training objectives in the anomaly
detection task. Tables 7 and 8 show the results with stable and unstable logs, respectively. We
only report F-measure values here due to space constraints. We can see that, PreLog still achieves
acceptable performance without one of the pre-training objectives on stable log data. However,
on unstable log events and sequences, PreLog performs worse in both scenarios when one of the
pre-training objectives is excluded. Specifically, PreLog achieves the lowest results on unstable
events without the entry-level objective because this objective is used to simulate the change in
log events. Meanwhile, without the sequence-level pre-training objective, the results on unstable
sequences drop significantly because the model cannot learn the robust representation without
contrastive learning.

Overall, the experimental results demonstrate the usefulness of the proposed pre-training objec-
tives. Each of them plays an important role in different scenarios of downstream tasks.

5.4 RQ4: The Generality of PreLog for Other Log Analytics Tasks
In this section, we evaluate the generality of PreLog for other log analytics tasks. We conduct
experiments on two failure diagnosis related tasks, including fault localization [42, 43] and failure
identification [11].

5.4.1 Fault Localization. Locating the log messages that are more likely to indicate faults can
greatly assist operators in resolving system issues [42]. Since PreLog is based on the attention
mechanism, log messages that have a greater impact on the model’s prediction results will be given
more weight. Thus, we leverage the attention scores assigned for each log message in a log sequence
and rank them to localize fault-indicating logs. We evaluate PreLog on BGL and Spirit datasets using
Hit Rate of top-𝑘 (i.e., 𝐻𝑅@𝑘) [55], which directly measures how likely the fault-indicating logs
will be found within 𝑘 checks. We choose BGL and Sprit datasets because they provide labels for
each log message. The results (Table 9) show that PreLog can locate fault-indicating log messages
with high accuracy.

5.4.2 Failure Identification. Identifying the type of anomalies can help system administrators to
narrow down and further investigate the root cause of failures. In this section, we ask PreLog to
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Table 9. Results of PreLog on fault localization

BGL Spirit

𝐻𝑅@1 𝐻𝑅@3 𝐻𝑅@5 𝐻𝑅@1 𝐻𝑅@3 𝐻𝑅@5

Accuracy 0.879 0.966 0.983 0.906 0.982 0.991

categorize the failure types of OpenStack system. Specifically, we adopt the dataset from [48] that
contains 651 Virtual Machine (VM) failures of three types, including (1) VM is destroyed, (2) VM’s
virtual disk is removed, and (3) VM’s performance is disturbed. We take 10% of the dataset for
prompt tuning and the rest for testing. We employ the prompt template 𝑓𝑝𝑟𝑜𝑚𝑝𝑡 (.) = “[X] This
sequence is [MASK]” as defined in Section 3.4. We then ask PreLog to predict the label words of
destroyed, removed, and disturbed for the three failure types. We follow the experimental setting in
Section 4.4 to apply PreLog on this task. The results (Table 10) show that PreLog can achieve an
F-measure of over 0.95 for all failure types on the OpenStack dataset.

Table 10. Results of PreLog on failure identification

Failure types Precision Recall F-measure

VM is destroyed 0.993 0.910 0.950
VM’s virtual disk is removed 0.937 0.996 0.966
VM’s performance is disturbed 1.0 1.0 1.0

Overall, the experimental results confirm that PreLog is able to (1) localize the fault-indicating
logs in log sequences and (2) identify the types of failures. The results confirm the generality of
PreLog for multiple log analytics tasks.

6 DISCUSSION
6.1 Why does PreLog work?
There are several reasons affiliated with different parts in PreLog’s design make it perform better
than the related methods.

