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Abstract—The growing integration of non-terrestrial networks
(NTNs), particularly low Earth orbit (LEO) satellite constella-
tions, has significantly extended the reach of maritime connec-
tivity, supporting critical applications such as vessel monitoring,
navigation safety, and maritime surveillance in remote and
oceanic regions. Automatic Identification System (AIS) data,
increasingly collected through a combination of satellite and ter-
restrial infrastructures, provide a rich source of spatiotemporal
vessel information. However, accurate trajectory prediction in
maritime domains remains challenging due to irregular sampling
rates, dynamic environmental conditions, and heterogeneous
vessel behaviors. This study proposes a velocity-based trajectory
prediction framework that leverages AIS data collected from
integrated satellite–terrestrial networks. Rather than directly
predicting absolute positions (latitude and longitude), our model
predicts vessel motion in the form of latitude and longitude
velocities. This formulation simplifies the learning task, enhances
temporal continuity, and improves scalability, making it well-
suited for resource-constrained NTN environments. The pre-
dictive architecture is built upon a Long Short-Term Memory
network enhanced with attention mechanisms and residual con-
nections (LSTM-RA), enabling it to capture complex temporal
dependencies and adapt to noise in real-world AIS data. Extensive
experiments on two maritime datasets validate the robustness and
accuracy of our framework, demonstrating clear improvements
over state-of-the-art baselines.

Index Terms—Non-terrestrial networks, time-series data, vessel
trajectory prediction, Deep Learning, Automatic Identification
System.

I. INTRODUCTION

Non-terrestrial networks (NTNs), powered by Low-Earth
Orbit (LEO) satellite constellations, have emerged as a cor-
nerstone of global communication infrastructure [1]. These
networks offer persistent and wide-area coverage, making
them indispensable for mission-critical operations across re-
mote and oceanic regions. In maritime domains, NTNs sup-
port a variety of applications such as vessel tracking, colli-
sion avoidance, and traffic management, enabling situational
awareness and navigational safety in dynamic and high-risk
environments [2]. A core component of maritime monitor-
ing systems is the Automatic Identification System (AIS), a
standardized communication protocol that enables vessels to
broadcast their identity, position, speed, and navigational status
at regular intervals. AIS transmits data between ships, coastal
stations, and increasingly via satellite-based receivers, thereby
supporting both terrestrial and non-terrestrial communication
infrastructures. This real-time information exchange is critical

for collision avoidance, traffic coordination, and networked
maritime applications [3]. With the increasing availability
of AIS data collected through both terrestrial and satellite
infrastructures, researchers and practitioners have gained un-
precedented access to large-scale, global maritime datasets.
The integration of satellite-based and terrestrial-based AIS
data with geospatial and temporal context opens new direction
for developing predictive models. However, this integration
also presents several fundamental challenges. AIS data often
suffers from irregular sampling intervals, especially in low-
traffic regions due to sparse infrastructure or in congested
zones where signal collisions may occur. Moreover, intentional
silence by vessels, such as disabling AIS transmissions for
privacy, security, or illicit activities, further exacerbates data
sparsity. In such cases, no update packets are transmitted or
received, effectively interrupting communication and causing
gaps in trajectory information, which poses significant chal-
lenges for real-time prediction and monitoring [4]. Moreover,
noisy and inconsistent observations due to varying trans-
mission intervals and environmental interference complicate
the learning process. In such conditions, traditional trajectory
prediction methods—deterministic or statistical—struggle to
achieve robust performance [5] [6].

To achieve reliable trajectory predictions, we propose a
robust and scalable deep learning (DL)-based vessel veloc-
ity prediction framework. Unlike conventional methods that
directly predict absolute vessel positions [7] [8], our model
reformulates the prediction task to focus on latitude and longi-
tude velocities. This velocity-based formulation simplifies the
learning objective, reduces cumulative errors during inference,
and offers enhanced temporal consistency. Importantly, it also
allows for more effective learning from noisy or irregular AIS
samples. The architecture is built upon a Long Short-Term
Memory (LSTM) network with integrated attention mech-
anisms and residual connections, called LSTM-RA, which
captures long-range dependencies and adapts to complex
vessel motion dynamics. Moreover, we emphasize that data
preprocessing plays a critical role in trajectory prediction
accuracy. Our experiments show that using segmentation-
based trajectory grouping, which divides vessel movements
into temporally coherent sub-sequences, yields significantly
lower prediction errors than vessel ID (MMSI)-based group-
ing. The latter often results in fragmented, inconsistent, or
non-uniform trajectories, which reduce model reliability. By
contrast, segmentation facilitates more structured learning and
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better generalization across diverse regions.
This novel framework presents several benefits for NTN-

