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ABSTRACT

Log parsing, the process of converting raw log messages into struc-
tured formats, is an important initial step for automated analysis of
logs of large-scale software systems. Traditional log parsers often
rely on heuristics or handcrafted features, which may not gener-
alize well across diverse log sources or require extensive model
tuning. Recently, some log parsers have utilized powerful genera-
tive capabilities of large language models (LLMs). However, they
heavily rely on demonstration examples, resulting in substantial
overhead in LLM invocations. To address these issues, we propose
LogBatcher, a cost-effective LLM-based log parser that requires no
training process or labeled data. To leverage latent characteristics
of log data and reduce the overhead, we divide logs into several
partitions through clustering. Then we perform a cache matching
process to match logs with previously parsed log templates. Finally,
we provide LLMs with better prompt context specialized for log
parsing by batching a group of logs from each partition. We have
conducted experiments on 16 public log datasets and the results
show that LogBatcher is effective and efficient for log parsing.
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1 INTRODUCTION

Software-intensive systems often record runtime information by
printing console logs. Software logs are semi-structured data printed
by logging statements (e.g., printf (), logInfo()) in source code.
The primary purpose of system logs is to record system states
and important events at various critical points to help engineers
better understand system behaviours and diagnose problems. The
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rich information included in log data enables a variety of soft-
ware reliability management tasks, such as detecting system anom-
alies [24, 25, 60], ensuring application security [33, 38, 43], and
diagnosing errors [14, 16, 28].

To facilitate various downstream analytics tasks, log parsing,
which parses free-text into a structured format [62], is the first and
foremost step. An accurate log parser is always in high demand
for intelligent log analytics because it could simplify the process of
downstream analytics tasks and allow more methods (e.g., Machine
Learning and Deep Learning) to be applied [13]. Log parsing is the
task of converting a raw log message into a specific log template
associated with the corresponding parameters. As shown in Fig-
ure 1, each log message is printed by a logging statement in the
source code and records a specific system event with its header
and body. The header is determined by the logging framework and
includes information such as component and verbosity level. The
log message body (log message for short) typically consists of two
parts: 1) Template - constant strings (or keywords) describing the
system event; 2) Parameters - dynamic variables, which vary during
runtime and reflect system runtime information. For example, in
the log message in Figure 1, the header (i.e., “17/08/22 15:50:46”,
“INFO”, and “BlockManager”) can be easily distinguished through
regular expressions. The log message consists of a template “Failed
to report <> to master; giving up”and a parameter “rdd_5_1".
The log template typically contains constant strings, referring to
commonalities across log data. The log parameters are dynamic
variables, referring to variabilities that vary across log messages.

/* A logging statement from Spark:
spark/storage/BlockManager.scala */

logError(s"Failed to report $blockId to master;
giving up.")

l Raw Log Message

17/08/22 15:50:46 ERROR BlockManager Failed
to report rdd_5_1 to master; giving up.

Structured Log

Date 17/08/22
§ Time 15:50:46
g Level ERROR
Component BlockManager
£ Template | Failed to report <*>to master; giving up.
E Parameters [rdd_5_1]

Figure 1: An Illustration of Log Parsing

In recent years, there have been tremendous efforts towards
achieving the goal of automated log parsing. Since the source code
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is generally inaccessible during system maintenance, existing log
parsing methods propose to leverage syntax and semantic patterns
of logs to identify and separate static text and dynamic variables.
Syntax-based log parsers [6, 8, 12, 35] utilize specific features or
heuristics (e.g., token count, frequency, and position) to extract the
constant parts of log messages as templates. In contrast, semantic-
based log parsers propose to recognize dynamic variables based on
their semantic differences from constant keywords. Unfortunately,
the performance of these log parsers in practice remains unsatis-
factory [18, 45]. On the one hand, syntax-based log parsers heavily
rely on crafted rules and domain knowledge, thus being ineffective
when encountering previously unseen log patterns [17, 27]. On the
other hand, semantic-based log parsers still require certain training
overheads, such as training models from scratch or fine-tuning
pre-trained language models with labeled data, which is scarce and
costly to obtain [26].

To address these limitations, recent studies [17, 26, 55] propose to
leverage the text understanding capacity of large language models
(LLMs) for automated log parsing. Specifically, these studies adopt
the in-context learning (ICL) prompting technique to adapt LLMs
to the log parsing task. In ICL, a prompt consists of an instruction
and associated demonstration examples. Despite the effectiveness,
these LLM-based log parsers still fail to meet practical usage of log
parsing due to the following reasons:

(1) Over reliance on demonstrations: As LLMs are not ex-
plicitly specialized for log parsing, existing LLM-based log
parsers require labeled demonstration examples (i.e., demon-
strations) to construct in-context prompts. The performance
of LLM-based log parsing has been shown to be sensitive to
the quality and quantity of demonstrations [17, 26]. Further-
more, demonstrations can be quickly outdated as the volume
and format of logs rapidly change [20, 60]. Hence, selecting
demonstrations in in-context learning can be a delicate art
and might require significant trial-and-errors.

(2) LLM invocation cost: Log data is typically generated in a
massive volume. Naively querying LLMs for each log mes-
sage is impractical due to the substantial cost of invoking
LLMs’ service APL Furthermore, the cost incurred by the
instruction and demonstrations in the prompts is not ne-

glectable.

To address the aforementioned challenges, in this paper, we
propose LogBatcher, a novel training-free, demonstration-free, and
cost-effective LLM-based log parser. LogBatcher leverages latent
commonalities and variabilities of log data [30] to provide LLMs
with better prompt context specialized for log parsing. Specifically,
LogBatcher first groups log data into several partitions using a
versatile clustering algorithm. Then, for each partition, LogBatcher
samples log messages with high diversity to construct a batch of
logs as the prompt to query LLMs to parse logs. By doing so, we
can introduce variabilities within the prompt context to better
guide LLMs to perform the log parsing task without the need for
demonstrations. To further reduce the number of LLM invocations,
LogBatcher adopts a simple yet effective caching mechanism to
store the intermediate results of LLMs and avoid redundant queries.

We have conducted a comprehensive evaluation on the public
LogPai dataset [62]. The results show that LogBatcher outperforms
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state-of-the-art baselines in terms of both accuracy and LLM in-
ference cost. It can achieve an average Group Accuracy [62] of
0.974 and Message-Level Accuracy of 0.904, which are significantly
higher than the best-performing supervised LLM-based log parser
(i.e., LILAC [17]). Moreover, LogBatcher is robust across diverse log
datasets without the need for demonstrations, and can substantially
reduce the cost of LLM invocation by at least 106%.
The main contributions of this paper are as follows:

(1) We propose LogBatcher, the first demonstration-free LLM-
based log parsing framework to the best of our knowledge.
Besides, LogBatcher does not require any training overhead
and is cost-effective for parsing large-scale log data.

(2) We introduce a log-specific prompting strategy to provide
LLMs with a batch of logs, which allows LLMs to better
incorporate the latent commonalities and variabilities among
log messages. Furthermore, the token consumption of LLMs
is reduced.

(3) We conduct a comprehensive evaluation on the public LogPai
dataset [62]. Experimental results show that LogBatcher out-
performs state-of-the-art baselines in terms of both accuracy
and LLM invocation cost.

