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Factor graph optimization serves as a fundamental framework for robotic 
perception, enabling applications such as pose estimation, simultaneous 
localization and mapping (SLAM), structure-from-motion (SfM), and situational 
modeling. Traditionally, these methods solve unconstrained least squares 
problems using algorithms such as Gauss-Newton and Levenberg-Marquardt. 
However, extending factor graphs with native support for hard equality 
constraints can yield more accurate state estimates and broaden their 
applicability, particularly in planning and control. Prior work has addressed 
equality handling either by soft penalties (large weights) or by nested-loop 
Augmented Lagrangian (AL) schemes. In this paper, we propose a novel 
extension of factor graphs that seamlessly incorporates hard equality constraints 
without requiring additional optimization techniques. Our approach maintains 
the efficiency and flexibility of existing second-order optimization techniques 
while ensuring constraint satisfaction. To validate the proposed method, an 
autonomous-vehicle velocity-tracking optimal control problem is solved and 
benchmarked against an AL baseline, both implemented in g2o. Additional 
comparisons are conducted in GTSAM, where the penalty method and AL are 
evaluated against our g2o implementations. Moreover, we introduce ecg2o, 
a header-only C++ library that extends the widely used g2o library with full 
support for hard equality-constrained optimization. This library, along with 
demonstrative examples and the optimal control problem, is available as open 
source at https://github.com/snt-arg/ecg2o.

KEYWORDS

constrained factor graphs, optimal control, SLAM, equality-constrained optimization, 
SQP 

 1 Introduction

Factor graphs are extensively used in robotic perception tasks for efficiently modeling 
large-scale probabilistic inference problems (Dellaert and Kaess, 2017). These methods 
use graph-based optimization techniques, such as weighted least squares, to address key 
problems like SLAM and situational awareness (Tourani et al., 2022; Bavle et al., 2022). 
Typically, these optimization problems are addressed using second-order unconstrained 
algorithms, including Gauss-Newton (Lai et al., 2017) and Levenberg–Marquardt 
(Moré, 2006). Several well-established libraries, such as GTSAM (Dellaert et al., 2022), g2o 
(Kümmerle et al., 2011), and SRRG2 (Grisetti et al., 2020), have been developed to provide 
robust back-end implementations of these optimization algorithms, along with user-friendly 
front-end interfaces tailored for robotic applications.
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Recent advancements in the literature have extended factor 
graph–based optimization beyond perception tasks to also 
encompass optimal control applications. The primary challenge 
in this extension lies in handling constraints, where optimal control 
problems inherently involve hard constraints, unlike perception 
problems which are typically soft-constrained. However, factor 
graph optimization can provide a unified framework for perception 
and control tasks in robotics. Furthermore, this approach facilitates 
the reuse of established and computationally efficient algorithms 
available in factor graph libraries (Abdelkarim et al., 2025). 
In contrast, traditional optimization frameworks widely used 
in optimal control, such as CasADi (Andersson et al., 2019), 
AMPL (Abdelkarim and Zhang, 2020; Abdelkarim et al., 2023), 
and IPOPT (Wächter and Biegler, 2006), although highly effective, 
do not naturally integrate with factor graph–based optimization 
frameworks. This disconnect can introduce computational 
inefficiencies and added complexity, particularly in robotic 
applications that demand a seamless integration of perception 
and control.

It is important to highlight that in optimal control, hard 
equality constraints define strict and deterministic relationships 
between variables. A typical example is the system dynamics, which 
must be satisfied exactly to ensure that state transitions remain 
physically consistent. In contrast, the motion and sensor models in 
SLAM establish probabilistic or soft constraints between variables. 
These constraints do not enforce exact relationships but instead 
incorporate uncertainty directly into the factor graph formulation. 
As a result, hard equality constraints enforce exact dependencies to 
guarantee consistency, e.g., with the underlying physics, while soft 
probabilistic constraints model uncertainty and enable more flexible 
estimation.

