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Abstract—As urban populations increase and traffic
congestion escalates, public transportation systems, especially
buses, provide a sustainable solution by decreasing the reliance
on private cars and minimizing fuel consumption. However,
operators must address passengers' concerns about long waiting
times and overcrowded conditions to keep buses an attractive
option. Therefore, real-time predictions of passenger demand
are essential for optimizing scheduling, reducing headways, and
enhancing service reliability. Despite its importance, short-term
forecasting of bus passenger demand is still underexplored,
facing challenges such as seasonal fluctuations, periodicities,
and interactions with other transport modes. This paper
introduces a new study to predict bus station demand patterns
using Google Popular Times (GPT) data through a two-step
deep learning approach. Drawing on real-world historical data
from bus stations, we propose a predictive framework that
starts by classifying passenger demand at each station into
distinct clusters. Sequence-to-sequence (Seq2Seq) models are
subsequently trained for each cluster to predict demand
patterns for the next 24 hours, using the previous 72 hours of
data as input.

Keywords—Bus demand prediction, Google popular times,
Deep learning models

1. INTRODUCTION

Bus stops are essential for city transport, linking people to
wider travel networks. However, these stops often face
problems such as servicing buses that do not run on time,
insufficient space for waiting passengers, and poorly planned
schedules. These issues lead to overcrowded stops and
extended wait times. Understanding bus stations' demand
patterns becomes crucial when addressing these problems.
Moreover, improved demand prediction models enable
transport companies to optimize bus schedules, allocate buses
more efficiently, and adjust routes as needed. Rather than
relying solely on ticketing data, which is no longer available
in some countries, such as Luxembourg, where Public
Transport (PT) is free and lacks entry or exit checkpoints, new
mobile applications, and GPS methods have been developed
to provide faster and more accurate predictions. However,
these methods can be costly and may raise privacy concerns.

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

In this study, we explore the potential of Google Popular
Times (GPT) data, a source of data that captures location
busyness based on aggregated user movement patterns, and as
an under-explored resource for predicting passenger demand
patterns at bus stops. Focusing on 84 bus stops with available
historical GPT data in Esch-sur-Alzette (Luxembourg), we
observed that each bus stop displays unique weekly GPT
patterns, which are regularly updated to reflect current activity
trends. By analyzing historical GPT data from past updates,
we develop a predictive model to forecast future GPT metrics.
Our study evaluates the accuracy and reliability of these GPT-
based predictions, demonstrating a cost-effective approach
that relies solely on historical GPT data. Unlike other methods
such as those based on mobile network data, smart card data,
and other sources, our approach avoids the high costs and
time-consuming preparation typically associated with data
collection and processing.

The primary goal of this paper is to validate GPT data as
an effective tool for predicting passenger demand at bus stops,
providing a privacy-sensitive and scalable solution for
optimizing public transport systems. The outline of this paper
is as follows: Part II provides a short literature review on
demand prediction in public transport. Part III introduces the
case study of Esch-sur-Alzette, Luxembourg, detailing the
data used and the methodology applied. Part IV presents the
results of our clustering and prediction models. Finally, Part
V concludes the paper with a discussion of the findings, their
implications, and future work.

