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Abstract: This study proposes a new approach to assess Demand-Responsive Transport. We developed the
DRT Equilibrium (DRT EQ) within an agent-based simulation environment, an iterative procedure in which
DRT routes are defined at each procedure iteration and treated as conventional bus lines, with the routes
refined at each iteration based on equilibrium performance. To assess the performance of this methodology,
we tested it against MATSim’s dynamic DRT module using a case study from Luxembourg. We show that
under a stress test scenario, the DRT EQ performs better and more consistently than the DRT Module from
both the customers’ and provider’s perspective.
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1. Introduction

In recent years, cities and regions worldwide have searched for new sustainable solutions to address the
growing complexity of urban mobility. With increasing pressures from urban sprawl, population growth,
environmental concerns, and the demand for more adaptable transit solutions, transportation researchers are
turning to emerging models that can support and synergize well with traditional public transport (PT) systems.
Demand-responsive transport (DRT) has gained attention for its ability to flexibly accommodate shifting
passenger needs in real-time, offering the potential to improve accessibility to PT and reduce reliance on
private vehicles. Moreover, PT companies are investing a lot, to adapt to their sustainability goals, into more
Electric Vehicles (EV), which have higher requirements and require more precise modeling.

To study the potential impact of DRT systems within modern urban transport systems, researchers have
increasingly moved towards agent-based modeling (ABMs), which allows for the simulation of individual
interactions within complex, dynamic environments. DRT systems, by nature, must operate flexibly in
response to real-time passenger needs and the changing conditions of urban networks. ABMs are particularly
suited to capture these interactions as they can simulate individual agents — e.g. each representing a passenger
or a vehicle — who make decisions based on unique preferences, current system conditions, and available
options. This granularity allows researchers to test and refine DRT strategies in a simulated environment,
evaluating outcomes on both individual and system-wide scales, [Ronald et al.| (2015). In this study, we
will rely on the well-established open-source software MATSim, Horni et al.| (2016)), a popular ABM for
transportation that not only simulates these interactions but incorporates a feedback mechanism in which
agents continually adapt their decisions based on past experiences, aiming for optimal plans over multiple
"days". This is done through agents saving their experience of each MATSim iteration (iMTS), and evaluating
them through a scoring function, which describes their "satisfaction" with the experience, Nagel et al.| (2016)).

Maciejewski and Nagel| (2012); [Ciari et al.| (2016) developed extensions that allowed MATSim to simulate
DRT services (e.g. taxis) within the simulation environment (DRT Module). This module simulates DRT
services by dynamically generating routes responding to passenger requests during each MTS, with the
objective function aimed at minimizing total travel times and costs. As agents move through the simulation,
they are given the option at each iMT to opt for DRT services under specific conditions. Once the requests are
collected, the DRT Module computes and generates new service routes to accommodate these requests given
that specific customer setting. However, dynamic routing introduces significant complexity to the simulation
process. Each time agents adjust their plans — such as changing modes of transport, departure times, or routes
— the DRT module must recompute the routes to accommodate these changes. As the scoring mechanism
is the primary driver for agents selecting their next plan, this constant adjustment creates a feedback loop
where agents’ choices influence the DRT service configuration, and in turn, affect agents’ subsequent choices,

potentially preventing agents from effectively evaluating and settling on optimal plans.

The same problem has also been noted in the very early stages of DRT modeling in MATSim (Ciari et al.
(2009)), where it is stated that the dynamic interplay between agent decisions and operator adjustments
in MATSim can lead to complex equilibrium challenges, given that both service characteristics and user
choices continuously evolve. This constant change might lead to either complex or unstable equilibrium
conditions, reducing the simulator’s ability to make agents converge on their best possible plan, and thus
forcing MATsim further away from achieving a stable (and reasonable) user equilibrium in an appropriate
amount of MTS Moreover, another main limitation of the DRT Module is the unavailability of the integration
of external algorithms to solve the DRT routing and scheduling problems, creating a closed environment that
forces researchers to rely on the module’s specific setup and limitations. The inability to implement custom
optimization solutions restricts the capacity of researchers throughout the world to use MATSim with their
own developed solutions. Therefore, while the DRT Module remains a perfectly viable solution for simulating



DRT within the transportation system, it does not fulfill the needs of understanding these systems properly,
supporting effective management, and testing native DRT models and optimization algorithms.