In this work, we address the integration of hard equality 
constraints within factor graphs. Our contributions can be 
summarized as follows: (i) Method: we introduce an Sequential 
Quadratic Programming (SQP)-inspired approach that leverages 
the Karush-Kuhn-Tucker (KKT) conditions to natively integrate 
hard equality constraints into the factor graph framework. (ii) 
Implementation: we provide a lightweight, header-only C++ library,
ecg2o, that extends the g2o optimization framework with support 
for both the Augmented Lagrangian (AL) method and the proposed 
KKT-based approach. The library is publicly available at https://
github.com/snt-arg/ecg2o to foster reproducibility and further 
research. In addition, we introduce a stopping criterion based on 
the norm of the update step in g2o, ensuring termination once the 
step size becomes sufficiently small. (iii) Validation: we conduct a 
case study on trajectory-tracking optimal control, demonstrating 
the effectiveness of the proposed method. Furthermore, we 
benchmark our implementations against the penalty and AL 
methods in GTSAM, highlighting the efficiency and robustness 
of the implemented approaches.

The remainder of this paper is organized as follows. Section 2 
reviews the state of the art in factor-graph-based optimization and 
motivates the need for more efficient methods for equality constraint 
handling. Section 3 introduces the necessary preliminaries, 
including weighted least squares, Gauss–Newton for unconstrained 
optimization, and the soft-constraint formulation. Section 4 presents 
the AL and the proposed KKT-based Gauss–Newton approaches. 
Section 5 reports the experimental evaluation comprising two case 

studies: trajectory-tracking optimal control and a nonlinear least-
squares problem with equality constraints, where the proposed 
implementation is also compared against the penalty and AL 
methods in GTSAM. Finally, Section 6 concludes the paper and 
outlines directions for future work. 

2 State of the art and motivation

2.1 State of the art

While factor graphs have initially been introduced to 
handle robotic perception tasks, they are increasingly used also 
for robotic optimal control problems, as summarized in the 
comprehensive review (Abdelkarim et al., 2025) along with a 
description of various methods for contsraint handling. In the 
following, we provide an overview of the key literature in this area.

Chen et al., 2019 introduced a general framework for applying 
Linear Quadratic Regulators (LQR) using factor graphs. In this 
framework, equality constraints are used to enforce system dynamics 
and are incorporated into the cost function as a weighted least 
squares term. By assigning a sufficiently large weighting matrix, 
these equality constraints effectively act as soft constraints, which 
are approximately satisfied as the weighting approaches infinity.

Yang et al. (2021) extended this approach by introducing 
additional equality constraints between variables within the 
LQR framework. Factor graph–based LQR has been applied 
to a variety of domains, including wireless mesh network 
control (Darnley, 2021), tactile estimation and extrinsic contact 
control (Kim et al., 2023), and trajectory generation for graffiti 
robots (Chen et al., 2022a; Chen et al., 2022b). Notably, these 
implementations have primarily relied on the GTSAM library to 
formulate and solve the optimization problems.

Beyond LQR-based approaches, more advanced constrained 
optimization techniques have been explored for handling equality 
constraints, most notably the AL method (Bertsekas, 2014). The 
fundamental idea of AL is to introduce Lagrange multiplier terms 
and a quadratic penalty term for constraint violations into the 
cost function, thereby forming the AL function. The optimization 
process involves two nested loops: the inner loop minimizes the 
AL function while keeping the Lagrange multipliers fixed, while the 
outer loop updates the Lagrange multipliers and penalty parameters 
until a specified stopping criterion is met.

The AL method has been implemented in GTSAM for improved 
state estimation (Sodhi et al., 2020) and has been applied in 
navigation and 3D manipulation planning (Qadri et al., 2022). 
Furthermore, the AL has been utilized in SRRG2 for localization 
and control of unicycle robots (Bazzana et al., 2022) and for pseudo-
omnidirectional platform control (Bazzana et al., 2024).

While these methods have been successfully applied to various 
robotics and control problems, existing approaches still suffer from 
key limitations as described below. 