based maritime applications. By relying on a minimal set of
reliable features, namely timestamp, latitude, and longitude,
it ensures both adaptability and computational efficiency. Im-
portantly, we incorporate the relative time of the predicted
position as an explicit input, enabling the model to pre-
dict vessel locations for any given future time with greater
precision. This velocity-based prediction paradigm further
enhances scalability for real-time, resource-constrained sys-
tems. Through comprehensive experiments on two large-scale,
integrated AIS datasets, our model consistently outperforms
state-of-the-art baselines, achieving superior accuracy and
robustness while maintaining minimal feature requirements.
As a result, this work contributes a scalable, adaptive, and
efficient solution for maritime trajectory prediction, facilitating
improved decision-making and safety within next-generation
NTN-enabled ecosystems. The key contributions of this paper
are:

• We propose the LSTM-RA model, which integrates resid-
ual connections and a temporal attention mechanism
within a multi-layer LSTM architecture. This hybrid de-
sign enhances the propagation of long-term dependencies
and effectively mitigates error accumulation in irregular
and noisy AIS time series—addressing a well-known
limitation in conventional LSTM predictors.

• We design a segmentation-based preprocessing method
that organizes raw AIS streams into temporally coher-
ent sub-trajectories, thereby preserving contextual vessel
motion patterns and substantially improving prediction
accuracy compared to traditional MMSI-based grouping.

• We introduce a temporal conditioning strategy by incor-
porating the relative time offset of the predicted position
into the model’s input, improving its temporal awareness
and extrapolation accuracy for longer prediction horizons.

• We perform comprehensive evaluations on two real large-
scale datasets—Atlantic and Malaisie—covering both in-
domain and zero-shot generalization scenarios. Results
show consistent performance gains over position-based,
moving-average, standard baselines (LSTM, GRU, Trans-
former).

The paper is presented as follows: related works are briefly
reviewed in section II, section III introduces the problem for-
mulation, mathematical notations, and our proposition. More
details about the experiment setup is given in section IV,
empirical studies are reported in section V, section VI,
section VII. Finally, section VIII concludes our work and
discusses future works.

II. RELATED WORK

Vessel trajectory prediction is essential for enhancing nav-
igational safety in both maritime and inland waterway trans-
portation. Existing prediction solutions can be broadly catego-
rized into three groups: (i) physical model-based approaches,
(ii) machine learning-based methods, and (iii) deep learning-
based models.

A. Physical Model-Based Vessel Trajectory Prediction

Physical model-based methods are grounded in physical
laws and kinematic principles. Without leveraging historical
trajectory patterns, they estimate a vessel’s future position
based solely on its current state, location, and velocity. Typical
techniques in this category include Kalman filters, particle fil-
ters, and Markov models. For example, the authors in [9] intro-
duced a Kalman filter-based approach that enhances trajectory
prediction accuracy by effectively filtering vessel position data.
Their method proves particularly effective in handling complex
navigation scenarios, such as curved inland waterways. To
further improve the accuracy of trajectory prediction, the study
in [10] combined particle filtering with historical AIS data to
predict trajectories effectively in narrow waterways.

B. Machine Learning-Based Vessel Trajectory Prediction

Machine learning-based methods predict future vessel tra-
jectories by learning patterns from historical AIS data. Com-
mon techniques include Support Vector Machines (SVMs)
and Random Forest (RF), each offering distinct strengths
and limitations. For instance, the study in [11] incorporated
vessel speed and heading into an SVM framework, improving
predictive accuracy. Nevertheless, SVMs may struggle with
generalization, particularly in out-of-distribution scenarios,
where the test data exhibit patterns or dynamics not observed
during training, such as new geographical regions, different
vessel behaviors, or varying traffic densities. Moreover, an RF
has been used in order to predict vessel destinations by com-
paring similarities between current and historical trajectories,
demonstrating the algorithm’s effectiveness in handling large
and diverse datasets [12].

