

TYPE Original Research
PUBLISHED 20 January 2026
DOI 10.3389/frobt.2025.1698333

OPEN ACCESS

EDITED BY

Shaoming He,
Beijing Institute of Technology, China

REVIEWED BY

Nauman Qadeer,
Federal Urdu University of Arts, Sciences and
Technology Islamabad, Pakistan
Liang Fang,
Imperial College, United Kingdom

*CORRESPONDENCE

Anas Abdelkarim ,
anas.abdelkarim@uni.lu,
abdelkarim@eit.uni-kl.de

RECEIVED 03 September 2025
REVISED 14 November 2025
ACCEPTED 19 November 2025
PUBLISHED 20 January 2026

CITATION

Abdelkarim A, Görges D and Voos H (2026)
ecg2o: a seamless extension of g2o for
equality-constrained factor graph
optimization.
Front. Robot. AI 12:1698333.
doi: 10.3389/frobt.2025.1698333

COPYRIGHT

© 2026 Abdelkarim, Görges and Voos. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with
these terms.

ecg2o: a seamless extension of
g2o for equality-constrained
factor graph optimization

Anas Abdelkarim1,2*, Daniel Görges2 and Holger Voos1

1Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg,
Luxembourg, Luxembourg, 2Department of Electrical and Computer Engineering (EIT), RPTU
University of Kaiserslautern-Landau, Kaiserslautern, Germany

Factor graph optimization serves as a fundamental framework for robotic
perception, enabling applications such as pose estimation, simultaneous
localization and mapping (SLAM), structure-from-motion (SfM), and situational
modeling. Traditionally, these methods solve unconstrained least squares
problems using algorithms such as Gauss-Newton and Levenberg-Marquardt.
However, extending factor graphs with native support for hard equality
constraints can yield more accurate state estimates and broaden their
applicability, particularly in planning and control. Prior work has addressed
equality handling either by soft penalties (large weights) or by nested-loop
Augmented Lagrangian (AL) schemes. In this paper, we propose a novel
extension of factor graphs that seamlessly incorporates hard equality constraints
without requiring additional optimization techniques. Our approach maintains
the efficiency and flexibility of existing second-order optimization techniques
while ensuring constraint satisfaction. To validate the proposed method, an
autonomous-vehicle velocity-tracking optimal control problem is solved and
benchmarked against an AL baseline, both implemented in g2o. Additional
comparisons are conducted in GTSAM, where the penalty method and AL are
evaluated against our g2o implementations. Moreover, we introduce ecg2o,
a header-only C++ library that extends the widely used g2o library with full
support for hard equality-constrained optimization. This library, along with
demonstrative examples and the optimal control problem, is available as open
source at https://github.com/snt-arg/ecg2o.

KEYWORDS

constrained factor graphs, optimal control, SLAM, equality-constrained optimization,
SQP

 1 Introduction

Factor graphs are extensively used in robotic perception tasks for efficiently modeling
large-scale probabilistic inference problems (Dellaert and Kaess, 2017). These methods
use graph-based optimization techniques, such as weighted least squares, to address key
problems like SLAM and situational awareness (Tourani et al., 2022; Bavle et al., 2022).
Typically, these optimization problems are addressed using second-order unconstrained
algorithms, including Gauss-Newton (Lai et al., 2017) and Levenberg–Marquardt
(Moré, 2006). Several well-established libraries, such as GTSAM (Dellaert et al., 2022), g2o
(Kümmerle et al., 2011), and SRRG2 (Grisetti et al., 2020), have been developed to provide
robust back-end implementations of these optimization algorithms, along with user-friendly
front-end interfaces tailored for robotic applications.

Frontiers in Robotics and AI 01 frontiersin.org

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2025.1698333
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2025.1698333&domain=pdf&date_stamp=2026-01-14
mailto:anas.abdelkarim@uni.lu
mailto:anas.abdelkarim@uni.lu
mailto:abdelkarim@eit.uni-kl.de
mailto:abdelkarim@eit.uni-kl.de
https://doi.org/10.3389/frobt.2025.1698333
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frobt.2025.1698333/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1698333/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1698333/full
https://github.com/snt-arg/ecg2o
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Abdelkarim et al. 10.3389/frobt.2025.1698333

Recent advancements in the literature have extended factor
graph–based optimization beyond perception tasks to also
encompass optimal control applications. The primary challenge
in this extension lies in handling constraints, where optimal control
problems inherently involve hard constraints, unlike perception
problems which are typically soft-constrained. However, factor
graph optimization can provide a unified framework for perception
and control tasks in robotics. Furthermore, this approach facilitates
the reuse of established and computationally efficient algorithms
available in factor graph libraries (Abdelkarim et al., 2025).
In contrast, traditional optimization frameworks widely used
in optimal control, such as CasADi (Andersson et al., 2019),
AMPL (Abdelkarim and Zhang, 2020; Abdelkarim et al., 2023),
and IPOPT (Wächter and Biegler, 2006), although highly effective,
do not naturally integrate with factor graph–based optimization
frameworks. This disconnect can introduce computational
inefficiencies and added complexity, particularly in robotic
applications that demand a seamless integration of perception
and control.

It is important to highlight that in optimal control, hard
equality constraints define strict and deterministic relationships
between variables. A typical example is the system dynamics, which
must be satisfied exactly to ensure that state transitions remain
physically consistent. In contrast, the motion and sensor models in
SLAM establish probabilistic or soft constraints between variables.
These constraints do not enforce exact relationships but instead
incorporate uncertainty directly into the factor graph formulation.
As a result, hard equality constraints enforce exact dependencies to
guarantee consistency, e.g., with the underlying physics, while soft
probabilistic constraints model uncertainty and enable more flexible
estimation.