2 BACKGROUND AND RELATED WORK

2.1 Log Parsing

Log parsing is one of the first steps for log analysis tasks [62]. It
is a process to extract the static log template parts and the cor-
responding dynamic parameters (or variables) from free-text raw
log messages. A straightforward method of log parsing involves
matching raw log messages with logging statements within the
source code [40, 56] or designing handcrafted regular expressions
to extract log templates and parameters [62]. However, these ap-
proaches are impractical due to the inaccessibility of the source
code (especially for third-party libraries [62]) and the huge volume
of logs. To achieve the goal of automated log parsing, many syn-
tax-based and semantic-based approaches have been proposed to
identify log templates as the frequent part of log messages.

Syntax-based log parsers [6, 12, 19, 58] assume that log templates
inherit some common patterns which emerge constantly across the
entire log dataset. Some parsers [6, 39, 51] extract log templates by
identifying the constant parts of log messages through the mining
of frequent patterns, for example, Logram [6] finds frequent n-gram
patterns which emerge constantly across the entire log dataset as
templates. Logs that belong to the same template exhibit similar-
ities. Consequently, some methods [10, 49, 50] employ clustering
techniques to group logs and extract the constant portions of log
messages for log parsing. Heuristics-based log parsers [12, 19, 58]
leverage unique characteristics from log messages to extract com-
mon templates efficiently. For example, AEL [19] employs a list of
heuristic rules to extract common templates. Drain [12] employs a
fixed-depth tree structure to assist in dividing logs into different
groups, assuming that all log parameters within specific templates
possess an identical number of tokens, while Brain [58] updated
Drain by using a bidirectional parallel tree.

Semantic-based log parsers leverage semantic differences be-
tween keywords and parameters to formulate log parsing as a
token classification task. For example, UniParser [32] unifies log
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parsing for heterogeneous log data by training with labeled data
from multiple log sources to capture common patterns of templates
and parameters. LogPPT [27] introduces a novel paradigm for log
parsing, employing template-free prompt-tuning to fine-tune the
pre-trained language model, RoBERTa. Although effective, existing
semantic-based log parsers require certain training overheads, such
as training models from scratch or fine-tuning pre-trained language
models with labeled data, which is scarce and costly to obtain [26].

Recently, some studies have proposed to utilize large language
models (LLMs) owing to their extensive pre-trained knowledge.
These studies have achieved promising results in log parsing [17,
26, 55] thanks to the strong in-context learning capability of LLMs.
In the following sections, we will introduce some recent LLM-based
log parsers and discuss their limitations.

2.2 Log Parsing with Large Language Models

Large language models (LLMs) have achieved remarkable success
in various natural language processing [7, 29] and computer vision
tasks [11, 48]. In-context learning is a promising prompt engineer-
ing method for adopting LLMs without fine-tuning them [31]. In-
context learning typically requires an instruction that describes the
task and demonstrations that provide several examples of how to
solve the task. Recent studies have demonstrated that in-context
learning can aid LLMs in achieving remarkable performance in a
variety of tasks [22, 53, 54].

Le and Zhang [26] validated the potential of LLMs in log pars-
ing and obtained promising results. DivLog [55] and LILAC [17]
enhance the performance of large models by selecting demonstra-
tions from labeled log data and utilizing the in-context learning
capabilities of LLMs. They employ different methods to sample a
labeled candidate log set. These methods are sensitive to the quan-
tity and coverage of labeled logs and incur LLM inference overhead.
Lemur [59] invokes LLM to merge generated similar templates,
improving the accuracy of log parsing groupings. However, it re-
quires extensive hyperparameter tuning for specific datasets. It has
been found that these LLM-based log parsers have outperformed
semantic-based log parsers (e.g., LogPPT [27] and UniParser [32])
in terms of parsing accuracy [17, 55].

Despite promising results, LLM-based log parsing can be costly
in terms of token usage, especially when large volumes of LLM
calls are needed. The costs of one LLM invocation scale linearly
with the number of tokens, including both the input prompt to-
kens (instruction and demonstrations). Consequently, managing
LLM invocation cost is vital for practical applications. Since LLM
infrastructure/services can change over time, recent studies [5, 15]
measure and reduce token consumption as the primary metric for
LLM cost management. Similarly, in this paper, we focus on accom-
plishing more data processing with fewer tokens and LLMs calls to
achieve cost-effective log parsing.

3 A MOTIVATING EXAMPLE

Recently, several studies [17, 26, 55] have proposed to utilize LLMs
for log parsing and achieved promising results. Still, these stud-
ies fail to achieve satisfactory performance in practice. We have
identified two major limitations of existing LLM-based log parsing
approaches, which prevent their practical usage.
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[Instruction] | want you to act like an expert in log parsing. | will give you a
log message wrapped by backticks. Your task is to identify all the dynamic
variables in logs, replace them with {variables}, and output a static log
template. Please print the input log's template wrapped by backticks.
[Query] Log message: ‘Created local directory at /opt/hdfs/nodemanager/us
ercache/curi/appcache/application_1485248649253_0147/blockmgr-70293f72
-844a-4b39-9ad6-fbOad7e364e4"

[Demo 1]

Log message: "Starting executor ID 5 on host mesos-slave-07"

Log template: ‘Starting executor ID {variables} on host {variables}’

[Demo 2]

Log message: ‘Connecting to driver: spark://CoarseGrainedScheduler@
10.10.34.11:48636

Log template: ‘Connecting to driver: spark://{variables}’

Input Output

{I(;::;C]tmn] Created local directory at {directory_path} Q
H:es:\::c:l]on] Created local directory at {variables}/blockmgr-
[Query] {variables} °

[Instruction]

[Demo 2] Created local directory at {variables} Q
[Query]

[Instruction] . . 5
[Demo 1] [Demo 2] Created local directory at {variables}/blockmgr-

[Query] {variables} °

Figure 2: Selecting in-context demonstrations for log parsing
on Spark (Results are produced using gpt-3.5-turbo [2] with
instruction and demonstrations adopted from [17])

Over reliance on demonstrations. Although LLMs are equipped
with a huge amount of pre-trained knowledge, they are not spe-
cialized in the log parsing task. Directly querying LLMs for log
parsing could result in unsatisfactory performance [17, 26]. Hence,
to overcome this problem, recent studies [17, 55] straightforwardly
leverage the in-context learning prompting technique to impart
log-specific knowledge to LLMs via labeled demonstrations. How-
ever, selecting even a few useful demonstrations can quickly be-
come more laborious as the volume and format of logs rapidly
change [20, 60]. More importantly, selecting in-context demonstra-
tions can be challenging as the quality of these demonstrations
directly affects LLM-based log parsing. Figure 2 illustrates the im-
pact of four different demonstrations on the parsing performance.
In this example, we set temperature to 0 to avoid bias from LLM
randomness. Sample inputs and outputs shown from top to bottom
(Spark log) are: (1) zero-shot without demonstration: correct an-
swer; (2) a correct but noisy demonstration (Demo 1), which leads
to a wrong answer; (3) a correct demonstration (Demo 2), which
leads to a correct answer; and (4) combining Demo 1 and Demo 2
again leads to an incorrect answer. This issue highlights the sen-
sitivity of demonstrations to the performance of LLM-based log
parsing. To quantitatively understand the impact of labeled demon-
strations on parsing performance of LLMs, we vary the number of
demonstrations from 32 to 0 and evaluate the parsing accuracy of
the state-of-the-art LLM-based log parser, LILAC [17]. As shown
in Figure 3, regarding widely-used group accuracy (GA) [62] and
message-level accuracy (MLA) metrics [32], LILAC witnesses a sig-
nificant drop in performance when the number of demonstrations
decreases. Specifically, its performance declines 15% and 20% in
GA and MLA, respectively, when the number of demonstrations
decreases from 32 to 0.
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Figure 3: Impact of different numbers of demonstrations

LLM invocation cost. Log data can be generated in a massive
volume in production. For example, Mi et al. [37] reported that
the Alibaba cloud system produces about 30-50 gigabytes (around
100-200 million lines) of tracing logs per hour. Naively querying
LLMs for each log message is impractical due to the substantial cost
of inference. As illustrated in Figure 2, querying GPT-3.5-Turbo [2]
with a prompt consisting of one instruction (66 tokens in total') and
one log message (55 tokens in total) will cost (55 + 66) X 100,000,000
X (0.50/1,000,000) = $6,050 because the price of GPT-3.5-Turbo
API services is $0.5 per 1M tokens [3]. Due to the large amount
of log messages, the cost for LLM-based log parsing could pose a
significant financial burden in practice.