6.1.1 Pre-training. PreLog is pre-trained on multiple sources of log data. It allows PreLog to learn
the common hidden structure across heterogeneous log sources, making PreLog better handle
inconsistent log formats. To handle incomplete log data, we pre-trained PreLog with raw log
messages to consider both log templates and parameters. Pre-training enables PreLog to easily
adapt to downstream tasks compared to task-specific models. To verify this point, we leverage
the model architecture of PreLog to train a model from scratch (w/o pre-training) for anomaly
detection and compare the results to those with PreLog. We train this task-specific model longer
than PreLog (10,000 steps) because it does not contain any log-specific prior knowledge. The results
in Table 11 confirm that the model fails to achieve satisfactory performance without pre-training.

The ablation study in Section 5.3 shows that with two proposed pre-training objectives, PreLog
can effectively handle the instability of logs. Specifically, the entry-level pre-training objective (with
token masking, deletion, and insertion) allows the model to learn the semantic meaning of tokens
in a local context. It also guides the model to handle unstable log events. The sequence-level pre-
training objective with contrastive learning significantly enhances the effectiveness and robustness
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Table 11. Results (F-measure) of PreLog without pre-training on anomaly detection

HDFS BGL Spirit

PreLog 0.946 0.974 0.998
w/o pre-training 0.853 0.886 0.990

of the sequence representation produced by the model. It instructs the model to represent the related
log sequences with high similarity and the non-related log sequences with high discrimination.

6.1.2 Prompt tuning. The hard prompt tuning paradigm allows PreLog to directly transfer the
knowledge in the pre-trained model to downstream tasks uniformly without introducing new
hyper-parameters or re-configuring the model. To evaluate the contribution of hard prompt tuning
in PreLog, we compare PreLog to the variants equipped with different tuning methods on the
anomaly detection task, including:
(1) Soft prompt: Instead of using a hard prompt template (i.e., 𝑓𝑝𝑟𝑜𝑚𝑝𝑡 (𝑥) = “[X] This sequence

is [MASK]”), we use a soft prompt of 𝑓𝑝𝑟𝑜𝑚𝑝𝑡 (𝑥) = “[X] [SOFT] [SOFT] [SOFT] [MASK]” with
three learnable tokens (i.e., [SOFT]) and ask PreLog to learn the embedding of these tokens
during prompt tuning.

(2) Fine tune (freeze LM): We add a classification layer on top of PreLog and fine tune it without
tuning parameters of the pre-trained PreLog.

(3) Fine tune (full params): We add a classification layer on top of PreLog and fine tune it along
with all parameters of the pre-trained PreLog.
The results in Table 12 confirm that PreLog with hard prompt tuning significantly outperforms

other techniques with the same amount of labelled data.

Table 12. Results (F-measure) of different tuning techniques on anomaly detection

HDFS BGL Spirit

PreLogw/ Hard prompt 0.946 0.974 0.998
Soft prompt 0.737 0.952 0.797
Fine tune (freeze LM) 0.589 0.885 0.521
Fine tune (full params) 0.746 0.960 0.784

6.1.3 Model interpretation. As PreLog is trained with the attention mechanism, the model assigns
different attention weights for each log message in the log sequence. Log messages that have a
greater impact on the model’s prediction will be given more weights by the attention mechanism.
Thus, by ranking these weights, we can locate the most impactful log messages to interpret the
model’s decision-making process. We apply this approach to perform the fault localization task with
PreLog (Section 5.4.1) and achieve accurate results. To demonstrate the decision-making process
of PreLog, we show an example of fault localization with PreLog in Table 13. It can be seen that
PreLog assigns a high attention value to “data storage interrupt”, which is the ground truth for
the fault-indicating log message.