2.2 Motivation

Incorporating equality constraints into factor graphs has 
been primarily achieved through two approaches: soft constraints 
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and the AL method. In the soft constraints approach, enforcing 
equality constraints requires assigning an infinitely large weighting 
matrix, which is not feasible in practical implementations. 
Instead, a large but finite weighting matrix is typically used. 
However, choosing an appropriate weight requires careful 
tuning to achieve balance between effectively enforcing the 
constraint and avoiding ill-conditioned optimization problems. 
If the original optimization problem is already ill-conditioned, 
determining an appropriate weighting matrix becomes even more 
challenging Abdelkarim et al. (2025).

In contrast, the AL method systematically enforces equality 
constraints without requiring direct weight tuning. However, the AL 
has notable limitations. First, as previously mentioned, it employs 
a nested loop structure, which may lead to unnecessary iterations 
in the inner loop. Second, the performance of the AL method is 
highly dependent on hyperparameter tuning Nocedal and Wright 
(2006), including the initial penalty term, penalty update factor, 
maximum penalty value, inner-loop iteration limit, and stopping 
criteria. Suboptimal parameter selection can significantly degrade 
performance.

To address these limitations, we propose an alternative approach 
that extends the Gauss-Newton and Levenberg–Marquardt 
methods, which are the primary unconstrained optimization 
algorithms used in factor graphs, by incorporating KKT conditions 
to explicitly enforce equality constraints. This approach offers 
faster convergence and eliminates the need for extensive 
hyperparameter tuning. Furthermore, despite g2o′s efficiency in 
robotic perception tasks, it does not provide built-in mechanisms 
for explicitly handling equality constraints. This limitation 
necessitates either manual constraint encoding using soft constraints 
(which leads to tuning challenges) or extending the solver 
framework itself. 

3 Preliminaries

3.1 Weighted least squares in factor graphs

Factor graphs consist of variable nodes and factor nodes and 
represent a factorization of probability density functions (PDFs), 
which are typically assumed to follow a Gaussian distribution. 
In maximum a posteriori (MAP) inference, the objective is 
to maximize the factorized probability function, mathematically 
formulated in Equation 1.

XMAP = argmax
X

r

∏
j=1

exp(−1
2
||ej(Xj)||2Ωj

). (1)

Here, exp () represents the exponential function, ||e||2Ω = eTΩe
denotes the Mahalanobis norm, and .T is the transpose operator for 
vectors or matrices. The term ej is an error function associated with 
the factor j, which depends on a subset of the variable nodes, and 
Ωj is the information matrix of factor j, computed as the inverse of 
the covariance matrix. Furthermore, X is the vector containing all 
variable nodes Xj.

Since maximizing the MAP objective is equivalent to 
minimizing the negative log-likelihood, this optimization problem 
can be reformulated as a weighted least squares problem 

(Abdelkarim et al., 2025, § III.B)

XMAP = arg min
X

r

∑
j=1
||ej(Xj)||2Ωj

. (2)

In the following sections, we present solutions to the optimization 
problem defined in Equation 2, first without hard constraints and 
then with incorporated hard equality constraints. 

3.2 Gauss-newton method for 
unconstrained least-squares

In factor graphs, the factor nodes typically define a nonlinear 
error function. Thus, optimization methods operate on a linearized 
version of this function. This is achieved through first-order Taylor 
expansion described in Equation 3.

ej(X̃j +ΔXj⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Xj

)≈ ̂ej(ΔXj) = ej (X̃j) +Jej
(X̃j)ΔXj, (3)

where ̃Xj is a linearization point and J ej(X̃j) is the Jacobian matrix of 
the error function of the factor j evaluated at the linearization point 
X̃j.

Applying the stationarity condition (the gradient of the cost 
function vanishes at an optimal point), the Gauss-Newton update 
step at iteration i is computed as

r

∑
j=1

map(Hi
j)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Hi

ΔXi
gn =

r

∑
j=1

map(bi
j)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
bi

, (4)

where the contribution of the factor j at iteration i in building the 
linear system is

Hi
j = ||Jej
(Xi

j)||
2
Ωj

(5a)

bi
j = −Jej
(Xi

j)
TΩjej (X

i
j) , (5b)

and map(⋅), in Equation 4, is an operator that maps the local Hi
j

and bi
j to the global Hi and bi. This mapping accounts for the fact 

that error functions generally depend only on subsets of the variable 
nodes, and map(⋅) ensures proper zero-padding where necessary.

