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Abstract: We developed an approach to estimate OD flows, including activities performed at 
destinations, using crowdsourced Google Popular Times (GPT) data and mobile spatial statistics on 
population presence. Our method is suggested to be of particular relevance to transit operators to 
understand the activities that public transport users engage in after their journey, enabling insights into 
demand sensitivities to urban activities. The study uses data from Kyoto, Japan with a focus on the 
Kyoto Station area. Results show that GPT data effectively estimate the time-varying population in the 
station vicinity. Further analysis illustrates the origin of station users and the activities they engage in.  
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1. INTRODUCTION 

 
Despite its importance for public transport planning and operation and a vast body of literature, the time-
dependent OD estimation problem remains one of the most challenging tasks. The primary hurdle lies 
in the fact that, especially for expansive networks, the problem is notably under-determined given the 
usual data available for the analyst (e.g. Van Zuylen & Willumsen, 1980; Cascetta, 1984; Bell, 1991). 
Traditional methods for estimating OD matrices often rely on survey data or fixed infrastructure metrics, 
which are usually limited in their temporal and spatial resolution (Mamei et al., 2019; Pinjari & Bhat, 
2011). For instance, studies utilizing mobile phone location data have demonstrated the potential for 
capturing dynamic travel patterns and correlating them with socio-demographic factors, thereby 
enhancing the accuracy of travel demand predictions (Calabrese et al., 2011; Diao et al., 2016). However, 
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these approaches frequently overlook the rich spatiotemporal interactions that can be derived from 
crowdsourced data, which provides insights into venue crowdedness and user behaviour in real-time 
(Zhang et al., 2021; Peng et al., 2023). 
 
In the context of rapid urbanization and technological advancements, the ability to derive the purpose 
behind each trip is key. The significance of trip purpose determination extends beyond mere 
convenience: it plays a vital role in optimizing transportation systems, informing infrastructure decisions, 
and enhancing overall mobility. The challenges posed by the under-determined nature of the OD 
estimation problem, coupled with the complexity of trip purpose determination, highlight the need for 
innovative approaches in transportation research. 
 
Activities such as shopping, dining, and social interactions contribute significantly to the interests of 
train operators, particularly those owning nearby malls and retail spaces as is often the case in Japan. 
Estimating these activities is important for understanding "station vitality," the range of activities 
occurring within and around stations that extend their role beyond transit hubs to vibrant urban spaces. 
Increased foot traffic from non-transit activities enhances station value and supports economic 
ecosystems in surrounding areas (Nigro et al., 2019; Wenjin, 2023). Diverse amenities not only improve 
user satisfaction but also encourage longer dwell times, boosting sales for retail establishments (Zhang 
et al., 2022). These non-transit functions align with transit-oriented development principles, 
emphasizing the importance of integrating mixed-use environments around stations to maximize their 
economic and social potential (Wu et al., 2021). 
 
In response to these challenges, our study uses aggregated mobile phone and crowdsourced data to 
establish the relationship between travel demand and trip purpose. We employ the entropy maximization 
approach, which leverages aggregate constraints from crowdsourced data to estimate OD flows without 
having to rely on detailed trip chain information. The maximum entropy function is used in the 
estimation models presented by Bell (1983) among others. 
 
Firstly, we seek to derive zonal activity weights, aligning the presence of people with activities. 
Secondly, we want to find activity OD matrices, correlating travel patterns with these activities. Lastly, 
we examine station user activity, exploring the variety of activities in the station area and their origins. 
The remainder of this paper is organized as follows: Section 2 introduces the data used in the study, 
followed by Section 3 detailing the methodology, Section 4 presenting the results and discussion, and 
Section 5 concluding with key findings and future research directions. 
 
2. DATA 
 
2.1. Mobile Spatial Statistics (MSS) 
 
The MSS data is generated from the Nippon Telegraph and Telephone Corporation (NTT) DOCOMO 
mobile network. It provides information on population counts, age, gender, and residential location in 
500m x 500m grid cells at hourly intervals. With over 80 million DOCOMO subscribers, the MSS data 
offers substantial coverage of Japan's population. To align with the travel time data and GPT zones, we 
aggregate the 500m MSS grids into 1km x 1km zones. 
 