In this work, we address the integration of hard equality
constraints within factor graphs. Our contributions can be
summarized as follows: (i) Method: we introduce an Sequential
Quadratic Programming (SQP)-inspired approach that leverages
the Karush-Kuhn-Tucker (KKT) conditions to natively integrate
hard equality constraints into the factor graph framework. (ii)
Implementation: we provide a lightweight, header-only C++ library,
ecg2o, that extends the g2o optimization framework with support
for both the Augmented Lagrangian (AL) method and the proposed
KKT-based approach. The library is publicly available at https://
github.com/snt-arg/ecg2o to foster reproducibility and further
research. In addition, we introduce a stopping criterion based on
the norm of the update step in g2o, ensuring termination once the
step size becomes sufficiently small. (iii) Validation: we conduct a
case study on trajectory-tracking optimal control, demonstrating
the effectiveness of the proposed method. Furthermore, we
benchmark our implementations against the penalty and AL
methods in GTSAM, highlighting the efficiency and robustness
of the implemented approaches.

The remainder of this paper is organized as follows. Section 2
reviews the state of the art in factor-graph-based optimization and
motivates the need for more efficient methods for equality constraint
handling. Section 3 introduces the necessary preliminaries,
including weighted least squares, Gauss–Newton for unconstrained
optimization, and the soft-constraint formulation. Section 4 presents
the AL and the proposed KKT-based Gauss–Newton approaches.
Section 5 reports the experimental evaluation comprising two case

studies: trajectory-tracking optimal control and a nonlinear least-
squares problem with equality constraints, where the proposed
implementation is also compared against the penalty and AL
methods in GTSAM. Finally, Section 6 concludes the paper and
outlines directions for future work.

2 State of the art and motivation

2.1 State of the art

While factor graphs have initially been introduced to
handle robotic perception tasks, they are increasingly used also
for robotic optimal control problems, as summarized in the
comprehensive review (Abdelkarim et al., 2025) along with a
description of various methods for contsraint handling. In the
following, we provide an overview of the key literature in this area.

Chen et al., 2019 introduced a general framework for applying
Linear Quadratic Regulators (LQR) using factor graphs. In this
framework, equality constraints are used to enforce system dynamics
and are incorporated into the cost function as a weighted least
squares term. By assigning a sufficiently large weighting matrix,
these equality constraints effectively act as soft constraints, which
are approximately satisfied as the weighting approaches infinity.

Yang et al. (2021) extended this approach by introducing
additional equality constraints between variables within the
LQR framework. Factor graph–based LQR has been applied
to a variety of domains, including wireless mesh network
control (Darnley, 2021), tactile estimation and extrinsic contact
control (Kim et al., 2023), and trajectory generation for graffiti
robots (Chen et al., 2022a; Chen et al., 2022b). Notably, these
implementations have primarily relied on the GTSAM library to
formulate and solve the optimization problems.

Beyond LQR-based approaches, more advanced constrained
optimization techniques have been explored for handling equality
constraints, most notably the AL method (Bertsekas, 2014). The
fundamental idea of AL is to introduce Lagrange multiplier terms
and a quadratic penalty term for constraint violations into the
cost function, thereby forming the AL function. The optimization
process involves two nested loops: the inner loop minimizes the
AL function while keeping the Lagrange multipliers fixed, while the
outer loop updates the Lagrange multipliers and penalty parameters
until a specified stopping criterion is met.

The AL method has been implemented in GTSAM for improved
state estimation (Sodhi et al., 2020) and has been applied in
navigation and 3D manipulation planning (Qadri et al., 2022).
Furthermore, the AL has been utilized in SRRG2 for localization
and control of unicycle robots (Bazzana et al., 2022) and for pseudo-
omnidirectional platform control (Bazzana et al., 2024).

While these methods have been successfully applied to various
robotics and control problems, existing approaches still suffer from
key limitations as described below.

2.2 Motivation

Incorporating equality constraints into factor graphs has
been primarily achieved through two approaches: soft constraints

Frontiers in Robotics and AI 02 frontiersin.org

https://doi.org/10.3389/frobt.2025.1698333
https://github.com/snt-arg/ecg2o
https://github.com/snt-arg/ecg2o
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Abdelkarim et al. 10.3389/frobt.2025.1698333

and the AL method. In the soft constraints approach, enforcing
equality constraints requires assigning an infinitely large weighting
matrix, which is not feasible in practical implementations.
Instead, a large but finite weighting matrix is typically used.
However, choosing an appropriate weight requires careful
tuning to achieve balance between effectively enforcing the
constraint and avoiding ill-conditioned optimization problems.
If the original optimization problem is already ill-conditioned,
determining an appropriate weighting matrix becomes even more
challenging Abdelkarim et al. (2025).

In contrast, the AL method systematically enforces equality
constraints without requiring direct weight tuning. However, the AL
has notable limitations. First, as previously mentioned, it employs
a nested loop structure, which may lead to unnecessary iterations
in the inner loop. Second, the performance of the AL method is
highly dependent on hyperparameter tuning Nocedal and Wright
(2006), including the initial penalty term, penalty update factor,
maximum penalty value, inner-loop iteration limit, and stopping
criteria. Suboptimal parameter selection can significantly degrade
performance.

