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Memory clinic patients are a heterogeneous population representing various aetiologies of pathological ageing. It is
not known whether divergent spatiotemporal progression patterns of brain atrophy, as previously described in
Alzheimer’s disease patients, are prevalent and clinically meaningful in this group of older adults.

To uncover distinct atrophy subtypes, we applied the Subtype and Stage Inference (SuStaln) algorithm to baseline struc-
tural MRI data from 813 participants enrolled in the DELCODE cohort (mean + standard deviation, age =70.67 + 6.07
years, 52% females). Participants were cognitively unimpaired (n = 285) or fulfilled diagnostic criteria for subjective
cognitive decline (n = 342), mild cognitive impairment (n = 118) or dementia of the Alzheimer’s type (n = 68). Atrophy
subtypes were compared in baseline demographics, fluid Alzheimer’s disease biomarker levels, the Preclinical
Alzheimer Cognitive Composite (PACC-5) as well as episodic memory and executive functioning. PACC-5 trajectories
over up to 240 weeks were examined. To test whether baseline atrophy subtype and stage predicted clinical trajec-
tories before manifest cognitive impairment, we analysed PACC-5 trajectories and mild cognitive impairment con-
version rates of cognitively unimpaired participants and those with subjective cognitive decline.
Limbic-predominant and hippocampal-sparing atrophy subtypes were identified. Limbic-predominant atrophy ini-
tially affected the medial temporal lobes, followed by further temporal regions and, finally, the remaining cortical
regions. At baseline, this subtype was related to older age, more pathological Alzheimer’s disease biomarker levels,
APOE €4 carriership and an amnestic cognitive impairment. Hippocampal-sparing atrophy initially occurred outside

Received September 07, 2023. Revised February 02, 2024. Accepted March 03, 2024. Advance access publication April 24, 2024

© The Author(s) 2024. Published by Oxford University Press on behalf of the Guarantors of Brain.

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-
nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use,
please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the
Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.

920z Auenuer gz uo sesn jesnuinisielely Aq $90.59//00%2/L/ L1 /81o1e/ulelq w0 dno olwspese//:Sdiy Woly papeojumoq


https://orcid.org/0000-0001-5503-6308
https://orcid.org/0000-0001-6394-9940
https://orcid.org/0000-0002-6270-5490
https://orcid.org/0000-0002-3868-284X
https://orcid.org/0000-0002-8237-4481
https://orcid.org/0000-0001-5231-1714
https://orcid.org/0000-0001-8649-9874
https://orcid.org/0000-0002-8885-7724
https://orcid.org/0000-0002-9267-1930
https://orcid.org/0000-0002-3586-3194
https://orcid.org/0000-0003-4991-763X
https://orcid.org/0000-0002-0139-5388
https://orcid.org/0000-0001-8467-7286
https://orcid.org/0000-0003-1558-1883
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

Atrophy heterogeneity in memory clinics BRAIN 2024: 147; 2400-2413 | 2401

the temporal lobe, with the medial temporal lobe spared up to advanced atrophy stages. This atrophy pattern also
affected individuals with positive Alzheimer’s disease biomarkers and was associated with more generalized cogni-
tive impairment. Limbic-predominant atrophy, in all participants and in only unimpaired participants, was linked to
more negative longitudinal PACC-5 slopes than observed in participants without or with hippocampal-sparing atro-
phy and increased the risk of mild cognitive impairment conversion.

SuStaln modelling was repeated in a sample from the Swedish BioFINDER-2 cohort. Highly similar atrophy progres-
sion patterns and associated cognitive profiles were identified. Cross-cohort model generalizability, at both the
subject and the group level, was excellent, indicating reliable performance in previously unseen data.

The proposed model is a promising tool for capturing heterogeneity among older adults at early at-risk states for
Alzheimer’s disease in applied settings. The implementation of atrophy subtype- and stage-specific end points
might increase the statistical power of pharmacological trials targeting early Alzheimer’s disease.
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Introduction

Sporadic Alzheimer’s disease (AD) is characterized by two hallmark
proteinopathies—accumulations of amyloid-p (Af) and hyperpho-
sphorylated tau—in addition to progressive neurodegeneration.
Traditionally, these pathological entities have been assumed to
progress along a stereotypical trajectory in which brain regions of
the medial temporal lobe (MTL) are among the earliest affected by
tau accumulation and related atrophy.>* The late-life amnestic
syndrome commonly observed in AD has been linked to this severe
pathological load on the MTL.>* This traditional view of AD progres-
singin one stereotypical pattern has been challenged by findings of
AD pathology occurring as the primary pathology in clinical syn-
dromes that deviate from amnestic late-onset AD, such as posterior
cortical atrophy,® behavioural variant of AD” or logopenic variant of
primary progressive aphasia.? Interestingly, these syndromes ex-
hibit distinct spatial distribution patterns of AD pathological hall-
marks, in particular of tau accumulation and neurodegeneration.’

Independent of clinical phenotypes, data-driven methods have
been used to capture the biological heterogeneity of AD, with most
studies applying statistical clustering approaches to identify diver-
ging spatial distribution patterns of AD pathology. Studies aiming to
identify distinct atrophy subtypes have commonly relied on cross-
sectional structural MRL.’**® A recent review of these efforts sug-
gests that spatial variability in AD-related atrophy may occur from
two sources: disease severity and typicality.”” In fact, this model
points to one of the major challenges faced when applying cluster-
ing approaches to cross-sectional biomarker data. Variance in these
data may originate from interindividual differences in disease pro-
gression and disease subtype, assuming that multiple exist. Thus,
the identification of atrophy subtypes requires that variance in dis-
ease progression is accounted for appropriately. The Subtype and
Stage Inference (SuStaln) algorithm was designed to address this
shortcoming of conventional clustering techniques.’®*? It exploits
principles from clustering and event-based modelling to recover
distinct pseudo-longitudinal progression sequences, i.e. disease
subtypes, from cross-sectional biomarker information. SuStaln
has been applied to structural MRI volumetric data, suggesting
AD atrophy subtypes that were termed ‘typical’, ‘cortical’ and
‘subcortical’,’®?® or ‘typical’, ‘hippocampal-sparing’ and
‘limbic-predominant’.?*

Despite a surging academic interest in the biological heterogen-
eity of AD, gaps in knowledge remain regarding the implications of

recent findings in clinical settings. For instance, it is not known to
what extent atrophy heterogeneity occurs in patients presenting
at memory clinics. Not only does the co-occurrence of various
risk factors and pathologies in many memory clinic patients render
their population generally more heterogeneous than participants
from many observational studies and clinical trials for AD, but
also these patients are typically characterized in less detail.

