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Abstract—As urban populations increase and traffic 

congestion escalates, public transportation systems, especially 

buses, provide a sustainable solution by decreasing the reliance 

on private cars and minimizing fuel consumption. However, 

operators must address passengers' concerns about long waiting 

times and overcrowded conditions to keep buses an attractive 

option. Therefore, real-time predictions of passenger demand 

are essential for optimizing scheduling, reducing headways, and 

enhancing service reliability. Despite its importance, short-term 

forecasting of bus passenger demand is still underexplored, 

facing challenges such as seasonal fluctuations, periodicities, 

and interactions with other transport modes. This paper 

introduces a new study to predict bus station demand patterns 

using Google Popular Times (GPT) data through a two-step 

deep learning approach. Drawing on real-world historical data 

from bus stations, we propose a predictive framework that 

starts by classifying passenger demand at each station into 

distinct clusters. Sequence-to-sequence (Seq2Seq) models are 

subsequently trained for each cluster to predict demand 

patterns for the next 24 hours, using the previous 72 hours of 

data as input. 

Keywords—Bus demand prediction, Google popular times, 

Deep learning models 

I. INTRODUCTION  

Bus stops are essential for city transport, linking people to 
wider travel networks. However, these stops often face 
problems such as servicing buses that do not run on time, 
insufficient space for waiting passengers, and poorly planned 
schedules. These issues lead to overcrowded stops and 
extended wait times. Understanding bus stations' demand 
patterns becomes crucial when addressing these problems. 
Moreover, improved demand prediction models enable 
transport companies to optimize bus schedules, allocate buses 
more efficiently, and adjust routes as needed.  Rather than 
relying solely on ticketing data, which is no longer available 
in some countries, such as Luxembourg, where Public 
Transport (PT) is free and lacks entry or exit checkpoints, new 
mobile applications, and GPS methods have been developed 
to provide faster and more accurate predictions. However, 
these methods can be costly and may raise privacy concerns. 

In this study, we explore the potential of Google Popular 
Times (GPT) data, a source of data that captures location 
busyness based on aggregated user movement patterns, and as 
an under-explored resource for predicting passenger demand 
patterns at bus stops. Focusing on 84 bus stops with available 
historical GPT data in Esch-sur-Alzette (Luxembourg), we 
observed that each bus stop displays unique weekly GPT 
patterns, which are regularly updated to reflect current activity 
trends. By analyzing historical GPT data from past updates, 
we develop a predictive model to forecast future GPT metrics. 
Our study evaluates the accuracy and reliability of these GPT-
based predictions, demonstrating a cost-effective approach 
that relies solely on historical GPT data. Unlike other methods 
such as those based on mobile network data, smart card data, 
and other sources, our approach avoids the high costs and 
time-consuming preparation typically associated with data 
collection and processing.  

The primary goal of this paper is to validate GPT data as 
an effective tool for predicting passenger demand at bus stops, 
providing a privacy-sensitive and scalable solution for 
optimizing public transport systems. The outline of this paper 
is as follows: Part II provides a short literature review on 
demand prediction in public transport. Part III introduces the 
case study of Esch-sur-Alzette, Luxembourg, detailing the 
data used and the methodology applied. Part IV presents the 
results of our clustering and prediction models. Finally, Part 
V concludes the paper with a discussion of the findings, their 
implications, and future work. 

