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Introduction

Origin-destination (OD) matrix estimation is essential in transportation planning, as it
provides a detailed understanding of travel patterns, supporting infrastructure development,
traffic management, and urban planning decisions. As for |Viti (2012)), OD matrices have
been traditionally estimated in different ways: direct sampling estimation (e.g. travel surveys
and traffic counts) and model estimation; the former involves applying a system of models
that computes the approximate number of journeys made with a certain mode, for a specific
purpose during a certain period of time. OD estimation methods can typically generate either
time-dependent (dynamic) or time-independent (static) matrices Peterson (2007), and can be
estimated using either trip-based or activity-based models, Dong et al. (2006). While many
methodologies have been explored in OD estimation, probabilistic data-driven models started
emerging as a strong alternative, especially in data-scarce scenarios, as they aim to infer the
underlying distributions, rather than focusing solely on raw data, Nakatsuji (2011). This is
a common problem in OD estimation when using survey data, as these samples are often
limited in size or in quality. |Krishnakumari et al.| (2020) presents their research in which they
address OD matrix estimation under data scarcity by leveraging 3D supply patterns. While
this approach simplifies the estimation process, it relies on various assumptions about route
choice, which may limit flexibility and accuracy. To position ourselves within the current



research, the presented paper describes a methodology for dynamic OD estimation using
trip-based modeling with activity components using data-driven modeling, specifically Sparse
Variational Gaussian Processes (SVGPs), described in Section . Unlike previous methods,
SVGP makes no assumptions about the dataset and does not involve fitting; instead, its
predictions are based solely on the statistical relevance and noise/uncertainty of the data
Carvalho (2014). This affirmation is confirmed by the Case Study, presented in Section , in
which the SVGP is tested under data-scarcity conditions (up to 10% of the initial dataset as
the training set), providing robust and precise predictions. Our model integrates elements
from both trip and activity-based approaches by sequentially predicting trip attributes—such
as start time and destination, alongside the trip’s purpose, allowing us to predict both static
and dynamic OD matrices. To the authors’ knowledge, no previous trip-based dynamic OD
matrix estimation research has included activity information within the model.

Methodology

A Gaussian Process (GP) (Gelman et al| (2021))) is a statistical model used to estimate
probability distributions for both linear and non-linear data, allowing predictions to be made
in unseen regions of a problem, complete with associated uncertainty. However, due to the high
computational complexity of these models(O(n?)), in real applications, GPs are often replaced
by Sparse Variational Gaussian Processes (SVGP), which significantly reduces computational
complexity by approximating the full GP, Ghosh et al.| (2006). The use of the SVGP for OD
matrix estimation offers several advantages. Being a data-driven model, it allows different
types of data to be used as input (e.g. traffic counts), ensuring flexible modeling. In addition,
the SVGP allows for control over the computational complexity by reducing the number of
induction points, a subset of points used to approximate the full GP, thus simplifying the
computations without significantly compromising accuracy. Finally, the accuracy of these
models does not depend on the amount of data available, but on its statistical relevance
Titsias (2009). In this study, we use the SVGP to predict dynamic OD matrices, specifically
our goal is to use SVGPs to predict, for each trip, the start time, destination, activity
type, and the arrival time. The ability to predict individuals’ activity types, along with
their associated times and locations, provides key insights into how people use transportation
systems. The strength of this methodology is that these insights are derived without relying
on assumptions (e.g. amount of shortest paths used for each OD pair, distribution of flows
on the network), offering a more unbiased approach. To maximize prediction accuracy while
minimizing the number of SVGP models used, we opted for a chain architecture where each
SVGP model’s output serves as the input for the subsequent model, as shown on Figure [2]
During the training phase, all inputs to each SVGP come solely from the training dataset,
while in the prediction phase, the inputs are provided by the outputs of the previous SVGP
models.

Figure [3| shows the full framework of our model to predict a full trip for each individual.
Figure |1} shows the structure of the prediction process for a single trip, where we begin by
training the first SVGP using socio-demographic data to predict the departure time. This
prediction, combined with the socio-demographic inputs, is then fed to a second SVGP to
predict the activity to be performed. The same iterative approach is applied to predicting