2.2. Google Popular Times (GPT) 
 
To capture activity patterns, we collect data from the Google API on Points of Interest (POIs). This 
includes information such as POI name, location, type, and various activity metrics from Google's 
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Popular Times feature. The GPT data, shown in Figure 1a, provides four key pieces of information for 
each POI. The historical average popularity indicates the typical busyness over past months, relative to 
the weekly peak. The live visit data shows the current real-time popularity compared to the historical 
average. The dataset also estimates the average visit duration and expected wait time for service. 
 
While the exact method used by Google to generate these metrics is not disclosed, available 
documentation states that they are based on aggregated, anonymized data from users who have opted 
into Google Location History. Historical popularity and visit durations are derived from several weeks 
or months of user data. Vongvanich et al. (2023) validated GPT activity levels against Wi-Fi sensor data 
in Kyoto and found a strong correlation (R² = 0.82), supporting the reliability of GPT data as an indicator 
of relative activity patterns. 
 
It is important to emphasize that Google Popular Times (GPT) data is a relative metric indicating the 
level of activity at a particular POI. The popularity for any given hour is presented relative to the standard 
peak popularity of the business throughout the week. The data is expressed on a scale ranging from zero 
to one hundred, where one hundred signifies the typical peak popularity within a one-week period. Live 
visit data is updated in real-time and can exceed one hundred. 
 
Our case study focuses on Kyoto, where out of the 60,492 POIs identified, 10,121 have GPT data, with 
1,524 providing live visitation information. To facilitate trip purpose analysis, we categorize the POIs 
into 8 activity groups: Transit, Shops, Food, Nightlife, Entertainment, Leisure (Tourist), Local Service, 
and Public Facility. The distribution of these activity groups varies across the 56 zones, with some areas 
exhibiting a limited presence of certain activities. This constraint leads us to rely primarily on the GPT 
data as the source of activity information for our models. 
 
Figure 1b shows our study area, highlighting the 56 zones in Kyoto, each measuring 1km x 1km. 
Additionally, the POIs from GPT data are color-coded according to their respective activity groups. The 
distribution of activity groups among the GPT POIs varies across zones; some zones exhibit a presence 
of only few activity groups. The limited number of GPT POIs in each zone serves as a representation of 
the zone's activity in our models.  

 

  
(a) GPT graph (adapted from Google) (b) MSS zones and GPT POIs in activity groups 

Figure 1. GPT data and MSS zones 
 

2.3. Travel time matrix 
 
The generated travel time matrix contains the commuting time between the 56 zones in Kyoto. These 
travel times are computed by considering the journey from the centroid of one zone to another, 
incorporating both public transportation (bus and/or trains) and walking. Notably, the travel time 
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matrices are categorized by weekdays, Saturday, and Sunday, with further segmentation for each hour 
from 8 am to 11 pm. 
 
To create this travel time matrix, information was gathered from web pages, including the coordinates 
of 1321 bus stops, the order of bus stops in 587 routes, and the frequency of each route (with a focus on 
the first bus stops). Subsequently, the expected waiting time per 3 hours was calculated to address 
challenges arising from the frequency data collection. The calculation included factors such as the 
expected waiting time, distance between bus stops, link generation criteria, and link costs, encompassing 
travel time, and waiting time. The minimum cost between all nodes was determined using the Dijkstra 
algorithm. 
 
3. METHODOLOGY 
 
The afore introduced MSS, GPT, and travel impedance data are combined to estimate activity OD 
matrices. Zonal activity weights link relative GPT data to absolute population measures. The activity 
OD matrix is then derived using entropy maximization to allocate trips by activity type. 
 

Table 1. Notations 
3.1 Zonal Activity Weights 
𝑦!,#,$ presence of people in zone 𝑗 on day 𝑑 at time 𝑡 
𝛽!,%&'( multiplier of activity 𝑘 in zone 𝑗 to match the absolute number of people 
𝑥!,%,#,$&'(  average live GPT data of the POIs categorized as activity type 𝑘 in zone 𝑗 on day 𝑑 at 

time 𝑡 
𝛽!,$()* the change in number of people in zone 𝑗 at time 𝑡 due to hour variations 
𝑥#,$()* time of day dummy variables 
𝛽!,#*)+ the change in number of people in zone 𝑗 at time 𝑡 due to day variations 
𝑥#,$*)+ day of the week dummy variables 
𝛽!,, the intercept of multiple linear regression model 