C. Deep Learning-Based Vessel Trajectory Prediction

DL has emerged as a powerful tool for vessel trajectory
prediction, offering data-driven solutions capable of learning
complex spatial and temporal dependencies from AIS data.
Compared to traditional deterministic or statistical approaches,
DL models provide superior adaptability to non-linear dy-
namics, noisy data, and irregular sampling [13]. Recurrent
neural networks (RNNs), especially Long Short-Term Memory
(LSTM) networks, have become foundational components in
many vessel trajectory forecasting frameworks due to their
ability to model long-range dependencies in time-series data.
In this context, several advanced LSTM-based architectures
have been proposed to further improve prediction accuracy.
For example, [14] introduced the SFM-LSTM model, which
integrates the Social Force Model with LSTM networks to
predict spatiotemporal vessel trajectories with high robustness.
A mixed-loss function was proposed to enhance generalization
across different navigation contexts. Similarly, [15] presented a
ConvLSTM-based Seq2Seq model that jointly captures spatial
and temporal patterns, demonstrating superior performance
over traditional Seq2Seq and Bi-Attention-LSTM architectures
on real AIS data. Graph-based learning has also been explored
in this domain. [16] developed a spatio-temporal multigraph
convolutional network (STMGCN) leveraging three distinct
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graph representations based on social force, closest point
of approach, and vessel size. Extending this idea, [8] pro-
posed DAA-SGCN, which integrates motion encoding, spatio-
temporal feature extraction, and trajectory prediction using
MMSI, timestamp, position, speed over ground, and heading
features. More recently, [17] introduced ST-MGT, a multi-
graph transformer architecture that blends GCNs, LSTM units,
and transformer layers to accurately capture vessel interactions
and spatiotemporal behaviors. Combining attention mecha-
nisms and RNNs, [18] designed a hybrid model using graph
attention networks (GAT) for spatial encoding and LSTM
for temporal sequence learning. Additionally, [4] conducted
a comparative study of DL models for direct position-based
trajectory prediction, examining their effectiveness in complex
maritime environments. Generative modeling has also gained
traction; for example, [19] proposed a conditional varia-
tional autoencoder (CVAE)-based architecture that captures
vessel behavior by modeling multiple input features, including
MMSI, speed over ground, heading, and positional data. More
innovatively, [20] used a large language model (LLM)-based
approach, where a token and motion embedding layer is used
to process AIS sequences, followed by convolutional fusion
and fine-tuning of a pre-trained LLM for trajectory prediction.

Despite significant progress in data-driven vessel trajectory
prediction, most existing approaches rely on complex feature
sets and directly predict absolute positions, making them
highly sensitive to noise, irregular sampling, and data spar-
sity—issues that are intrinsic to AIS data, particularly in
satellite-integrated systems. Moreover, several studies assume
uniform data quality and underestimate the impact of pre-
processing strategies such as trajectory segmentation. Con-
ventional MMSI-based grouping, commonly adopted in prior
work, often produces fragmented or inconsistent sequences
that fail to capture the temporal continuity of vessel motion. To
address these limitations, we propose a velocity-based predic-
tion framework that uses only the essential spatio-temporal in-
puts—timestamp, latitude, and longitude—without relying on
handcrafted or auxiliary features. Instead of predicting abso-
lute coordinates, our model estimates the velocity components
(vlat, vlon), which better capture vessel dynamics and yield
superior robustness and computational efficiency. In addition,
we demonstrate that segmentation-based preprocessing, which
groups AIS data into temporally coherent sub-trajectories,
substantially enhances predictive stability compared to MMSI-
based grouping. Building on this foundation, the proposed
AIS-enhanced maritime navigation system integrates satellite-
collected AIS data with the velocity-learning model to en-
able scalable, real-time trajectory prediction in 6G/NTN-
enabled maritime environments. Leveraging an LSTM archi-
tecture with residual and attention mechanisms, the system
ensures temporal smoothness and resilience to irregular sam-
pling while remaining lightweight enough for deployment on
resource-constrained edge or satellite nodes. Moreover, the
inclusion of relative prediction time as an auxiliary input
enhances temporal awareness, enabling asynchronous multi-
horizon prediction under heterogeneous maritime communi-
cation conditions.

III. TRAJECTORY PREDICTION

In this section, we formally introduce the problem of vessel
trajectory prediction and the formulation of the sequence-to-
sequence learning approach used to address the prediction task.
We present a data-driven approach to finding an approximate
solution based on recurrent networks for sequence modeling
in order to encode information from past data and generate
future predictions. Fig. 1 illustrates the end-to-end workflow
of our proposition.

