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Abstract 1 Introduction
Information is crucial in today’s context, yet less than 20% of com- Despite the critical importance of business information, only 18% of
panies utilize their unstructured data due to its complexity. Infor- companies utilize their unstructured data, which constitute about
mation Extraction (IE) is vital for effective data use, but current 80-90% of their total amount of data [5, 7, 9].
IE models face four major issues. First, they often provide limited In order to use unstructured data, you need to extract useful infor-
information, such as a simple entity-attribute relation. Second, they mation from it. Most of the methods used for information extraction
struggle with multiple languages. Models like GPT, Mistral, and fall in one of two main categories: content-based or context-based.
Llama3 show promise but face a third issue: output reliability due Content-based methods usually use regular expressions to search
to hallucinations. Fourth, there is a challenge in reducing sensitive for predictable patterns [10, 12, 15, 16]. Context-based methods, on
data leakage after fine-tuning models. the other hand, use modern technologies such as machine learning

This study introduces an enhanced approach for fine-tuning GPT- and deep learning [11, 13, 17, 19]. These methods are more adapt-
based models, designed to extract and assess information involving able to unknown rules and scenarios than content-based methods,
multiple entities and attributes, performing both multientity ex- and advances in generative techniques such as GPT have improved
traction (MEE) and multirelation extraction (MRE), and presenting the task of information extraction to a great extent. Large Language
results in a JSON format. Our methodology evaluates the impact of Models (LLMs) such as ChatGPT!, Bing Chat?, and Claude GPT
using synthetic data for fine-tuning to ensure reliable outcomes. 3 are now common tools for various tasks, including information

Applied to legal documents from the Luxembourg Business Reg- extraction. However, their use in business is limited by the high
isters (LBR), our findings show that replacing sensitive data with costs of processing large volumes of documents and the significant
synthetic data significantly improves the fine-tuning of Llama3- computing power required, necessitating resource-intensive cloud
based models, though not for Mistral-based models. Our top models setups.
outperform Mistral in various scenarios, requiring only 500 sam- Cloud services provide scalability, cost efficiency, and enhanced
ples for fine-tuning and running efficiently on modest servers. This accessibility, allowing businesses to quickly adapt to changing de-
approach is suitable for multilingual Information Extraction in any mands. However, data leakage remains a significant concern. In
domain. March 2024, Forbes reported a cyber attack on cloud-based Al plat-

forms affecting various organizations [8]. Additionally, high costs

CCS Concepts for processing large document volumes and substantial computing

power needs often necessitate resource-intensive cloud setups.
Security and cost reduction drive IT projects. While cloud solu-

tions offer robust security, their data aggregation attracts hackers.

Thus, finding affordable, effective solutions that integrate seam-

« Computing methodologies — Natural language processing;
Natural language generation; Information extraction.

Keywords lessly into organizational infrastructure is crucial.

LLM, Finance, Information Extraction This paper presents a compact GPT-based model for deployment
on small servers, designed to extract sensitive information from
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unexpected document formats. Figure 1 shows our evaluation setup.
We compared our model’s performance with ChatGPT3.5, Claude3
Haiku, and nine locally deployable models, none of which were
fine-tuned. ChatGPT3.5 was the most effective cloud-based solution,
while Llama3 outperformed the other local models.
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Figure 1: An overview of the evaluation process. We compare
the effectiveness of information extraction using i) only la-
beled data, only semi-synthetic data and a mix of both.

associated with training on sensitive information. Additionally, our
trained model is small enough to be deployed on a local server.
In summary, our primary contributions are:

(1) presenting a comprehensive set of objective metrics for eval-
uating LLM performance for Information Extraction tasks,

(2) introducing a compact free model for extracting sensitive
information in a language-agnostic JSON format,

(3) proposing a methodology for generating semi-synthetic data
for sensitive datasets, and

(4) analyzing the impact of using semi-synthetic data alone
versus combining it with manually labeled data for fine-
tuning LLMs.

Our proposed methodology and recommendations are ideal for
situations where fine-tuning a large language model (LLM) is nec-
essary, particularly when data sensitivity during training is a major
concern.

2 Related work

Historically, information extraction has been extensively studied
and several methods have been used to approach the problem [1-
4,21]. These methods have multiple shortcomings. Zaman et al. [21]
described the following common issues: First, the solutions are
not generalized for all domains; each approach is highly domain-
specific. Second, they are, in general, not able to deal with the
overwhelming diversity in the type and nature of documents, with
hundreds and thousands of documents in different formats. Third,
the methods are limited to specific types of documents due to the
noise generated during digitization. Fourth, ambiguities in NLP
models arise from text written in Natural Language. Fifth, different
languages can be found even in the same documents, but most of
the current models are language-specific and cannot handle that
situation.