6.2 Log Analytics with Large Language Models
General large language models (LLM), such as ChatGPT [6] and Llama [84], are being widely used.
The capabilities of LLMs on various domains inspire researchers to apply them to AIOps, especially
to log analytics. Recent studies [53, 94] have investigated the performance of GPT-3 and GPT-3.5
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Table 13. Example of fault localization via attention weight

Level Log Entry Attn.
Weight

INFO ciod: Received signal 15, code=0, errno=0, address=0x000001f7 0.0195
INFO ciod: Received signal 15, code=0, errno=0, address=0x000001f2 0.0197
FATAL data storage interrupt (∗) 3.8868
FATAL instruction address: 0x00001ec0 0.1014
FATAL data address: 0x0001776f 0.0510
FATAL Exception Syndrome Register: 0x00800000 1.9528
FATAL machine check: i-fetch......................0 0.6036
FATAL program interrupt: illegal instruction......0 1.3935
FATAL program interrupt: privileged instruction...0 0.7114
FATAL program interrupt: trap instruction.........0 0.4984
(*): the ground-truth fault-indicating log message.

on log parsing and found that it is promising to apply LLMs in the domain of log analytics. These
studies adopt in-context learning to extract log templates, given a few prompt demonstrations.
However, we have identified the following main challenges for adopting LLMs in log analytics:

(1) Log-specific data. System logs contain a variety of dynamic log-specific information, which
is generated during runtime (e.g., domain URLs, API endpoint addresses, etc.). These information,
although occurs frequently, varies a lot in different software systems, hindering the ability of LLMs
in understanding log data [53].
(2) Latency and cost of LLMs. In production, log data is generated in a massive amount (i.e.,

tens of billions of lines per day [59, 89]). Efficiency is crucial for log analytics models because they
must handle large-scale log data. It has been found that the API latency can vary depending on
the user’s location, and the average latency of the OpenAI API service for a single request can
range from a few hundred milliseconds to several seconds [96]. Furthermore, using LLMs such as
ChatGPT for large-scale log data poses a financial burden on API costs. Therefore, in scenarios of
AIOps where high latency/cost is not acceptable, large LLMs may not be appropriate.

We compare PreLog with a large language model on the log-based anomaly detection task to show
its advantage. Specifically, we fine tune a FLAN-T5 model [17], an enhanced version of T5 [80], for
log-based anomaly detection. We choose the FLAN-T5 XL version with 3 billion parameters (approx-
imately 20 times larger than PreLog) and fine-tune it using Low-Rank Adaptation (LoRA) [40]. We
fine tune FLAN-T5 using 4×A100 GPUs. We show the results in terms of effectiveness (F-measure)
and efficiency (𝑇𝑖𝑛𝑓 𝑒𝑟 : inference time per log sequence) in Table 14.

Table 14. Comparison with an LLM on anomaly detection

Metric HDFS BGL Spirit

PreLog (140M)
F-measure 0.946 0.974 0.998
𝑇𝑖𝑛𝑓 𝑒𝑟 w/ V100 12 (ms) 12 (ms) 11 (ms)
𝑇𝑖𝑛𝑓 𝑒𝑟 w/ A100 7 (ms) 7 (ms) 7 (ms)

FLAN-T5 XL (3B)
F-measure 0.870 0.977 0.996
𝑇𝑖𝑛𝑓 𝑒𝑟 w/ V100 — 392 (ms) 386 (ms)
𝑇𝑖𝑛𝑓 𝑒𝑟 w/ A100 245 (ms) 265 (ms) 247 (ms)

“—” denotes timeout (48 hours).
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From the results, we can see that PreLog achieves better or comparable results in terms of
effectiveness compared to the fine-tuning of FLAN-T5, while performing approximately 32-37×
faster and requiring less computational resources. PreLog can be easily applied to downstream
tasks with one V100 GPU with low latency (12 milliseconds per log sequence), thus it is accessible
to various organizations. Overall, compared to LLMs, PreLog is more suitable for log analytics. It
can effectively learn log representation and handle the instability of log data. As a white-box model,
PreLog can be easily updated for log analytics pipelines. Furthermore, PreLog contains only 140M
parameters, which is much smaller than LLMs. Therefore, PreLog has better efficiency compared to
LLMs and is cost-effective.
6.3 Threats to Validity
We have identified the following threats to validity:

Pre-training data. Due to the restriction of computational resources, we only use 12 log datasets
to pre-train our model. Compared to other large-scale pre-train models for NLP or source code, the
amount of data is less. To reduce this threat, we collect the datasets from a variety of systems, such
as supercomputers or distributed systems. In the future, we will further pre-train our model with
a larger and more diverse corpus to comprehensively understand the semantic information and
hidden structure of log data.