Fig. 1: Flowchart of the proposed velocity-based trajectory
prediction framework. The process includes data preprocess-
ing, velocity computation, training data generation, and model
training using the LSTM-RA architecture.

A. Problem Definition

A dataset of N vessel trajectories can be represented as a
collection of temporally ordered sequences of tuples:

C = {Si, Ti}Ni=1.

Each trajectory is described by
• A sequence Si of vessel states:

Si = {sk | k = 1, . . . , Ti},

• A corresponding sequence of time points Ti =
{t1, . . . , tTi}, with t1 < t2 < . . . < tTi .

Here, Ti denotes the number of time steps in the trajectory
i, and each state vector sk = Si(tk) ∈ Rd encodes the vessel’s
dynamic condition at time tk. The dimensionality d of the state
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vector may include various spatial and kinematic features, such
as latitude, longitude, velocity components, speed, or heading.
The specific choice of state representation depends on the
prediction objective and available data.

The goal of trajectory prediction is to learn a spatio-
temporal mapping from historical vessel movements in order
to predict future states over a fixed prediction horizon. This
is formulated as a supervised sequence-to-sequence learning
task, where the model generates a future sequence of vessel
states given a past sequence of observations. In this study,
we focus on predicting future velocity components (in the
latitude and longitude directions), from which future positions
are reconstructed. To note, our framework deliberately uses
a minimal feature set, such as timestamps, latitude, and lon-
gitude, to ensure scalability, generalizability, and applicabil-
ity in real-time, resource-constrained environments. Although
auxiliary information such as vessel speed, size, or type could
theoretically impose bounds on feasible velocity values, such
features are often missing, noisy, or inconsistently reported in
AIS data. Therefore, we avoid incorporating them to main-
tain robustness and prevent introducing bias from unreliable
metadata. A data segmentation process is applied to extract
input-output sequence pairs, enabling efficient model training
(see Section III-E).

B. Trajectory Prediction Task

The goal of trajectory prediction is to learn a mapping from
historical vessel observations to specific future features, such
as velocity components or positions, over a fixed prediction
horizon H . Formally, given a fixed-length input sequence of
ℓ past observations:

Xk = {sτ | τ = k − ℓ+ 1, . . . , k},

the task is to predict the corresponding output sequence of
future target features:

Yk = {yτ | τ = k + 1, . . . , k +H},

where each yτ ∈ Rd represents the predicted features of
interest at time τ , such as latitude-velocity and longitude-
velocity, or alternatively, geographic coordinates.

To address the irregular sampling patterns typical in AIS
data, a data segmentation procedure is applied to convert
variable-length trajectories into fixed-length input-output pairs.
This is accomplished using a sliding window approach, which
extracts overlapping segments from each trajectory. The result
is a training dataset of examples:

D = {(Xk,Yk)}nk=1,

where n denotes the total number of sliding windows ex-
tracted. This preprocessing step enables the model to effec-
tively learn from sequential patterns while accommodating
challenges such as missing entries, inconsistent intervals, and
trajectory fragmentation.

C. Position-Based Trajectory Prediction
Traditional trajectory prediction methods typically aim to

directly forecast future geospatial coordinates:

{latT+h, lonT+h}Hh=1,

where T denotes the final observed time step and H is the
prediction horizon. These methods treat trajectory prediction
as a sequence regression problem over absolute positions.

While intuitive and widely adopted, position-based predic-
tion approaches are often limited by the quality and regularity
of the input data. In real-world maritime settings, particularly
in NTN environments, AIS data can suffer from irregular
sampling intervals, missing entries, and noisy signals due to
environmental disruptions or vessel behavior. These factors
significantly impair the ability of position-based models to
generalize, leading to poor trajectory accuracy and unstable
predictions.