The Open Information Extraction (OpenlIE) annotator [6, 18], is
a tool for Information Extraction developed by the Stanford Natural
Language Processing Group, that extracts information into relation
triplets that use a logistic regression classifier. OpenlE breaks short
input sentences into smaller ones to find the relationship between
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entities. In 2022, Yu et al. [20] proposed DragonlE as an improved
OpenlE. The authors used a directed acyclic graph to generalize the
model outperforming OpenlE tasks both in- and out-of-domain.

Qu et al. [14] proposed the extraction of triplets from entities
based on a BiLSTM network + Graph Convolutional Networks
(GCN) together with a parallel BILSTM network + Convolutional
Neural Network (CNN), combined with a softmax classifier. Exam-
ples of triplets given by the authors for this study are born_in(John,
Count Kerry) and educated_in(John, Saint Columbas College). As
shown in the research, triplets are limited to linking a certain num-
ber of pairs from a small input text (50 words/tokens).

Exsense [9] extracts sensitive information from unstructured
data using both context- and content-based mechanisms in a single
architecture. It uses regular expressions (e-mail, addresses, secu-
rities, etc.) and a BERT-biLSTM-attention network to label other
sensitive information in four categories: personal information, net-
working information, secrets, and credential information. However,
Exsense is limited to English and is highly sensitive to OCR er-
rors, which can result in mismatches with regular expressions. In
our case, we define sensitive date as personal information such as
names, addresses, birthday information and so on, likewise com-
pany information, costs and transactions and information about
relationships between companies or a company and people.

Adnan and Akbar [3], present the thesis that the main limitations
in the information extraction of unstructured data are: i) the lack
of a defined schema, ii) the high variety of multiple formats, iii)
lack of standardization, iv) the inherent noise of the text, and v) the
limited availability of multilingual models.

Training GPT-3+-based Large Language Models (LLM) requires
substantial processing resources and GPU memory. For instance,
the Llama3 8B model, with 8 billion parameters and a space in disk
of 5.5 GB, demands around 22 GB of GPU RAM for fine-tuning
due to additional memory needs for gradients and optimizer state.
Parameter-Efficient Fine-Tuning (PEFT) with Quantized Low-Rank
Adapters (QLORA) helps reduce this memory consumption. PEFT,
through techniques like Low-Rank Adapters (LoRA), stores gradi-
ents and activations in smaller matrices during fine-tuning, while
QLORA further reduces memory use by employing 16-bit, 8-bit or
even 4-bit quantization instead of 32-bit precision. This approach
enables fine-tuning of a 5.5 GB model on a GPU with just 16 GB of
RAM.

With the current technological advances, we tested the latest
available OpenAl model, GPT-40-mini, using the API*. The results
are promising and comparable to those of GPT-3.5. While the model
is more compact, it remains a paid service. Even using the JSON
output capability the other problems remains.

In summary, most of the current tools are limited by language,
structure, domain or triplet-based relations.Other models that can
deal with those limitations, can be or expensive or not compact to
be deployed in a small server.

3 Dataset

We obtained our dataset from a set of diverse documents of the
Luxembourg Business Register (LBR), which are publicly available

“https://platform.openai.com/docs/api-reference/making-requests
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for download®. For the current research, we split the set of docu-
ments into two distinct groups: one for fine-tuning and validation,
and the other for testing. See figure 1.

As shown in Table 1, the first dataset group consists of docu-
ments in French, German, and English that we already preprocess
and extracted the text. We manually labeled 1,000 pages from 145
documents. Reading the text from each page, we extract the sensi-
tive information in JSON format. The process consisted in querying
the extracted text and together with the original PDF, we create
the desired JSON output.

Table 1: Distribution of labeled pages per language.

Language # Pages Avg. # words
French 682 (68.2%) 233
German 142 (14.2%) 237
English 176 (17.6%) 306
Total 1,000 (100%) 259

This is an example of a very basic short raw text record. We

keep the attribute names in English and the values in the original
language.
Statuts coordonnés de MEP Industries S.a r.l.\nAll matters not governed by these
Articles shall be determined in accordance with the\nlaw of August 10, 1915 on com-
mercial companies, as amended, and the Law.\nPour copie conforme :\nLuxembourg,
le 18 aotit 2015\n Pour la société :\nMaitre Marie CASTELLO\n (notaire)\n

And the manually labeled JSON:

{
'Company': {'name': 'MEP Industries S.a r.l.'},
'Notary': {
'last_name': 'CASTELLO',
'first_name': 'Marie’
}
3

For statistical purposes, we classify each document according
to a set of predefined classes using a deep learning model that we
developed and trained for this purpose. This model predicts the
type of information contained in a text page based on its content
(Business, Semi-structured or Incomplete Information and Free
Layout page) and achieves an F1 score of 98%. We analyzed the
results of the different tests based on the type of page. As shown in
Table 2, our labeled dataset predominantly consists of free-form text
pages, with the second largest portion comprising semi-structured
information. These semi-structured pages exhibit various formats
of tabular data, often resulting in decreased legibility after OCR
processing, which complicates information extraction. Pages with
incomplete information are semi-structured and part of a previous
page that contains the main information.