Moreover, the mixed results of recent phase III trials of potential
disease-modifying agents for AD suggest that the optimal window
for effective treatment might lie in the preclinical to early pro-
dromal stages of the disease.”>*® One of the challenges faced
when targeting these groups of patients is that their trajectories
on end point measures are heterogeneous and deviate only margin-
ally from those of healthy controls. In turn, the small effects ex-
pected from successful treatment at this disease stage pose a
significant challenge to those aiming to design powerful yet cost-
efficient pharmacological trials.?**® Understanding and accounting
for disease heterogeneity thus appears crucial in this context.
However, previous studies linking atrophy heterogeneity to distinct
clinical profiles have focused on AD patients diagnosed with mild
cognitive impairment (MCI) or dementia of the Alzheimer’s type
(DAT"; although see Shand et al.? for a non-peer-reviewed report
on atrophy heterogeneity in preclinical AD). To assess the potential
utility of considering atrophy heterogeneity for pharmacological
trial design, investigations of the prevalence and clinical implica-
tions of atrophy heterogeneity in the absence of significant cogni-
tive impairment are warranted.

In addition, a common limitation of disease progression models
is their lacking or unknown generalizability to external datasets
(i.e. testing outside of the training dataset).”’?° Recent work by
Chekroud et al.?” demonstrated in various examples of disease
progression models that, even when performance in internal
validation procedures such as k-fold cross-validation was satisfac-
tory, models performed poorly, at around chance level, in external
testing data. However, the reliable classification of previously
unseen data is a key requirement for models to make their way
into applied settings.

In the present study, we investigate atrophy subtypes in the
DZNE Longitudinal Cognitive Impairment and Dementia Study
(DELCODE®), which is a multicentre, memory clinic-based cohort
targeting earliest at-risk states for DAT. We examine whether atro-
phy subtypes are related to distinct cross-sectional and longitudin-
al clinical profiles, focusing on individuals who are cognitively
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unimpaired (CU) or report subjective cognitive decline (SCD). Core
analyses are repeated in an external sample of the Swedish
BioFINDER-2 study to ensure group- and subject-level generaliz-
ability to inform potential model application.

Materials and methods

Out of 1078 individuals enrolled in DELCODE, 813 had available
baseline structural MRI segmentation data that passed visual qual-
ity control and were thus included in the present study. Participants
were classified as either CU (n=285) or fulfilled diagnostic criteria
for SCD (n=342), MCI (n=118) or DAT (n=68; see Supplementary
material, Methods section for inclusion criteria).*° Participants in
the SCD, MCI and DAT groups were referrals, including self-
referrals, from 10 German university-based memory clinics. CU par-
ticipants were recruited via public advertisement. All participants
provided their written informed consent to participate in the study
according to the Declaration of Helsinki. The study protocol was ap-
proved by the local institutional review boards of all participating
institutions. DELCODE has been registered with the German
Clinical Trials Registry (DRKS; DRKS00007966) prior to inclusion of
first participants.

Lumbar CSF samples were available in a subsample of 385 (47.36%)
participants. Levels of phosphorylated tau (p-tau) 181 (Innotest es-
say; Fujirebio), total tau (t-tau), ABso and ABs, (all Mesoscale plat-
form; Meso Scale Diagnostics) were determined. A threshold for
AB-positivity of <0.08 was obtained through two-component
Gaussian mixture modelling of ABs,/AB4o ratios. Plasma samples
were analysed for neurofilamentlight chain, ABx.4, and ABx.4 levels.
In participants with missing CSF data, AB-positivity was determined
from EDTA plasma APy 42/ABx-40 ratios (Supplementary material,
Methods section).

Cognitive functioning was measured in two domains: learning and
memory (MEM) and executive functions and mental processing
speed (EXEC). These scores were previously obtained from the
DELCODE neuropsychological test battery using confirmatory factor
analysis and z-standardized to a reference group of CU and SCD
participants.? A difference score (MEM-EXEC) was calculated to es-
timate the relative impairment of participants in these domains.
Negative values reflected a relative impairment in the MEM domain,
whereas positive values reflected a relative impairment in the EXEC
domain. In addition, the Preclinical Alzheimer Cognitive Composite
(PACC-5) was used to measure a set of cognitive functions that have
been shown to exhibit early AD-related decline.®' Cognitive trajec-
tories were estimated from longitudinal PACC-5 scores. To reflect
a realistic time frame of a hypothetical clinical trial, we used avail-
able data collected <240 weeks after baseline, as done in previous
trials of monoclonal antibodies targeting Ap (e.g. solanezumab®?
or lecanemab®). These data were available in 676 participants
[83.14%; mean + standard deviation (SD) number of follow-up vis-
its= 2.84+1.09, mean+SD follow-up interval=1.08+0.27
years].

Among participants diagnosed as CU or SCD at baseline, pro-
gression to MCI was determined based on the available
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neuropsychological data (see Stark et al.>%). Again, only incident
MCI diagnoses given <240 weeks after baseline were considered.

All structural MRI data were collected using 3T Siemens MRI
systems. T1-weighted images were acquired using a 3D whole-
brain magnetization prepared rapid gradient echo sequence
[MPRAGE; echo time/repetition time (TE/TR)=437/2500 ms, in-
version time = 1100 ms, 7° flip angle, 1 mm isotropic resolution)].
Coronal T2-weighted turbo spin-echo (TSE) images were ac-
quired orthogonally to the longitudinal axis of the hippocampus
on a slab that covered the MTL (TE/TR = 354/3500 ms, 120° flip an-
gle, 0.5 mm x 0.5 mm x 1.5 mm resolution).