Constructing and solving this linear system, presented in 
Equation 5, is a key computational step in factor graph optimization. 
Once the linear system is solved, the variable nodes are updated in 
each iteration as described in Equation 6.

Xi+1 = Xi +ΔXi
gn. (6)

Although the linear system formulation remains the same 
across unconstrained optimization methods, different techniques 
introduce modifications. For example, in the Levenberg-Marquardt 
method, numerical stability is improved by adding a positive 
damping term to the diagonal elements of the matrix H, mitigating 
issues related to ill-conditioned matrices. 
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3.3 Equality constraints as soft constraints

For vector-valued equality constraints hj(Xj) = 0, a common 
approach is to add a quadratic penalty ||hj(Xj)||2Whj

 with a large 
positive-definite (typically diagonal) weighting matrix Whj

 to the 
factor-graph objective in (2). This yields the unconstrained problem 
as presented in Equation 7.

min
X

r

∑
j=1
||ej (Xj) ||2Ωj

+
l

∑
j=1
||hj (Xj) ||2Whj

. (7)

In a factor graph, this is implemented by adding one cost factor 
per constraint with error ehj

= hj(Xj) and information matrix Ωhj
=

Whj
. In the limit Whj

→∞, the optimizer drives hj(Xj)→0. In 
practice, however, very large weights can cause ill-conditioning 
and sensitivity to variable/constraint scaling, so careful (problem-
dependent) weighting or normalization is required. 

4 Methodology

We consider the optimization problem formulated in Equation 
2, now extended with linearly independent equality constraints:

min
X

r

∑
j=1
||ej (Xj) ||2Ωj

(8a)

s.t. hj (Xj) = 0 j = 1,…, l (8b)

The associated Lagrangian (Abdelkarim, 2020, §2.4.2) for the 
optimization problem in Equation 8 is given in Equation 9.

L (X,γ) =
r

∑
j=1
||ej (Xj) ||2Ωj

+
l

∑
j=1

γhj

Thj (Xj) , (9)

where the first term is the standard factor-graph objective (regular 
factors) and the second term introduces the Lagrange multipliers γhn

for the equality constraints.
This section provides a brief overview of the two methods 

implemented in ecg2o: the AL method and the KKT-based 
approach. Throughout, we use ||v||2W = vTWv. 

4.1 Augmented lagrangian method

Inspired by the approach presented in (Bazzana et al., 2024), 
we implemented the AL method in ecg2o to enforce equality 
constraints. Particularly, the AL method adds a penalty term 
||hj(Xj)||2Phn

 for each equality constraint, to the Lagrangian function. 
This results in the following augmented Lagrangian function:

Laug (X,γ) = L (X,γ) +
l

∑
n=1
||hn (Xn) ||2Phn

, (10)

where the penalty term in Equation 10 is weighted by the matrix 
described in Equation 11.

Phn
= diag(ρhn,1

,…,ρhn,d
) (11)

and diag(⋅) represents a diagonal matrix of dimension d. The penalty 
parameter ρ. Can either be uniform across all constraints or vary 

based on the algorithm’s settings. Here, we assume a uniform ρ. For 
all constraints.

Notably, in the AL, the penalty terms do not need to be 
excessively large, as discussed in (Nocedal and Wright, 2006, 
Example 17.4). The algorithm iteratively minimizes the AL function 
with respect to X, using the stationary condition, which yields an 
update step similar to Equation 4.

While the contribution of regular factors remains unchanged (as 
described in Equation 5), the contribution of equality factor n at 
iteration i can be described as shown in Equation 12.