Business information includes pages that describes the company,
objectives, main activities, etc. This pages tend to contain long para-
graphs. Semi-Structured pages are related to pages that are based
in diverse templates. Incomplete Information refers to information
that are part of any of the two above but does not contains labels
or categories which can be used to understand the context.

Shttps://www.lbr.lu
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Table 2: Distribution of labeled pages per type of content.

Content type # Pages Avg. # words
Business information (BI) 43 (4.3%) 129
Semi-structured information (SS) | 216 (21.6%) 165
Incomplete information (II) 35 (3.5%) 134
Free-layout page (FL) 536 (53.6%) 310
Others (OT) 170 (17.0%) 205
Total 1,000 (100%) 259

These documents correspond to four different types of business
documents that are shown in Table 3 (classification derived from
the types of LBR documents).

Table 3: Distribution of fine-tuning dataset per type of docu-
ment and language.

Document Type Fr | Ge | En | Total
Articles of association 66 2| 44 112
Modification 373 | 10| 73 456
Non-statutory modif. of the agents 0| 119 0 119
Registration 243 | 11| 59 313
Total 682 | 142 | 176 1000

Based on the initial dataset of 1,000 manually labeled records,
we generated a semi-synthetic dataset comprising 4,000 additional
records. This expanded dataset facilitated the creation of three dis-
tinct fine-tuning training configurations: (1) only manually labeled
records, (2) only semi-synthetic records, and (3) a combination
of both manually labeled and semi-synthetic records, as detailed
in Table 4. This methodology aims to evaluate the impact of in-
corporating synthetic data on the performance of the fine-tuning
process.

Table 4: Dataset configurations for fine-tuning,.

code | Manual | Synthetic | Mixed
(@) CS) (X)
_500 500 500 500
_750 750 750 750
1000 1,000 1,000 1,000
_2000 - 2,000 2,000
3000 - 3,000 3,000
4000 - 4,000 4,000

For testing, we ran the model with a dataset of 60 documents
with 854 pages. We randomly selected 20 documents from each
language and different types of documents. As shown in Table 5,
we obtained the distribution of the testing pages by type of content.

Table 6 shows the distribution of the testing dataset by docu-
ment type. In contrast to the fine-tuning dataset, we include other
types of documents such as Annual Accounts, Deletion/Merger,
and Consolidated accounts.

Finally, to assess the model’s performance on previously unseen
languages and formats, we evaluated the best-performing model
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Table 5: Distribution of testing dataset per document type
and language.

Content type # Pages
Business information (BI) 74 ( 8.7%)
Semi-structured information (SS) | 178 (20.8%)
Incomplete information (II) 35 (4.0%)
Free-layout page (FL) 494 (57.8 %)
Others (OT) 73 (8.7%)
Total | 854 (100%)

Table 6: Distribution of testing dataset per type of document.

Document Type # Docs | # Pages
Annual accounts (AA) 12 142
Modification (MD) 29 252
Deletion / Merger (DM) 3 20
Consolidated accounts (CA) 3 401
Others (OT) 13 39
Total 60 854

using press releases and business records. These documents contain
diverse information about companies and individuals, providing a
comprehensive test of the model’s robustness. For the press releases,
we include nine pages in Swedish and three pages in Spanish. For
the business records, we include ten pages in Spanish and four
pages in Swedish.

4 Methodology and Proposition

As explained in the Introduction, we are addressing four major
issues while training and using the LLM. To deal with the large
amount of labeled data required for fine-tuning, hallucination, and
the potential leakage of sensitive training data, we are going to
create a semi-synthetic dataset and then fine-tune the LLM.

To evaluate the impact of the dataset on the performance of the
fine-tuned model, we propose five metrics, as explained in sub-
section 4.2.

