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ABSTRACT
Cross-lingual code clone detection has gained attention in software
development due to the use of multiple programming languages.
Recent advances in machine learning, particularly Large Language
Models (LLMs), have motivated a reexamination of this problem.

This paper evaluates the performance of four LLMs and eight
prompts for detecting cross-lingual code clones, as well as a pre-
trained embeddingmodel for classifying clone pairs. Both approaches
are tested on the XLCoST and CodeNet datasets.

Our findings show that while LLMs achieve high F1 scores (up
to 0.98) on straightforward programming examples, they struggle
with complex cases and cross-lingual understanding. In contrast,
embedding models, which map code fragments from different lan-
guages into a common representation space, allow for the training
of a basic classifier that outperforms LLMs by approximately 2
and 24 percentage points on the XLCoST and CodeNet datasets,
respectively. This suggests that embedding models provide more
robust representations, enabling state-of-the-art performance in
cross-lingual code clone detection.
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1 INTRODUCTION
Code clone detection is a significant challenge in software devel-
opment, with studies estimating that 5% to 23% of clones exist in
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a software system [8], and Type-4 clones being the most difficult
to detect [3]. While clone detection is commonly done within a
single language, modern software often integrates multiple lan-
guages [7], requiring cross-lingual clone detection. Collaborative
development across languages increases the complexity, as changes
in one language must be mirrored in others, making the process
resource- and time-intensive. An automatic system for detecting
clones across languages is essential for managing cross-lingual
systems efficiently [9].

The literature includes several approaches and tools for cross-
language code clone detection [2, 4–6, 9, 11, 12, 15]. Most of them
rely on machine learning techniques to capture the syntactic and
semantic relationships between different parts of the source code.
With the recent rise of Large Language Models (LLMs) and their
ability to understand and generate human-quality text, LLMs offer
a promising avenue for tasks such as code comprehension and
analysis.

This work explores the effectiveness of LLMs and Embedding
Models (EMs) for cross-lingual code clone detection. Using the
two widely adopted datasets, we evaluated the performance of
four LLMs (Falcon-7B-Instruct [1], LLAMA2-Chat-7B [13], Starchat-
𝛽 [14], and GPT-3.5-Turbo 1) under various prompting strategies
across eleven programming languages. Our second exploration
leverages Text-Embedding-Ada-002, an embeddingmodel fromOpe-
nAI to generate vector representations of code fragments. We then
compute the cosine similarity between the vectors to determine
their similarity. Additionally, we trained custom binary classifiers
on the generated embeddings to further enhance clone detection
accuracy.

2 METHODOLOGY
This section outlines the experimental methodology employed to
evaluate the performance of LLMs and classification models.
❶ Cross-lingual code clone detection as an NLP task. This
research explores the potential of LLMs for cross-lingual code clone
detection using prompt engineering. We developed eight prompts
designed to elicit either a binary "yes/no" response or a similarity
score, aiming to assess LLMs’ performance in this task. Through
experimentation, we evaluate their ability to identify cross-lingual

1https://openai.com/
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code clones based on semantic analysis. Our findings offer valu-
able insights into the effectiveness of LLMs in addressing this key
software engineering challenge.
❷ Cross-lingual code clone detection as a Classification task.
To evaluate traditional machine learning models, we replicated
Keller et al.’s approach using the "Text-embedding-Ada-002" model.
We applied two basic classifiers k-Nearest Neighbors (k-NN) and
Support Vector Machines (SVM) to categorize code fragments based
on these embeddings. Additionally, we explored a direct similarity-
based method by computing cosine similarity between cross-lingual
code fragments in a unified embedding space. We systematically ad-
justed the similarity threshold to optimize clone pair identification
performance.

2.1 EXPERIMENTAL SETUP
Using twowidely accepted datasets, XLCoST [16] and CodeNet [10],
this study explores four key research questions: the impact of
prompt engineering on improving LLMs for cross-lingual code
clone detection, the extent of LLMs’ understanding of this task, the
influence of programming language similarity on LLM performance,
and whether LLMs outperform traditional classification models in
cross-lingual code clone detection. All performances are evaluated
using the metrics precision, recall, and F1-score.

3 RESULTS
❶ LLMs Performance onCross-Lingual CodeCloneDetection
and Impact of Prompt Engineering.
In general, LLMs can detect cross-language code clones and GPT-
3.5-Turbo outperforms all of them. Combining all of the results for
this section GPT-3.5-Turbo got an F1 score of 0.98 and 0.59 on the
XLCoST and the CodeNet datasets respectively.
❷ LLMs’ Reasoning for Cross-Lingual Code Clone Detection.
Our qualitative analysis revealed that Falcon-Instruct-7B and LLAMA2-
Chat-7B tend to overclassify code pairs as clones, leading to high
false positive rates. In contrast, Starchat-𝛽 frequently misclassifies
clones as non-clones, resulting in a high false negative rate, likely
due to its difficulty reasoning in cross-lingual contexts. Overcon-
fidence in some models, such as GPT-3.5-turbo, was noted, with
outputs claiming that "code snippets in different languages cannot
be clones." To address these issues, we designed a prompt focusing
on "overall structure and logic." This led to a significant F1 score im-
provement, with Starchat-𝛽 and LLAMA2-Chat-7B showing gains
of 27 to 48 percentage points.
❸ Influence of the Programming Languages Syntactical Sim-
ilarity on LLMs Performances. We observed a 10 percentage
point F1 score gap between Java-C# and Java-Python fragments,
reflecting Java-C#’s syntactic similarity. However, complex prompts
with reasoning instructions helped reduce this gap, even for distinct
language pairs like Java-PHP.
❹ Traditional classification vs. LLMs. Our results show that the
Text-embedding-Ada-002 model can generate robust cross-lingual
code representations, enabling effective clone detection using basic
similarity measures or learned classification. Surprisingly, these
traditional methods outperform LLMs with complex prompts by ∼2
and ∼24 percentage points on the XLCoST and CodeNet datasets,
respectively. This suggests that the key challenge in cross-lingual

code clone detection is creating a unified representation space for
different programming languages, rather than focusing on advanced
reasoning capabilities.
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