D. Velocity-Based Trajectory Prediction
To overcome the limitations of direct position prediction,

we propose a velocity-based modeling framework. Instead of
predicting geospatial coordinates, the model learns to predict
the velocity components:

{vlat,h, vlon,h}Hh=1,

where vlat,h and vlon,h denote the predicted velocities in the
latitude and longitude directions, respectively. These velocity
predictions are then integrated over time to reconstruct future
positions:

Latpred,h = Latlast+vlat,h ·∆t, Lonpred,h = Lonlast+vlon,h ·∆t,

where ∆t represents the time interval between predictions, and
(Latlast,Lonlast) are the most recent observed coordinates.
Velocity computation: For each vessel trajectory, AIS mes-
sages are first sorted chronologically to ensure temporal con-
sistency. Instantaneous velocity components are then derived
between consecutive observations as:

vlat,i =
lati+1 − lati
ti+1 − ti

, vlon,i =
loni+1 − loni
ti+1 − ti

,

where (lati, loni) are consecutive positions and ti is the
timestamp in hours. Latitude and longitude are converted into
kilometers.
This preprocessing ensures consistent spatial scaling across
vessels operating in different regions, allowing the model to
generalize effectively across heterogeneous AIS sources.

Advantages of the velocity-centric design:
• Resilience to irregular sampling: By explicitly model-

ing ∆t, the method adapts to uneven temporal intervals,
improving robustness under AIS irregularities caused by
satellite coverage gaps or intentional shutoffs.

• Smoother learning signals: Velocity trajectories exhibit
smoother dynamics than absolute position sequences,
providing the model with more stable and predictable
temporal patterns.

• Dynamic interpretability: Predicting velocity compo-
nents allows the system to capture vessel dynamics
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(speed, direction, or maneuver changes), facilitating real-
time interpretability for navigation and anomaly detec-
tion.

By shifting the modeling focus from positions to veloci-
ties, the proposed approach achieves higher robustness, inter-
pretability, and generalization in complex maritime environ-
ments.

E. Data Segmentation
AIS data is often characterized by irregular temporal sam-

pling, data noise, and missing values, which pose significant
challenges for training predictive models. Moreover, raw AIS
trajectories vary in length and consistency due to the asyn-
chronous nature of transmissions. To convert this heteroge-
neous data into a structured format suitable for supervised
sequence modeling, we implement a rigorous segmentation
strategy that integrates both temporal and spatial constraints,
followed by a sliding window approach.

The historical trajectory dataset C = {Si, Ti}Ni=1 contains
sequences of observations Si = {sk}Ti

k=1 and corresponding
timestamps Ti = {t1, . . . , tTi

}, where sk denotes the vessel’s
state at time tk. Due to inconsistencies in sampling intervals,
we first preprocess each sequence as follows:

Preprocessing and Thresholding: For each vessel, obser-
vations are sorted chronologically. Time differences ∆ti =
ti+1 − ti and spatial distances ∆di = geodesic(si+1, si)
are computed between consecutive points. A new segment is
initiated if either ∆ti > δt or ∆di > δd, where δt and δd are
empirically determined thresholds. After several visualizations
and exploratory analyses of vessel trajectories, we selected
threshold values that best separated continuous navigation
patterns from discontinuous or noisy segments. In particular,
the chosen thresholds reflect the observed distribution of time
gaps and displacement distances between consecutive AIS
messages.

Additionally, points with near-zero velocity (e.g., speed < 2
km/h) are excluded, as they do not contribute to meaningful
movement dynamics. Segments shorter than a minimum length
θ are discarded to ensure the quality of extracted patterns.

Sliding Window Generation: Once clean segments are
formed, we apply a sliding window to generate input-output
training pairs. Specifically, for each segment, we extract over-
lapping windows of historical states:

Xk = {sτ | τ = k − ℓ+ 1, . . . , k},

along with their corresponding prediction targets:

Yk = {sτ | τ = k + 1, . . . , k +H},

where ℓ is the input sequence length and H is the prediction
horizon.

The final training dataset becomes a structured collection of
samples:

D = {(Xk,Yk)}nk=1,

where n denotes the number of generated training windows.
This segmentation framework ensures temporal coherence and
spatial consistency, thereby facilitating accurate learning of
trajectory patterns from real-world AIS data.

Fig. 2: Sliding window-based segmentation for two example
trajectories S1 and S2, showing the transformation of raw AIS
data into fixed-length input-output pairs for training.

F. Sequence-to-Sequence Modeling Approach

We adopt a sequence-to-sequence DL approach to address
the trajectory prediction problem introduced in Section III-A.
A sequence-to-sequence model maps a fixed-length input se-
quence to a fixed-length output sequence, where the input and
output lengths may differ. From a probabilistic perspective,
the goal is to learn the following predictive distribution:

p(Yk | Xk).

Once this predictive distribution is learned, the sequence-to-
sequence model directly generates a target sequence Ŷk given
the input sequence Xk. The supervised learning task becomes
a sequence regression problem, where the objective is to train
a neural network Fℓ,H to predict the target sequence:

Ŷk = Fℓ,H(Xk) = argmax
Y

p(Yk | Xk).