To address these limitations, we propose an alternative approach
that extends the Gauss-Newton and Levenberg–Marquardt
methods, which are the primary unconstrained optimization
algorithms used in factor graphs, by incorporating KKT conditions
to explicitly enforce equality constraints. This approach offers
faster convergence and eliminates the need for extensive
hyperparameter tuning. Furthermore, despite g2o′s efficiency in
robotic perception tasks, it does not provide built-in mechanisms
for explicitly handling equality constraints. This limitation
necessitates either manual constraint encoding using soft constraints
(which leads to tuning challenges) or extending the solver
framework itself.

3 Preliminaries

3.1 Weighted least squares in factor graphs

Factor graphs consist of variable nodes and factor nodes and
represent a factorization of probability density functions (PDFs),
which are typically assumed to follow a Gaussian distribution.
In maximum a posteriori (MAP) inference, the objective is
to maximize the factorized probability function, mathematically
formulated in Equation 1.

XMAP = argmax
X

r

∏
j=1

exp(−1
2
||ej(Xj)||2Ωj

). (1)

Here, exp () represents the exponential function, ||e||2Ω = eTΩe
denotes the Mahalanobis norm, and .T is the transpose operator for
vectors or matrices. The term ej is an error function associated with
the factor j, which depends on a subset of the variable nodes, and
Ωj is the information matrix of factor j, computed as the inverse of
the covariance matrix. Furthermore, X is the vector containing all
variable nodes Xj.

Since maximizing the MAP objective is equivalent to
minimizing the negative log-likelihood, this optimization problem
can be reformulated as a weighted least squares problem

(Abdelkarim et al., 2025, § III.B)

XMAP = arg min
X

r

∑
j=1
||ej(Xj)||2Ωj

. (2)

In the following sections, we present solutions to the optimization
problem defined in Equation 2, first without hard constraints and
then with incorporated hard equality constraints.

3.2 Gauss-newton method for
unconstrained least-squares

In factor graphs, the factor nodes typically define a nonlinear
error function. Thus, optimization methods operate on a linearized
version of this function. This is achieved through first-order Taylor
expansion described in Equation 3.

ej(X̃j +ΔXj⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Xj

)≈ ̂ej(ΔXj) = ej (X̃j) +Jej
(X̃j)ΔXj, (3)

where ̃Xj is a linearization point and J ej(X̃j) is the Jacobian matrix of
the error function of the factor j evaluated at the linearization point
X̃j.

Applying the stationarity condition (the gradient of the cost
function vanishes at an optimal point), the Gauss-Newton update
step at iteration i is computed as

r

∑
j=1

map(Hi
j)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Hi

ΔXi
gn =

r

∑
j=1

map(bi
j)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
bi

, (4)

where the contribution of the factor j at iteration i in building the
linear system is

Hi
j = ||Jej
(Xi

j)||
2
Ωj

(5a)

bi
j = −Jej
(Xi

j)
TΩjej (X

i
j) , (5b)

and map(⋅), in Equation 4, is an operator that maps the local Hi
j

and bi
j to the global Hi and bi. This mapping accounts for the fact

that error functions generally depend only on subsets of the variable
nodes, and map(⋅) ensures proper zero-padding where necessary.

Constructing and solving this linear system, presented in
Equation 5, is a key computational step in factor graph optimization.
Once the linear system is solved, the variable nodes are updated in
each iteration as described in Equation 6.

Xi+1 = Xi +ΔXi
gn. (6)

Although the linear system formulation remains the same
across unconstrained optimization methods, different techniques
introduce modifications. For example, in the Levenberg-Marquardt
method, numerical stability is improved by adding a positive
damping term to the diagonal elements of the matrix H, mitigating
issues related to ill-conditioned matrices.

Frontiers in Robotics and AI 03 frontiersin.org

https://doi.org/10.3389/frobt.2025.1698333
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Abdelkarim et al. 10.3389/frobt.2025.1698333

3.3 Equality constraints as soft constraints

For vector-valued equality constraints hj(Xj) = 0, a common
approach is to add a quadratic penalty ||hj(Xj)||2Whj

 with a large
positive-definite (typically diagonal) weighting matrix Whj

 to the
factor-graph objective in (2). This yields the unconstrained problem
as presented in Equation 7.

min
X

r

∑
j=1
||ej (Xj) ||2Ωj

+
l

∑
j=1
||hj (Xj) ||2Whj

. (7)

In a factor graph, this is implemented by adding one cost factor
per constraint with error ehj

= hj(Xj) and information matrix Ωhj
=

Whj
. In the limit Whj

→∞, the optimizer drives hj(Xj)→0. In
practice, however, very large weights can cause ill-conditioning
and sensitivity to variable/constraint scaling, so careful (problem-
dependent) weighting or normalization is required.

4 Methodology

We consider the optimization problem formulated in Equation
2, now extended with linearly independent equality constraints:

min
X

r

∑
j=1
||ej (Xj) ||2Ωj

(8a)

s.t. hj (Xj) = 0 j = 1,…, l (8b)

The associated Lagrangian (Abdelkarim, 2020, §2.4.2) for the
optimization problem in Equation 8 is given in Equation 9.

L (X,γ) =
r

∑
j=1
||ej (Xj) ||2Ωj

+
l

∑
j=1

γhj

Thj (Xj) , (9)

where the first term is the standard factor-graph objective (regular
factors) and the second term introduces the Lagrange multipliers γhn

for the equality constraints.
This section provides a brief overview of the two methods

implemented in ecg2o: the AL method and the KKT-based
approach. Throughout, we use ||v||2W = vTWv.