Note that the cost incurred by the instruction and demonstrations
in the prompt is not neglectable. For example, the token count of
the prompt instruction in Figure 2 is 66, which is more than the
token count of the log message (55). Considering adding more
demonstrations (36 tokens per demonstration in Figure 2) to the
prompt to improve the parsing performance, the token count of the
prompt will increase linearly with the number of demonstrations.
This will further increase the cost of LLM invocation, making it
even more expensive to query LLMs for log parsing.

4 METHODOLOGY

Drawing upon the observations described in Section 3, we pro-
pose LogBatcher, a novel demonstration-free, training-free, and cost-
effective LLM-based log parser. The main idea behind LogBatcher
is that log data possesses latent characteristics, i.e., commonality
and variability, which allow LLMs to perform log parsing without
demonstrations. Specifically, as the goal of log parsing is to rec-
ognize the dynamic variables (i.e., variability) from static patterns
(i.e., commonality), we use a batch of log messages as the input to
LLMs instead of using a single log message. In this way, we can
incorporate commonalities and variabilities among log messages
into the input of LLM, thus allowing LLMs to better correlate the
log parsing with the log data itself without the need of labeled
demonstration examples.

An overview of LogBatcher framework is illustrated in Figure 4.
Since raw log data are massively generated in the production envi-
ronment [37, 52], we divide the raw log data into multiple chunks
before analysis. Log chunks are processed in parallel, each log chunk
goes through three main components: @ Partitioning: separating
each log chunk into several partitions using a versatile clustering
algorithm. @ Caching: performing a cache matching process for

We reference the newest pricing of text tokens from OpenAlD’s tiktoken package:
https://github.com/openai/tiktoken
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logs in each partition to match them with previously parsed log
templates to avoid duplicate LLM queries and improve parsing effi-
ciency. @ Batching — Querying: sampling a diverse set of logs from
each partition to form a batch, which is then sent to the LLM for
parsing. Finally, we refine the identified templates and match the
logs with the templates to mitigate the impact of clustering errors.

4.1 Partitioning

The aim of this phase is to ensure that logs allocated to the same par-
titions share some commonalities. This is crucial for the subsequent
in-context learning process, as it allows LLMs to learn the common-
alities within log data and associate them with the log parsing task.
We employ a versatile clustering algorithm based on DBSCAN [9]
to partition logs. Figure 5 illustrates the log partitioning process.

4.1.1 Tokenization. The initial step of partitioning involves log
tokenization and cleaning, which are crucial for accurate clustering.
First, we use general delimiters (i.e., white space) to perform initial
tokenization of the logs. Considering that logs have some unique de-
limiters due to their relevance to the code, we define specific rules to
further refine the tokenization for each token. Finally, we clean the
logs by masking potential variable tokens. We utilize some basic reg-
ular expressions to refine the tokenization. For example, the symbol
“=” can serve as a delimiter in logs such as “START: tftp pid=16563
from=10.100.4.251”. However, if “=” appears within a URL, as in
“after trim url = https://www.google.com/search?q=test”, it
disrupts the integrity of the variable, leading to clustering errors.
After that, we improve the clustering performance by masking
tokens that resemble parameters such as numbers, IP addresses,
and URLs. Given a batch of logs L = {L1, Ly, ..., Ly}, each log L; is
tokenized into a set of tokens {¢;1, ti2, .. ., tim}-

4.1.2  Vectorization. Vectorization is a prerequisite for clustering
as it transforms log data into a numerical format, which is suitable
for clustering algorithms. Since different tokens in logs are of vary-
ing importance [60], we adopt the Frequency-Inverse Document
Frequency (TF-IDF) [46] to vectorize the log. Specifically, we first
calculate the Term Frequency (TF) to describe the importance of a
token in a log message, where TF(token) = *;tt‘:)];g’;, #token is the
number of target token in a log message, #total is the number of
all tokens in a log message. On the other hand, if a token appears
in many logs, it is less informative and becomes too common to
be able to distinguish distinct log messages. Therefore, we calcu-
late the Inverse Document Frequency (IDF) to reduce the weight of
overly common tokens, where IDF(token) = log( #ijcen ), #L is
the total number of logs, #L; ke, is the number of logs containing
the target token. For each word, its TF-IDF weight w is calculated
by TF x IDF.

Finally, we can obtain the vector representation Vy € R? of
each log message by summing up the token vectors L with their
corresponding TF-IDF weights, according to Equation 1:

1

V==
L Nl-

Wi . Vi (1)

M=

I
—

4.1.3 Clustering & Sorting. LogBatcher adopts the DBSCAN al-
gorithm (Density-Based Spatial Clustering of Applications with
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Figure 5: Log partitioning through clustering

Noise) [9] to cluster log messages in a chunk into different groups,
each of which is more likely to contain the log messages with simi-
lar semantics. DBSCAN groups together data points that are closely
packed, marking as outliers points that lie alone in low-density
regions. The reasons we choose DBSCAN are threefold: (1) it does
not require specifying the number of clusters in advance, which is
more practical in the log parsing task; (2) it has been demonstrated
to be more effective and efficient and has been widely used in many
domains [47]; (3) it has a small number of hyperparameters and is
less sensitive to hyperparameter selection, thus being easy-to-use
in practice. After clustering, we sort the clusters by size in descend-
ing order and consider all outliers as a separate cluster to process
at last. The reason is that smaller clusters are more likely to contain
logs with unique characteristics (e.g., noises) that are difficult to
be parsed. By processing them at last, we can leverage previously
parsed templates stored in the cache to filter out the noise and
improve parsing performance.

4.2 Caching

Parsing all arriving logs with LLMs is impractical due to the high
API cost and latency, especially when logs are generated in large
quantities. To address this issue and improve parsing efficiency, we
leverage a simple caching mechanism to store previously parsed
log templates and match them with logs in the current partition.
Specifically, before parsing, we filter out logs that can be matched
with the cache. For those unmatched logs, we process them with
LLMs, adding the newly generated template into the cache. Each
new item in the cache contains three values: (1) a newly generated
template from LLM, (2) a reference log that can match the template,
and (3) the matching frequency (how many logs the template has
matched). We detail the usage of these values below.

To match logs with the template, some log parsers [12, 17] select
logs with a similarity above a certain threshold to the template and
consider them as matches, which could result in mismatches. In our

approach, we perform regular expression matching. Specifically,
this involves replacing “<*>” in the log templates with the generic
matching symbol “(.?)”, allowing regular expressions to check
if the logs and templates match exactly and return all the corre-
sponding variables. Additionally, inspired by [49], the reference log
is used to verify whether its length is consistent with that of the
target log, making our caching more precise. To enhance caching
efficiency, we also dynamically sort the templates in the cache so
that the frequently occurring templates can be checked first.