4.1 Creation of a semi-synthetic dataset

For the creation of the semi-synthetic dataset, we use the manually
labeled dataset and then replace the sensitive information with
synthetic information generated by an LLM. To do this, we do the
following steps.
e With the labeled JSONs we create a list of entities and their
corresponding attributes. Some entities found were: Person
(First name, last name, birthdate, birthplace, role, etc); Com-
pany (Name, Legal Tax ID, Legal Form, etc., legal address,
branch information); Address (Name, number, postal code,
city, country), etc.
e Using the list of entities and attributes we use ChatGPT® to
generate several alternative lists with synthetic information.
One of the biggest difficulties while generating synthetic
data was the high repetition and lack of creativity of the

Shttps://chat.openai.com
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resulting lists. To avoid this, we modified the prompt of most
of the entities adding a location restriction. For example, for
Person’s: first name the initial prompt was:
“Act as a Synthetic dataset generator and generate a random
list of 1,000 Person’s first name”
and the regionalized prompt was:
“Act as a Synthetic dataset generator and generate a random
list of 200 Person’s first names from East Asia”
24 geographical regions were used to generate the different entity’s
attributes such as orth America, Latin America, Central Europe,
Northern Africa, etc.
After we got the list of entities we removed duplicates and
consolidated them into a single database of synthetic data.
o With the already labeled data we created our random dataset
generator, where we specify the dataset size and start a while
loop. We select randomly an index for selecting the labeled
text data and for each entity and attribute in the manually
labeled JSON we get a random index and get the synthetic in-
formation. Then we proceed to replace the true information
with the synthetic information.

Following the previously established methodology, we generated
a semi-synthetic dataset comprising 4,000 records. Utilizing this
synthetic dataset in conjunction with our original dataset of 1,000
labeled records, we will create three distinct dataset configurations
of varying sizes. These configurations are detailed in Table 4 and
refereed to:

o Manually labeled dataset: three different dataset sizes com-
posed only of labeled data: 500, 750 and 1,000.

o Semi-synthetic dataset: five different dataset sizes composed
only of semi-synthetic data: 500, 750, 1,000, 2,000, 3,000, and
4,000.

o Mixed dataset: This configuration consists of five different
dataset sizes, composed of both labeled data and semi-synthetic
data: 500, 750, 1,000, 2,000, 3,000, and 4,000 records. For
dataset sizes less than 2,000, the proportion of labeled to
semi-synthetic data is 50%. For dataset sizes of 3,000 and
above, each dataset includes 1,000 manually labeled records,
with the remainder being semi-synthetic data.

4.2 Baseline evaluation

In the first place, we made a proof of concept of how GPT3.57,
Mistral 7B%, and Llama3 8B° work to identify the main problems
faced by the top LLM. We use the corresponding API to connect
our data with these models. We use the same prompt as we use for
testing our fine-tuned models which is the following:

"You are a helpful assistant designed to output only a short JSON. Do
not add information which is not in the provided text. Please don’t share
false information. Do not hallucinate. Extract sensitive information from
multiple entities in a single JSON object (one level), if there is no informa-
tion available do not include the field at all. Keep the attribute names in
English and the values in the original language. Extract information such
as: Person (first_name, last_name, birthdate, birth_country, birth_place,
city, country, address_name, address_number; postal_code, manager._type,

"https://platform.openai.com/docs/api-reference
8https://huggingface.co/mistralai/Mistral- 7B-Instruct-v0.2
“https://llama.meta.com/llama3
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manager_group,function, function_category, start_mandate, end_mandate,
shares_number, shares_types)"

The recurrent problems from many of the models were (1) that
before or after the JSON there were extra information generated
by the model; (2) Attributes without value (empty); (3) Repetitive
information such as several times one or several attributes; and (4)
Generation of multiple JSON levels to provide the answer.

A common characteristic of all the base models was the language
where the attribute names were given, Even if it was explicitly
instructed in the prompt that they should be returned in English,
some of them were given in the document language. Furthermore,
the names and addresses were provided as a single attribute, and we
would like the model to try to split into more detailed attributes. We
provided the desired structures in the prompt (like in the example
for the entity Person).

These previous models were included in our baseline selection
together with other models that can also be considered as compact
(fit into one GPU). All these models were executed in a server with
Tesla V100, with 22.6 TFlops, 1 GPU, 16 GB per GPU, 20GB RAM.
For testing the remaining models as is shown in Table 7 we use
ollama2!® as platform to run easily most of LLM models. Is just
required to install ollama2 and pull the desired model, an REST
endpoint will be available for querying.

Table 7: Baseline models used for comparison with our fine-
tuned models

Type Baseline Model Size
General | gpt-3.5-turbo-1106 (API) -
General | claude-3-haiku-20240307 (API) -
General | Llama3:8b 8b
General | Mistral-7B-Instruct-v0.2 7.3b
General | Gemma (Google) 7b
Coding | CodeLlama-7b-Instruct (Based on Llamaz2) 7b
Coding | LLaMA-Pro-8B-Instruct (Based on Llama2) | 8b
Coding | CodeGemma (Based on Gemma) 7b

We also analyzed other models, including TinyLlama-1.1B-Chat,

Qwen-7B-Chat, Llama2-7B, Llama2-13B, Neural-Chat-v3, and WizardCoder-

33B. However, their performance was significantly lower, leading
us to exclude their results from our final considerations.