Downstream tasks. There are many downstream tasks for log analytics. However, only a few log
datasets with ground truth are publicly available. In our experiments, we comprehensively evaluate
our proposed model on log parsing and anomaly detection, two widely-studied log analytics tasks,
to demonstrate the generation and classification abilities of PreLog. To reduce this threat, we also
evaluate PreLog on the failure identification task and the preliminary results demonstrate that
PreLog can achieve high performance for identifying the failure types of OpenStack. We believe that
PreLog is capable of supporting more downstream tasks, as they are essentially the classification
or generation problems. In our future work, we will comprehensively evaluate PreLog on more
downstream tasks.
Selection of baselines. In our evaluation, we have compared our proposed approach with the

representative task-specific methods for each downstream task. These methods are widely used
for log analytics [38, 52, 100] and achieve state-of-the-art (SOTA) performance [49, 52]. As PreLog
applies to downstream tasks in a supervised manner, we follow LogPPT [54] to extend the un-
supervised log parsers (i.e., Drain, Spell, Logram, and SPINE) to include the labelled samples in
their parsing process. We also compare PreLog with SOTA supervised log-based anomaly detection
models (e.g., LogRobust, NeuralLog, etc.). Recently, there are some approaches that apply deep
learning to log analytics, such as UniParser [62] for log parsing and LogKG [82] for anomaly
detection. However, their source code is not publicly released and it is difficult to re-implement
them without introducing bias, thus we do not compare with them in this paper. We will evaluate
them experimentally in our future work.

7 RELATEDWORK
7.1 Log Analytics
Logs are crucial runtime information recorded by developers, which are widely employed in a
variety of reliability assurance tasks. Log analytics platforms enable businesses and organizations
to gather, examine, and store logs from various programs and applications in order to diagnose
issues, optimize performance, and improve compliance [1, 8].

7.1.1 Log parsing. Log parsing is a process to parse free-text raw log messages into specific
events associated with parameters, and is the first and foremost step in log analytics pipelines [100].
Existing log parsing approaches can be divided into two main categories. (1) Data-driven log parsing:
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many studies have been proposed to leverage data-driven approaches for log parsing, including
frequent pattern mining [19, 72, 86], clustering [28, 59, 81], and heuristics [24, 36, 69]. For example,
Drain [36] utilizes a tree structure to parse logs into multiple templates. Logram [19] extracts
frequent patterns from log data using 𝑛-gram information. These methods, although effective,
ignore the semantic meaning of log data, thus achieving sub-optimal results [44, 54]. (2) Deep
learning-based log parsing: recent studies [54, 83] formulate log parsing as a token classification
task. For example, UniParser [62] trains a token classification model with labelled data across
multiple log sources. LogPPT [54] proposes a new paradigm of template-free prompt-tuning [64]
that leverages RoBERTa [61] for log parsing.