FreeSurfer (v.7; http:/surfer.nmr.mgh harvard.edu/) and the
automated segmentation of hippocampal subfields algorithm
(ASHS,* using the Penn ABC-3T atlas®) were used to obtain region
of interest-based grey matter volume and average cortical thick-
ness data. ASHS was implemented using an in-house longitudinal
segmentation pipeline if usable follow-up structural MRI data
were available (Supplementary material, Methods section). For par-
ticipants without longitudinal data, ASHS was implemented con-
ventionally. We summed up volumes of the amygdala label from
FreeSurfer’s aseg atlas and of the hippocampal and entorhinal
ASHS labels to obtain bilateral MTL volumes. Grey matter volumes
were adjusted for their relationship with total intracranial volume
in Ap-negative CU participants (n=187).>” Average cortical thick-
ness was calculated for temporal, parietal, frontal and occipital re-
gions of interest based on FreeSurfer's Desikan—Killiany
parcellation (Supplementary material, Methods section).*®

To identify atrophy subtypes from structural MRI data, we imple-
mented SuStaln using python (v.3.9).”° All structural MRI markers
were z-standardized to a reference group comprising AB-negative
CU participants and corrected for their relationships with age, sex
and years of education in this reference group. Across markers,
z=-1 and -2 were chosen as atrophy event thresholds in line
with earlier work.'® In total, the model identified sequences of 10 at-
rophy events, here referred to as SuStaln stages, with each stage re-
flecting the surpassing of one out of two z-score thresholds in one
out of five structural MRI markers. Note that SuStaln stages do
notrepresent continuous, time-equivalent intervals. As in previous
studies, linear modelling across SuStaln stages was applied.'*
Model selection (i.e. selection of number of subtypes) and sequence
stability assessment were performed as previously reported.”
Participants who did not exhibit significant atrophy were not as-
signed a subtype but were referred to as a separate atrophy-negative
group. Note that for these participants, as for others, probabilities of
belonging to each subtype were calculated.

The SuStaln model was applied to follow-up structural MRI data
(n =546, mean + SD follow-up time = 1.03 + 0.08 years). This allowed
us to test whether participants progressed in line with the theoret-
ical assumptions of subtype robustness and stage monotonicity.

To ensure that atrophy subtypes could be identified reliably in
subsamples of particular interest, SuStaln modelling was repeated
in participants representing the biologically defined AD spectrum
(i.e. only the reference group and AB-positive individuals; n =457)
and in participants without manifest cognitive impairment (i.e.
CU and SCD participants).
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Further details on SuStaln modelling parameters, internal
10-fold cross-validation, model selection, longitudinal model
validation and subsample replication are provided in the
Supplementary material, Methods section.

Replication analyses and assessment of model generalizability
were performed on data from 779 participants enrolled in the
Swedish BioFINDER-2 cohort. To ensure comparability with
DELCODE, only BioFINDER-2 participants aged >60 years and who
belonged to the CU (n=283), SCD (n=152), MCI (n=212) or DAT
(n=132) diagnostic groups were included (see Palmqvist et al.*>**
and Supplementary material, Methods for inclusion criteria).

Latent MEM and EXEC domain scores were unavailable for
BioFINDER-2. Instead, the Symbol Digit Modalities Test (SDMT;*?
one point for every correct answer within the response time of
90 s) was chosen as a measure of executive functions and attention.
The delayed 10-word list recall test from the Alzheimer’s Disease
Assessment Scale-Cognitive subscale (ADAS-Cog*®; number of er-
rors) was used as a measure of episodic memory. ADAS-Cog delayed
recall scores were inverted such that lower scores on all cognitive
measures reflected worse performance. Both ADAS-Cog and SDMT
scores were z-standardized to CU participants. In BioFINDER-2, a
modified version of the PACC (mPACC) was used.*"** Longitudinal
mPACC scores obtained <240 weeks after baseline were available
for 438 participants (56.23%; mean + SD number of follow-up visits =
1.85+0.92, mean + SD follow-up interval = 1.41 + 0.58 years).

Further methodological details for the BioFINDER-2 sample are
provided in the Supplementary material, Methods section.

Statistical analyses were carried out using R (v.4.2.2).

We performed analyses of variance and Tukey’s post hoc compar-
isons to test for differences in mean SuStaln stage in each patient
group against CU participants. We assessed the cross-sectional rela-
tionships between atrophy subtype and demographic, as well as
clinical variables. Using ordinary least squares regression models
for continuous variables and binomial logistic regression models
for binary dependent variables, subtypes were first contrasted
against the atrophy-negative group and, second, against each other.

Table 1 Baseline characteristics of the DELCODE sample

H. Baumeister et al.

Longitudinal PACC-5 slopes were examined using linear mixed
effects models with random intercepts and slopes using restricted
maximum likelihood (REML) and Bound Optimization BY Quadratic
Approximation (BOBYQA) implemented in the lme4 package.*
First, we calculated PACC-5 slopes for each baseline subtype and
for the atrophy-negative group in separate models. Second, we
tested for differences in slopes by including pairwise interaction
terms of Time x Baseline subtype. Third, we tested for interaction
effects of Time x Baseline SuStaln stage in each subtype.

Cox proportional hazard regression models were used to predict
the effect of baseline atrophy subtype and SuStaln stage on risk of
progression to MCI among CU and SCD participants.

We ran binomial logistic regression models in the atrophy-
negative group to test whether baseline subtype probability could
predict conversion to each subtype at follow-up. To investigate
whether the inclusion of additional baseline variables would im-
prove predictive power, forward step-wise regression was imple-
mented using the stepAIC function from the MASS package.*® The
maximum model included subtype probability, age, sex, years of
education, diagnostic group, plasma neurofilament light chain le-
vel, PACC-5 score and APOE ¢4 status. Finally, a model including
all predictors of the maximum model except subtype probability
was calculated. We did not include baseline CSF biomarkers and
Ap status owing to limited sample sizes, or cognitive domain scores
owing to their low practical applicability.

The pseudo-longitudinal development of structural MRI mar-
kers across SuStaln stages was modelled using monotone pena-
lized cubic regression splines. Models of cognitive scores across
SuStaln stages were fitted using natural cubic regression splines.

To test generalizability, we correlated SuStaln stages (using
Spearman rank correlation) and subtype probabilities (using
Pearson correlation) obtained from internally and externally
trained SuStaln models in both the DELCODE and BioFINDER-2
samples.

The threshold for statistical significance was P < 0.05. Where ap-
propriate, false discovery rate (FDR) correction was applied. Models
always controlled for diagnostic group where CU and SCD groups
were collapsed, because SCD does not occur in all AD patients®’
and because we assumed that SCD might be related to atrophy sub-
type. When fluid biomarkers were assessed, age and sex were add-
itionally controlled for. Analyses of cognitive measures and
incident MCI diagnoses also controlled for years of education.