II.  RELATED WORKS 

Understanding travel demand patterns is fundamental to 
effective urban planning and transportation management. In 
the urban context, developing accurate models to predict bus 
stop demand has become essential for optimizing public 
transit efficiency and enhancing the user experience. 
Traditional methods for predicting bus stop demand have 
relied on passenger counts and origin-destination surveys to 
establish baseline ridership trends. Smit M [1] developed a 
four-step model integrating spatial, demographic, and service 
data to offer a comprehensive framework for demand 
prediction. Carpio [2] applied multiple linear regression to 
forecast stop-level demand in Madrid, incorporating spatial 
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and urban variables to underscore the significance of 
contextual influences. However, these labor-intensive 
methods struggle with adapting to rapid travel pattern changes 
in urbanizing areas, as [3] noted. Limited real-time capture 
and zoning biases prompted the shift towards agile 
frameworks such as machine learning (ML) and big data 
analytics, aiming for precise spatiotemporal analysis of 
modern transit systems. Advancements in computational 
power have shifted the field toward Machine Learning (ML) 
and Deep Learning (DL) methodologies. Mariñas-Collado et 
al. [4] developed a hybrid framework for bus passenger 
demand forecasting that combines clustering, model 
integration, and cointegration techniques. Their enhanced 
SVM model significantly outperformed traditional 
approaches in Salamanca, Spain, while cointegration 
efficiently extrapolated predictions across clustered stops, 
creating a scalable solution for bus-centric transit systems 
Moreover, for bus ridership prediction, a multilayer 
perceptron (MLP) network was proposed by Farahmand et al. 
[5]. Weather conditions, alongside events, holidays, and 
cancellations, were incorporated as influential factors. Their 
experimental results demonstrated significant improvements 
in prediction accuracy when incorporating meteorological 
parameters, especially during extreme weather events. For 
regional bus passenger flow and revenue prediction, a deep 
learning framework incorporating LSTM, RNN and greedy 
layer-wise algorithm was proposed by Nagaraj et al. [6]. Their 
approach extended prior spatial-temporal models by 
integrating revenue forecasting and iterative regional 
clustering, offering actionable insights for resource allocation 
in bus-centric networks. Collectively, these studies elevated 
predictive precision but introduced challenges related to data 
volume requirements, computational intensity, and reduced 
interpretability for practical applications. 

The advent of crowdsourced and system-generated data 
has transformed demand modeling in public transportation, 
facilitating detailed, real-time analysis of passenger behavior. 
Foundational work by Pelletier et al. [7] established the value 
of smart card data in examining boarding and alighting 
patterns, although its dependence on fare-collection systems 
constrained its capacity to capture latent demand or the 
behaviors of non-transit users. Expanding upon this, Hussain 
et al. [8] conducted a comprehensive review of approaches for 
constructing transit origin–destination (OD) matrices from 
smart card data, underscoring challenges in data validation, 
transfer identification, and zonal OD estimation, while noting 
persistent limitations in adapting stop-level OD to broader 
spatial frameworks. Addressing these challenges, Samaras et 
al. [9] combined automated vehicle location (AVL) and 
automated passenger counting (APC) systems to forecast 
stop-level demand, revealing that integrating sensor data and 
advanced feature engineering markedly enhances model 
applicability across diverse routes. In recent advances, 
artificial intelligence (AI) and edge computing have further 
refined predictive accuracy. Liyanage et al. [10] employed 
bidirectional long short-term memory (BiLSTM) networks to 
predict short-term bus demand with high accuracy using 
Melbourne’s smart card data, demonstrating improved 
performance over conventional models in capturing temporal 
relationships. The transportation forecasting landscape has 
undergone a methodological evolution, transitioning from 
conventional approaches through machine learning 
advancements to the present exploration of crowdsourced data 
streams. Although traditional methods established 

fundamental principles, they are less robust under dynamic 
conditions.  ML/DL techniques improved predictive power 
but introduced challenges in computational resources and 
resulted in interpretability. In addition, crowdsourced 
approaches encountered limitations related to coverage, 
privacy, and granularity. Within this progression, GPT data 
has emerged as a particularly promising metric, offering 
extensive geographic coverage coupled with hourly temporal 
resolution. Recent frameworks such as TransitCrowd 
demonstrated GPT's effectiveness in estimating passenger 
volumes at subway stations [11].  Subsequent research 
expanded this foundation by integrating surrounding activity 
data and establishing quantifiable relationships between 
points of interest (POIs) and usage patterns [12]. Our study 
builds upon this nascent but promising research trajectory, 
specifically examining GPT's potential for predicting hourly 
demand fluctuations at bus stops. By investigating this 
application, we aim to determine whether this widely 
accessible data source can provide actionable insights for bus 
service optimization while establishing a methodological 
framework applicable across   diverse urban environments. 