4.1 Augmented lagrangian method

Inspired by the approach presented in (Bazzana et al., 2024),
we implemented the AL method in ecg2o to enforce equality
constraints. Particularly, the AL method adds a penalty term
||hj(Xj)||2Phn

 for each equality constraint, to the Lagrangian function.
This results in the following augmented Lagrangian function:

Laug (X,γ) = L (X,γ) +
l

∑
n=1
||hn (Xn) ||2Phn

, (10)

where the penalty term in Equation 10 is weighted by the matrix
described in Equation 11.

Phn
= diag(ρhn,1

,…,ρhn,d
) (11)

and diag(⋅) represents a diagonal matrix of dimension d. The penalty
parameter ρ. Can either be uniform across all constraints or vary

based on the algorithm’s settings. Here, we assume a uniform ρ. For
all constraints.

Notably, in the AL, the penalty terms do not need to be
excessively large, as discussed in (Nocedal and Wright, 2006,
Example 17.4). The algorithm iteratively minimizes the AL function
with respect to X, using the stationary condition, which yields an
update step similar to Equation 4.

While the contribution of regular factors remains unchanged (as
described in Equation 5), the contribution of equality factor n at
iteration i can be described as shown in Equation 12.

Hi
n = ||Jhn

(Xi
n)||

2
Phn

(12a)

bi
n = −Jhn

(Xi
n)

T (Phn
hn (Xi

n) − γhn
) . (12b)

The AL algorithm implemented in the ecg2o library
iteratively solves the inner-loop unconstrained optimization while
incorporating both cost and equality factor contributions when
constructing the linear system. Upon satisfying the termination
criteria or reaching the maximum number of inner-loop iterations,
the algorithm exits the inner loop and updates the Lagrange
multipliers using Equation 13.

γi+1
hn
= γi

hn
+Phn

hn (Xi
n) . (13)

Optionally, we increase the penalties according to Equation 14.

ρ. =max(ρmax,αρ.) , (14)

where ρmax is the upper bound on the penalty parameter, and α ≥ 1
is the penalty update factor.

4.2 KKT-based gauss-newton method

In this section, we present an SQP-inspired method that enables
factor graphs to natively solve equality-constrained optimization
problems by leveraging KKT conditions. Unlike traditional
approaches that require specialized algorithms like Penalty or
Augmented Lagrangian methods, our approach demonstrates
that factor graphs inherently possess the mathematical structure
to handle equality constraints through appropriate factor design,
eliminating the need for algorithmic modifications or nested loops.

Our core contribution is the formulation of equality constraints
as regular factor nodes that, when combined with standard factor
graph optimization, naturally enforce the KKT conditions of
the original constrained problem. This transforms the equality
constrained problem into an unconstrained optimization over
an extended variable space that includes both original variables
and Lagrange multipliers. Crucially, this formulation maintains
the computational efficiency and sparsity exploitation of standard
factor graph optimization while ensuring exact constraint
satisfaction—unlike penalty methods that only achieve approximate
satisfaction.

The mathematical foundation establishes that standard Gauss-
Newton updates applied to our specially designed equality
constraint factors yield iterations equivalent to SQP methods.
This equivalence represents a significant theoretical advancement,
demonstrating that factor graphs can directly implement

Frontiers in Robotics and AI 04 frontiersin.org

https://doi.org/10.3389/frobt.2025.1698333
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Abdelkarim et al. 10.3389/frobt.2025.1698333

sophisticated equality-constrained optimization without external
algorithmic frameworks.

Consistent with the SQP framework, each subproblem is
constructed by linearizing the nonlinear system. We begin by
linearizing both the error functions ej and the equality constraints
hj around the current estimate X̃j. Their linearized versions, denoted
by ̂ej and ĥj respectively, are given by:

ej(X̃j +ΔXj⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Xj

)≈ ̂ej(ΔXj) = ej (X̃j) +Jej
(X̃j)ΔXj, (15a)

hj(X̃j +ΔXj⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Xj

)≈ ĥj(ΔXj) = hj (X̃j) +Jhj
(X̃j)ΔXj. (15b)

The Lagrangian function for the linearized system in Equation
15 is given in Equation 16.

L̂ (ΔX,γ) =
r

∑
j=1
|| ̂ej(ΔXj)||2Ωj

+
l

∑
j=1

γhn

Tĥj (ΔXj) , (16)

Let ΔX∗,γ∗ be the local optimal points. These must satisfy the
KKT conditions (Boyd and Vandenberghe, 2004, §5.3.3) of the
linearized optimization problem:

∇ΔXL̂ (ΔX∗,γ∗) = 0, ĥ (ΔX∗) = 0, (17)

where ∇, in Equation 17, denotes the gradient, and ĥ is the vector of
all equality constraints.

Assuming γ∗ = γi +Δγi, the KKT system is formulated as:

[

[

Hi Jh (Xi)T

Jh (Xi) 0
]

]⏟⏟⏟
KKTmatrix

[

[

ΔXi
gn

Δγi
]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
updatestep

= [

[

bi −J T
h (X

i)γi

−h(Xi)
]

]⏟⏟⏟
KKTvector

(18)

The introduction of equality constraints modifies the linear
system compared to unconstrained optimization, as highlighted in
red. The key challenge lies in representing these constraints within
the factor graph using appropriate variables and factors. Specifically,
how can we define the error function and the weighting matrix
associated with the equality constraints to enforce them effectively?