4.3 Batching — Querying

Logs that belong to the same template not only share frequently
occurring tokens but also exhibit rich variability in their dynamic
parts. These characteristics of log data are widely observed in
practice, and are adopted by many data-driven log parsing meth-
ods [12, 49]. Recent LLM-based log parsers, however, overlook
these characteristics, leading to the overly sensitive nature of LLMs
to demonstrations. To address this issue, we propose a batching -
querying approach to provide LLMs with commonalities and vari-
abilities within input logs for demonstration-free log parsing.

4.3.1 Batching. After partitioning, logs in each partition already
exhibit commonalities in their semantics and syntax. We sample
a set of logs from each partition to form an input batch for LLMs.
To this end, we adopt a diversity-based sampling method to select
logs that maximize the sample diversity. Specifically, we calculate
the cosine similarity between every two logs based on their TF-IDF
vectors, forming a similarity matrix. We then use the Determinantal
Point Process (DPP) algorithm [23] to select logs that maximize the
sample diversity. By doing so, we can ensure that the input batch
contains both commonalities (introducing by clustering-based parti-
tioning) and variabilities (introducing by diversity-based sampling)
within the input logs, which can help LLMs better associate the
task description with the input logs and improve parsing accuracy.

4.3.2  Prompting Design. A common in-context learning paradigm
consists of three parts: instruction, demonstration and query. Since
our method is demonstration-free, our prompt consists only of
instruction and query. Following previous work [17, 26], we design
and use the prompt format, as shown in Figure 6. However, different
from them, we provide LLMs with the input in the form of a batch
as follows:

(1) Instruction: To provide the LLM with task-specific information,
we briefly describe the goal of log parsing, and the formats of
input and output. Moreover, we emphasize the main objective of
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log parsing as abstracting the variables as well as indicate that
logs may not contain variables to avoid over-parsing, where
the LLM tries to find variables in every log.

(2) Queried Log Batch: We provide the LLM with a batch of logs as
input, separated by the newline character. This batch is sam-
pled from the partitioned logs, which contain both common-
alities and variabilities within the input logs. Hence, the input
is well-related to the instruction, which can help LLMs better
understand the log parsing task.

Prompt format

You will be provided with some log messages separated by line breaks.
You must abstract variables with {placeholders} to extract the
corresponding template. There might be no variables in the log message.
Print the input log's template delimited by backticks.

Running task 26.0 in stage 26.0 (TID 1226)
Running task 0.0 in stage 20.0 (TID 807)

Running task 37.0 in stage 27.0 (TID 1277)

LLM Que|
Q Wl LLM Output

Log template: ‘Running task {task_id} in stage {stage_id}
(TID {task_instance_id})’

Postprocessl

Running task <*> in stage <*> (TID <*>)

Final Template

Figure 6: An illustration of our prompt design

4.3.3  Post-Processing. The output from an LLM may contain re-
dundant information beyond the desired template. With the locator
“*” and placeholder “{placeholder}”, we can easily filter the raw
output from LLM and get the identified template. To make the style
of labeling the same for every system, Khan et al. [21] customized
some heuristic rules, to correct the identified template. Some re-
lated works [17, 27] also adopt these rules to refine the generated
templates and minimize the impact of inconsistent labels. We adopt
and optimize this post-process. For example, [21] only considers
decimal numbers in the logs as variables, but in reality, hexadecimal
numbers appear just as frequently.

4.3.4 Matching & Pruning. For the results of clustering, two com-
mon issues usually arise: logs that belong to the same template are
grouped into different clusters, and logs that belong to different
clusters are mistakenly grouped into the same cluster. The meth-
ods mentioned earlier effectively solve the first problem. For the
second problem, we use the matching & pruning method. Pruning
is essentially a re-group process using the identified template. As
mentioned in Section 4.2, the identified template can be matched
with logs through transformation with regular expressions. In most
cases, the resulting template can match all logs in the cluster. When
not all logs can be matched, indicating the second issue mentioned
earlier in clustering, we consider the template as valid for the logs it
can match. The unmatched logs are then pruned and sent to a new
cluster, which will reenter the queue sequence for further parsing.
Even though logs may be misclassified into the same cluster and
trigger an invocation, we still make good use of this invocation,
avoiding additional overhead. Algorithm 1 shows this process.
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Algorithm 1: Matching & Pruning

Input: C: Parsed Cluster
T: Identified Template
Output: Cyeqy: New Cluster

-

regex « convertToRegex(T)
2 Chew < 0
foreach log € C do
if match(log, regex) then
C « C\ {log}
6 Chew < Cnew U {log}
7 end

(LR

8 end

return Cpewy

©

After this batching-querying process, we obtain a log template
that can match all or partial (if pruning is needed) logs in each
partition. We repeat this process for every partition that cannot
find corresponding template, until all partitions are successfully
parsed.

5 EXPERIMENTAL DESIGN

5.1 Research Questions

We evaluate our approach by answering the following research
questions:

RQ1. How does LogBatcher perform compared to the base-
lines? In this RQ, we aim to comprehensively evaluate the perfor-
mance of our proposed method. Specially, we compare our method
with four state-of-the-art unsupervised data-driven log parsers (i.e.,
Drain [12], AEL [19], Brain [58], and Logram [6]) and two LLM-
based supervised log parsers (i.e., DivLog [55] and LILAC [17]).
We adopt the implementation of these methods from their public
replication packages [17, 55, 62]. DivLog and LILAC are recently
proposed to leverage the in-context learning capacity of LLMs for
log parsing. For a fair comparison, we use the same settings from
LILAC [17] to reproduce the results of both DivLog and LILAC, in
which 32 candidates are sampled from the log data and 3 demon-
strations are selected as the parsing context for each queried log.

RQ2. How do different modules contribute to LogBatcher?
LogBatcher consists of three main components: Partitioning, Caching,
and Batching. We evaluate the importance of each component by
removing each of them from the framework and evaluating the
performance. Specifically, we perform the ablation study with the
following settings: (1) W/Opartitioning: We divide logs into several
partitions using time windows; (2) W/0caching: We directly remove
the caching component; and (3) W/Opatching: We only use one log
entry as the LLM input.

RQ3. How does LogBatcher perform with demonstrations?
Although LogBatcher is demonstration-free, it can easily be ex-
tended to use labeled demonstration examples as other supervised
LLM-based approaches do. In this RQ, we adopt the same setting
from LILAC [17] to select a few demonstrations for each LLM invo-
cation. Specifically, we first sample 32 labeled candidate logs from
each dataset and then select the most similar candidate logs as
demonstrations for each LLM query. We compare LogBatcher with
LILAC (the top-performing supervised LLM-based log parser) to



Demonstration-Free: Towards More Practical Log Parsing with Large Language Models

evaluate the effectiveness of our approach with different numbers
of demonstration examples.

RQ4. How do different settings affect LogBatcher? To delve
deeper into the effectiveness and robustness of LogBatcher, we
explore how different settings of its major components affect the
overall performance. Specifically, we use different clustering meth-
ods for partitioning, different sampling methods for batching, dif-
ferent batch sizes, and different LLMs to evaluate the performance
of LogBatcher.