III. CASE STUDY AREA, DATASET AND METHODOLOGY 

GPT offers an approach to analyzing demand patterns 
across diverse POIs through anonymized smartphone location 
data. It quantifies the busyness of locations on a 0-100 scale, 
where zero indicates the area is closed and 100 shows it is 
open. 1 and 100 represent the relative lowest and highest 
hourly visit levels within a week. This relative scaling system 
shows temporal visitation patterns for any POI with sufficient 
user data while maintaining privacy thresholds, without 
requiring dedicated counting infrastructure. Several 
challenges emerge when analyzing this data across different 
types of locations. Data quality depends heavily on 
smartphone penetration rates, potentially undermining 
reliability at less-frequent places. Additionally, the relative 
normalization methodology also obscures absolute visitor 
volumes, complicating comparisons between POIs with 
different baseline activity levels. Moreover, precision in data 
attribution can be compromised for locations where visitors 
have brief dwelling times, reducing overall granularity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Two-step  predictive framework  
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Fig 1 illustrates a two-step predictive framework for 
forecasting bus stop passenger demand. The first step, data 
processing, involves detecting and cleaning anomalous GPT 
data using methods such as Isolation Forests, Local Outlier 
Factor (LOF), and Dynamic Time Warping (DTW), with 
outliers removed based on a consensus of at least two 
methods. Once cleaned, representative GPT patterns are 
computed using Soft Dynamic Time Warping  barycenters and 
normalized for feature scaling. The second step, modeling and 
prediction, clusters these representative patterns and trains 
Seq2Seq models for each cluster. Finally, the trained models 
are used to predict the next 24 hours of GPT using data from 
the preceding 72 hours. 

A. Data Acquisition and Preprocessing 

In this research, we utilized historical GPT data from 84 bus 
stops, collected over two months, with six updates per stop 
during this period. We investigated the potential of employing 
past GPT patterns to predict future busyness patterns at these 
stops. To identify anomalous weeks in the time series data 
collected from various locations, a comprehensive outlier 
detection framework has been implemented using DTW [13], 
Isolation forests [14], and LOF [15]. A multi-method outlier 
detection framework was implemented to mitigate the 
limitations of individual techniques and address the 
heterogeneous nature of temporal anomalies. This framework 
was designed to address the inherent complexities of temporal 
data, such as non-linear patterns, varying densities, and 
potential misalignments while minimizing the limitations of 
any single method. Isolation Forest was applied to detect 
global outliers through recursive random partitioning of the 
feature space. Indeed, the computational efficiency and 
effectiveness of this method in identifying global extremes 
make it an ideal choice for our dataset. To complement the 
global perspective of Isolation Forest, the LOF method was 
applied to identify anomalies based on local density deviations 
in the flattened feature space. LOF quantifies the degree to 
which a point’s local density differs from that of its neighbors, 
assigning negative outlier factor scores to signify anomaly 
severity. This approach excels at detecting subtle irregularities 
that may not stand out globally but are anomalous within their 
local context in the feature space. Moreover, LOF does not 
directly consider temporal structure, it provides a valuable 
perspective on local anomalies. The DTW-based method 
identifies structurally dissimilar time series by computing the 
mean DTW distance of each sequence to all others. In other 
terms, it is a measure reflecting global deviation from typical 
temporal patterns. Outliers exhibit elevated mean distances 
due to anomalous shapes or phase shifts undetectable by non-
temporal methods. To robustly flag these deviations, we 
applied a Median Absolute Deviation (MAD) criterion, which 
compares distances to their median while resisting distortion 
from extreme values. Therefore, this method complements the 
previous mentioned approaches by targeting temporally 
misaligned or structurally distinct patterns. Recognizing that 
each method offers a distinct perspective on anomaly 
detection, a consensus-based strategy was adopted to 
synthesize their outputs. A time series was classified as an 
outlier only if at least two of the three methods flagged it as 
an outlier. This approach mitigates the risk of false positives 
inherent in individual techniques while leveraging their 
collective strengths. Additionally, combined anomaly scores 
were calculated by normalizing and integrating outputs from 
all three methods. In particular, scores from these methods 
were converted to uniform ranks in order to mitigate scale 

disparities. A composite score was derived as the arithmetic 
mean of these ranks to ensure equal weighting across 
methodologies. In addition, to resolve cases with no consensus 
outliers, the 95th percentile of composite scores was used as 
an adaptive threshold. 

 

Fig. 2. Outlier detection results for a single bus stop  

Fig 2 shows a representative example using GPT data for a 
bus stop with six historical updates. Following outlier 
detection, update 1 (dashed line), the oldest GPT entry in our 
dataset, was identified as an anomaly. Notably, this pattern 
aligns with broader observations. In fact, the oldest GPT 
entries often display notable deviations from later profiles. To 
ensure robustness, these early outliers were systematically 
excluded from analysis. 