3.2 Activity OD Matrix 
𝑐-,! travel impedance from zone 𝑖 to zone 𝑗 
𝑜- sum of all trips originating from zone 𝑖 
𝑑! sum of all trips destined for zone 𝑗 
𝛼 Lagrangian multiplier of travel time constraint 
𝐶 the total travel expenditure 
𝑞-,!% number of trips from zone 𝑖 to zone 𝑗 for the purpose of activity 𝑘, performed in zone 𝑗 
𝜆-) Lagrangian multiplier of origin constraint for zone 𝑖 
𝜆!%#  Lagrangian multiplier of destination constraint for zone 𝑗 activity 𝑘 

 
3.1. Zonal Activity Weights 
 
To bridge the relative nature of GPT data with the absolute measures of MSS data, a non-negative 
multiple linear regression model is applied to establish the relationship between the number of people 
in a zone and the live visitation data of points of interest (POIs) categorized by activity type. Shown in 
(1), the model calculates zonal activity weights that scale GPT data into estimated counts of people 
engaged in specific activities within a zone.   
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𝑦!,#,$ =0𝛽!,%&'(𝑥!,%,#,$&'(

%

+ 	𝛽!,$()*𝑥!,#,$()* + 𝛽!,#*)+𝑥!,#,$*)+ + 𝛽!,, + 𝜀!,#,$ (1) 

 
Activities beyond GPT’s scope, such as home-related activities, are accounted for with the baseline 
dummy variable 𝛽!,,. Temporal variations are incorporated using dummy variables for time of day 𝛽!,$()* 
and day of the week 𝛽!,$*)+. For each zone, 𝑥!,%,#,$&'(  the average live GPT data for POIs classified under 
one of nine activity types was computed hourly, based on data from November 5, 2020, to April 30, 
2021. The regression was conducted independently for 55 zones (each a 1km² area), yielding the zonal 
activity weights 𝛽!,%&'( for activities, time of day, day of week, and the baseline term for each zone.  
 
3.2. Activity OD Matrix 
 
The well-known maximum entropy approach originally proposed in Wilson (1968) is adapted to our 
data. It relies on the idea that there are many possible trip distributions and that the most probable state 
of the total OD matrix is the one that maximizes the total entropy, where the entropy is given by the 
number of possible arrangements of the state. The model can be formulated as an optimization problem 
as defined in equation (2). 

𝐸9𝑞-,!%: = 	−0 𝑞-,!%(ln 𝑞-,!% − 1)
-,!%

 (2) 

 
We maximize entropy 𝐸9𝑞-,!%: subject to the constraints representing our inputs. The MSS data provide 
the originating trips 𝑜-. Weighted GPT data provide 𝛽!%𝑥!%, the sum of all trips destined for activity 𝑘 
in zone 𝑗 . Activities not covered by GPT data are incorporated using intercept terms 𝛽!,,  and 
adjustments for temporal variations with time-of-day 𝛽!,$()* and day-of-week 𝛽!,#*)+ coefficients. Finally, 
𝐶 represents the total expenditure on transportation. Upon formulating the optimization problem, the 
Lagrangian of this problem can be expressed as: 
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where 𝜆-), 𝜆!%# , 𝜆!,#  and 𝛼  are Lagrangian multipliers. Solving the optimization problem yields 𝑞-,!% , 
which constitutes our activity OD matrix. The resulting OD matrices are high-dimensional; for 
presentation purposes, we focus on aggregated destination-based results in the Kyoto Station zone. 
 
4. RESULTS & DISCUSSIONS 
 
4.1. Zonal Activity Weights 
 
We obtained the zonal activity weights for all 56 zones in Kyoto. Figure 2 shows the 𝑅. values, model 
fit accuracy, for the zonal activity weights across all zones. Figure 3 presents the activity distribution by 
time of day for the Kyoto Station zone, which includes the station itself, as well as shops and a mall 
owned by the railway operator. Although not all individuals in this zone are transit users, understanding 
the activities of people in the station area is important for operators, as many may be shopping or dining 
at operator-owned establishments. The distribution highlights a significant portion of the population 
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attributed to the "nonGPT" activity group, which represents activities not captured by GPT data. These 
include home and work activities, as well as activities at POIs without GPT data. 
 