5.2 Datasets

We conduct experiments on 16 public log datasets (Loghub-2k [1])
originated from the LogPai project [62]. These datasets cover logs
from distributed systems, standalone software, supercomputers,
PC operating systems, mobile systems, microservices, etc. Zhu et
al. [62] sampled 2,000 log entries from each system in the dataset
and manually labeled them. However, it has been observed that
the original labels have some errors due to inconsistent labeling
styles [1, 18, 21]. Therefore, following existing work [27, 34, 55],
we use the version of the datasets corrected by Khan et al. [21]. Fur-
thermore, as the Proxifier dataset has many different versions, we
calibrated some labels according to the guidelines proposed by [18].
The datasets we used in our experiments are publicly available at
our webpage [57].

5.3 Evaluation Metrics

Following recent studies [26, 27, 32], we use three main metrics for
evaluation, including:

Group Accuracy (GA): Group Accuracy [12] is the most com-
monly used metric for log parsing. The GA metric is defined as the
ratio of “correctly parsed" log messages over the total number of
log messages, where a log message is considered “correctly parsed”
if and only if it is grouped with other log messages consistent with
the ground truth.

Message Level Accuracy (MLA): Message Level Accuracy [32]
is defined as the ratio of “correctly parsed" log messages over the
total number of log messages, where a log message is considered to
be “correctly parsed” if and only if every token of the log message
is correctly identified as template or parameter.

Edit Distance (ED): Edit Distance assesses the performance of
template extraction in terms of string comparison [41]. It calculates
the minimum number of actions needed to convert one template
into another. We apply normalized Edit Distance [36], which com-
putes the mean Edit Distance of all compared template pairs in the
dataset (parsed templates vs ground truth templates).

Due to space constraints, we provide the evaluation results in
terms of other metrics, i.e., F1 score of Group Accuracy (FGA) [18]
and F1 score of Template Accuracy (FTA) [21], on our webpage.
In addition, to assess the efficiency of our proposed approach, we
follow recent studies [5, 15] to measure the token consumption
because the price structure of commercial LLM providers is related
to the number of input tokens. Specifically, we use two metrics to
measure token consumption, including (1) Tiota): the total number
of tokens consumed for all invocations when parsing a dataset and
(2) Tinvoc: the average number of tokens consumed per invocation.
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5.4 Baselines

Based on the recent benchmark studies [18, 21], we select four state-
of-the-art unsupervised data-driven log parsers (i.e., Drain [12],
AEL [19], Brain [58], and Logram [6]) and two recent LLM-based
supervised log parsers (i.e., DivLog [55] and LILAC [17]). We adopt
the latest version of these methods from their publicly available
replication packages [17, 55, 62]. We did not include semantic-based
log parsers (such as Uniparser and LogPPT) in our comparison be-
cause previous studies [17, 55] have shown that LLM-based log
parsers (e.g., LILAC and DivLog) significantly outperform them
with the same amount of labeled data. To ensure a fair comparison,
we replicate the results of both DivLog and LILAC using the same
settings as in LILAC [17]. Specially, 32 labeled candidates are sam-
pled from the log data and three of them are selected as the ICL
demonstrations for each queried log. We also compare LogBatcher
with the unsupervised variant of LILAC [17] (i.e., LILAC /o 1cL) by
removing the labelled ICL demonstrations from the query context.

5.5 Implementation and Settings

Implementation. In our experiments, we set the default LLM to
GPT-3.5-Turbo (version 0125%), which is widely used in recent re-
search [26, 55]. We conduct our experiments on a Ubuntu 20.04 LTS
server with Python 3.8. We invoke the LLM through the Python
library provided by OpenAl [42].

Settings. We adopt the implementation of DBSCAN provided by
sklearn [44] for the Partitioning component. We set the hyperpa-
rameters of DBSCAN as follows: epsilon = 0.5 and min_samples
= 5. For the Batching component, we set the batch size to 10. To
avoid the randomness of the LLM, we set the temperature to 0.
Furthermore, following previous work [17, 18, 21], we repeat all
experiments 5 times and report the average results.

6 RESULTS AND ANALYSIS

6.1 RQ1: How does LogBatcher perform
compared to the baselines?

This RQ evaluates the performance of LogBatcher from three as-
pects: effectiveness, robustness, and efficiency.

6.1.1 Effectiveness. Table 1 provides a comparative analysis of
various log parsing methods across multiple datasets in terms of
Group Accuracy (GA), Message-Level Accuracy (MLA), and Edit
Distance (ED). For each dataset, the highest accuracy of each met-
ric is highlighted in bold. Experimental results show that Log-
Batcher significantly outperforms other unsupervised log parsers,
including Drain [12], AEL [19], Brain [58], and Logram [6]. Specifi-
cally, LogBatcher exceeds the highest GA, MLA, and ED of these
methods by 9.1%, 36.0%, and 4.8% on average, respectively. Com-
pared to supervised LLM-based log parsers, i.e., DivLog [55] and
LILAC [17], LogBatcher also achieves superior performance. Specif-
ically, LogBatcher significantly outperforms DivLog in terms of all
three metrics. For example, it achieves better GA on all datasets, i.e.,
1.6% (Apache) to 74.8% (OpenStack) higher than DivLog. Compared
to LILAC, the top-performing LLM-based log parser, LogBatcher
achieves better or comparable parsing accuracy. We compare Log-
Batcher with LILAC in two settings: LILACy,, 1cL (i-e., without

Zhttps://platform.openai.com/docs/models/gpt-3-5-turbo
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Table 1: Comparison with the state-of-the-art log parsers