 

Fig. 3. Anomaly score across successive updates of GPT 

data for a single bus station 

Fig 3 presents  the outlier score for six updated weeks of time 

series data at each bus location, where higher scores indicate 

greater anomaly. GPT update 1 stands out significantly with 

an outlier score of approximately 6, suggesting a clear outlier. 

In contrast, other updates have much lower scores, ranging 

from around 2 to 3, indicating that their activity patterns are 

relatively typical and consistent with each other.  

 

Fig. 4. Representative occupancy pattern for a bus stop 

using soft DTW barycenter 

 

 



To cluster the GPT pattern of bus stations effectively, it is 

essential to derive a representative pattern after removing 

outliers. Soft Dynamic Time Warping barycenter [16] has 

been applied to arrive at one representative for each bus 

station. Fig 4 shows the representative that captures the 

pattern of barycenter across the input time series, accounting 

for temporal misalignments, which is particularly useful for 

summarizing typical activity patterns in time series data. 

B. Clustering Approach 

To categorize bus stations into distinct groups based on 
their GPT patterns, we utilized Time Series KMeans 
algorithm. This method was chosen for its effectiveness in 
capturing the temporal dependencies present in time-series 
datasets. Additionally, DTW has been used as the distance 
meature  to account for temporal shifts and variations. Before 
clustering, the data were normalized using a standard scaler to 
ensure consistent feature scaling across all the time series. 
This preprocessing step transforms each time series to have a 
mean of zero and a variance of one, allowing to emphasize the 
shape of the temporal patterns rather than their absolute 
magnitudes. To determine the optimal number of clusters, four 
widely-used validation metrics: Silhouette Score, which 
quantifies how well-separated and cohesive clusters are 
(higher values indicate better clustering); Davies-Bouldin 
Index, which measures the average similarity between clusters 
(lower is better); Calinski-Harabasz Index, which evaluates 
the ratio of between-cluster to within-cluster dispersion 
(higher is better); Inertia, the sum of squared distances to 
cluster centroids, often used in the elbow method to identify a 
point of diminishing returns have been used. Furthermore, to 
enhance the accuracy in determining the optimal number of 
clusters, the average of RMSE (Root Mean Squared Error), 
MAE (Mean Absolute Error), and R² (Coefficient of 
Determination) were computed after training different deep 
learning models for each cluster number. This approach is 
supposed to help in selecting the best number of clusters. Out 
of 84 bus stations, the maximum number of clusters was set to 
half of the total bus stations. 

C. Recurrent Neural Network Models 

Recurrent Neural Networks (RNNs) are a specialized class of 

neural networks designed to process sequential data. These 

networks excel in natural language processing and time-

series predictions, largely due to their unique feature of 

hidden states that preserve information from previous steps. 

Unlike traditional feedforward neural networks, RNNs can 

process sequences of varying lengths by maintaining an 

internal state that captures context across time steps. 

However, standard RNNs face significant challenges, 

particularly the vanishing gradient problem, which hinders 

their ability to effectively learn and capture long-term 

dependencies [17]. Among various RNN models, LSTM has 

gained significant recognition over traditional RNNs due to 

its ability to efficiently capture both long-term and short-term 

dependencies in time series data. LSTMs are a specialized 

type of RNN, integrated within the Sequence-to-Sequence 

(Seq2Seq) architecture, designed to effectively handle long- 

and short-term dependencies in sequential data [17]. 

D. Sequence-to-Sequence (Seq2Seq) Architecture 

Seq2Seq models have significantly advanced the fields of 

natural language processing and machine learning by offering 

a robust framework for mapping input sequences to 

corresponding output sequences. Leveraging recent 

developments in deep learning and memory-augmented 

architectures, these models demonstrate exceptional 

performance in understanding and generating sequential data.  

Their ability to preserve and transmit contextual information 

across sequences makes Seq2Seq models particularly well-

suited for a wide range of sequence-based tasks, including 

machine translation, video captioning, and code generation 

[18], [19]. To forecast the next day's bus station demand using 

a transformer model, we employ a sliding window approach 

with sequences of consecutive past demand values as input. 