4.3 Fine-tuning

Based on the initial baseline results, we fine-tuned the two best
free models using different dataset configurations. We employed
QLORA and PEFT for three epochs on a T4 GPU in Google Colab!!.
The hyperparameters used were: 4-bit quantization with nf4 quan-
tization type, LoRA dimension of 64, learning rate of 2e-4, weight
decay of 0.001, and the AdamW optimizer.

After fine-tuning the models, we use FastAPI'? to deploy the
fine-tuned LLM model as a REST service. This service receives
raw text, constructs the appropriate prompt, and uses the model
for prediction (text generation). It then generates a response in
Ohttps://ollama.com

"https://colab.google
2https://fastapi.tiangolo.com
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JSON format. In addition, the service handles retries and exceptions
during the prediction process.

4.4 Evaluation

For the testing of the baseline and fine-tuned models we use the
second dataset group, see Figure 1 and Tables 5 and 6. After we
received the response from the fine-tuned API service, we measured
the performance of each test case model with our five proposed
metrics. The codification of the test cases for the corresponding
models is shown in Table 4.

We ran each test-case scenario three times and report the aver-
age results. The standard deviation in most cases is close to zero;
therefore, it is not included in the tables.

For evaluation, we propose five metrics based on the problems
found while using the models in the proof of concept.

(1) % Validity of JSONs (y): As we aim for the model to pro-
duce pure JSON responses, we measure the percentage of
responses that are valid JSON without any additional infor-
mation or remarks. A higher percentage indicates a better
quality of the desired format. If necessary, we will create a
valid JSON by removing all content before the first "{" and
after the last "}". However, we do not alter this metric even
if a fix is possible. The symbol T denotes that higher values
are preferable.

% Existing-Data (¢): If the model’s response is a valid JSON
or can be extracted by removing extraneous text before and
after the JSON structure, we automatically verify whether the
attribute values of each entity are present in the input text.
A higher percentage indicates a lower level of hallucination.
The symbol T denotes that higher values are preferable.

% Emptiness(¢): Considering extractable JSON responses, we
measure the number of empty attribute values in the model’s
output. Lower values indicate better model flexibility and
adaptability to different scenarios. The symbol | denotes that
lower values are preferable.

% Repetitions(y/): Furthermore, when considering extractable
JSON responses, we measure the number of repeated at-
tribute names and/or attribute values in the model’s output.
A lower percentage of repetitions indicates higher quality
of the response. The symbol | denotes that lower values are
preferable.

% 2-Level Structure(e): This measure focuses on JSON struc-
tures that are relatively shallow and straightforward. We
expect each JSON response to consist of a main object and
its corresponding attributes, without nested complex objects
within the main structure. The required format is exemplified
in the prompt.

—
S
~

—
[SY)
=

—~
N
=

—
(53)
=

The metrics ¢ and ¢ reflect the prevalence of repeated data and
empty values in responses from LLM models. Despite extracting
only a few attributes in some cases, we encountered extensive JSON
objects with repeated or empty attributes. This often resulted in
invalid JSON due to exceeding the maximum number of output
tokens. Metric « assesses adherence to the required prompt schema.

Is important to have in zero the metrics ¢ and ¢, to be considered
a consistent model, but also can be done in a subsequent cleaning
phase. The most important metrics are y and € which are refered
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to a correct output, easy to process and the no hallucination. The
last metric o could be also considered important to reduce the post
processing.

5 Experiments and Results

Table 8 presents the results of five metrics across various baseline
models. The highest scores were achieved by GPT-3.5 (cloud-based,
paid service), Mistral, and Llama3 (free, local service).

Table 8: Baseline model’s performance results

Model | YT e [oL[wl] @
%) | %) | (%) | (%) | (%)
GPT-3.5 89.3 | 79.5 | 149 | 43 | 71.7
Claude3 489 | 464 | 0.0 | 3.6 | 404
llama3:8B 0.0 | 309 | 616 | 1.1 | 11.9
mistral:7b 47.7 | 36.0 0.1 ] 31| 122
codellama:7b 238 | 33.0| 04| 3.0 185
llama-pro:8b 1.5 | 23.6 0.1 | 2.7 8.2
gemma:7b 0.0 | 29.7 | 653 | 1.4 | 10.9
codegemma:7b | 38.6 | 38.5 | 43.2 | 1.8 8.9

For a detailed analysis, we are not analyzing the %Validity of
JSONSs (y), because it can be partially solved when we remove the
text before and after JSON. On the other hand, the ZEmptiness (¢)
and the %Repetitions (i) also can easily solved by code. For this rea-
son, we will focus on a detailed analysis of % Existing-Data (¢) and %
2-Level Structure (). These metrics are directly related to the non-
hallucination capacity and the following structure requirements
(Table 9).