Drain AEL Brain Logram DivLog LILAC /o 1CL LILAC LogBatcher

GA MLA ED | GA MLA ED | GA MLA ED | GA MLA ED | GA MLA ED | GA MLA ED | GA MLA ED | GA MLA ED

HDFS 0.998 0.999 0.999|0.998 0.999 0.999]0.998 0.959 0.997 | 0.930 0.961 0.993|0.930 0.996 0.999 [1.000 0.943 0.999 (1.000 1.000 1.000|1.000 1.000 1.000
Hadoop |0.948 0.613 0.882|0.869 0.606 0.901|0.950 0.158 0.751|0.694 0.195 0.708|0.683 0.744 0.915[0.958 0.843 0.928|0.991 0.958 0.986|0.989 0.888 0.953
Spark 0.920 0.398 0.963]0.905 0.398 0.952|0.998 0.376 0.950|0.470 0.296 0.915|0.738 0.960 0.983|0.998 0.806 0.990|0.999 0.983 0.998|0.998 0.973 0.989
Zookeeper [0.967 0.799 0.981|0.965 0.800 0.981|0.989 0.779 0.987 [0.956 0.805 0.970{0.955 0.979 0.998|0.989 0.374 0.886 |1.000 0.987 0.999|0.995 0.988 0.995
BGL 0.963 0.479 0.885|0.957 0.474 0.883|0.996 0.426 0.891|0.702 0.282 0.785|0.736 0.950 0.990|0.941 0.870 0.955|0.983 0.972 0.989|0.994 0.950 0.992
HPC 0.887 0.662 0.872]0.904 0.680 0.880|0.945 0.660 0.9730.978 0.751 0.870{0.935 0.980 0.997 |0.911 0.641 0.913|0.970 0.994 0.999|0.953 0.946 0.995
Thunderbird| 0.957 0.180 0.941|0.945 0.180 0.943|0.971 0.060 0.932|0.554 0.097 0.826|0.234 0.879 0.978 | 0.957 0.852 0.960|0.984 0.913 0.983|0.897 0.838 0.950
Windows |[0.997 0.466 0.948 |0.691 0.158 0.840(0.997 0.463 0.976|0.694 0.141 0.915|0.710 0.715 0.903 | 0.694 0.020 0.692|0.696 0.685 0.897|0.997 0.644 0.871
Linux 0.422 0.217 0.750 | 0.405 0.205 0.745|0.358 0.176 0.770|0.186 0.125 0.684|0.484 0.620 0.935|0.298 0.344 0.903|0.298 0.422 0.926 |0.995 0.974 0.990
Android |0.885 0.750 0.972|0.773 0.540 0.876|0.960 0.253 0.924|0.795 0.436 0.822|0.737 0.677 0.952|0.931 0.481 0.890|0.953 0.627 0.923|0.967 0.791 0.955
HealthApp |0.901 0.375 0.749 |0.893 0.368 0.744|1.000 0.261 0.871|0.833 0.677 0.850|0.876 0.984 0.997 | 0.901 0.866 0.945|0.998 0.988 0.998|0.984 0.980 0.970
Apache [1.000 0.978 0.996|1.000 0.978 0.996/1.000 0.984 0.996 | 1.000 0.972 0.995|0.984 0.985 0.997 |1.000 1.000 1.000|1.000 1.000 1.000|1.000 1.000 0.999
Proxifier |0.765 0.704 0.980 |0.826 0.690 0.972|0.527 0.704 0.945|0.531 0.477 0.816]0.531 0.993 0.999|0.730 0.512 0.941|1.000 0.995 0.999 1.000 1.000 1.000
OpenSSH | 0.789 0.594 0.919|0.547 0.729 0.965|1.000 0.287 0.948|0.802 0.928 0.960|0.749 0.987 0.993|0.492 0.439 0.910|0.753 0.805 0.983|0.996 0.975 0.987
OpenStack |0.224 0.105 0.693 | 0.249 0.034 0.718]0.492 0.112 0.937|0.315 0.071 0.724|0.220 0.437 0.873|0.717 0.400 0.815[1.000 0.977 0.991(0.968 0.984 0.993
Mac 0.814 0.392 0.896 | 0.765 0.284 0.835|0.949 0.383 0.902|0.759 0.359 0.843|0.712 0.549 0.898 |0.834 0.626 0.915|0.805 0.562 0.892|0.857 0.543 0.881
Average |0.840 0.544 0.9020.793 0.508 0.889|0.883 0.440 0.922|0.700 0.473 0.855|0.701 0.839 0.963 |0.834 0.626 0.915|0.902 0.867 0.973|0.974 0.904 0.970

any labeled demonstration) and the default LILAC (i.e., with 32
labeled candidates and three ICL demonstrations, which is the de-
fault setting of LILAC). LogBatcher exhibits a substantially higher
accuracy than LILACy,/, 1cL in terms of three metrics on almost all
datasets. Compared to the default setting of LILAC, LogBatcher still
outperforms by 7.2% and 3.6% in terms of average GA and MLA.
It also achieves comparable results in terms of ED (0.3% lower on
average). It is worth noting that without any labeled demonstra-
tions, LogBatcher can still achieve the best average GA and MLA,
and the second-best average ED. Overall, the experimental results
confirm that LogBatcher is effective for the log parsing task.

6.1.2  Robustness. LogBatcher aims to support a wide range of log
data from various systems, as a universal log parser in a produc-
tion environment demands strong performance and generalization
capabilities [62]. Hence, we analyze and compare the robustness
against different types of logs of LogBatcher with that of the base-
lines by drawing a box plot to illustrate the accuracy distribution
of each log parser’s metrics across all datasets. Figure 7 shows
the results. It is obvious that LogBatcher consistently achieves the
narrowest interquartile range (IQR) across all three metrics, indicat-
ing the stable performance of LogBatcher. Specifically, LogBatcher
yields a median of 0.99 for GA robustness, 0.94 for PA robustness
and 0.99 for ED robustness, which are better or comparable to the
top-performing baseline, LILAC. Additionally, LogBatcher ’s per-
formance exhibits significantly fewer outliers compared to other
baseline methods. This indicates that even in less typical scenarios,
LogBatcher can still achieve stable and reliable results. Overall, the
experimental results demonstrate that LogBatcher is robust and
can be applied to various log datasets effectively.

6.1.3 Efficiency. In recent work, LLM-based parsers have concen-
trated on selecting suitable demonstrations for the query [17, 55],
which has led to demonstrations being significantly longer than
the query itself. Conversely, our approach improve the efficiency
of using LLMs by adding more diverse logs to the query through

Table 2: Efficiency of LLM-based Log parsers (#tokens)

Tiotal Tinvoc
DivLog LILAC LogBatcher |DivLog LILAC LogBatcher

HDFS 706689 4793 6101 353 342 436
Hadoop 491299 33519 15695 246 308 141
Spark 409054 10587 4993 205 294 156
Zookeeper | 360558 14858 6930 180 310 122
BGL 420346 35061 15692 210 297 139
HPC 288954 9179 5076 144 255 110
Thunderbird | 522583 43546 18781 261 283 107
Windows | 461847 14459 5721 231 295 114
Linux 444417 28972 9161 222 287 82
Android | 430660 32574 17967 215 256 115
HealthApp |351681 16393 6980 176 264 94
Apache 364608 1549 950 182 258 158
Proxifier |494994 6724 4160 247 480 347
OpenSSH | 490727 7921 4206 245 317 162
OpenStack | 686037 14924 13798 343 364 337
Mac 581290 109260 51002 291 339 155
Average 469109 24020 11701 235 309 173

batch-prompting. To compare the efficiency between LogBatcher
and other LLM-based parsers, we calculate the token consumption
for all LLM-based log parsing baselines (i.e., DivLog and LILAC).
The results are illustrated in Table 2. It is obvious that, in terms
of total token consumption and average token consumption per
invocation, our method achieves the best results on most datasets.
For example, LogBatcher exhibits the lowest Tyota1 and Tipyoc On
14 out of 16 datasets, with an average of 173 tokens per invocation,
which is 26.4% and 44.0% lower than DivLog and LILAC, respec-
tively. We notice that the total token consumption of DivLog is
extremely high although its average token consumption per invo-
cation is lower than LILAC. This is because DivLog queries LLMs
for each log message, making parsing costly in practice. In contrast,



Demonstration-Free: Towards More Practical Log Parsing with Large Language Models

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

10t T /= T " - ’?’g - 1.0
. ()
- | 8
>0.8 e o A et 5 0.9
[S) . |9) (U]
© 1%} [}
5 < c
306f----f-----p - {-o - = G 0.8
Iv) @ 0
< ) a
2041 = 207
e . . g E
Oo2f-- ok RS a 0.6 -
[}

0.0 -mmmomoroosee oo oa e = 0.5 -rmsmmmme oo
S S & v (L& IR S SN SR
GV O N &SP

O& e Q?‘ OQQ \4\’ O ‘Q\o \>\/ é’(‘,(\ 0( e Q,( oqk 0\4\’ O ‘A\O \}\/ 6\’(;(\

v §> ¢ N3 QQ>

Figure 7: Robustness comparison between baselines and LogBatcher

LogBatcher and LILAC adopt a caching mechanism to reduce the
number of queries to LLMs, which significantly reduces the total
token consumption. Moreover, LogBatcher employs a batching —
querying mechanism to provide LLMs with more log messages per
invocation, which further reduces the token consumption.