4.2.1 Design of equality constraint factors
We propose defining a regular factor for each equality constraint

such that it produces the same update step as in (18). Specifically,
for an equality constraint hj, we define a regular factors with the
following error function and weighting matrix:

ehj
= [

[

hj (Xj)

γhj

]

]
, Ωhj
= [

[

0d×d Id×d

Id×d 0d×d

]

]
, (19)

where hj and γhj
 have the dimension d, and I denotes the identity

matrix. This formulation results in a linear system equivalent to
the KKT system of the equality-constrained optimization problem.
Consequently, it allows us to enforce equality constraints while
maintaining an unconstrained factor graph structure. Furthermore,
in this approach, the Lagrange multipliers are treated as variable
nodes, naturally integrating them into the optimization process.

For ease of implementation, the ecg2o library provides
a dedicated class for equality factors, which automatically

incorporates Lagrange multipliers and defines the associated
weighting matrix described in Equation 19. Additionally, the class
simplifies the Jacobian implementation for equality factors, making
the equality implementation as straightforward as for regular factors.

This design ensures an efficient and flexible extension of
factor graphs, maintaining the computational advantages of existing
optimization techniques while enabling constrained optimization in
a natural manner.

5 Results and evaluation

In this section, we present two case studies: (i) an optimal control
problem, and (ii) a comparison between the AL and penalty methods
in GTSAM, and the AL and KKT-based methods in ecg2o.

5.1 Case study 1

We solve here an optimization problem that generates a
sequence of control force inputs for an autonomous car to track
a reference velocity trajectory. Our objective is to compare the
performance of the AL method with our proposed approach,
which models equality constraints as regular edges by incorporating
Lagrange multipliers.

5.1.1 Problem formulation
Inspired by Jia et al. (2023), we formulate the optimal

control problem as

min (||xN − rN||2P +
N−1

∑
k=1
(||xk − rk||2Q + ||uk||2R) (20a)

s.t. xk+1 − [xk +
δt
m
(uk − Fresis)] = 0, k = 0,…,N− 1, (20b)

where xk represents the vehicle velocity, uk is the input force
applied to the car (measured in Newtons), and rk is the reference
velocity. In addition, the subscript k denotes the time instance, while
δt represents the sampling time of the controller, which defines the
horizon length.

The resistance force Fresis depends on the gravitational force
Fgrav, the rolling resistance Froll, and the aerodynamic resistance
force Fair. The total resistance force is given by

Fresist =mvg sin θ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Fgrav

+ 1
2

ρaA fcax2
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Fair

+mvgcrcosθ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Froll

. (21)

The model is nonlinear due to the aerodynamic resistance force.
The model parameters are as follows: m represents the effective mass
of the mass under the effect of the rotational mass of the powertrain,
while mv denotes the actual mass of the vehicle. The gravitational
constant is given by g, and θ represents the road slope. The air
density is denoted by ρa, and A f is the frontal area of the vehicle. The
coefficients ca and cr correspond to the air drag and rolling resistance
coefficient, respectively.

The factor graph representing the optimal control problem in
Equation 20 is illustrated in Figure 1, where the equality constraints
are incorporated using our proposed approach.

Frontiers in Robotics and AI 05 frontiersin.org

https://doi.org/10.3389/frobt.2025.1698333
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Abdelkarim et al. 10.3389/frobt.2025.1698333

FIGURE 1
The factor graph for the optimal control problem. The red circles represent the cost terms as regular factors, while the blue circles illustrate the
representation of equality constraints as regular factors. k ∈ {0, …, N-1}.

5.1.2 Evaluation
The reference trajectory for the velocity profile consists of 385

points with a sampling rate of 1 s. Using the factor graph-based
optimization method, we solve the optimal control problem with
weighting parameters Q = P = 1000 and R = 0.0007 to determine the
optimal input sequence. Applying this control sequence results in the
optimal velocity profile. The velocity profile corresponding to the
optimal control sequence obtained from solving the optimization
problem is illustrated in Figure 2. While different controller
performances can be achieved with varying parameter settings,
our primary focus is to evaluate the optimizer itself. The solution
of the optimization problem using the AL method results in a
velocity trajectory that is quite similar to our proposed approach.
This is because both methods share the same stopping criteria.
We computed the root mean squared error (RMSE) between both
trajectories to quantify their similarity. The RMSE between the
velocity trajectories obtained from the AL method and our proposed
approach is 0.2426, indicating a high degree of similarity.

5.1.2.1 Iteration numbers
In our case, the presence of nonlinear terms in the equality

constraints might influence the number of iterations required for
convergence. To address this effect, we considered an approximation
for the nonlinear aerodynamic resistance term using a linear model:

x2 = p1 + p2x, (22)

where p1 and p2, in Equation 22, are constants. Therefore, we
considered five distinct scenarios for comparison. First, we solve
the unconstrained optimization problem, where the constraints
are ignored, serving as a baseline to understand the effect of
enforcing constraints. Next, we apply our proposed method to both
a linearized dynamic model and the nonlinear system, allowing us
to analyze how constraint approximation influences performance.
Additionally, we compare these results with the AL approach,
solving the problem in both linearized and nonlinear forms. In
addition, we consider three different reference trajectory lengths—5,
100, and 385—to evaluate the optimization performance across
varying problem sizes. The results of the iteration number across all
scenarios for the three trajectory lengths are summarized in Figure 3.