7.1.2 Log-based anomaly detection. Log-based anomaly detection aims to identify the system’s
anomalous patterns that do not conform to expected behaviors on log data [37]. Many approaches
have been proposed to apply machine learning (ML) [14, 38, 95] and deep learning (DL) [25, 34, 58]
methods for automated log-based anomaly detection. DL-based approaches have been found to
outperform traditional ML-based approaches, which have the limitations of inflexible features and
weak adaptability [51, 98]. DL-based approaches are mainly semi-supervised [4, 25, 34] and super-
vised [52, 98]. Semi-supervised models such as DeepLog [25] and LogBERT [34] train DL models
(e.g., LSTM or Transformers) to predict the next possible events in a log sequence. PLELog [97]
trains a weakly supervised GRU model from normal and unlabelled data to classify normal and ab-
normal log sequences. Supervised approaches, which train classification models using both normal
and abnormal logs, significantly outperform the above semi-supervised models [52]. For example,
LogRobust [98] and SwissLog [58] train an attention-based Bi-LSTM model to detect anomalies
from unstable logs with features extracted by word2vec [70] and BERT [21]. NeuralLog [51] trains
a Transformer model to detect system anomalies from raw logs without log parsing. Although
effective, existing approaches are specifically designed for the anomaly detection task and cannot
be easily generalized for other log analytics tasks.

7.1.3 Log-based failure diagnosis. Log data is also used to analyze system failures, helping engineers
and administrators understand the underlying causes of failures and resolve the issues. For example,
CLog [11] models log sequences with a self-attention encoder model to identify failure types.
Onion [99] pinpoints incident-indicating logs by examining their consistency, impact, and bilateral-
differences. EvLog [43] localizes individual fault-indicating logs based on the context of their
surrounding log messages.

Unlike all the above approaches, PreLog is pre-trained with log data and can be generalized to
multiple log analytics tasks, such as log parsing, anomaly detection, and failure diagnosis. PreLog
can be uniformly applied to a variety of downstream tasks without introducing any new model
parameters or training from scratch with a large amount of labelled data.

7.2 Pre-trained Models for Log Analytics
Pre-training has been applied to awide range of tasks, including natural language processing [21, 80],
computer vision [23, 78], and code intelligence [32, 90]. Establishing a pre-trained model for unified
log analytics is desired but challenging due to log-specific characteristics such as the instability of
log data. Recent studies often leverage NLP-based pre-trained models to extract semantic features
from log data for downstream tasks [51, 54, 83]. There are a few studies [42, 101] that pre-train
models with log data for log analytics. For example, TRANSLOG [33] transfers a pre-trained model
on the source log dataset to detect anomalies on target datasets. HilBERT [42] pre-trains a BERT-
based model [21] on LogPAI dataset [39] for anomaly detection. These two studies only apply
pre-training to a single log-based anomaly detection task. UniLog [101] proposes to pre-train a
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BERT model with log data and apply it to log analytics by training additional classification layers
for downstream tasks. The above-mentioned pre-trained models solely adopt an NLP-specific
objective, masked language modeling, without considering log-specific characteristics. Different
from them, we pre-train PreLog with two novel log-specific objectives to learn effective and robust
representation. Our experimental results indicate that the proposed log-specific objectives are
essential to not only effectively analyze logs but also handle the instability of logs. Besides, by
leveraging the prompt tuning paradigm, we can uniformly apply PreLog to downstream tasks
without introducing any new model parameters. Noticeably, the existing studies neither make their
model nor their source code publicly available, thus we cannot experimentally compare with them
without introducing re-implementation bias. We will try to re-implement and evaluate them in our
future work.

8 CONCLUSION
In this paper, we propose PreLog, a novel pre-training sequence-to-sequence model for log analyt-
ics. We design two pre-training objectives including entry-level and sequence-level pre-training
objectives. The entry-level pre-training objective allows PreLog to effectively capture semantic
meaning of tokens in log messages by simulating multiple scenarios of unstable log events. The
sequence-level pre-training objective powered by contrastive learning enables PreLog to enhance
the effectiveness and robustness of log representations. The pre-trained PreLog model can be
uniformly applied to downstream tasks such as log template generation and anomaly detection
through prompt tuning. Our extensive experimental results show that PreLog can achieve better
or comparable results in comparison with state-of-the-art, task-specific methods. We also discuss
the generality of PreLog for other log analytics tasks and compare it with LLM (Large Language
Model) based approach.

Data Availability: Our source code and experimental data are available at https://github.com/
LogIntelligence/PreLog.
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