 
Figure 2. 𝑹𝟐 of zonal activity weights by zone, with the Kyoto station zone highlighted 

 

 
Figure 3. Activity distribution by time of day: Kyoto station zone 

 
The regression analysis for Kyoto station zone has an 𝑅. value of 0.84, indicating a strong correlation 
between GPT data and the estimated number of people engaged in activities. However, not all zones 
have high 𝑅.  values. Zones with higher 𝑅. values tend to be touristic or have more POIs captured by 
GPT. This reflects the nature of GPT data, which predominantly represents "non-routine" activities, 
such as leisure, shopping, dining, and tourism, rather than routine home or work activities. A comparison 
of “nonGPT” activities during night times with census population of the zones could provide a valuable 
validation step. If successful, this could allow us to estimate job numbers by analysing the difference 
between the population and the people accounted for in the "nonGPT" activity group. The high 𝑅. 
values in zones like Kyoto station suggest that GPT data, when combined with zonal activity weights, 
can effectively capture the spatial and temporal distribution of activities in areas with dense POI 
coverage. 
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4.2. Activity OD Matrix 
 

  
(a) Shopping activity (b) Non-GPT activity 

Figure 4. Activity OD Matrices – Trips to Kyoto Station zone 
 
Figure 4 shows the Activity OD matrices for trips with Kyoto station area as the destination. We can 
estimate when, how many, and for what purposes people travel to the Kyoto station area. We observe 
that many zones pairs have no trips at all. This can be attributed to the destination constraints in the 
optimization problem, which are based on the availability of GPT data. If GPT data indicates a value of 
zero for a specific activity in a particular zone at a given time (such as when shops are closed), no trips 
will occur to that activity-zone pair. This phenomenon underscores the influence of GPT data 
availability on trip destinations, particularly for activities such as entertainment. 
 
Across all activities, individuals tend to remain in the same zone. This behaviour is expected, as people 
often engage in activities within their immediate vicinity. Three factors may explain this trend. First, 
individuals may simply be stationary or conducting nearby activities. Second, the travel time matrix, 
which calculates impedance using distances between zone centroids, assigns relatively low costs to 
staying within the same zone, further encouraging intra-zonal activity assignment. Third, the use of 
relatively coarse 1km² zones may further amplify this effect by aggregating short-distance trips within 
a single zone. 

 
5. CONCLUSION 
 
This research focused on understanding activity in the vicinity of stations by estimating origin-
destination (OD) matrices with trip purposes, using crowdsourced data from MSS and GPT. We 
presented two key methodologies: the estimation of zonal activity weights through a multiple linear 
regression model and the calculation of activity-specific OD matrices using optimality conditions. These 
approaches offer more detailed insights into travel behaviour by incorporating trip purposes, beyond 
traditional OD estimation methods. The use of crowdsourced data provides a scalable and real-time 
solution for cities, with potential applications for researchers, urban planners, and policymakers looking 
to analyse traffic patterns and activity-based travel behaviours. We suggest that in particular for public 
transport operators these crowdsourced data can lead to new insights as to demand impacts if, for 
example, certain activities in the city are promoted. The analysis can be used to predict ridership demand 
increases; not just considering GPT data near the station as in Vongvanich (2023), but in the whole city. 
 
The novelty of this work lies in its integration of trip purposes into OD estimation, a feature not 
commonly explored in traditional studies. Although developed for Kyoto, the framework can be 
extended to other cities, offering a flexible tool for urban analysis. However, challenges remain. The 
models are more accurate in zones with a higher number of Points of Interest (POIs), and the reliance 
on GPT data limits the comprehensiveness of the activity types captured. Additionally, the lack of 
detailed validation data, particularly for activity-specific trips, poses a challenge in assessing the 
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accuracy and reliability of the models. 
 
While GPT data provides valuable insights into activity patterns, its public visibility may influence user 
behaviour — for example, people might avoid crowded venues during peak hours. This may lead to an 
underestimation of actual demand in certain time slots, particularly for capacity-constrained activities 
like dining, though the impact is likely minor in aggregate analyses. 
 
For future work, improving the validation process with richer datasets, such as detailed activity and land 
use data, will enhance model robustness. Further refinement of the deterrence function, potentially 
incorporating additional factors like travel cost and traffic conditions, could improve the realism and 
accuracy of the models, especially for larger cities where travel time becomes a more significant factor. 
This may also include expanding beyond public transport and walking to incorporate more general travel 
impedance, such as network distance or multimodal options. Land-use data, as demonstrated in Dai et 
al. (2025), where station areas are analysed at a 100m × 100m resolution, could be used to identify 
dominant residential, work, or education-related functions within each zone. Since each of our 1km × 
1km zones contains 100 such blocks, this information can help interpret nonGPT activities and improve 
the estimation of habitual activity OD matrices, particularly for commuting and school-related 
movements. 
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