Figure 3 shows that the iteration number in the unconstrained
optimization matches that of our proposed method with linearized
dynamics, converging in just two iterations across all trajectory
lengths. For nonlinear dynamics, our method requires slightly more
iterations (3–4), reflecting the added complexity while maintaining
efficiency.

In contrast, the AL method requires 11–13 iterations,
approximately three times more than our proposed method,
highlighting its higher computational cost. These results were
obtained after careful parameter tuning, where we set the maximum
number of inner iterations to 1, with ρinit = 10, ρmax = 50000,
and α = 10. However, further tuning is still required for different
optimization problems.

Frontiers in Robotics and AI 06 frontiersin.org

https://doi.org/10.3389/frobt.2025.1698333
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Abdelkarim et al. 10.3389/frobt.2025.1698333

FIGURE 2
Optimal velocity trajectory obtained from the factor graph-based optimal control problem.

FIGURE 3
Iteration number across different optimization scenarios and trajectory lengths.

Regarding sensitivity to the initial value of the Lagrange
multiplier, we found that both algorithms maintained a stable
iteration number across different Lagrange multiplier initial
values.

5.1.2.2 Computation time
We compare the computation time for the nonlinear dynamics

scenario across three different trajectory lengths. The optimization
problem is solved 1,000 times, and the reported computation time
represents the average over these runs to ensure consistency. All
experiments were conducted on a Linux system with an Intel

Core i9 12th Gen processor and 32 GB of RAM. The results
are shown in Figure 4.

The computation time for the AL method is slightly lower
than that of our proposed method, which was expected since our
solver handles a larger linear system in each iteration. However,
advancements in linear solvers have reduced the impact of solving
larger systems on overall computation time, making the difference
less apparent. The increase in computation time for our method
ranges between 20% and 35%, but the significant reduction in the
number of iterations makes it a worthwhile trade-off, especially for
applications requiring fast convergence.

Frontiers in Robotics and AI 07 frontiersin.org

https://doi.org/10.3389/frobt.2025.1698333
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Abdelkarim et al. 10.3389/frobt.2025.1698333

FIGURE 4
Computation time per iteration for different trajectory lengths using the Proposed Method and Augmented Lagrangian (AL) Method.

5.2 Case study 2: nonlinear least–squares
with an equality constraint

For further validation of the implemented solvers, we adopted
a nonlinear equality-constrained problem from the GTSAM library.
In this case study, four solvers are considered: Penalty (GTSAM), AL
(GTSAM), AL (ecg2o), and the KKT-based method (ecg2o). The
constrained optimization problem is formulated in Equation 23.

min
x1,x2

1
2
(x1 − e−x2)2 + 1

2
(x2

1 + 2x2 + 1)2, (23a)

s.t. x1 + x3
1 + x2 + x2

2 = 0. (23b)

A key distinction between our AL implementation in ecg2o
and GTSAM’s approach lies in the inner iteration control strategy.
In the AL method, each outer iteration solves an equivalent
unconstrained optimization problem with fixed penalty parameters
and Lagrange multipliers. While one could solve this inner problem
to high accuracy, this is computationally inefficient since the
penalty and multiplier estimates are updated in subsequent outer
iterations. Therefore, we explicitly limit the maximum number of
inner iterations to balance computational efficiency with sufficient
progress toward constraint satisfaction. In ecg2o, we set this limit
to five inner iterations per outer loop, whereas GTSAM employs a
different convergence strategy without such explicit limits.

This difference is illustrated in Figure 5, which shows the number
of inner iterations per outer iteration for each method. The choice
of inner iteration limit represents a trade-off: too few iterations
may hinder progress, while too many may waste computational
effort on prematurely accurate inner solutions. Notably, when we
increased the maximum inner iteration limit from 5 to 50 in our AL

implementation for the initial guess (−0.2,−0.2), the total iteration
count increased from 20 to 45 without additional improvement in
solution quality.

The iteration numbers reported in Table 1 are measured
consistently across implementations. In ecg2o, we directly count
the number of inner iterations (i.e., iterations where the main
calculations and linear system updates occur), while for GTSAM
we sum the reported uopt_iters across all outer iterations to obtain
a comparable metric. All solvers successfully converged to the
optimal solution x∗ = (0,0) with accuracy better than 10−4 across all
initial guesses

x(0) ∈ {(−1,−1) , (−0.2,−0.2) , (0,0) , (2,2)} .

The KKT-based Gauss-Newton method in ecg2o achieved the
fastest convergence (average of five iterations), followed by AL in
ecg2o (average of 20 iterations). Both GTSAM baselines required
substantially more iterations (averages of 73 for penalty and 72 for
AL). The performance advantage of our KKT-based approach is
consistent across initial conditions, demonstrating its efficiency for
this class of constrained problems.

We further investigated the effect of the penalty parameter
α on AL performance. Increasing α from 1.5 to 2 reduced the
iteration count from 20 to 18 for the (−0.2,−0.2) case, as accelerated
penalty growth drives faster constraint satisfaction. However,
overly aggressive penalty increases risk numerical ill-conditioning,
particularly in large-scale systems. This parameter sensitivity
highlights a key advantage of our KKT-based method, which
requires no such tuning while maintaining robust performance. The
AL parameters used in this study were ρinit = 1, ρmax = 50000, and
α = 1.5, with a maximum of five inner iterations per outer loop.

Frontiers in Robotics and AI 08 frontiersin.org

https://doi.org/10.3389/frobt.2025.1698333
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Abdelkarim et al. 10.3389/frobt.2025.1698333

FIGURE 5
Inner iterations number per outer iteration index for different methods and initial guesses.