Hi
n = ||Jhn

(Xi
n)||

2
Phn

(12a)

bi
n = −Jhn

(Xi
n)

T (Phn
hn (Xi

n) − γhn
) . (12b)

The AL algorithm implemented in the ecg2o library 
iteratively solves the inner-loop unconstrained optimization while 
incorporating both cost and equality factor contributions when 
constructing the linear system. Upon satisfying the termination 
criteria or reaching the maximum number of inner-loop iterations, 
the algorithm exits the inner loop and updates the Lagrange 
multipliers using Equation 13.

γi+1
hn
= γi

hn
+Phn

hn (Xi
n) . (13)

Optionally, we increase the penalties according to Equation 14.

ρ. =max(ρmax,αρ.) , (14)

where ρmax is the upper bound on the penalty parameter, and α ≥ 1
is the penalty update factor. 

4.2 KKT-based gauss-newton method

In this section, we present an SQP-inspired method that enables 
factor graphs to natively solve equality-constrained optimization 
problems by leveraging KKT conditions. Unlike traditional 
approaches that require specialized algorithms like Penalty or 
Augmented Lagrangian methods, our approach demonstrates 
that factor graphs inherently possess the mathematical structure 
to handle equality constraints through appropriate factor design, 
eliminating the need for algorithmic modifications or nested loops.

Our core contribution is the formulation of equality constraints 
as regular factor nodes that, when combined with standard factor 
graph optimization, naturally enforce the KKT conditions of 
the original constrained problem. This transforms the equality 
constrained problem into an unconstrained optimization over 
an extended variable space that includes both original variables 
and Lagrange multipliers. Crucially, this formulation maintains 
the computational efficiency and sparsity exploitation of standard 
factor graph optimization while ensuring exact constraint 
satisfaction—unlike penalty methods that only achieve approximate 
satisfaction.

The mathematical foundation establishes that standard Gauss-
Newton updates applied to our specially designed equality 
constraint factors yield iterations equivalent to SQP methods. 
This equivalence represents a significant theoretical advancement, 
demonstrating that factor graphs can directly implement 
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sophisticated equality-constrained optimization without external 
algorithmic frameworks.

Consistent with the SQP framework, each subproblem is 
constructed by linearizing the nonlinear system. We begin by 
linearizing both the error functions ej and the equality constraints 
hj around the current estimate X̃j. Their linearized versions, denoted 
by ̂ej and ĥj respectively, are given by:

ej(X̃j +ΔXj⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Xj

)≈ ̂ej(ΔXj) = ej (X̃j) +Jej
(X̃j)ΔXj, (15a)

hj(X̃j +ΔXj⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Xj

)≈ ĥj(ΔXj) = hj (X̃j) +Jhj
(X̃j)ΔXj. (15b)

The Lagrangian function for the linearized system in Equation 
15 is given in Equation 16.

L̂ (ΔX,γ) =
r

∑
j=1
|| ̂ej(ΔXj)||2Ωj

+
l

∑
j=1

γhn

Tĥj (ΔXj) , (16)

Let ΔX∗,γ∗ be the local optimal points. These must satisfy the 
KKT conditions (Boyd and Vandenberghe, 2004, §5.3.3) of the 
linearized optimization problem:

∇ΔXL̂ (ΔX∗,γ∗) = 0, ĥ (ΔX∗) = 0, (17)

where ∇, in Equation 17, denotes the gradient, and ĥ is the vector of 
all equality constraints.

Assuming γ∗ = γi +Δγi, the KKT system is formulated as:

[

[

Hi Jh (Xi)T

Jh (Xi) 0
]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
KKTmatrix

[

[

ΔXi
gn

Δγi
]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
updatestep

= [

[

bi −J T
h (X

i)γi

−h(Xi)
]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
KKTvector

(18)

The introduction of equality constraints modifies the linear 
system compared to unconstrained optimization, as highlighted in 
red. The key challenge lies in representing these constraints within 
the factor graph using appropriate variables and factors. Specifically, 
how can we define the error function and the weighting matrix 
associated with the equality constraints to enforce them effectively? 