Each sequence comprises historical demand data, such as 

[𝐷1, 𝐷72], up to [𝐷𝑘-1, 𝐷𝑘] with corresponding target values 

being the subsequent demand observations, denoted as 𝐷73, 

…, 𝐷𝑘+1. The model is trained on historical data spanning 

the previous 72 hours of GPT trends, enabling it to capture 

temporal patterns and dependencies within the time series for 

accurate prediction of future bus station demand.  

E. Model Architecture and Training Process 

The architecture comprises two main components: an 

encoder and a decoder. The encoder consists of two stacked 

LSTM layers with 128 and 64 hidden units. Both layers are 

regularized using L2 weight decay (λ=0.001), followed by 

batch normalization and a dropout layer with a dropout rate 

of 0.3 to mitigate overfitting. The final encoder output is 

passed through a repeat vector to align with the target output 

length. The decoder has two LSTM layers (64 and 32 units), 

also followed by batch normalization and dropout. The 

decoder outputs a sequence of vectors fed into a time-

distributed dense layer with a linear activation function to 

produce the next 24-hour bus stop demand prediction. The 

model was trained using the Adam optimizer with a learning 

rate of 0.001. Each model was trained for 200 epochs with a 

batch size of 64, and early stopping was considered based on 

validation performance. The dataset for each cluster was split 

with 80% of the samples used for training and the remaining 

20% for testing. To evaluate model performance, RMSE, 

MAE, and R² scores are calculated on the test set. For each 

prediction, we calculated 95% confidence intervals based on 

the standard error of the residuals using the t-distribution. 

IV. RESULTS 

This section presents two key results. First, the outcomes of 

the clustering process applied to bus stations are discussed. 

After determining the optimal number of clusters, a separate 

Seq2Seq model is trained for each cluster. The models' 

performance trained on each cluster is then evaluated and 

reported. 

A. Bus Stations Clustering 

To determine the optimal number of clusters for segmenting 

bus stations based on their GPT data, we evaluated several 

clustering configurations using different numbers of clusters. 

The quality of each clustering solution was assessed using 

standard internal validation metrics. These metrics provide 

insight into the compactness and separation of clusters, 

helping to identify the most appropriate clustering structure. 

TABLE I shows increasing the number of clusters generally 

led to improvements in some clustering validity metrics, such 

as a decrease in the Davies-Bouldin Index and inertia. The 

Davies-Bouldin Index decreased from 3.58 (with 10 clusters) 



to 1.98 (with 30 clusters), indicating improved cluster 

separation. Following the clustering step, a dedicated 

Seq2Seq model was trained for each cluster configuration, 

and the average model performance was evaluated using 

RMSE, MAE, and R². Increasing the number of clusters to 30 

results in reduced prediction accuracy, with RMSE rising 

from 11.35 to 16.14 and R² decreasing from 0.71 to 0.58. This 

highlights the trade-off between clustering granularity and 

model performance. Based on an evaluation of both 

clustering quality and predictive accuracy, the configuration 

with 10 clusters was selected as the optimal solution. An 

increase in the number of clusters resulted in marginal 

improvements in clustering validity metrics such as the 

Davies-Bouldin Index and inertia; however, a decline in 

prediction performance was also observed. In contrast, the 

10-cluster configuration yielded an RMSE of 11.35, the 

highest R² score of 0.71, and a competitive MAE of 8.60. 

 
TABLE I Clustering configurations and Seq2Seq performance  

 

 

Fig. 5. Bus station clustering results  

Fig 5 illustrates the spatial distribution of bus stations in 

Esch-sur-Alzette, Luxembourg, categorized into 10 distinct 

clusters based on the similarity of their historical demand 

patterns. Each colorful circle represents a bus station, and its 

color corresponds to its assigned cluster, as indicated in the 

legend. The clustering reveals that stations with similar 

temporal usage profiles are often located near each other, 

although some clusters span different parts of the city. This 

spatial segmentation provides a meaningful basis for 

developing cluster-specific forecasting models, enabling 

more accurate and localized predictions of future bus station 

demand. 

B. Deep Learning Results 

The clustering of 84 bus stations enables the development of 

individual Seq2Seq models for each cluster to predict future 

demand. Each model is trained using historical GPT-derived 

data specific to its assigned cluster, allowing for targeted and 

accurate forecasting. 