To overcome some of the above-mentioned limitations, |Yang et al.|(2024) present a co-simulation system, Fleet
Demand (FD) Simulator, which integrates MATSim with external fleet simulators to enhance the simulation
of advanced fleet-based services, such as ride-pooling and DRT. During each iMTS, they collect the potential
pool of clients from MATSim, simulating the DRT mode option in the simulation through teleportation. After
this, information on the agents, together with the network and traffic conditions, are sent to another simulator,
which simulates the fleet-based service more accurately, with the output of the simulation given back to
MATSim in the form of plans adjustments based on the travel time and/or distance of the experienced plan
in the other simulator environment. The FD simulator tackles elegantly some of the shortcomings of the
DRT Module, which may be difficult to represent using MATSim’s current toolbox, especially due to the

complexity of integrating new modules in the simulator.

Nonetheless, some problems might arise when adopting this approach: first, the impact of the choice of
agents in the simulation, which undergone the parallel simulation, is not reflected in the scoring of the other
agents which instead were not teleported. This might lead to equilibrium which is still correct from a purely
theoretical point of view, but might not represent the real state of the system. Moreover, as per the DRT
Module, the presented research potentially lacks the chance to implement other optimization models within it,
as it relies on an external simulation environment. Finally, as the FD is using an external simulator, as per the
presented implementation in Namdarpour et al.|(2024), no possibility to implement additional constraints
that are problem-related and might help practitioners and researchers to understand DRT under all the reality
constraints - e.g. charging stops and/or stations for EV vehicles problems looks available - limiting the
application to classical DRT systems.

Therefore, to address all the presented shortcomings, we implemented an iterative procedure that uses multiple
MATSim simulations, modeling the DRT system with classical MATSim bus lines, named DRT Equilibrium
(DRT EQ).

The main rationale for developing the DRT EQ is that we do not need to simulate a DRT system within
a transportation environment, but we want to test and understand the behavior of any DRT solution at
equilibrium conditions in a pseudo-realistic scenario. In the DRT EQ, agents test predefined routes and
evaluate their effectiveness at user equilibrium, recomputing the routes across different Procedure Iterations
(iPRC) based on the equilibrium demand at the previous i*R€. until convergence is reached, in contrast with the
implementations presented in|Yang et al.| (2024) and Ciari et al.|(2016) which reroute the DRT's throughout
the single MTS. Additionally, DRT EQ allows for the incorporation of real-world operational constraints like
charging stations and depots as part of the fixed route structure, which simplifies certain strategic evaluations
that would otherwise be challenging in a dynamic system. Finally, our presented approach allows for any
kind of optimization model to be implemented and tested within MATSim, allowing researchers to test their
solution in their desired scenario.

The remainder of the paper is organized as follows. Section 2 describes in depth the procedure development.
Section 3 describes the case study. In Section 4 we discuss the results and the implementation of the DRT EQ,
with Section 5 summarizing the findings and indicating future directions.

2. Methodology

The objective of the DRT EQ is to overcome the shortcomings of the DRT Module by introducing a procedure
that integrates an external DRT optimization model’s solution within MATSim’s simulation framework,
allowing us to incorporate optimized routes within the MATSim environment. This iterative procedure allows



the evaluation of DRT services by generating fixed routes during each i*R€, and adapting them to the reaction

of the MATSim simulation at equilibrium, in contrast with DRT Module, which dynamically adjusts routes
in response to each iMTS. demand. Our goal is to reduce computational complexity and provide a stable
environment for the system to reach user equilibrium.
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Figure 1: Flowchart of the Methodology.

Figure [T| shows the flowchart of the iterative procedure integration for implementing the DRT EQ within the
MATSim environment.

Step 0 is the parameter configuration step, in which we can set the parameters necessary for the simulations.
Specifically, we can set the number of MTS, maximum iPRC (;PRC) and other parameters, such as criteria

convergence (conv°""), the path to the runnable files, and so on.

Step 1 involves running the chosen DRT model to get the optimized solution. The input includes customer
data, including their preferred departure time, pickup point, and destination, as well as the index of customers
rejected. The output generates bus schedules and customer itineraries, which are used to optimize bus routes
and minimize operational costs.

Step 2 bridges the optimization model and the MATSim environment. Its purpose is to convert the locations of
customers, bus routes, and other relevant data into MATSim-compatible files, preparing them for simulation.
This step has two parts: generating the "DRT bus" lines and setting up the files for the MATSim simulations.

The first part involves modeling the DRT service as a traditional bus within MATSim, with predefined bus
routes and stops derived from the output of Step 1. The generated files are the respective transit schedule
and vehicle files for a MATSim simulation. The former includes transit stops, and end of the lines, but also
allows us to model recharging stops, which are all converted into stops in MATSim’s simulation, while the
latter includes information regarding the capacity of the bus, the number and name of the bus, and so on.
The second step involves generating the population generation step based on the customer’s demand and
embedding in the customer’s plan the necessary details for simulating Step 3. This includes the bus schedule
information to match it with the DRT bus, pickup time, and destination location.