Variable Missing Overall Diagnostic group
N =813
CU SCD MCI DAT
n=285 n=342 n=118 n=68
Age, years 0 (0.00%) 70.67 (6.07) 68.61 (5.35) 70.93 (6.05) 72.99 (5.87) 73.97 (6.31)
Females 0 (0.00%) 423 (52.03%) 165 (57.89%) 159 (46.49%) 57 (48.31%) 42 (61.76%)
Education, years 0 (0.00%) 14.54 (2.98) 14.65 (2.76) 14.88 (2.99) 14.07 (3.20) 13.19 (3.02)
Atrophy subtype
Atrophy-negative 0 (0.00%) 459 (56.46%) 99 (69.82%) 214 (62.57%) 40 (33.90%) 6 (8.82%)
Limbic-predominant 0 (0.00%) 188 (23.12%) 28 (9.82%) 56 (16.37%) 48 (40.68%) 56 (82.35%)
Hippocampal-sparing 0 (0.00%) 166 (20.42%) 58 (20.35%) 72 (21.05%) 30 (25.42%) 6 (8.82%)
APOE €4 carrier 5 (0.62%) 274 (33.91%) 70 (24.91%) 104 (30.50%) 59 (50.00%) 41 (60.29%)
AB-positive 110 (13.53%) 270 (38.41%) 56 (23.05%) 106 (34.87%) 61 (60.40%) 47 (85.45%)
PACC-5, score 41 (5.04%) —0.34 (1.16) 17 (0.59) —0.08 (0.67) -1.31 (0.95) —3.70 (1.33)

For continuous variables, the mean (standard deviation) are reported. For categorical variables, n (%) are reported. All percentages refer to subsamples with available data for the
respective variable. CU = cognitively unimpaired; DAT = dementia of the Alzheimer’s type; MCI = mild cognitive impairment; PACC-5 = Preclinical Alzheimer Cognitive

Composite; SCD = subjective cognitive decline.
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Results

Two atrophy subtypes identified from
cross-sectional MRI

Table 1 provides an overview of DELCODE participants. The major-
ity did not exhibit abnormal atrophy and were thus classified as
atrophy-negative (n=459, 56.46%; 46.67% of AB-positive partici-
pants). In the remaining 354 participants, two distinct atrophy pro-
gression sequences were identified (Fig. 1A and C, Supplementary
Fig. 1 and Supplementary material, Results section). A limbic-
predominant subtype (n=188, 53.11% of participants assigned a
subtype; 70.14% of Ap-positive participants assigned a subtype)
showed initial abnormal volume loss in the MTL, followed by cor-
tical thinning in the temporal, parietal, frontal and, eventually, oc-
cipital lobes. A hippocampal-sparing subtype (n=166, 46.89% of
participants assigned a subtype; 29.86% of AB-positive participants
assigned a subtype) initially exhibited reduced cortical thickness in
the frontal, occipital and parietal lobes, before the temporal lobe
and, ultimately, the MTL were affected by atrophy.

Analyses of follow-up MRI scans revealed that most observed at-
rophy trajectories (92.52% of participants with limbic-predominant
and 86.24% of participants with baseline hippocampal-sparing
atrophy) were in line with the modelled atrophy sequences
(Supplementary material, Results section). Evidence for highly
similar atrophy subtypes was found in the AB-positive and CU/
SCD subsamples (Supplementary Fig. 2 and Supplementary
material, Results section).

The two atrophy subtypes were represented across diagnostic
groups. Atrophy-negative cases dominated the CU and SCD groups,
whereas their proportion was smaller in the MCI and DAT groups.
Among participants who were assigned a subtype, the hippocampal-
sparing subtype was more common among CU and SCD participants,

A

Limbic-predominant atrophy subtype

n=188 (53.11%)
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whereas the limbic-predominant subtype was more prevalent in the
MCI and DAT groups (Fig. 1B).

Mean SuStaln stage differed amongdiagnostic groups in both atro-
phy subtypes [limbic-predominant, F(3,184)=16.44; hippocampal-
sparing, F(3,162) = 13.80; both P < 0.001; Fig. 1D]. Mean SuStaln stage
in CU participants (limbic-predominant, 1.46 +0.88; hippocampal-
sparing, 2.64 + 1.58) was not significantly different from that in SCD
patients (limbic-predominant, 2.14 + 1.73, Pgpr = 0.167; hippocampal-
sparing, 2.69 + 1.83, Prpg = 0.865) but was significantly lower than in
MCI (limbic-predominant, 2.85+2.13, Prpr=0.009; hippocampal-
sparing, 3.80+2.33, Pgppr=0.010) and DAT patients (limbic-
predominant, 4.43+2.78; hippocampal-sparing, 7.33+2.66, both
Prppr<0.001). This indicates that atrophy stage increases with
prodromal cognitive impairment across both subtypes.

Atrophy subtypes demonstrate distinct clinical
profiles at baseline

Baseline characteristics of individuals in both atrophy subtypes
were compared with the atrophy-negative group (Fig. 2A-E and
Supplementary Tables 1 and 2). Hippocampal-sparing atrophy
was related to higher educational levels (b=0.76, rlﬁamal=0.01,
Pepr =0.015). Meanwhile, limbic-predominant atrophy was related
to older age (b =2.82, qﬁamal =0.09, Pepgr < 0.001), higher educational
levels (b=0.77, #partial < 0.01, Pepg =0.011), higher odds of APOE ¢4
carriership [b=0.63, odds ratio (OR) =1.87, Prpr =0.006] and being
Ap-positive (b=0.60, OR=1.82, Prpg =0.015), in addition to more
pathological levels across fluid biomarkers, with the exception of
plasma neurofilament light chain (CSF AB4y/ABso ratio, b=-0.01,
Hpartial=0.22; CSF p-tau 181, b=16.18, rdaria=0.18; CSF t-tau:
b=119.94, ﬂgama1=0-21; all Pppr <0.001). Regarding cognitive per-
formance, limbic-predominant atrophy was associated with lower
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Figure 1 Two atrophy subtypes were identified in the DELCODE sample. (A) The progression of atrophy across SuStaln stages. Atrophy is measured in
z-scores that were scaled and centred to AB-negative cognitively unimpaired (CU) participants. The displayed values were obtained by (C) modelling
eachregion of interest-based atrophy marker across SuStaln stages using monotone regression splines. The open diamond denotes the knot position at
SuStaln stage = 5. (B) Distributions of diagnostic groups across the atrophy-negative group and the two atrophy subtypes. (D) Distributions of SuStaln
stages for each subtype and diagnostic group. Data-points are jittered on the x-axis. *Percentages refer to the proportion among all participants as-
signed an atrophy subtype (excluding atrophy-negative individuals). DAT = dementia of the Alzheimer’s type; MCI=mild cognitive impairment;
MTL = medial temporal lobe; ROI =region of interest; SCD = subjective cognitive decline; SuStaln = Subtype and Stage Inference.
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Comparisons of atrophy subtypes versus the atrophy-negative group