 

TABLE II. Results of prediction models for each cluster 

 

Cluster 

Number 

Number of bus 

stations in each  

cluster 
RMSE MAE 𝑅2 

0 2 14.108 10.66 0.563 

1 4 13.680 10.392 0.665 

2 21 11.887 9.104 0.720 

3 12 12.134 9.22 0.658 

4 6 12.291 9.167 0.709 

5 6 6.0137 4.561 0.915 

6 6 12.232 9.263 0.68 

7 12 10.755 8.120 0.765 

8 11 11.709 8.979 0.729 

9 4 8.694 6.592 0.76 
 

Table II presents the performance of individual Seq2Seq 

models trained for each 10 clusters. Each row corresponds to 

a specific cluster. The results demonstrate variability in 

model performance across clusters, which is partly 

influenced by the number of bus stations and the 

characteristics of their historical demand patterns. Cluster 5, 

which includes 6 stations, achieved the best performance with 

an RMSE of 6.01, MAE of 4.56, and an R² of 0.915, 

indicating a highly accurate model. In contrast, Cluster 0 and 

Cluster 1, with only 2 and 4 stations respectively, exhibited 

higher error rates and lower R² scores, suggesting limited 

predictive capability likely due to smaller training sets or 

more volatile demand patterns. Overall, the findings highlight 

the influence of cluster composition and size on model 

accuracy and emphasize the benefit of data-driven 

segmentation in enhancing short-term demand prediction. 

 

Fig. 6. Prediction of demand for a bus stop in cluster 5 (next 

24 hrs)  

Fig 6 presents the actual and predicted demand for the next 

24 hours with a 95% confidence interval (CI) at a bus station 

in Cluster 5. The model was trained on GPT data from all bus 

stations within Cluster 5 and used to forecast future demand 

for this specific station. The results show that the transformer 

model effectively captures the overall trend of bus demand. 

The CI provides a range of expected demand, helping to 

decide increase or decrease the frequency of the bus line or 

optimize the lines.  In this study, we demonstrate the potential 

of using GPT-derived data to predict short-term demand at 

bus stations. GPT data is widely available and easily 

accessible, making it a practical source for demand 

forecasting. Our results show that, with appropriate clustering 

and model training, future demand at bus stations can be 

predicted with promising accuracy. Future work will focus on 

enhancing model performance, extending the analysis to 

Cluster 
numbers 

Silhou
ette 

Davies-

Bouldin 

Calinski-

Harabasz 
Inertia 

Avg 

RMSE Avg MAE Avg 𝑹𝟐 

10 -0.020 3.5896 1.60 26.199 11.35 8.60 0.71 

15 -0.053 3.084 1.38 23.38 11.36 8.58 0.70 

20 -0.063 2.624 1.348 20.84 11.46 8.48 0.67 

25 -0.065 2.19 1.328 18.34 12.58 9.61 0.63 

30 -0.068 1.981 1.308 18.34 16.14 10.11 0.58 



include a larger set of bus stations, and integrating additional 

GPT signals related to surrounding activities.  

V. CONCLUSIONS 

This study introduced a novel framework for predicting bus 

station demand using crowdsourced data, specifically Google 

Popular Times (GPT), in combination with deep learning 

models. By leveraging the temporal patterns inherent in GPT 

data, we addressed key challenges in urban public transport 

planning, including the lack of ticketing-based data in fare-

free systems such as Luxembourg. Our approach involved a 

two-step methodology: first clustering bus stations based on 

their weekly GPT patterns using time-series clustering 

techniques, and then training customized Seq2Seq models for 

each cluster to forecast demand over a 24-hour horizon using 

the previous 72 hours of data. The results demonstrated that 

deep learning models were able to effectively capture 

temporal dependencies and provided accurate predictions for 

each station group. Evaluation metrics such as RMSE, MAE, 

and R² confirmed the robustness of the proposed models 

across clusters. Our findings validate the potential of using 

crowdsourced data as a cost-effective, scalable, and privacy-

preserving alternative for public transport demand 

forecasting. This approach not only eliminates the need for 

expensive infrastructure and data collection systems but also 

enables more dynamic and responsive transport planning, 

especially in urban environments undergoing rapid changes 

in mobility patterns. 
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