Step 3 uses a MATSim simulation to test the DRT EQ into user equilibrium. The idea is to evaluate whether
the estimated optimal DRT routes from Step 1 remain optimal for the clients considering that other agents
could behave differently, such as choosing another mode of transport, changing routes, etc.
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Once the MATSim simulation is concluded, we consider the agents who used the DRT EQ to reach their
destination as satisfied by the experience, under the assumption of user equilibrium for the MATSim simulation,
and treat them as customers for the next i"RC + 1. To achieve this, agents that did not opt for the DRT, therefore
considered as rejected (cust,.; in Figure , are fed back to Step 1 for iPRC. i+1, such that Step 1 will optimize
the route of the DRT for the customers who were satisfied with the service. This whole procedure is repeated

until either iPRC or com* is met.

For this study, we opted to develop and implement an additional step, namely, Step 3.1 which simulates the
DRT system using the DRT Module, Maciejewski and Nagel| (2012)). To run it, we use the demand and vehicle
specification (number and capacity) as peri*RC = 1, Step 1, allowing for a fair comparison of the two models
at equilibrium conditions. This is still considered correct, as a higher number of vehicles for the DRT Module
does not necessarily result in their full utilization, which in our case is cleaned in the post-processing phase.
This simulation is mainly run for comparison reasons, is run only once during the whole iterative process, and
usually is run at a higher iM™ count compared to Step 3, mainly due to the slower convergence that comes

with this module.

Finally, Step 4 is the post-processing and cleanout phase, in which we can compute the output for either the
different iterations of the procedure and the key performance indicators (KPIs) for both the DRT bus and the
DRT Module.

3. Case Study & Results

Case Study

For this study, we selected a town in Luxembourg, Contern, where a train station serves travelers going in
two opposite directions: Luxembourg City and Trier, Germany. An industrial area is located in the town,
and companies in the area generate a considerable afternoon peak demand for train services, which would
justify the implementation of a DRT system for first/last mile connectivity. Therefore, the goal is to simulate
requests for such a hypothetical DRT system connecting the customers from their origin workplace to the train
station, allowing them to synchronize with the train schedule for the two above-mentioned directions. The
underlying assumption is that, as DRT works well to connect less-connected areas to the main PT network,
customers would be willing to pay for a service that connects them to the train network to bring them to their
final destination. For this case study, we used as a model for Step 1 the metaheuristic presented in Ma et al.
(2024)), which proposed a first-mile DRT model, where customers are randomly generated, with specified
preferred train station, departure, and direction. Regarding the Step 0 parameters, we decided to set i’RC at 50,
with conv"" based on the moving average threshold approach used by Yang et al.|(2024), which stops the
procedure once the n-cycle moving average of DRT trips of our implementation, set at conv°" +3% over the
last 5 iPRC for this study. We simulated 5 pickup points over a radius of ~ 2 km from the main station, and
we simulated customers varying from 20 to 500 customers. Each DRT vehicle is simulated with unlimited
capacity, and the running time of the DRT service ranges from 15:58 to 18:30. The optimization runs of the
heuristic model of Ma et al.|(2024) is set to 10, meaning that the model will be run 10 times, selecting the
solution which best fit the objective function. To compare our implementation with the DRT Module, we run
each of the DRT EQ for 400 MTS, while the simulation of the DRT Module for 900 iMTS For both the DRT
Module of MATSim and our DRT EQ, we applied the same scoring, with a heavy penalty for late arrival at
the station and the same parameters for the travel through PT/DRT.



DRT Module DRT EQ
POp Size | VKT § WT MC #Veh P P25 P75 VKT § WT MC #Veh P P25 P75
20 2152 136 7.51 0% 1 20 20 20 16.67 1.19 8.18 15% 3 6.67 5.5 8
30 3494 130 8.67 10% 4 75 175 825 23.72 1.18 738 3% 3 10 9 10.5
50 37.00 148 7.63 8% 4 12.5 3.25 16.75 |29.04 144 859 4% 4 125 9 15.5
100 4991 141 796 19% 2 50 31 69 3496 127 833 4% 5 20 10 28
200 4758 174 688 14% 4 50 30.5 60.5 38.39 145 8.65 10% 6 33.33 21.75 45.25
300 66.56 1.76 6.55 23% 4 75 59.75 91.75 | 49.03 126 8.65 6% 10 30 24 35.25
400 4644 169 721 6% 4 100 85.75 108.75 | 57.19 135 824 8% 13 30.77 19 39
500 59.86 1.87 8.64 25% 5 100 51 149 6845 122 996 13% 15 33.07 235 405

Table 1: Simulation results for DRT Module and DRT EQ

Abbreviations: VKT (Vehicle Kilometers Traveled), § (Average customer experienced distance detour), WT
(Average Waiting Time at Train Station in minutes), MC (Missed Connection Ratio), # Veh (Number of Vehicles),
p (Average Passengers per Bus, with ps5 75 as per the respective percentiles).