II. RELATED WORKS

Understanding travel demand patterns is fundamental to
effective urban planning and transportation management. In
the urban context, developing accurate models to predict bus
stop demand has become essential for optimizing public
transit efficiency and enhancing the user experience.
Traditional methods for predicting bus stop demand have
relied on passenger counts and origin-destination surveys to
establish baseline ridership trends. Smit M [1] developed a
four-step model integrating spatial, demographic, and service
data to offer a comprehensive framework for demand
prediction. Carpio [2] applied multiple linear regression to
forecast stop-level demand in Madrid, incorporating spatial
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and urban variables to underscore the significance of
contextual influences. However, these labor-intensive
methods struggle with adapting to rapid travel pattern changes
in urbanizing areas, as [3] noted. Limited real-time capture
and zoning biases prompted the shift towards agile
frameworks such as machine learning (ML) and big data
analytics, aiming for precise spatiotemporal analysis of
modern transit systems. Advancements in computational
power have shifted the field toward Machine Learning (ML)
and Deep Learning (DL) methodologies. Marifias-Collado et
al. [4] developed a hybrid framework for bus passenger
demand forecasting that combines clustering, model
integration, and cointegration techniques. Their enhanced
SVM  model significantly outperformed traditional
approaches in Salamanca, Spain, while cointegration
efficiently extrapolated predictions across clustered stops,
creating a scalable solution for bus-centric transit systems
Moreover, for bus ridership prediction, a multilayer
perceptron (MLP) network was proposed by Farahmand et al.
[5]. Weather conditions, alongside events, holidays, and
cancellations, were incorporated as influential factors. Their
experimental results demonstrated significant improvements
in prediction accuracy when incorporating meteorological
parameters, especially during extreme weather events. For
regional bus passenger flow and revenue prediction, a deep
learning framework incorporating LSTM, RNN and greedy
layer-wise algorithm was proposed by Nagaraj et al. [6]. Their
approach extended prior spatial-temporal models by
integrating revenue forecasting and iterative regional
clustering, offering actionable insights for resource allocation
in bus-centric networks. Collectively, these studies elevated
predictive precision but introduced challenges related to data
volume requirements, computational intensity, and reduced
interpretability for practical applications.

The advent of crowdsourced and system-generated data
has transformed demand modeling in public transportation,
facilitating detailed, real-time analysis of passenger behavior.
Foundational work by Pelletier et al. [7] established the value
of smart card data in examining boarding and alighting
patterns, although its dependence on fare-collection systems
constrained its capacity to capture latent demand or the
behaviors of non-transit users. Expanding upon this, Hussain
et al. [8] conducted a comprehensive review of approaches for
constructing transit origin—destination (OD) matrices from
smart card data, underscoring challenges in data validation,
transfer identification, and zonal OD estimation, while noting
persistent limitations in adapting stop-level OD to broader
spatial frameworks. Addressing these challenges, Samaras et
al. [9] combined automated vehicle location (AVL) and
automated passenger counting (APC) systems to forecast
stop-level demand, revealing that integrating sensor data and
advanced feature engineering markedly enhances model
applicability across diverse routes. In recent advances,
artificial intelligence (Al) and edge computing have further
refined predictive accuracy. Liyanage et al. [10] employed
bidirectional long short-term memory (BiLSTM) networks to
predict short-term bus demand with high accuracy using
Melbourne’s smart card data, demonstrating improved
performance over conventional models in capturing temporal
relationships. The transportation forecasting landscape has
undergone a methodological evolution, transitioning from
conventional approaches through machine learning
advancements to the present exploration of crowdsourced data
streams.  Although traditional —methods established

fundamental principles, they are less robust under dynamic
conditions. ML/DL techniques improved predictive power
but introduced challenges in computational resources and
resulted in interpretability. In addition, crowdsourced
approaches encountered limitations related to coverage,
privacy, and granularity. Within this progression, GPT data
has emerged as a particularly promising metric, offering
extensive geographic coverage coupled with hourly temporal
resolution. Recent frameworks such as TransitCrowd
demonstrated GPT's effectiveness in estimating passenger
volumes at subway stations [11]. Subsequent research
expanded this foundation by integrating surrounding activity
data and establishing quantifiable relationships between
points of interest (POIs) and usage patterns [12]. Our study
builds upon this nascent but promising research trajectory,
specifically examining GPT's potential for predicting hourly
demand fluctuations at bus stops. By investigating this
application, we aim to determine whether this widely
accessible data source can provide actionable insights for bus
service optimization while establishing a methodological
framework applicable across diverse urban environments.