Table 9: Baseline model’s performance results by type of
content: € & o

BI (%) FL (%) II (%) SS (%)

Model | O Lo T o
GPT-3.5 100 | 100 | 79 | 70 | 50 | 50 | 95 | 97
Claude3 79 78 | 44 | 38 | 50 | 50 | 89 | 89
llama3:8B 60 40 | 30 | 10 | 50 | 50 | 56 | 39
mistral:7b 67 21 34| 12 | 50 | 34 | 77 7
codellama:7b 83| 83 (32|17 | 0| 0| 53|39
llama-pro:8b 54 33 | 23 8|50 | 25| 22| 14
gemma:7b 0 0| 30| 11 0 0138 16
codegemma:7b | 60 | 38 | 8 |50 | 50| 0|41 19

Based on the previous results, the two best performed free models
are Llama3 13 and Mistral 7-b 1%, These are the models that we are
going to fine tune with the different dataset configurations.

Table 10 demonstrates that the best-performing models are based
on Llama3. These models consistently avoid returning empty data,
adhere to the two-level JSON structure, and generate valid JSON
outputs. The model fine-tuned with manually labeled information
(M) performed the best in terms of %Existing data (¢), with the

Bunsloth/llama-3-8b-bnb-4bit
4 mistralai/Mistral-7B-Instruct-v0.2
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Mixed model (X) following closely behind, despite being fine-tuned
with only 500 samples.

Table 10: Performance of fine-tuned models

Model N I O 2 A
Mistral_M500 53.0 | 523 | 274 | 2.0 | 52.7
Mistral_M750 59.4 | 58.0 | 29.7 | 2.1 | 58.2
Mistral_M1000 | 61.6 | 60.3 | 27.1 | 1.3 | 61.0
Mistral_S500 36.7 | 49.1 | 293 | 0.8 | 50.3
Mistral_S750 349 | 492 | 244 | 0.6 | 515
Mistral_S1000 | 51.5 | 50.9 | 33.7 | 1.0 | 52.3
Mistral_S2000 5.1 | 11.7 | 38.0 | 0.2 | 12.6
Mistral_S3000 93] 21.0 | 503 | 0.2 | 209
Mistral_S4000 0.8 | 144 | 476 | 03 | 15.2
Mistral_X500 59.0 | 61.6 | 19.8 | 0.6 | 62.7
Mistral_X750 463 | 503 | 241 | 1.2 | 52.2
Mistral_X1000 | 47.0 | 48.4 | 31.8 | 1.5 | 49.8
Mistral_X2000 | 15.0 | 23.0 | 51.8 | 0.2 | 22.8
Mistral_X3000 05| 156 | 81.0 | 0.3 | 16.1
Mistral_X4000 91| 134 | 63.8 | 0.3 | 135

Llama3_M500 100 | 78.1 0.0 | 6.7 100
Llama3_M750 100 | 64.4 0.0 | 2.2 100
Llama3_M1000 100 | 72.9 0.0 | 3.7 100
Llama3_S500 100 | 46.6 0.0 | 1.1 100
Llama3_S750 100 | 34.3 0.0 | 1.4 | 100
Llama3_S1000 100 | 66.3 0.0 | 1.7 100
Llama3_S2000 100 | 44.0 00| 1.3 100
Llama3_S3000 100 | 53.4 00| 13 100
Llama3_S4000 100 | 27.6 0.0 | 0.9 100
Llama3_X500 100 | 71.8 0.0 | 2.6 100
Llama3_X750 100 | 67.0 0.0 | 24 | 100
Llama3_X1000 100 | 51.8 0.0 | 2.0 100
Llama3_X2000 100 | 52.5 0.0 | 1.8 100
Llama3_X3000 100 | 32.4 0.0 | 1.7 100
Llama3_X4000 100 | 455 00| 1.8 100

Table 11 presents a detailed performance analysis of the various
fine-tuned models by content type, focusing on € and a. Among
the Llama3-based models, the Manual (M) and Mixed (S) models
with 500 samples performed the best. For the Mistral-based models,
those labeled manually (M) exhibited strong performance, and the
Mixed (X) models with just 500 records also showed outstanding
results. Notably, the model trained with Semi-Synthetic data (S) and
1,000 samples performed well, closely matching the performance
of the other top models.

Table 12 shows the performance of the baseline models with the
testing dataset in scenarios of unseen types of documents with re-
spect to the fine-tunning data (Annual Accounts[AA], Consolidated
Accounts [CA], Deletion/Merger [DM]).