the destination and arrival time. Figure |2/ shows then how we extend this methodology to
the full activity chain: after the first trip has been predicted, subsequent trips are predicted
sequentially, using information from previous trips and input about the total number of trips
to be made. To reduce computational complexity and enhance the prediction, we applied
Principal Component Analysis (PCA, Djukic et al. (2012))) to the input data, as it reduces
the input space while filtering irrelevant components. As the SVGP is still computationally
intensive, we optimized the process by allowing our method to make predictions simultaneously
over a large population, making it scalable and efficient, rather than predicting individually
for each person. The problem faced working with SVGPs in multi-output predictions is that
these models produce only one continuous output at a time. To predict four variables per trip
— departure and arrival times, destination zone, and activity type — we separated the tasks
into discrete-choice predictions (zone and activity) and regression predictions (departure and
arrival times). For the discrete-choice predictions (zone and activity), as only one output is
provided by each model, we needed to train one SVGP for each choice option. The SVGP
were then trained to output a continuous value between 0 and 1, which represents in our case
the likelihood that a particular input corresponds to that specific choice. To achieve this, we
applied a softmax-like transformation to the outputs of all SVGP to generate a Probability
Density Function (PDF) to obtain the relative probabilities, constructing then a Cumulative
Density Function (CDF') to sample and select the specific choice. For the remaining variables
to predict (arrival and departure time), we trained one SVGP for each regression. This whole
process is then repeated for each possible trip that is available in the dataset, as shown in
Figure 2} By then chaining these predictions, we were able to obtain the final OD matrices.

Results

To demonstrate the effectiveness of the proposed methodology, we conducted experiments
to reconstruct full Origin-Destination (OD) matrices from different levels of limited samples.
As input, we used a synthetic travel survey performed including more than 80,000 trips. To
assess the capability of the model under data scarcity, we created training sets sampling from
80%, 50%, 30%, and 10% of the full dataset. The synthetic dataset has been set to have
about 95% of travellers performing 6 trips or fewer daily, with a maximum of 10 trips. For
this specific study and for computational purposes, we opted to cap the number of predicted
trips at 6 predictions, as it is still representative of the dataset.

Full OD Work Home School

NRMSE MAE NRMSE MAE NRMSE MAE NRMSE MAE
80% 0.0105 0.1916 0.0071 0.0906 0.0218 0.0329 0.0063  0.0240
50% 0.0113  0.1226  0.0089 0.0579 0.0257 0.0205 0.0061 0.0149
30% 0.0101 0.0752 0.0089 0.0359 0.0223 0.0124 0.0055 0.0090
10%  0.0109 0.0264 0.0086 0.0120 0.0122 0.0043 0.0047 0.0033
Table 1: Prediction error results for the Full OD matrix estimation, as well for the OD
matrices for Work, Home and School.

Train set %

Table [T1| compares the real OD matrices with the predicted output for each level of the training
set. First, we compare the Full OD matrix, meaning without any segmentation per activity,
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and then 3 OD matrices divided by activity, namely Work, Home, and School. We use
NRMSE (Normalized Root Mean Square Error) and MAE (Mean Absolute Error) to evaluate
the prediction accuracy of our model, as these metrics provide insights into both the relative
error scale and absolute deviations, respectively. What we show with Table [1| is that the
SVGP model not only provides strong prediction accuracy, but this remains consistent even
with reduced data. This is due to its Bayesian nature, which infers a posterior distribution
that depends more on the statistical relevance of the data than on its volume. Moreover, the
granularity of the presented model, with each prediction using its own SVGP, allows for an
efficient update using new data, reducing the need for full model retraining. Additionally,
if any prediction shows lower accuracy, we can refine its training parameters individually
without affecting other SVGPs in the model.

To further showcase the capability of this model under data scarcity, Figure [4] shows the
absolute error when trying to predict the entire dataset using only 10% of it as the training
set for the SVGP. While the prediction error is concentrated in a few areas (mainly due
to the almost absence of data), 90% of the predicted trips fall within a margin of error
considered acceptable, especially considering the training set size. As previously mentioned,
this concentration of errors is not a major concern, as the structure of the model allows for
individual updates to SVGP without the need for full retraining.

Conclusions

This research presented the application and effectiveness of the SVGP model for dynamic OD
matrix estimation under data-scarcity conditions. The model successfully provides accurate
predictions for all trip variables and activities without relying on any assumptions, while
showcasing good prediction capability even under data-scarcity conditions. This achievement
provides valuable foundations for exploring future theoretical models exploring the relationship
between trips and activities. Further research will include the test on a real travel survey, the
prediction of transport modes and future travel patterns. In addition, the flexible structure
of the model accommodates different types of input data and allows for optimization of
individual zones, enabling rapid updates of the SVGPs. This could potentially enable the
model to be used for real-time forecasting applications in the future.
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Figure 2: Full Trip Prediction
Figure 3: Proposed trip prediction structure.
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Figure 4: Absolute error ranking for trip activity predictions using 10% Training set
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