The low token consumption rate also indicates that LogBatcher is
more efficient in terms of LLM invocation cost and energy consump-
tion, which is crucial for real-world applications. In particular, we
follow a recent study [4] to estimate the carbon footprint of using
LLMs as CO2 = #Tokens X Energy per Token X gCOZ2e/kWh, where
Energy per Token ~ 0.001 kWh per 1k tokens and gCOZ2e/kWh ~
240.6 gCO2e/kWh at Azure US West data centers. Based on this
estimation, LogBatcher can reduce the carbon footprint by 2x and
40x compared to DivLog and LILAC when parsing all logs in the
subject datasets. Besides, using the method for calculating the cost
of invoking GPT-3.5-Turbo API described in Section 3, LogBatcher
only costs $0.008 per invocation, which is 1.3x and 1.8X lower than
DivLog and LILAC.

Overall, our experimental results show that, being an unsuper-
vised log parser, LogBatcher can achieve better or comparable
results to the current SOTA supervised method, LILAC. Also, it
outperforms all unsupervised baselines, in terms of effectiveness,
robustness, and efficiency.

6.2 RQ2: How do different modules contribute
to LogBatcher?

This RQ gives a comprehensive explanation of each module’s con-
tribution. Table 3 shows the results. It is clear that removing any of
the three modules will affect performance to some extent.

Table 3: Ablation study results

GA MLA ED
Full LogBatcher  0.974 0.904 0.970
W/Opartitioning ~ 0-790(|23.3%) 0.770(]17.4%) 0.896(537%)
W/Ocaching 0.830(}17.3%) 0-803(]12.6%) 0.935(13.7%)
W/Obatching 0.928(15.0%) 0.724(|24.9%) 0.910(|6.6%)

6.2.1 Partitioning. Intuitively, partitioning the logs is beneficial
for the group accuracy, and this is indeed the case. Partitioning is

the component that most significantly impacts grouping accuracy
among the three components. Without it, the GA drops by 23.3%.
Additionally, it also affects the message-level accuracy because the
partitioning phase allows us to provide LLMs with commonalities
within the input log data and correlate them with the log parsing
task description. Without partitioning, the LLM input contains less
commonalities, resulting in MLA decreased by 17.4%.

6.2.2 Caching. Due to the inherent limitations of the clustering
method, logs belonging to the same template can be divided into
different partitions. Within these partitions, our method achieves
higher parsing accuracy for larger ones. When the caching module
is removed, the results from these larger partitions cannot be used
to guide the parsing of smaller ones. In other words, the smaller
partitions are parsed independently, leading to poorer overall model
performance. For example, removing caching decreases the GA and
MLA of LogBatcher by 17.3% and 12.6%, respectively, confirming
the usefulness of the caching mechanism.

6.2.3 Batching. The proposed batching module is designed pri-
marily to provide the LLM with diverse logs, expecting that the
LLM can learn from the variability existing among the log data. The
results demonstrate the importance of batching for the entire pars-
ing process. Without batching, the MLA achieved by LogBatcher
significantly drops by 24.9%, indicating that the LLM is less effective
when the data provided has no diversity. This indicates that the
batching module is the most crucial for LogBatcher to achieve high
parsing accuracy in terms of exact matching.

In summary, the ablation study confirms the usefulness of the
major components of LogBatcher.

LLAC  yop, . LogBatcher
0.9 '///, e S— 0.9
08l 0.8
e GA —+ GA
0.7 MLA 0.7 MLA
~+ ED 4 ED
06% 1 3 3 4 5 6 9%% 1 2 3 4 5 6

demonstration number demonstration number

Figure 8: Average accuracy over different numbers of demon-
strations
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6.3 RQ3: How does LogBatcher perform with
with demonstrations?

This RQ is to evaluate how LogBatcher performs with demonstra-
tions. As shown in Figure 8, the demonstrations obtained through
the sampling method adopted by [17] indeed help improve perfor-
mance. For example, the results of LogBatcher in terms of MLA
increase by 5.8% when using only two demonstrations. We no-
tice that the performance varies to some extent when the num-
ber of demonstrations increases. In contrast, the performance of
LogBatcher remains stable and high across different numbers of
demonstrations. This is because LogBatcher already achieves good
performance in the 0-shot setting, thus not requiring excessive
reliance on examples. Furthermore, with the same number of ex-
amples, LogBatcher still significantly outperforms LILAC.

6.4 RQ4. How do different settings affect
LogBatcher?

6.4.1 Clustering Method. We evaluate the impact of different clus-
tering methods on the performance of LogBatcher . Specifically, we
compare the results of LogBatcher using hierarchical clustering [17]
and meanshift clustering [34]. The results are shown in Table 5.
It is clear that LogBatcher achieves the best performance when
using the default clustering method (i.e., DBSCAN). It achieves the
highest GA, MLA, and ED (i.e., 0.974, 0.904, 0.970, respectively),
which are 4.3%, 11.6%, and 2.8% higher than hierarchical clustering,
and 3.3%, 4.6%, and 1.0% higher than meanshift clustering. The main
reason is that DBSCAN can effectively identify and exclude noisy
data points, which is important for datasets with imbalanced log
distributions [18].

Table 4: Results with different clustering methods

GA MLA ED
LogBatcher 0.974 0.904 0.970
W/ Hierarchical clustering 0~934(l4.3%) 0'810(“1.6%) 0'944(1,2.8%)
W/ Meanshift clustering  0-943(|3.3%) 0.864(14.6%) 0.960(1.0%)

6.4.2 Sampling Method. Selecting a sampling method involves de-
termining which logs are grouped together into a batch. We examine
three widely adopted sampling methods: similarity-based sampling,
diversity-based sampling, and random sampling. To obtain a batch
of similar logs, we use the approach from [5], employing k-means
clustering to identify and batch the most similar logs. For grouping
diverse logs, we apply the Determinantal Point Process (DPP, a
probabilistic model that favors diverse subsets by giving higher
probabilities to dissimilar items) [23] method to ensure diversity.
For random grouping, we sample logs randomly from the partition.
Before sampling, we ensure that duplicates are removed from the
log partition. The result is shown in Table 5.

The diversity-based DPP algorithm achieves the best results
because it provides LLM with sufficiently diverse logs. Random
sampling only resulted in a slight decrease in performance because
it can also select diverse logs to some extent. In contrast, similarity-
based sampling decreases PA and MLA by 3.9% and 8.8% respec-
tively. The results demonstrate that the diversity-based sampling
method used in LogBatcher is effective.
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Table 5: Result with different sampling methods

GA MLA ED
LogBatcher 0.974 0.904 0.970

W/ random sampling 0'963@1.1%) 0~890(l1.6%) 0~964(l0.6%)
w/ similarity sampling O~937(J,3.9%) 0'831(l8.8%) 0'953(l1.8%)

6.4.3 Batch Size. To evaluate the impact of batch size on the per-
formance of LogBatcher , we select the batch size of 1, 5, 10, 15,
and 20 (setting the batch size to 1 means removing the batching
component). The results are shown in Figure 9. It can be seen that
when the batch size approaches 1, the performance drops signif-
icantly. The optimal batch size is found to be between 5 and 10.
When the batch size exceeds 10, the performance of LogBatcher
slightly decreases. Considering larger batch sizes can lead to higher
LLM invocation overhead, in our experiments we set the default
batch size to 10.
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Figure 9: Average accuracy with different batch sizes

6.4.4 LLM Selection. In our experiments, we use ChatGPT (i.e.,
GPT-3.5-Turbo) as the default LLM. We also evaluate the perfor-
mance of our approach with different LLMs. We select two LLMs
with different model parameter sizes, including Codellama 7B and
Llama3 70B. Table 7 shows the average metrics of LogBatcher with
different LLMs. It is evident that LogBatcher performs well even on
a smaller LLM with a parameter count of 7B, achieving an average
GA 0f 0.936 and MLA of 0.8. Overall, the larger the model’s param-
eters, the better the performance. These findings demonstrate that
LogBatcher can be effectively applied to various LLMs with robust
performance.