Table 13 presents the performance of the fine-tuned models on a
testing dataset featuring unseen document types, including Annual
Accounts (AA), Consolidated Accounts (CA), and Deletion/Merger
(DM). The results indicate that ChatGPT-3.5 outperforms Claude-3
across all unseen document types. Additionally, Mistral and CodeL-
lama are among the best-performing models overall. However, it is
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Table 11: Performance of fine-tuned models by type of con-
tent: ¢ & o

Model BI(%) | FL(%) 11 (%)

SS (%) |

3) af | €7 | af 3 al | €7 | af

Mistral_M500 100 | 100 | 50 50 50 50 | 94 94
Mistral_M750 100 | 100 | 56 56 50 50 | 97 97
Mistral_M1000 | 100 | 100 | 57 57 50 50 | 97 97

Mistral_S500 83 83 | 47 48 50 50 | 85 89
Mistral_S750 100 | 100 | 47 50 50 50 | 79 83
Mistral_S1000 67 67 | 50 51 50 50 | 74 78
Mistral_S2000 40 40 | 10 11 50 50 | 33 33
Mistral_S3000 33 33| 21 21 0 0] 19 19
Mistral_S4000 33 33 1 15 16 0 0 4 6

Mistral_X500 83 83 | 61 63 50 50 | 61 61
Mistral_X750 83 83 | 51 53 50 50 | 44 44
Mistral_X1000 | 100 | 100 | 47 48 0 01| 72 72
Mistral_X2000 0 0| 24 24 0 0 0 0
Mistral_X3000 33 33 | 16 16 0 0 8 8
Mistral_X4000 13 17 | 14 14 0 0] 11 11

Llama3_M500 100 | 100 | 77 | 100 50 | 100 | 97 | 100
Llama3_M750 100 | 100 | 62 | 100 50 | 100 | 94 | 100
Llama3_M1000 | 100 | 100 | 71 | 100 | 100 | 100 | 95 | 100

Llama3_S500 0| 100 | 46 | 100 0| 100 | 64 | 100
Llama3_S750 100 | 100 | 31 | 100 50 | 100 | 88 | 100
Llama3_S1000 | 100 | 100 | 64 | 100 | 100 | 100 | 89 | 100
Llama3_S2000 50 | 100 | 42 | 100 50 | 100 | 86 | 100
Llama3_S3000 83 | 100 | 51 | 100 50 | 100 | 97 | 100
Llama3_S4000 83 | 100 | 24 | 100 50 | 100 | 89 | 100

Llama3_X500 100 | 100 | 70 | 100 50 | 100 | 97 | 100
Llama3_X750 100 | 100 | 65 | 100 | 100 | 100 | 93 | 100
Llama3_X1000 83 | 100 | 49 | 100 | 100 | 100 | 96 | 100
Llama3_X2000 | 100 | 100 | 50 | 100 | 100 | 100 | 89 | 100
Llama3_X3000 83 | 100 | 30 | 100 | 100 | 100 | 70 | 100
Llama3_X4000 83 | 100 | 43 | 100 50 | 100 | 86 | 100

Table 12: Baseline models Performance by document type:
e&a

AA (%) | CA(%) | DM (%)

Model et | al | €T | al | €T | af
GPT-3.5 88 | 86|78 | 73 | 64 | 64
Claude3 67 | 60 | 42 | 38 | 18 | 18
llama3:8B 55|50 | 35| 25| 45| 20
mistral:7b 26 | 13| 13 | 11 | 55 | 26
codellama:7b | 38 | 24 | 26 | 15 | 30 0
llama-pro:8b | 30 | 12 | 15 6| 25| 14

worth noting that Mistral’s performance on unseen documents is
not particularly high.

Among our fine-tuned models, the Llama3-based model trained
with only manual data (M) or mixed data (X) with 500 samples
emerged as the best performer. Its results are comparable to GPT-
3.5 and even surpass it in terms of (). Consistent with previous
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Table 13: Fine-tuned models performance by document type:
e&a

AA (%) CA (%) DM (%)

eT | al | €T | af | € | af
Mistral_M500 66 67 | 58 58 63 64
Mistral_M750 76 76 | 62 62 62 64
Mistral_M1000 | 82 83 | 66 67 63 64
Mistral_S500 59 60 | 45 46 55 55
Mistral_S750 65 67 | 45 48 58 64
Mistral_S1000 56 56 | 51 53 51 55
Mistral_S2000 16 16 8 9 22 22
Mistral_S3000 31 31 | 20 20 26 27
Mistral_S4000 16 17 | 18 20 9 9
Mistral_X500 64 64 | 62 64 27 27
Mistral_X750 57 58 | 54 57 53 55
Mistral_X1000 59 60 | 44 47 54 55
Mistral_X2000 8 91 26 25 0 0
Mistral_X3000 | 17 17 | 17 18 9 9
Mistral_X4000 21 21 | 12 12 18 18