Hippocampal-sparing
versus atrophy-negative

Limbic-predominant
versus atrophy-negative
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Comparisons between subtypes
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Figure 2 The two atrophy subtypes and the atrophy-negative group exhibit different cross-sectional clinical profiles. (A-C) The top row shows standar-
dized p-coefficients from ordinary least squares linear regression models predicting each continuous dependent variable, with atrophy subtype as the
predictor of interest. (D-F) The bottom row shows unstandardized estimates of the effect of subtype in binomial logistic regression models predicting
each binary dependent variable, with subtype as the predictor of interest. Initially, models were fitted to compare participants with (A and D)
hippocampal-sparing atrophy and (B and E) limbic-predominant atrophy against the atrophy-negative group, before (C and F) models comparing
the two atrophy subtypes against each other were fitted. The displayed effects are controlled for diagnostic group when predicting demographic vari-
ables (including APOE €4 status), for age, sex and diagnostic group when predicting fluid biomarkers and for age, sex, education and diagnostic group
when predicting cognitive scores. Error bars visualize 95% confidence intervals. EXEC = executive functions and mental processing speed; MEM = learn-
ing and memory; NfL = neurofilament light chain; PACC-5 = Preclinical Alzheimer Cognitive Composite.

PACC-5 (b=-0.31, #Bartiai=0.38, Pepr<0.001) and MEM scores
(b=—-0.28, nhartia1= 0.54, Pepr < 0.001), as well as lower MEM-EXEC dif-
ference scores (b=-0.30, ﬂgarti3]=o.o8, Prpr < 0.001), indicative of
pronounced amnestic cognitive impairment.

Next, the two subtypes were contrasted against each other
with the hippocampal-sparing subtype as the reference group
(Fig. 2C and F and Supplementary Table 3). Participants with limbic-
predominant atrophy were older (b =2.52, ngamal =0.06, Prpr =0.001)
and more likely to be AB-positive (b=0.97, OR=2.64, Pgpg =0.002).
CSF AP4y/AP4o ratios (b=-0.01, nfmﬁal =0.19, Pppr=0.019), p-tau
181 levels (b=13.81, n%amal =0.12, Prppr=0.041) and t-tau levels
(b =105.60, W%artial =0.16, Prpr = 0.041) were more abnormal in the
limbic-predominant subtype. Limbic-predominant atrophy was
linked to lower MEM (b=-0.23, #artia1=0.49, Pepr<0.001) and
MEM-EXEC scores (b = —0.31, 73artia1 = 0.08, Pepr < 0.001) and tended
to be associated with lower PACC-5 scores (b =-0.20, nf,amal =0.29,
Pppr = 0.054). Raw data are depicted in Supplementary Fig. 3.

In only AB-positive participants, there was no significant associ-
ation of atrophy subtype with demographics and fluid AD biomar-
kers, while the relationships of atrophy subtype with cognitive
scores were replicated (Supplementary Tables 4-6).

Amnestic cognitive decline already occurs in early
stages of limbic-predominant atrophy

Natural cubic regression splines were used to estimate the pseudo-
longitudinal trajectories of baseline cognitive scores across SuStaln
stages (Fig. 3A-D). In the limbic-predominant subtype, PACC-5, MEM
and EXEC scores declined with increasing SuStaln stage. MEM
scores were lower relative to EXEC scores across SuStaln stages.
Meanwhile, all three cognitive scores remained relatively stable
across the first five SuStaln stages of hippocampal-sparing atrophy

before steeply declining. This decline was more pronounced in EXEC
scores than in MEM scores, resulting in a larger relative impairment
of the EXEC domain with increasing SuStaln stage.

These pseudo-longitudinal trajectories were in line with the
observed slopes of PACC-5 scores over time. PACC-5 scores de-
creased at trend level in those with hippocampal-sparing atrophy
(b=-0.03, 'hzaamal =0.04, P=0.068) and significantly at a large ef-
fect size in those with limbic-predominant atrophy (b=-0.16,
qga,ﬁalzo.%, P <0.001). The atrophy-negative group exhibited a
small practice effect (b=0.02, n%,amal =0.04, P<0.001; Fig. 3E).
These slopes were significantly different from each other (all
Prpr < 0.005). In both subtypes, PACC-5 slopes were negatively related
to SuStaln stage, with stronger interaction effects of Time x SuStaln
stage in the limbic-predominant subtype (b=-0.05, nf,amal: 0.15,
P=0.002) than in the hippocampal-sparing subtype (b=-0.03,
Hpartia1=0.08, P = 0.005; Fig. 3F and G and Supplementary Table 7).

In only AB-positive participants, we did not observe a practice
effect in the atrophy-negative group (b=-0.02, "I%artial =0.03;
P =0.165). PACC-5 scores declined significantly in both atrophy sub-
types, although the effect size was larger in the limbic-predominant
subtype (b= —0.37, #partial = 0.41, P < 0.001) than in the hippocampal-
sparing subtype (b=-0.20, raria1=0.24, P=0.005). Increasing
SuStaln stage predicted an accelerated decline of PACC-5 scores in
the hippocampal-sparing subtype (b = —0.08, #2artia1 = 0.16, P = 0.013).
A similar trend was observed in the limbic-predominant subtype
(b=-0.07, nf)amal =0.07, P=0.077; Supplementary Table 8).