III. CASE STUDY AREA, DATASET AND METHODOLOGY

GPT offers an approach to analyzing demand patterns
across diverse POIs through anonymized smartphone location
data. It quantifies the busyness of locations on a 0-100 scale,
where zero indicates the area is closed and 100 shows it is
open. 1 and 100 represent the relative lowest and highest
hourly visit levels within a week. This relative scaling system
shows temporal visitation patterns for any POI with sufficient
user data while maintaining privacy thresholds, without
requiring dedicated counting infrastructure. Several
challenges emerge when analyzing this data across different
types of locations. Data quality depends heavily on
smartphone penetration rates, potentially undermining
reliability at less-frequent places. Additionally, the relative
normalization methodology also obscures absolute visitor
volumes, complicating comparisons between POIs with
different baseline activity levels. Moreover, precision in data
attribution can be compromised for locations where visitors
have brief dwelling times, reducing overall granularity.
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Fig. 1.Two-step predictive framework



Fig 1 illustrates a two-step predictive framework for
forecasting bus stop passenger demand. The first step, data
processing, involves detecting and cleaning anomalous GPT
data using methods such as Isolation Forests, Local Outlier
Factor (LOF), and Dynamic Time Warping (DTW), with
outliers removed based on a consensus of at least two
methods. Once cleaned, representative GPT patterns are
computed using Soft Dynamic Time Warping barycenters and
normalized for feature scaling. The second step, modeling and
prediction, clusters these representative patterns and trains
Seq2Seq models for each cluster. Finally, the trained models
are used to predict the next 24 hours of GPT using data from
the preceding 72 hours.

A. Data Acquisition and Preprocessing

In this research, we utilized historical GPT data from 84 bus
stops, collected over two months, with six updates per stop
during this period. We investigated the potential of employing
past GPT patterns to predict future busyness patterns at these
stops. To identify anomalous weeks in the time series data
collected from various locations, a comprehensive outlier
detection framework has been implemented using DTW [13],
Isolation forests [14], and LOF [15]. A multi-method outlier
detection framework was implemented to mitigate the
limitations of individual techniques and address the
heterogeneous nature of temporal anomalies. This framework
was designed to address the inherent complexities of temporal
data, such as non-linear patterns, varying densities, and
potential misalignments while minimizing the limitations of
any single method. Isolation Forest was applied to detect
global outliers through recursive random partitioning of the
feature space. Indeed, the computational efficiency and
effectiveness of this method in identifying global extremes
make it an ideal choice for our dataset. To complement the
global perspective of Isolation Forest, the LOF method was
applied to identify anomalies based on local density deviations
in the flattened feature space. LOF quantifies the degree to
which a point’s local density differs from that of its neighbors,
assigning negative outlier factor scores to signify anomaly
severity. This approach excels at detecting subtle irregularities
that may not stand out globally but are anomalous within their
local context in the feature space. Moreover, LOF does not
directly consider temporal structure, it provides a valuable
perspective on local anomalies. The DTW-based method
identifies structurally dissimilar time series by computing the
mean DTW distance of each sequence to all others. In other
terms, it is a measure reflecting global deviation from typical
temporal patterns. Outliers exhibit elevated mean distances
due to anomalous shapes or phase shifts undetectable by non-
temporal methods. To robustly flag these deviations, we
applied a Median Absolute Deviation (MAD) criterion, which
compares distances to their median while resisting distortion
from extreme values. Therefore, this method complements the
previous mentioned approaches by targeting temporally
misaligned or structurally distinct patterns. Recognizing that
each method offers a distinct perspective on anomaly
detection, a consensus-based strategy was adopted to
synthesize their outputs. A time series was classified as an
outlier only if at least two of the three methods flagged it as
an outlier. This approach mitigates the risk of false positives
inherent in individual techniques while leveraging their
collective strengths. Additionally, combined anomaly scores
were calculated by normalizing and integrating outputs from
all three methods. In particular, scores from these methods
were converted to uniform ranks in order to mitigate scale

disparities. A composite score was derived as the arithmetic
mean of these ranks to ensure equal weighting across
methodologies. In addition, to resolve cases with no consensus
outliers, the 95th percentile of composite scores was used as
an adaptive threshold.
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Fig. 2.Outlier detection results for a single bus stop