4.2.1 Design of equality constraint factors
We propose defining a regular factor for each equality constraint 

such that it produces the same update step as in (18). Specifically, 
for an equality constraint hj, we define a regular factors with the 
following error function and weighting matrix:

ehj
= [

[

hj (Xj)

γhj

]

]
, Ωhj
= [

[

0d×d Id×d

Id×d 0d×d

]

]
, (19)

where hj and γhj
 have the dimension d, and I denotes the identity 

matrix. This formulation results in a linear system equivalent to 
the KKT system of the equality-constrained optimization problem. 
Consequently, it allows us to enforce equality constraints while 
maintaining an unconstrained factor graph structure. Furthermore, 
in this approach, the Lagrange multipliers are treated as variable 
nodes, naturally integrating them into the optimization process.

For ease of implementation, the ecg2o library provides 
a dedicated class for equality factors, which automatically 

incorporates Lagrange multipliers and defines the associated 
weighting matrix described in Equation 19. Additionally, the class 
simplifies the Jacobian implementation for equality factors, making 
the equality implementation as straightforward as for regular factors.

This design ensures an efficient and flexible extension of 
factor graphs, maintaining the computational advantages of existing 
optimization techniques while enabling constrained optimization in 
a natural manner. 

5 Results and evaluation

In this section, we present two case studies: (i) an optimal control 
problem, and (ii) a comparison between the AL and penalty methods 
in GTSAM, and the AL and KKT-based methods in ecg2o. 

5.1 Case study 1

We solve here an optimization problem that generates a 
sequence of control force inputs for an autonomous car to track 
a reference velocity trajectory. Our objective is to compare the 
performance of the AL method with our proposed approach, 
which models equality constraints as regular edges by incorporating 
Lagrange multipliers. 

5.1.1 Problem formulation
Inspired by Jia et al. (2023), we formulate the optimal 

control problem as

min (||xN − rN||2P +
N−1

∑
k=1
(||xk − rk||2Q + ||uk||2R) (20a)

s.t. xk+1 − [xk +
δt
m
(uk − Fresis)] = 0, k = 0,…,N− 1, (20b)

where xk represents the vehicle velocity, uk is the input force 
applied to the car (measured in Newtons), and rk is the reference 
velocity. In addition, the subscript k denotes the time instance, while 
δt represents the sampling time of the controller, which defines the 
horizon length.

The resistance force Fresis depends on the gravitational force 
Fgrav, the rolling resistance Froll, and the aerodynamic resistance 
force Fair. The total resistance force is given by

Fresist =mvg sin θ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Fgrav

+ 1
2

ρaA fcax2
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Fair

+mvgcrcosθ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Froll

. (21)

The model is nonlinear due to the aerodynamic resistance force. 
The model parameters are as follows: m represents the effective mass 
of the mass under the effect of the rotational mass of the powertrain, 
while mv denotes the actual mass of the vehicle. The gravitational 
constant is given by g, and θ represents the road slope. The air 
density is denoted by ρa, and A f  is the frontal area of the vehicle. The 
coefficients ca and cr correspond to the air drag and rolling resistance 
coefficient, respectively.

The factor graph representing the optimal control problem in 
Equation 20 is illustrated in Figure 1, where the equality constraints 
are incorporated using our proposed approach.
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FIGURE 1
The factor graph for the optimal control problem. The red circles represent the cost terms as regular factors, while the blue circles illustrate the 
representation of equality constraints as regular factors. k ∈ {0, …, N-1}.

5.1.2 Evaluation
The reference trajectory for the velocity profile consists of 385 

points with a sampling rate of 1 s. Using the factor graph-based 
optimization method, we solve the optimal control problem with 
weighting parameters Q = P = 1000 and R = 0.0007 to determine the 
optimal input sequence. Applying this control sequence results in the 
optimal velocity profile. The velocity profile corresponding to the 
optimal control sequence obtained from solving the optimization 
problem is illustrated in Figure 2. While different controller 
performances can be achieved with varying parameter settings, 
our primary focus is to evaluate the optimizer itself. The solution 
of the optimization problem using the AL method results in a 
velocity trajectory that is quite similar to our proposed approach. 
This is because both methods share the same stopping criteria. 
We computed the root mean squared error (RMSE) between both 
trajectories to quantify their similarity. The RMSE between the 
velocity trajectories obtained from the AL method and our proposed 
approach is 0.2426, indicating a high degree of similarity.