TABLE 1 Case study 2: iterations number to convergence for each method and initial guess.

Method x(0) = (−1,−1) x(0) = (−0.2,−0.2) x(0) = (0,0) x(0) = (2,2) Avg.

Penalty (GTSAM) 56 75 79 82 73.0

AL (GTSAM) 72 57 61 98 72.0

AL (ecg2o) 20 20 19 21 20.0

KKT-based (ecg2o) 6 4 1 9 5.0

6 Conclusion and future work

In this paper, we addressed the challenge of incorporating
equality constraints into factor graphs, an essential extension for
applications beyond robotic perception, such as optimal control.
While the AL method is the state-of-the-art approach for handling
equality constraints, we proposed an SQP-inspired, KKT-based
method that natively integrates constraints within factor graph
optimization without requiring additional iterative adjustments.

The proposed approach outperforms the AL method
by achieving faster convergence and eliminating the need

for parameter tuning, thereby enhancing its practicality.
Its efficiency and robustness were validated through a
case study on velocity tracking in autonomous vehicles.
In addition, the implementation was compared against the
Penalty method and AL in GTSAM, demonstrating superior
performance.

As future work, we aim to explore more advanced constrained
optimization techniques beyond AL, specifically targeting the
handling of inequality constraints within factor graph frameworks.
This would further expand the applicability of factor graphs to
control and planning problems in robotics.

Frontiers in Robotics and AI 09 frontiersin.org

https://doi.org/10.3389/frobt.2025.1698333
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Abdelkarim et al. 10.3389/frobt.2025.1698333

Data availability statement

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be directed
to the corresponding author.

Author contributions

AA: Validation, Conceptualization, Investigation, Writing –
review and editing, Software, Writing – original draft, Formal
Analysis, Visualization, Data curation, Methodology. DG:
Validation, Conceptualization, Supervision, Writing – review
and editing, Formal Analysis, Methodology, Visualization. HV:
Conceptualization, Supervision, Writing – review and editing,
Methodology, Formal Analysis, Funding acquisition, Visualization,
Project administration, Validation, Resources.

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. This research was funded
in whole, or in part, by the Luxembourg National Research Fund
(FNR), MOCCA Project, ref. 17041397. For the purpose of open
access, and in fulfilment of the obligations arising from the grant
agreement, the author has applied a Creative Commons Attribution
4.0 International (CC BY 4.0) license to any Author Accepted
Manuscript version arising from this submission.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The authors declare that no Generative AI was used in the
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in
this article has been generated by Frontiers with the support of
artificial intelligence and reasonable efforts have been made to
ensure accuracy, including review by the authors wherever possible.
If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or claim
that may be made by its manufacturer, is not guaranteed or endorsed
by the publisher.

References

Abdelkarim, A. (2020). Development of numerical solvers for online optimization
with application to MPC-Based energy-optimal adaptive cruise control. Master’s Thesis,
Tech. Univ. Kaiserslaut. doi:10.13140/RG.2.2.11897.28000

Abdelkarim, A., and Zhang, P. (2020). “Optimal scheduling of preventive
maintenance for safety instrumented systems based on mixed-integer programming,” in
Model-based safety and assessment: 7Th international symposium, IMBSA 2020, Lisbon,
Portugal, September 14–16, 2020, proceedings 7 (Springer), 83–96.

Abdelkarim, A., Jia, Y., and Gorges, D. (2023). “Optimization of vehicle-to-grid
profiles for peak shaving in microgrids considering battery health,” in IECON 2023-49th
annual conference of the IEEE industrial electronics society (IEEE), 1–6.

Abdelkarim, A., Voos, H., and Görges, D. (2025). Factor graphs in optimization-
based robotic control-a tutorial and review. IEEE Access 13, 28315–28334.
doi:10.1109/access.2025.3534993

Andersson, J. A., Gillis, J., Horn, G., Rawlings, J. B., and Diehl, M. (2019). Casadi:
a software framework for nonlinear optimization and optimal control. Math. Program.
Comput. 11, 1–36. doi:10.1007/s12532-018-0139-4

Bavle, H., Sanchez-Lopez, J. L., Shaheer, M., Civera, J., and Voos, H. (2022). S-
Graphs+: real-Time localization and mapping leveraging hierarchical representations.
IEEE Robotics Automation Lett. 8, 4927–4934. doi:10.1109/lra.2023.3290512

Bazzana, B., Guadagnino, T., and Grisetti, G. (2022). Handling constrained
optimization in factor graphs for autonomous navigation. IEEE Robotics Automation
Lett. 8, 432–439. doi:10.1109/lra.2022.3228175

Bazzana, B., Andreasson, H., and Grisetti, G. (2024). How-to augmented
lagrangian on factor graphs. IEEE Robotics Automation Lett. 9, 2806–2813.
doi:10.1109/lra.2024.3361282

Bertsekas, D. P. (2014). Constrained optimization and lagrange multiplier methods.
Academic Press.

Boyd, S. P., and Vandenberghe, L. (2004). Convex optimization. Cambridge, United
Kingdom: Cambridge University Press.

Chen, G., Zhang, F., and Dellaert, Y. (2019). LQR control using factor graphs.
Available online at: https://gtsam.org/2019/11/07/lqr-control.html (Accessed June 15,
2024).

Chen, G., Baek, S., Florez, J.-D., Qian, W., Leigh, S.-w., Hutchinson, S., et al. (2022a).
“Gtgraffiti: spray painting graffiti art from human painting motions with a cable driven
parallel robot,” in 2022 international conference on robotics and automation (ICRA)
(IEEE), 4065–4072.