Results

Table [I] shows the results across multiple instances of the DRT Module against our DRT EQ. All these results
have been collected by analyzing the output of the last i"RC for both models, assuming that both reached
equilibrium conditions at that stage. In the results, the Vehicle Kilometers Traveled (VKT) of DRT EQ
remains consistently lower than that of DRT Module across different population sizes, along with a lower p.
For instances 400 and 500, the DRT Module provides lower VKT compared to the DRT EQ., mainly due to
the choice of a lower vehicle count use. Nonetheless, we can observe that §, computed as the actual travel
distance divided by the beeline distance, keeps trending up to 1.87 for the DRT Module, while it fluctuates
stably under less than 1.5 for the DRT EQ This can be explained by the heuristic employed in this study
(Ma et al. (2024)), which has specific constraints that restrict 6 (6 < 1.5), as reflected in Table [I| While
this constraint increases the number of used vehicles, it lowers 6 leading to a better customer experience.
Moreover, the higher & for the DRT Module is also reflected in the higher p,5 75, which tends to spread more
as the instance increases. This translates into higher 6 for the DRT Module’s clients and a more unbalanced
fleet utilization from the provider’s perspective. Regarding the average Waiting Time (WT), we computed it
as per the difference between customers’ actual train departure time and their arrival time at the station. We
specify actual as the train departure that they preferred might be different from the one they actually manage
to take. In this case, this is considered a Missed Connection (MC) due to DRT delays.

Figure [2| further explores the distribution of WT over the different instances, paired with the MC ratio. The
WT of our DRT EQ tends to remain more consistent across all iterations, with WT of DRT Module tending
to disperse more, especially in the more stressful instances (300,400,500). While the dispersion might not
look as great, we want to remind the reader that the WT is computed based on the actual train departure,
not the preferred one. This, paired with the constant growth of the MC ratio, highlights the struggle of the
DRT Module to serve clients adequately, with MC peaking at 25% for the DRT Module at higher population
densities, while the DRT EQ tends to remain more stable, peaking at 13% for the 500 instances.

4. Discussion

What is evident (and expected) is that fixing the DRT routes and letting the system "rotate" around it, adapting
the routes through an iterative approach, provides stability in exploring the solution space, facilitating agent
convergence without the uncertainty of dynamically changing routes, which can be seen by more consistent
results from the DRT EQ compared to the DRT Module. Moreover, the stability offered by our approach
confirms that the initial estimations from the metaheuristic remain effective under equilibrium conditions,
at least for this small test case. This, paired with more consistent WT, lower MC, and &, means that our
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Figure 2: WT and MC distribution across instances.

DRT EQ provides a more satisfactory experience for the clients. Nonetheless, the higher VKT and vehicle
used might mean more cost for the service provider, which is still balanced by a more compact distribution
of passengers per bus. This can be justified by the model of Ma et al.|(2024), as it sets maximum ride time
constraint and maximum waiting time constraint to ensure customer convenience. The same discourse on
the objective function can be done for the DRT Module, as it is interesting to point out that, while it had
the chance to use more vehicles (as per the implementation described in Section 2, Step 3.1) it just opted
not to use it. This behavior can be explained by the objective function that this module tries to seek, as per
Maciejewski and Nagel (2012).

One last point that is important to raise is that the limitations in MATSim’s network representation led to
discrepancies in travel speeds and distances for our small-scale study. First of all, the DRT Module operates at
car network free-flow speeds, which differs significantly from our DRT EQ, capped at 6.94 m/s to align with
metaheuristic results. This led us to exclude time-related KPIs and trips with data errors—such as traveled
distances shorter than Euclidean distances—which minimally impacted the presented KPIs as per Table|[T]

5. Conclusions

In this paper, we presented an alternative approach to DRT modeling in MATSim called DRT EQ, an iterative
procedure whose aim is to model DRT routes as fixed, changing them across different MATSim simulations.
Our approach differs from the DRT Module mainly in route handling. While the DRT Module dynamically
adjusts routes each iteration based on real-time demand, our DRT routes remain fixed throughout each MTS
generated from a metaheuristic solution and treated like conventional bus lines with scheduled stops. This
allows us to evaluate the DRT system at equilibrium, testing whether the initial estimations remain optimal
under user equilibrium conditions in MATSim. Moreover, the DRT EQ not only allows for in-house models to

be tested within the MATSim environment, but also the inclusion of real-world operational constraints, like for



EV charging stations, by treating them as bus stops that impact travel times, features that the DRT Module is
missing. Future studies should include tests on larger scenarios, the implementation of real customer demand,
and the consideration of external factors such as passing through traffic.
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