5.1.2.1 Iteration numbers
In our case, the presence of nonlinear terms in the equality 

constraints might influence the number of iterations required for 
convergence. To address this effect, we considered an approximation 
for the nonlinear aerodynamic resistance term using a linear model:

x2 = p1 + p2x, (22)

where p1 and p2, in Equation 22, are constants. Therefore, we 
considered five distinct scenarios for comparison. First, we solve 
the unconstrained optimization problem, where the constraints 
are ignored, serving as a baseline to understand the effect of 
enforcing constraints. Next, we apply our proposed method to both 
a linearized dynamic model and the nonlinear system, allowing us 
to analyze how constraint approximation influences performance. 
Additionally, we compare these results with the AL approach, 
solving the problem in both linearized and nonlinear forms. In 
addition, we consider three different reference trajectory lengths—5, 
100, and 385—to evaluate the optimization performance across 
varying problem sizes. The results of the iteration number across all 
scenarios for the three trajectory lengths are summarized in Figure 3.

Figure 3 shows that the iteration number in the unconstrained 
optimization matches that of our proposed method with linearized 
dynamics, converging in just two iterations across all trajectory 
lengths. For nonlinear dynamics, our method requires slightly more 
iterations (3–4), reflecting the added complexity while maintaining 
efficiency.

In contrast, the AL method requires 11–13 iterations, 
approximately three times more than our proposed method, 
highlighting its higher computational cost. These results were 
obtained after careful parameter tuning, where we set the maximum 
number of inner iterations to 1, with ρinit = 10, ρmax = 50000, 
and α = 10. However, further tuning is still required for different 
optimization problems.
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FIGURE 2
Optimal velocity trajectory obtained from the factor graph-based optimal control problem.

FIGURE 3
Iteration number across different optimization scenarios and trajectory lengths.

Regarding sensitivity to the initial value of the Lagrange 
multiplier, we found that both algorithms maintained a stable 
iteration number across different Lagrange multiplier initial
values. 

5.1.2.2 Computation time
We compare the computation time for the nonlinear dynamics 

scenario across three different trajectory lengths. The optimization 
problem is solved 1,000 times, and the reported computation time 
represents the average over these runs to ensure consistency. All 
experiments were conducted on a Linux system with an Intel 

Core i9 12th Gen processor and 32 GB of RAM. The results 
are shown in Figure 4.

The computation time for the AL method is slightly lower 
than that of our proposed method, which was expected since our 
solver handles a larger linear system in each iteration. However, 
advancements in linear solvers have reduced the impact of solving 
larger systems on overall computation time, making the difference 
less apparent. The increase in computation time for our method 
ranges between 20% and 35%, but the significant reduction in the 
number of iterations makes it a worthwhile trade-off, especially for 
applications requiring fast convergence. 
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FIGURE 4
Computation time per iteration for different trajectory lengths using the Proposed Method and Augmented Lagrangian (AL) Method.

5.2 Case study 2: nonlinear least–squares 
with an equality constraint

For further validation of the implemented solvers, we adopted 
a nonlinear equality-constrained problem from the GTSAM library. 
In this case study, four solvers are considered: Penalty (GTSAM), AL 
(GTSAM), AL (ecg2o), and the KKT-based method (ecg2o). The 
constrained optimization problem is formulated in Equation 23.

min
x1,x2

1
2
(x1 − e−x2)2 + 1

2
(x2

1 + 2x2 + 1)2, (23a)

s.t. x1 + x3
1 + x2 + x2

2 = 0. (23b)

A key distinction between our AL implementation in ecg2o
and GTSAM’s approach lies in the inner iteration control strategy. 
In the AL method, each outer iteration solves an equivalent 
unconstrained optimization problem with fixed penalty parameters 
and Lagrange multipliers. While one could solve this inner problem 
to high accuracy, this is computationally inefficient since the 
penalty and multiplier estimates are updated in subsequent outer 
iterations. Therefore, we explicitly limit the maximum number of 
inner iterations to balance computational efficiency with sufficient 
progress toward constraint satisfaction. In ecg2o, we set this limit 
to five inner iterations per outer loop, whereas GTSAM employs a 
different convergence strategy without such explicit limits.