7 DISCUSSION
7.1 Practicality of LogBatcher

LogBatcher is designed for more practical log parsing with Large
Language Models (LLMs). Previous work [27, 32] tends to train a
smaller model to perform log parsing. However, it still requires a
substantial amount of labeled data for training, which is hard to
obtain. Training smaller models via transfer learning (including
knowledge distillation) does not guarantee high accuracy. Com-
pared to other LLM-based log parsers, LogBatcher does not need
any training/fine-tuning process and labeling effort. Nevertheless,
our experiments show that LogBatcher can still achieve superior
accuracy. Additionally, our method eliminates the need to select
demonstrations for each query, significantly reducing the LLM
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Table 6: Comparison with LILAC on large-scale datasets from Loghub-2.0

LILAC y/01CL LILAC LogBatcher

Dataset |#Logentries| GA MLA ED Tial Tinvoc| GA MLA ED  Tiotal Tinvoc| GA MLA ED  Tiotal  Tinvoc
HDEFS 11,167,740 | 1.000 0.948 0.999 5036 187 [1.000 0.999 1.000 16128 343 |1.000 0.948 0.994 10276 214
Hadoop 179,993 0.915 0.840 0.960 42120 183 [0.872 0.832 0.947 77464 335 |0.947 0.802 0.937 28685 117
Spark 16,075,117 | 0.998 0.862 0.996 37027 177 [1.000 0.973 0.995 76335 321 |0.974 0.997 0.999 34889 129
Zookeeper 74,273 0.997 0.351 0.891 14270 172 |1.000 0.687 0.936 22787 253 |0.988 0.934 0.995 8591 101
BGL 4,631,261 | 0.884 0.892 0.967 52274 177 [0.894 0.958 0.989 88829 261 |0.952 0.864 0.957 47556 114
HPC 429,987 0.984 0.648 0.891 10447 171 [0.869 0.705 0.906 15384 237 |0.990 0.983 0.993 15986 188
Thunderbird | 16,601,745 | 0.725 0.556 0.878 901863 197 |0.806 0.558 0.928 491934 354 |0.802 0.564 0.879 159588 111
Linux 23,921 0.802 0.693 0.963 60368 171 [0.971 0.767 0.959 81110 234 |0.953 0.876 0.974 34056 91
HealthApp 212,394 0.993 0.551 0.811 20709 171 [1.000 0.729 0.879 30575 251 |0.983 0.970 0.989 13015 81
Apache 51,977 0.997 0.965 0.981 5349 173 |1.000 0.999 1.000 7417 256 | 0.997 0.972 0.991 2914 91
Proxifier 21,320 0.000 0.114 0.854 2681 192 |1.000 1.000 1.000 3787 344 (1.000 1.000 1.000 3540 322
OpenSSH 638,946 0.745 0.349 0.947 5164 178 10.690 0.941 0.997 11080 308 [0.925 0.866 0.946 3999 118
OpenStaCk 207,632 1.000 0.485 0.944 9456 197 [1.000 1.000 1.000 17915 373 [1.000 0.980 0.994 14484 315
Mac 100,314 0.769 0.529 0.877 116508 197 [0.877 0.638 0.930 219922 309 |0.795 0.595 0.896 118264 172
Average 3,601,187 | 0.844 0.627 0.926 91662 182 |0.927 0.842 0.962 82905 299 [0.950 0.882 0.967 35417 155

Table 7: The performance of LogBatcher with different LLMs

GA MLA ED
CodeLlama (7B)  0.936  0.800  0.939
Llama3 (70B) 0.925 0.853  0.966
GPT-3.5-Turbo 0974 0904  0.970

invocation overhead. This leads to a notable improvement in cost-
effectiveness and model robustness. It is also worth noting that
LogBatcher is compatible with many LLMs such as CodeLlama.

A large amount of logs could be generated in production, so it
is crucial to ensure that the log parser can perform online parsing,
which means it can handle streaming log data. LogBatcher can
buffer a batch of streaming logs for parsing instead of processing
each log individually. After the clustering and sorting process, the
logs within the clusters will be parsed through the caching or
querying stage, so no training process is needed. We also evaluate
the applicability of LogBatcher to large-scale datasets. Specifically,
we compare LogBatcher with LILAC on 14 large-scale log datasets
from Loghub-2.0 [18], with the number of data entries ranging
from 21 thousand to 16 million. The results in Table 6 show that
LogBatcher achieves the best average PA, MLA, and ED. In addition,
it also exhibits the lowest Ty, and Tipyoc On 10 out of 14 datasets.
These results are consistent with those on the Loghub-2k datasets,
indicating that our method generally incurs less overhead, achieves
higher efficiency, and performs better overall.

7.2 Threats to Validity

We have identified the following major threats to validity.

Data Leakage. The data leakage problem of LLM-based log
parsers mainly manifests in two aspects: data leakage during the
training process of the LLM itself, and the demonstrations during
in-context learning disclosing the ground truth templates. Recent
studies imply that there is a low probability of direct memorization
of LLMs for the log parsing task as without in-context learning,
the LLMs’ performance significantly drops [17, 55]. Additionally,
LogBatcher does not require any training process or labeled data,

no template is included in the prompt context, thus substantially
eliminating the threat of leaking ground-truth templates within
the prompt context. Overall, the probability of data leakage in our
experiments is negligible.

The Quality of Ground Truth Data. To fairly evaluate the
effectiveness of LogBatcher , the annotation quality for ground
truth templates is critical. The datasets used in our experiments are
from LogPai [18], which were manually labeled by Zhu et al. [62].
It has been observed that the original labels have some errors and
inconsistent labeling styles [21]. To mitigate this threat, we use
the datasets corrected by [21]. Furthermore, we also perform ex-
periments on another set of datasets Loghub-2.0 [61]. The results
confirm that LogBatcher is effective on both sets of datasets.

Randomness. Bias from randomness may affect the evaluation
in two aspects: (1) the randomness of LLMs, and (2) the randomness
introduced during the experiments, including the permutation of
logs in a batch and the random sampling of logs. To mitigate the
instability of LLM outputs, we set the temperature of LLMs to 0.
To mitigate the latter threat, we repeat the experiments five times
and report the average results.

8 CONCLUSION

To overcome the limitations of existing log parsers, we propose
LogBatcher, a cost-effective LLM-based log parser that requires no
training process or labeled demonstrations. LogBatcher leverages
latent characteristics of log data and reduces the LLM inference
overhead by batching a group of logs. We have conducted extensive
experiments on the public log dataset and the results show that
LogBatcher is effective and efficient for log parsing. We believe this
demonstration-free, training-free, and cost-effective log parser has
potential to make LLM-based log parsing more practical.

Data Availability: Our source code and experimental data are pub-
licly available at https://github.com/LogIntelligence/LogBatcher.
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