Fig 2 shows a representative example using GPT data for a
bus stop with six historical updates. Following outlier
detection, update 1 (dashed line), the oldest GPT entry in our
dataset, was identified as an anomaly. Notably, this pattern
aligns with broader observations. In fact, the oldest GPT
entries often display notable deviations from later profiles. To
ensure robustness, these early outliers were systematically
excluded from analysis.
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Fig. 3. Anomaly score across successive updates of GPT
data for a single bus station

Fig 3 presents the outlier score for six updated weeks of time
series data at each bus location, where higher scores indicate
greater anomaly. GPT update 1 stands out significantly with
an outlier score of approximately 6, suggesting a clear outlier.
In contrast, other updates have much lower scores, ranging
from around 2 to 3, indicating that their activity patterns are
relatively typical and consistent with each other.
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Fig. 4. Representative occupancy pattern for a bus stop
using soft DTW barycenter



To cluster the GPT pattern of bus stations effectively, it is
essential to derive a representative pattern after removing
outliers. Soft Dynamic Time Warping barycenter [16] has
been applied to arrive at one representative for each bus
station. Fig 4 shows the representative that captures the
pattern of barycenter across the input time series, accounting
for temporal misalignments, which is particularly useful for
summarizing typical activity patterns in time series data.

B. Clustering Approach

To categorize bus stations into distinct groups based on
their GPT patterns, we utilized Time Series KMeans
algorithm. This method was chosen for its effectiveness in
capturing the temporal dependencies present in time-series
datasets. Additionally, DTW has been used as the distance
meature to account for temporal shifts and variations. Before
clustering, the data were normalized using a standard scaler to
ensure consistent feature scaling across all the time series.
This preprocessing step transforms each time series to have a
mean of zero and a variance of one, allowing to emphasize the
shape of the temporal patterns rather than their absolute
magnitudes. To determine the optimal number of clusters, four
widely-used validation metrics: Silhouette Score, which
quantifies how well-separated and cohesive clusters are
(higher values indicate better clustering); Davies-Bouldin
Index, which measures the average similarity between clusters
(lower is better); Calinski-Harabasz Index, which evaluates
the ratio of between-cluster to within-cluster dispersion
(higher is better); Inertia, the sum of squared distances to
cluster centroids, often used in the elbow method to identify a
point of diminishing returns have been used. Furthermore, to
enhance the accuracy in determining the optimal number of
clusters, the average of RMSE (Root Mean Squared Error),
MAE (Mean Absolute Error), and R? (Coefficient of
Determination) were computed after training different deep
learning models for each cluster number. This approach is
supposed to help in selecting the best number of clusters. Out
of 84 bus stations, the maximum number of clusters was set to
half of the total bus stations.

C. Recurrent Neural Network Models

Recurrent Neural Networks (RNNs) are a specialized class of
neural networks designed to process sequential data. These
networks excel in natural language processing and time-
series predictions, largely due to their unique feature of
hidden states that preserve information from previous steps.
Unlike traditional feedforward neural networks, RNNs can
process sequences of varying lengths by maintaining an
internal state that captures context across time steps.
However, standard RNNs face significant challenges,
particularly the vanishing gradient problem, which hinders
their ability to effectively learn and capture long-term
dependencies [17]. Among various RNN models, LSTM has
gained significant recognition over traditional RNNs due to
its ability to efficiently capture both long-term and short-term
dependencies in time series data. LSTMs are a specialized
type of RNN, integrated within the Sequence-to-Sequence
(Seq2Seq) architecture, designed to effectively handle long-
and short-term dependencies in sequential data [17].

D. Sequence-to-Sequence (Seq2Seq) Architecture

Seq2Seq models have significantly advanced the fields of
natural language processing and machine learning by offering
a robust framework for mapping input sequences to

corresponding output sequences. Leveraging recent
developments in deep learning and memory-augmented
architectures, these models demonstrate exceptional
performance in understanding and generating sequential data.
Their ability to preserve and transmit contextual information
across sequences makes Seq2Seq models particularly well-
suited for a wide range of sequence-based tasks, including
machine translation, video captioning, and code generation
[18],[19]. To forecast the next day's bus station demand using
a transformer model, we employ a sliding window approach
with sequences of consecutive past demand values as input.
Each sequence comprises historical demand data, such as
[D1, D72], up to [Dk-1, Dk] with corresponding target values
being the subsequent demand observations, denoted as D73,
..., Dk+1. The model is trained on historical data spanning
the previous 72 hours of GPT trends, enabling it to capture
temporal patterns and dependencies within the time series for
accurate prediction of future bus station demand.