Early limbic-predominant atrophy predicts cognitive
decline in clinically normal older adults

To test the predictive properties of atrophy subtype and stage before
the onset of manifest cognitive and functional impairment, the
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Figure 3 Visualization of cognitive trajectories across pseudo-longitudinal SuStaln stages and longitudinal annual assessments. (A) PACC-5 scores,
(B) MEM and (C) EXEC domain scores, as well as (D) MEM-EXEC scores, were fitted across SuStaln stages using natural cubic regression splines that con-
trolled for age, sex and years of education. The open diamond denotes denotes the knot position at SuStaln stage = 5. (D) Negative values (below dashed
line) represent a pronounced impairment of the MEM domain, whereas positive values (above dashed line) represent a pronounced impairment of the
EXEC domain. Linear mixed effects models were used to estimate longitudinal PACC-5 slopes for (E) each atrophy subtype and (F and G) across SuStaln
stages (here displayed stratified by median split). (H-J) These analyses were repeated in only CU and SCD participants. CU = cognitively unimpaired;
EXEC = executive functions and mental processing speed; MEM =learning and memory; PACC-5 = Preclinical Alzheimer Cognitive Composite; SCD =

subjective cognitive decline; SuStaln = Subtype and Stage Inference.

aforementioned analyses were repeated in only CU and SCD partici-
pants. In the limbic-predominant (b = —0.03, ngamal =0.05,P=0.153)
and hippocampal-sparing (b = 0.00, #3rtia1 < 0.01, P = 0.844) atrophy
subtypes, PACC-5 scores did not change significantly over time.
The atrophy-negative group exhibited a significant practice effect
(b=0.03, #3arta1=0.05, P<0.001). Analyses of Atrophy subtype x
Time interaction effects showed that the PACC-5 slopes associated
with limbic-predominant (b = —0.05, #3artia1 = 0.02, Pepg = 0.030) but
not hippocampal-sparing atrophy (b=-0.02, nf,a,tm:0.0l, Pepr =
0.202; Fig. 3H) differed significantly from this practice effect.
Decline on the PACC-5 was steeper with increasing SuStaln stage
in the hippocampal-sparing (b=-0.03, #3artia1 = 0.07, P=0.019) but
not the limbic-predominant (b = -0.01, ngarﬁal =0.01, P=0.580) atro-
phy subtype (Fig. 31 and ] and Supplementary Table 9).

Cox proportional hazard regression models showed that
limbic-predominant atrophy was associated with an elevated
risk of progressing to MCI within 240 weeks in comparison to the
atrophy-negative group [hazard ratio (HR)=2.28, Pppr = 0.045], but
not in comparison to hippocampal-sparing atrophy (HR=1.69,
Pepr = 0.312). There was no difference between participants in the
atrophy-negative group and in the hippocampal-sparing subtype
(HR=1.25, Pgpg =0.509; Fig. 4A). The risk of progression to MCI in-
creased with higher SuStaln stage in the limbic-predominant sub-
type (HR=1.48, P=0.004) but not in the hippocampal-sparing
atrophy subtype (HR =1.24, P =0.147; Fig. 4B and C).

Future atrophy subtype can be predicted from
baseline MRI

Among participants in the atrophy-negative group, baseline
subtype probability was predictive of conversion to both
hippocampal-sparing atrophy [area under the curve (AUC)=0.74,
Akaike information criterion (AIC)=131.75; OR=1.05, P <0.001]
and limbic-predominant atrophy (AUC=0.88, AIC=70.67; OR=1.15,
P <0.001) at follow-up.

Forward step-wise inclusion of additional baseline characteris-
tics showed that higher baseline plasma neurofilament light chain
levels (OR=1.11, P <0.001) additionally increased the odds of pro-
gression to hippocampal-sparing atrophy (AUC=0.83, AIC=
122.73). In turn, lower baseline PACC-5 scores (OR =0.28, P = 0.005)
significantly increased the odds of progression to limbic-
predominant atrophy (AUC =0.92, AIC = 65.38). This model also in-
cluded years of education as a non-significant term. The effects of
baseline subtype probability remained positive and significant in
both models. Models relying only on non-imaging baseline charac-
teristics showed lower predictive performance than the forward-fit
models (limbic-predominant subtype, AUC=0.83, AIC=_88.80;
hippocampal-sparing subtype, AUC=0.76, AIC = 147.24). Receiver
operating characteristic curves for all models are shown in
Supplementary Fig. 4. Model summaries are provided in
Supplementary Table 10.
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Figure 4 Kaplan-Meier survival curves displaying the estimated probability of remaining without an incident mild cognitive impairment diagnosis
over time among cognitively unimpaired subjects and those with subjective cognitive decline. Visualized are: (A) the effect of atrophy subtype and
the effects of baseline SuStaln stage (here displayed stratified by median split) in both the (B) limbic-predominant and (C) hippocampal-sparing atrophy

subtypes. SuStaln = Subtype and Stage Inference.

Analogous atrophy subtypes identified in external
cohort

De novo SuStaln modelling naive to the main DELCODE model suc-
cessfully replicated the two atrophy progression sequences in the
BioFINDER-2 sample (Fig. 5A and Supplementary material, Results
section). The atrophy-negative group comprised 344 participants
(44.16%; 34.13% of Ap-positive participants). Limbic-predominant
atrophy was present in 221 participants (50.80% of participants as-
signed a subtype, 55.74% of AB-positive participants assigned a sub-
type), and 214 (49.20% of participants assigned a subtype, 44.26% of
AB-positive participants assigned a subtype) participants showed
hippocampal-sparing atrophy.

Downstream analyses of SuStaln results revealed highly similar
associations with cognitive performance as shown in DELCODE.
Baseline episodic memory performance (ADAS-Cog delayed re-
call) was lower in limbic-predominant atrophy, whereas atten-
tion and executive functioning (SDMT) were more impaired in
hippocampal-sparing atrophy. There was no difference in
mPACC scores between atrophy subtypes (Supplementary Table 11
and Supplementary Fig. 6).

Longitudinal mPACC scores declined fastest in the limbic-
predominant subtype, followed by the hippocampal-sparing sub-
type and the atrophy-negative group. In both subtypes, increasing
SuStaln stages were linked to faster-declining mPACC scores
(Supplementary Table 12 and Supplementary Fig. 7).

High subject-level generalizability of models across
cohorts

Out-of-sample testing of both the DELCODE- and BioFINDER-2-
based models in the respective other cohort revealed excellent gen-
eralizability. In both samples, SuStaln stages (BioFINDER-2, p =0.99,
P <0.001; DELCODE, p=0.97, P<0.001; Fig. 5B) and probabilities
of limbic-predominant atrophy (BioFINDER-2, r=0.98, P <0.001;
DELCODE, r=0.99, P<0.001; Fig. 5C) derived from the internally
and externally trained models were almost perfectly correlated.
Only few participants were assigned different subtypes by the two
models (BioFINDER-2, n=23, 2.95%; DELCODE, n=29, 3.57%;
Fig. 5D). These results indicate that the proposed model is not
only applicable to internal training data but can also be used to de-
termine atrophy subtype and stage reliably in previously unseen
individuals.