This difference is illustrated in Figure 5, which shows the number 
of inner iterations per outer iteration for each method. The choice 
of inner iteration limit represents a trade-off: too few iterations 
may hinder progress, while too many may waste computational 
effort on prematurely accurate inner solutions. Notably, when we 
increased the maximum inner iteration limit from 5 to 50 in our AL 

implementation for the initial guess (−0.2,−0.2), the total iteration 
count increased from 20 to 45 without additional improvement in 
solution quality.

The iteration numbers reported in Table 1 are measured 
consistently across implementations. In ecg2o, we directly count 
the number of inner iterations (i.e., iterations where the main 
calculations and linear system updates occur), while for GTSAM 
we sum the reported uopt_iters across all outer iterations to obtain 
a comparable metric. All solvers successfully converged to the 
optimal solution x∗ = (0,0) with accuracy better than 10−4 across all 
initial guesses

x(0) ∈ {(−1,−1) , (−0.2,−0.2) , (0,0) , (2,2)} .

The KKT-based Gauss-Newton method in ecg2o achieved the 
fastest convergence (average of five iterations), followed by AL in
ecg2o (average of 20 iterations). Both GTSAM baselines required 
substantially more iterations (averages of 73 for penalty and 72 for 
AL). The performance advantage of our KKT-based approach is 
consistent across initial conditions, demonstrating its efficiency for 
this class of constrained problems.

We further investigated the effect of the penalty parameter 
α on AL performance. Increasing α from 1.5 to 2 reduced the 
iteration count from 20 to 18 for the (−0.2,−0.2) case, as accelerated 
penalty growth drives faster constraint satisfaction. However, 
overly aggressive penalty increases risk numerical ill-conditioning, 
particularly in large-scale systems. This parameter sensitivity 
highlights a key advantage of our KKT-based method, which 
requires no such tuning while maintaining robust performance. The 
AL parameters used in this study were ρinit = 1, ρmax = 50000, and 
α = 1.5, with a maximum of five inner iterations per outer loop. 
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FIGURE 5
Inner iterations number per outer iteration index for different methods and initial guesses.

TABLE 1  Case study 2: iterations number to convergence for each method and initial guess.

Method x(0) = (−1,−1) x(0) = (−0.2,−0.2) x(0) = (0,0) x(0) = (2,2) Avg.

Penalty (GTSAM) 56 75 79 82 73.0

AL (GTSAM) 72 57 61 98 72.0

AL (ecg2o) 20 20 19 21 20.0

KKT-based (ecg2o) 6 4 1 9 5.0

6 Conclusion and future work

In this paper, we addressed the challenge of incorporating 
equality constraints into factor graphs, an essential extension for 
applications beyond robotic perception, such as optimal control. 
While the AL method is the state-of-the-art approach for handling 
equality constraints, we proposed an SQP-inspired, KKT-based 
method that natively integrates constraints within factor graph 
optimization without requiring additional iterative adjustments.

The proposed approach outperforms the AL method 
by achieving faster convergence and eliminating the need 

for parameter tuning, thereby enhancing its practicality. 
Its efficiency and robustness were validated through a 
case study on velocity tracking in autonomous vehicles. 
In addition, the implementation was compared against the 
Penalty method and AL in GTSAM, demonstrating superior
performance.

As future work, we aim to explore more advanced constrained 
optimization techniques beyond AL, specifically targeting the 
handling of inequality constraints within factor graph frameworks. 
This would further expand the applicability of factor graphs to 
control and planning problems in robotics.
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