Chen, G., Hutchinson, S., and Dellaert, F. (2022b). “Locally optimal estimation and
control of cable driven parallel robots using time varying linear quadratic Gaussian
control,” in 2022 IEEE/RSJ international conference on intelligent robots and systems
(IROS) (IEEE), 7367–7374.

Darnley, R. (2021). Flow control of wireless mesh networks using LQR and factor graphs.
Carnegie Mellon University. Master’s thesis.

Dellaert, F., and Kaess, M. (2017). Factor graphs for robot perception.
Found. Trends® Robotics 6, 1–139. doi:10.1561/2300000043

Dellaert, F., Agrawal, V., Roberts, R., Cunningham, A., Beall, C., Ta, D.-N., et al.
(2022). Borglab/GTSAM. doi:10.5281/zenodo.5794541

Grisetti, G., Guadagnino, T., Aloise, I., Colosi, M., Della Corte, B., and Schlegel,
D. (2020). Least squares optimization: from theory to practice. Robotics 9, 51.
doi:10.3390/robotics9030051

Jia, Y., Abdelkarim, A., Klingbeil, X., Savelsberg, R., and Görges, D. (2023).
Performance evaluation of energy-optimal adaptive cruise control in simulation and
on a test track. IFAC-PapersOnLine 56, 4994–5000. doi:10.1016/j.ifacol.2023.10.1276

Kim, S., Jha, D. K., Romeres, D., Patre, P., and Rodriguez, A. (2023). “Simultaneous
tactile estimation and control of extrinsic contact,” in 2023 IEEE international conference
on robotics and automation (ICRA) (IEEE), 12563–12569.

Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., and Burgard, W. (2011). “g2o:
a general framework for graph optimization,” in 2011 IEEE international conference on
robotics and automation (IEEE), 3607–3613.

Lai, W. H., Kek, S. L., and Tay, K. G. (2017). Solving nonlinear least squares problem
using gauss-newton method. Int. J. Innovative Sci. Eng. and Technol. 4 (1), 258–262.
Available online at: https://ijiset.com/vol4/v4s1/IJISET_V4_I01_35.pdf.

Moré, J. J. (2006). “The levenberg-marquardt algorithm: implementation and theory,”
in Numerical analysis: proceedings of the biennial conference held at Dundee, June 28–July
1, 1977 (Springer), 105–116.

Frontiers in Robotics and AI 10 frontiersin.org

https://doi.org/10.3389/frobt.2025.1698333
https://doi.org/10.13140/RG.2.2.11897.28000
https://doi.org/10.1109/access.2025.3534993
https://doi.org/10.1007/s12532-018-0139-4
https://doi.org/10.1109/lra.2023.3290512
https://doi.org/10.1109/lra.2022.3228175
https://doi.org/10.1109/lra.2024.3361282
https://gtsam.org/2019/11/07/lqr-control.html
https://doi.org/10.1561/2300000043
https://doi.org/10.5281/zenodo.5794541
https://doi.org/10.3390/robotics9030051
https://doi.org/10.1016/j.ifacol.2023.10.1276
https://ijiset.com/vol4/v4s1/IJISET_V4_I01_35.pdf
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Abdelkarim et al. 10.3389/frobt.2025.1698333

Nocedal, J., and Wright, S. J. (2006). Numerical optimization. Springer.

Qadri, M., Sodhi, P., Mangelson, J. G., Dellaert, F., and Kaess, M. (2022).
“Incopt: incremental constrained optimization using the bayes tree,” in 2022
IEEE/RSJ international conference on intelligent robots and systems (IROS) (IEEE),
6381–6388.

Sodhi, P., Choudhury, S., Mangelson, J. G., and Kaess, M. (2020). “ICS: incremental
constrained smoothing for state estimation,” in 2020 IEEE international conference on
robotics and automation (ICRA) (IEEE), 279–285.

Tourani, A., Bavle, H., Sanchez-Lopez, J. L., and Voos, H. (2022). Visual SLAM: what
are the current trends and what to expect? Sensors 22, 9297. doi:10.3390/s22239297

Wächter, A., and Biegler, L. T. (2006). On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming. Math. Programming
106, 25–57. doi:10.1007/s10107-004-0559-y

Yang, S., Chen, G., Zhang, Y., Choset, H., and Dellaert, F. (2021). “Equality
constrained linear optimal control with factor graphs,” in 2021 IEEE international
conference on robotics and automation (ICRA) (IEEE), 9717–9723.

Frontiers in Robotics and AI 11 frontiersin.org

https://doi.org/10.3389/frobt.2025.1698333
https://doi.org/10.3390/s22239297
https://doi.org/10.1007/s10107-004-0559-y
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

	1 Introduction
	2 State of the art and motivation
	2.1 State of the art
	2.2 Motivation

	3 Preliminaries
	3.1 Weighted least squares in factor graphs
	3.2 Gauss-newton method for unconstrained least-squares
	3.3 Equality constraints as soft constraints

	4 Methodology
	4.1 Augmented lagrangian method
	4.2 KKT-based gauss-newton method
	4.2.1 Design of equality constraint factors

	5 Results and evaluation
	5.1 Case study 1
	5.1.1 Problem formulation
	5.1.2 Evaluation
	5.1.2.1 Iteration numbers
	5.1.2.2 Computation time

	5.2 Case study 2: nonlinear least–squares with an equality constraint

	6 Conclusion and future work
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