Llama3_M500 | 85 | 100 | 80 | 100 | 62 | 100
Llama3_M750 80 | 100 | 62 | 100 63 | 100
Llama3_M1000 | 84 | 100 | 62 | 100 | 100 | 100
Llama3_S500 52 | 100 | 47 | 100 0| 100
Llama3_S750 50 | 100 | 27 | 100 60 | 100
Llama3_S1000 | 83 | 100 | 53 | 100 | 97 | 100
Llama3_S2000 | 60 | 100 | 44 | 100 | 45 | 100
Llama3_S3000 | 65 | 100 | 49 | 100 72 | 100
Llama3_S4000 | 37 | 100 | 17 | 100 27 | 100
Llama3_X500 85| 100 | 72 | 100 | 54 | 100
Llama3_X750 76 | 100 | 59 | 100 50 | 100
Llama3_X1000 | 67 | 100 | 38 | 100 97 | 100
Llama3_X2000 | 66 | 100 | 43 | 100 | 100 | 100
Llama3_X3000 | 44 | 100 | 18 | 100 | 100 | 100
Llama3_X4000 | 68 | 100 | 37 | 100 | 45 | 100

Model

findings, the model trained with semi-synthetic data alone also
performs well, even outperforming others for DM documents.

Furthermore, we performed a manual check using the best-
performing model on a sample of 26 pages, with an equal distribu-
tion of Spanish and Swedish content (50% each). Therefore, deploy-
ing the highest-performing semi-synthetic-based model as a service
for extracting information from Swedish and Spanish documents
yielded the results presented in Table 14.

Table 14: Performance of the best performed semi-synthetic-
based model with other languages and formats

Model ‘ 4l
Llama3_S1000 | 100

o
-
-

ol
<
e

S

=

According to the results, the model’s performance is excellent,
nearly eliminating the percentage of repetitions () and reducing
the percentage of empty fields (¢) to almost zero. The JSON validity
percentage (y) and the 2-Level Structure percentage () reached
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100%, producing the expected JSON outputs. Additionally, the per-
centage of existing data (€) is very high, approximately 81%. While
a could be in fact, higher, the primary errors identified during man-
ual checks were due to OCR typo corrections, ambiguous company
or personal names, and lists of people with closely aligned first and
last name columns.

6 Discussion

Fine-tuning Llama3 yields superior results in terms of output struc-
ture. For data quality, incorporating some real data is preferred for
optimal performance. However, if it is necessary to exclude sensi-
tive data from fine-tuning, training exclusively with semi-synthetic
data in the same proportion as real data still produces good results.
This is also evident for unseen documents.

The fine-tuned models are not biased with respect to the training
data. We got significant improvements in every single category
in most of the cases with respect to our base model Llama3:8B,
codellama and Mistral. Our fine-tuned model can be applied to any
domain where sensitive information (companies and people) can
be found, regardless of whether OCR noise exists.

It is important to highlight that for documents in unseen formats
and languages, the model trained exclusively with semi-synthetic
data provides very good results. This allows us to share this com-
pact fine-tuned model for use in other domains and formats where
extracting sensitive information from raw text is required. Addi-
tionally, this model can be further fine-tuned for languages beyond
French, German, and English, improving its ability to handle ambi-
guities in the target language even more effectively.

7 Conclusion and next steps

Our five proposed metrics enable objective comparison of different
LLM models. These metrics can be weighted according to busi-
ness needs, with the most important being the percentage of data
existence (¢€) and JSON structure ().

Training smaller models such as Llama3-8B and Mistral 7B with
limited training samples can significantly enhance the performance
of Information Extraction models. Labeling the training samples
and subsequently replacing them with semi-synthetic data notably
improves the fine-tuned model’s results, especially in the absence
of data augmentation. Utilizing semi-synthetic data for fine-tuning
helps maintain the model’s independence from sensitive informa-
tion while enhancing inference outcomes. Fine-tuning Llama3, in
particular, yields superior performance compared to other models.

Given the importance of fine-tuning with semi-synthetic data to
preserve sensitive information within the organization, our method-
ology for creating a semi-synthetic dataset ensures high-quality
model performance while minimizing the need for a large number of
manually labeled documents. Our best-performing semi-synthetic
dataset, which can be implemented on a small GPU server, is pub-
licly available for general use. This Llama3-based model consistently
generates high-quality JSON outputs, effectively handling sensitive
information from the provided text.

As the next step, we plan to anonymize the dataset and make it
publicly available for broader use and research, utilizing the best
fine-tuned model.
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