E. Model Architecture and Training Process

The architecture comprises two main components: an
encoder and a decoder. The encoder consists of two stacked
LSTM layers with 128 and 64 hidden units. Both layers are
regularized using L2 weight decay (A=0.001), followed by
batch normalization and a dropout layer with a dropout rate
of 0.3 to mitigate overfitting. The final encoder output is
passed through a repeat vector to align with the target output
length. The decoder has two LSTM layers (64 and 32 units),
also followed by batch normalization and dropout. The
decoder outputs a sequence of vectors fed into a time-
distributed dense layer with a linear activation function to
produce the next 24-hour bus stop demand prediction. The
model was trained using the Adam optimizer with a learning
rate of 0.001. Each model was trained for 200 epochs with a
batch size of 64, and early stopping was considered based on
validation performance. The dataset for each cluster was split
with 80% of the samples used for training and the remaining
20% for testing. To evaluate model performance, RMSE,
MAE, and R? scores are calculated on the test set. For each
prediction, we calculated 95% confidence intervals based on
the standard error of the residuals using the t-distribution.

IV.RESULTS

This section presents two key results. First, the outcomes of
the clustering process applied to bus stations are discussed.
After determining the optimal number of clusters, a separate
Seq2Seq model is trained for each cluster. The models'
performance trained on each cluster is then evaluated and
reported.

A. Bus Stations Clustering

To determine the optimal number of clusters for segmenting
bus stations based on their GPT data, we evaluated several
clustering configurations using different numbers of clusters.
The quality of each clustering solution was assessed using
standard internal validation metrics. These metrics provide
insight into the compactness and separation of clusters,
helping to identify the most appropriate clustering structure.
TABLE I shows increasing the number of clusters generally
led to improvements in some clustering validity metrics, such
as a decrease in the Davies-Bouldin Index and inertia. The
Davies-Bouldin Index decreased from 3.58 (with 10 clusters)



to 1.98 (with 30 clusters), indicating improved cluster
separation. Following the clustering step, a dedicated
Seq2Seq model was trained for each cluster configuration,
and the average model performance was evaluated using
RMSE, MAE, and R2. Increasing the number of clusters to 30
results in reduced prediction accuracy, with RMSE rising
from 11.35 to 16.14 and R? decreasing from 0.71 to 0.58. This
highlights the trade-off between clustering granularity and
model performance. Based on an evaluation of both
clustering quality and predictive accuracy, the configuration
with 10 clusters was selected as the optimal solution. An
increase in the number of clusters resulted in marginal
improvements in clustering validity metrics such as the
Davies-Bouldin Index and inertia; however, a decline in
prediction performance was also observed. In contrast, the
10-cluster configuration yielded an RMSE of 11.35, the
highest R? score of 0.71, and a competitive MAE of 8.60.

TABLE I Clustering configurations and Seq2Seq performance

Cluster Silhou Davies- Calinski-

numbers ette Bouldin Harabasz Inertia R';;EE AveMAE Ave Rt
10 -0.020 3.5896 1.60 26.199 11.35 8.60 0.71
15 -0.053 3.084 1.38 23.38 11.36 8.58 0.70
20 ~0.063 2.624 1.348 20.84 11.46 8.48 0.67
25 -0.065 2.19 1.328 18.34 12.58 9.61 0.63
30 -0.068 1.981 1.308 18.34 16.14 10.11 0.58
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Fig. 5. Bus station clustering results

Fig 5 illustrates the spatial distribution of bus stations in
Esch-sur-Alzette, Luxembourg, categorized into 10 distinct
clusters based on the similarity of their historical demand
patterns. Each colorful circle represents a bus station, and its
color corresponds to its assigned cluster, as indicated in the
legend. The clustering reveals that stations with similar
temporal usage profiles are often located near each other,
although some clusters span different parts of the city. This
spatial segmentation provides a meaningful basis for
developing cluster-specific forecasting models, enabling
more accurate and localized predictions of future bus station
demand.