Discussion

Using data-driven modelling of cross-sectional, MRI-based atrophy
markers, the present study uncovered two atrophy subtypes in the
memory clinic-based DELCODE cohort. The identified limbic-
predominant and hippocampal-sparing atrophy patterns were as-
sociated with distinct clinical and cognitive cross-sectional profiles
and longitudinal trajectories. Although trained on purely cross-
sectional data, the validity of the model was strengthened further
by analyses of follow-up MRI scans, where atrophy deviating from
the proposed progression sequences was rarely observed.
Atrophy subtypes and their cognitive correlates were replicated
in the independent BioFINDER-2 cohort. Cross-cohort generaliz-
ability was excellent both on the group and the subject level.

Atrophy subtypes resemble known biological
subtypes of Alzheimer’s disease

Although our sample did not include exclusively individuals with bio-
marker evidence of AD pathology, the two atrophy subtypes were re-
covered in a subsample representing the biological AD continuum.
This result converges with various previous studies that identified
limbic-predominant and hippocampal-sparing AD subtypesin a data-
driven manner using in vivo imaging methods including structural
MRI,10:1113:15,16,48-57 13, _PET?8 and fluorodeoxyglucose-PET,* in
addition to ex vivo histological investigations®®®? (for reviews,
see Ferreira et al.’” and Habes et al.®%).

Our results are in line with a recently proposed model that de-
scribes heterogeneity in AD-related atrophy along two dimensions,
namely typicality (limbic-predominant versus hippocampal-
sparing atrophy in the present study) and severity (SuStaln stage
in the present study)."” In addition, our study presents a straightfor-
ward implementation of this framework, requiring only a single
anatomical MRI scanning session. Given that our study used a
heterogeneous yet highly representative memory clinic-based
sample, we suggest that applying this framework can be worthwhile
in clinical settings where it might be unclear whether AD pathology
is present and whether it is the primary aetiology of brain atrophy
and cognitive decline.

Previous investigations comparing the pathology burden in differ-
entbiological subtypes of AD presented mixed results, with one study
finding more abnormal AD fluid biomarker levels in participants with
limbic-predominant tau pathology,*® whereas other studies showed
no differences in Ap burden among AD subtypes defined from
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histopathology®® and in vivo imaging.>>*° In the present study, levels
of various fluid AD biomarkers were most abnormal in the limbic-
predominant subtype. Interestingly, we found no differences in fluid
biomarker levels when restricting our analyses to AB-positive partici-
pants. These results suggest thathippocampal-sparing atrophy might
occur owing to various neuropathological processes that include, but
are not limited to, hippocampal-sparing AD pathology. Nevertheless,
a substantial number of participants who were assigned an atrophy
subtype and who had abnormal biomarkers of A were classified as
having hippocampal-sparing atrophy (29.86% in DELCODE, 44.26%
in BioFINDER-2), suggesting that atrophy in the presence of AD path-
ology does not necessarily always follow a Braak-like progression
pattern. Meanwhile, the limbic-predominant subtype appears to re-
present a more homogeneous group of patients, presumably with
AD as their primary cause of neurodegeneration. It should be noted
that the hippocampal-sparing subtype may still include partici-
pants with limbic-predominant accumulation of AD pathology
along with co-pathology causing a hippocampal-sparing atrophy
pattern.

Clinical implications of atrophy heterogeneity in the
absence of manifest cognitive impairment

In the present study, limbic-predominant but not hippocampal-
sparing atrophy was associated with declining PACC-5 scores
over 240 weeks. Meanwhile, those without significant atrophy ex-
hibited practice effects. In both atrophy subtypes, increasing
SuStaln stage predicted steeper decline of PACC-5 scores, highlight-
ing that not only atrophy subtype but also atrophy stage are pre-
dictive of the cognitive trajectories of patients.

When including only older adults without manifest cognitive
impairment, we did not observe an absolute decline of PACC-5
scores over time in both atrophy subtypes. Instead, limbic-
predominant, but not hippocampal-sparing atrophy was related

to a diminished practice effect; a phenomenon that has been sug-
gested to be an early cognitive correlate of preclinical AD.**"*” Our
finding of faster cognitive decline with increasing SuStaln stage in
the hippocampal-sparing but not the limbic-predominant atrophy
subtype might be attributable to the low variance of atrophy stage
in these unimpaired individuals. At the same time, we show that
limbic-predominant atrophy, especially with increasing atrophy
stage, predicted an increased risk of progression to MCI, highlight-
ing the clinical meaningfulness of atrophy subtype and stage before
manifest cognitive impairment.

Assessment of atrophy subtype and stage in
pharmacological trials

The recovery of both atrophy progression sequences only in clinic-
ally unimpaired individuals suggests that atrophy heterogeneity is
prevalent in those potentially qualifying for inclusion in upcoming
clinical trials of disease-modifying agents that increasingly target
the preclinical and early prodromal stages of AD.?*?* Our results
complement a previous report of SuStaln-based atrophy subtypes
in the A4 study cohort of preclinical AD patients.?® The identified
‘typical’, ‘subcortical’ and ‘cortical’ subtypes showed different rates
of decline on established cognitive measures. It has been demon-
strated that cognitive trajectories in these early disease stages
vary substantially, impeding the design of clinical trials that aim
to demonstrate presumably small-scale treatment effects.?**
Given that atrophy subtype and stage explained a significant por-
tion of this variance in our study, the presented model might facili-
tate the identification of patients with an elevated risk of decline
over the typical duration of a clinical trial.

Indeed, sample homogenization has been proposed as a strat-
egy to improve efficiency of trials as, for instance, demonstrated
by Edmonds et al.%® In their post hoc analysis of the Alzheimer’s
Disease Cooperative Study trial on the efficacy of donepezil, patients
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with false-positive MCI diagnoses were excluded and treatment ef-
fects that could not be detected in primary analyses were revealed
(see also Oxtoby et al.?* for another approach to sample homogen-
ization in this trial). Our results suggest that sample homogeniza-
tion based on atrophy subtype and stage could boost statistical
power of clinical trials. For instance, trials could target participants
with limbic-predominant and/or hippocampal-sparing atrophy.
Given that we show that future atrophy subtype can be predicted
from a set of accessible cross-sectional clinical markers (e.g.
PACC-5 scores, plasma neurofilament light chain levels) along
with SuStaln-based subtype probability, participants with an ele-
vated risk of atrophy progression to a given subtype could also be in-
cluded when pursuing this strategy. Another way of capitalizing on
the proposed model in the context of pharmacological trials might
be atrophy subtype- and stage-specific cognitive end point mea-
sures, as discussed below. In comparison to sample homogeniza-
tion, this approach is particularly promising because it allows
more potential study participants to be retained.