B. Deep Learning Results

The clustering of 84 bus stations enables the development of
individual Seq2Seq models for each cluster to predict future
demand. Each model is trained using historical GPT-derived
data specific to its assigned cluster, allowing for targeted and
accurate forecasting.

TABLE II. Results of prediction models for each cluster

Cluster Number of bus

Nomber | Stiomineach | RMSE | MAE R?
0 2 14.108 10.66 0.563
1 4 13.680 | 10.392 0.665
2 21 11.887 9.104 0.720
3 12 12.134 9.22 0.658
4 6 12.291 9.167 0.709
5 6 6.0137 4.561 0.915
6 6 12.232 9.263 0.68
7 12 10.755 8.120 0.765
8 11 11.709 8.979 0.729
9 4 8.694 6.592 0.76

Table II presents the performance of individual Seq2Seq
models trained for each 10 clusters. Each row corresponds to
a specific cluster. The results demonstrate variability in
model performance across clusters, which is partly
influenced by the number of bus stations and the
characteristics of their historical demand patterns. Cluster 5,
which includes 6 stations, achieved the best performance with
an RMSE of 6.01, MAE of 4.56, and an R? of 0.915,
indicating a highly accurate model. In contrast, Cluster 0 and
Cluster 1, with only 2 and 4 stations respectively, exhibited
higher error rates and lower R? scores, suggesting limited
predictive capability likely due to smaller training sets or
more volatile demand patterns. Overall, the findings highlight
the influence of cluster composition and size on model
accuracy and emphasize the benefit of data-driven
segmentation in enhancing short-term demand prediction.
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Fig. 6. Prediction of demand for a bus stop in cluster 5 (next
24 hrs)

Fig 6 presents the actual and predicted demand for the next
24 hours with a 95% confidence interval (CI) at a bus station
in Cluster 5. The model was trained on GPT data from all bus
stations within Cluster 5 and used to forecast future demand
for this specific station. The results show that the transformer
model effectively captures the overall trend of bus demand.
The CI provides a range of expected demand, helping to
decide increase or decrease the frequency of the bus line or
optimize the lines. In this study, we demonstrate the potential
of using GPT-derived data to predict short-term demand at
bus stations. GPT data is widely available and easily
accessible, making it a practical source for demand
forecasting. Our results show that, with appropriate clustering
and model training, future demand at bus stations can be
predicted with promising accuracy. Future work will focus on
enhancing model performance, extending the analysis to



include a larger set of bus stations, and integrating additional
GPT signals related to surrounding activities.

V. CONCLUSIONS

This study introduced a novel framework for predicting bus
station demand using crowdsourced data, specifically Google
Popular Times (GPT), in combination with deep learning
models. By leveraging the temporal patterns inherent in GPT
data, we addressed key challenges in urban public transport
planning, including the lack of ticketing-based data in fare-
free systems such as Luxembourg. Our approach involved a
two-step methodology: first clustering bus stations based on
their weekly GPT patterns using time-series clustering
techniques, and then training customized Seq2Seq models for
each cluster to forecast demand over a 24-hour horizon using
the previous 72 hours of data. The results demonstrated that
deep learning models were able to effectively capture
temporal dependencies and provided accurate predictions for
each station group. Evaluation metrics such as RMSE, MAE,
and R? confirmed the robustness of the proposed models
across clusters. Our findings validate the potential of using
crowdsourced data as a cost-effective, scalable, and privacy-
preserving alternative for public transport demand
forecasting. This approach not only eliminates the need for
expensive infrastructure and data collection systems but also
enables more dynamic and responsive transport planning,
especially in urban environments undergoing rapid changes
in mobility patterns.
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