Complementing previous reports of limbic-predominant and
hippocampal-sparing atrophy patterns,'” our study describes pri-
marily amnestic cognitive impairment in limbic-predominant atro-
phy (lower latent MEM scores in DELCODE and lower ADAS-Cog
delayed recall scores in BioFINDER-2) next to a predominantly ex-
ecutive impairment linked to hippocampal-sparing atrophy (lower
relative MEM-EXEC scores in DELCODE and lower SDMT scores in
BioFINDER-2). Given that we found no difference between atrophy
subtypes in absolute EXEC scores, it should be noted that the execu-
tive impairment in the hippocampal-sparing subtype is probably
not as pronounced as the amnestic profile associated with limbic-
predominant atrophy.

PACC-5 scores declined already in the earliest stages of limbic-
predominant atrophy, whereas they were relatively stable in
the early- and mid-stages of hippocampal-sparing atrophy.
Importantly, we believe that these observations do not necessarily
reflect the actual progression of cognitive health in both atrophy
subtypes. Rather, they suggest that the PACC-5 is sensitive to cogni-
tive changes occurring in earliest limbic-predominant atrophy. Even
more so, as lower PACC-5 scores increased the explanatory power of
models predicting conversion to limbic-predominant atrophy, the
PACC-5 appears to be sensitive not only to manifest but also to on-
going neurodegenerative change in the MTL. This is expected given
that the PACC-5 was designed to detect the earliest AB-associated
cognitive changes and puts strong emphasis on episodic
memory.’* Meanwhile, more detailed neuropsychological investi-
gations into the cognitive trajectories associated with hippocam-
pal-sparing atrophy are needed. This seems particularly relevant
because we observed plummeting cognitive scores once
hippocampal-sparing atrophy reached the temporal lobes. This ef-
fect was perhaps introduced, in part, by the DELCODE inclusion
criteria. Given that amnestic symptoms were required for inclu-
sion of MCI and DAT patients, we cannot exclude the possibility
that the early prodromal stages of hippocampal-sparing
atrophy (i.e. non-amnestic MCI) were underrepresented in the
sample. Accordingly, atrophy subtype- and stage-specific
cognitive composites might be needed to ensure the desired per-
formance of cognitive assessments for both diagnostics and dis-
ease progression monitoring in the clinic and pharmacological
trials.”®

H. Baumeister et al.

By using an external validation set, we not only show that our im-
plementation of SuStaln can identify two distinct hippocampal-
sparing and limbic-predominant atrophy progression patterns in
an independent cohort, but we also demonstrate that the models
trained in DELCODE and BioFINDER-2 exhibit excellent cross-
cohort generalizability, which is an unknown or lacking property
of many disease progression models.?”-?® Applying each model to
the respective external cohort resulted in very high consistencies
of subtype assignments (<4% inconsistencies) and near perfect cor-
relation of SuStaln stages and atrophy subtype probabilities (correl-
ation coefficients of >0.97). A previous study achieved lower rates of
successful generalization of SuStaln-based AD subtypes, especially
in SuStaln stages, while relying on rigorous data harmonization.?

Although cross-cohort generalizability is a major requirement
for ensuring reliable and meaningful predictions in applied scen-
arios, it should be noted that both DELCODE and BioFINDER-2 are
highly controlled observational studies with access to advanced
biomarkers and imaging resources, including a detailed quality
control of image segmentations. Further studies are needed to
evaluate the full extent of model generalizability and the need for
data harmonization by testing model performance in other study
cohorts and in real-world settings.

The present study has limitations that need to be taken into ac-
count when interpreting its results.

First, CSF data were available for only about half of the sample, po-
tentially leading to sampling bias and underpowered analyses.
Although likely to be relevant, CSF biomarkers could not be considered
in the models predicting atrophy progression in the atrophy-negative
group owing to low data availability. Future studies should test the
added value of combining disease biomarkers with atrophy subtype
and stage information for trial recruitment and sample enrichment.

Second, previous studies suggest that the hippocampal-sparing
subtype identified in the present study might comprise more than
one AD subtype.’?"%* The focus on amnestic cognitive impair-
ment in DELCODE might have impaired the identification of further
existing atrophy subtypes. Moreover, our model was trained on
anatomically very broadly defined atrophy markers, which might
have impeded the detection of small-scale anatomical differences
between potential variants of hippocampal-sparing atrophy.
Although previous studies have proposed the lateralization of AD
pathology in atypical cases, our model cannot detect such lateral-
ization effects because it lacks hemispheric distinctions.®®

Third, although subtype probabilities among atrophy-negative
participants were predictive of conversion to both atrophy sub-
types, it should be noted that these predictions were made within
the training set due to the small number of converters. To ensure
generalizability, future studies should repeat these analyses using
independent training and test data.

Finally, our analyses cannot provide insights into the sources of
atrophy heterogeneity. These aetiological explanations should be
sought to guide an adequate and informed implementation of the
proposed model in clinical practice.

Conclusion

In this study, we present a data-driven model that depicts atrophy
along limbic-predominant and hippocampal-sparing progression
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patterns. Our findings, such as the identified diverging cognitive
trajectories associated with atrophy subtype and stage, demon-
strate the clinically meaningful explanatory properties of the mod-
el even in older adults without manifest cognitive impairment.
Although limbic-predominant and hippocampal-sparing atrophy
subtypes have been described previously, we demonstrate that im-
plementing this framework is worthwhile in applied settings, such
as memory clinics, where access to advanced biomarkers might be
limited and cases with ambiguous aetiology of brain atrophy are
the rule rather than the exception. Importantly for potential use
cases, our model relies only on cross-sectional structural MRI,
which is a well-established, cost-effective and non-invasive im-
aging technique. Important for the transferability of the model to
practical settings, such as memory clinics or pharmacological
trials, our study showcases excellent generalizability at both group
and individual subject levels across cohorts.

Data availability
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licating procedures and results presented in the article and as long
as data transfer is in agreement with EU legislation on the general
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a material transfer agreement.
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