The model Fℓ,H(Xk; θ) is parameterized by θ, the set of
trainable parameters. To train the model, we optimize a task-
specific loss function L to find the parameters θ̂ that minimize
the prediction error over the dataset D:

θ̂ = argmin
θ

1

n

n∑
k=1

L
(
Fℓ,H(Xk; θ),Yk

)
,

where n is the total number of training samples. A common
choice for the loss function L in regression tasks is the
mean squared error (MSE), which penalizes the squared dif-
ferences between predictions and ground truth. This sequence-
to-sequence framework is designed to capture the underlying
spatio-temporal dependencies in historical trajectories, en-
abling robust and accurate prediction of future vessel states.
By focusing on velocity components, the model can better
handle noisy and irregularly sampled data, offering improved
resilience and interpretability in maritime trajectory forecast-
ing.

G. LSTM with Attention and Residual Connections

To effectively model complex spatiotemporal dependencies
in maritime trajectory data, we propose an architecture based
on Long Short-Term Memory (LSTM) units, enhanced with
attention mechanisms and residual connections. This design
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enables robust modeling of sequential patterns, particularly
when predicting velocity-based vessel states (e.g., latitude- and
longitude-velocity components).

a) LSTM Component: The core of the model is a multi-
layer LSTM network, which captures temporal dependen-
cies across input sequences [21]. The gated architecture of
the LSTM enables selective information retention, mitigat-
ing issues such as vanishing gradients that are prevalent in
traditional RNNs. This makes it well-suited for long-range
dependency modeling in maritime data streams.

b) Attention Mechanism: To improve the model’s ability
to focus on relevant portions of the input sequence, we
incorporate an attention mechanism. Rather than relying on
a fixed-length context vector, the attention module dynam-
ically weights input states based on their relevance to the
prediction [22]. Given an input sequence Xk = {sτ | τ =
k−ℓ+1, . . . , k}, the attention mechanism computes a context
vector ct at output time step t as:

ct =

k∑
τ=k−ℓ+1

αt,τ sτ ,

where the attention weights αt,τ are obtained through a
softmax operation:

αt,τ =
exp(et,τ )∑k

τ ′=k−ℓ+1 exp(et,τ ′)
, et,τ = score(ht, sτ ).

Here, ht is the LSTM hidden state at time t, and score(·)
is a learnable function that quantifies the alignment between
ht and each input sτ . This mechanism allows the model to
prioritize temporally important signals, improving its ability
to track vessel motion under irregular and noisy observation
patterns.

c) Residual Connections: To further stabilize training
and facilitate information flow across layers, we introduce
residual connections between the input embeddings and the
corresponding LSTM outputs [23]. This design supports the
learning of both shallow and deep temporal features by allow-
ing direct gradient propagation during optimization. Residual
connections also enhance model convergence and robustness,
particularly in long sequences or high-dimensional data set-
tings.

Together, these architectural components enable the pro-
posed LSTM-RA model to effectively model nonlinear, tem-
porally dependent vessel behaviors. The combination of mem-
ory mechanisms, dynamic attention weighting, and residual
learning ensures robustness to noise, irregular sampling, and
complex maritime dynamics.

H. Velocity-Based Prediction and Reconstruction

Conventional position-based models directly estimate future
geospatial coordinates. While intuitive, these methods often
struggle with irregular sampling intervals and noise conditions
common in maritime environments. To mitigate these chal-
lenges, we adopt a velocity-based prediction framework that
focuses on modeling motion dynamics rather than absolute
positions.

a) Velocity Prediction.: The proposed model predicts
velocity components in the latitude and longitude directions,
denoted as v̂(h)lat and v̂

(h)
lon , for each future step h ∈ {1, . . . ,H}.

The loss function used during training minimizes the discrep-
ancy between the predicted and ground-truth velocities:(

v
(h)
lat − v̂

(h)
lat

)2

+
(
v
(h)
lon − v̂

(h)
lon

)2

.

The input to the model consists of a fixed-length sequence
of historical states, each represented by relative time scalars
and spatial coordinates:

Spast,k = {sτ = (trel,τ , latτ , lonτ ) | τ = k − ℓ+ 1, . . . , k} ,

where trel,τ = tτ − tk−ℓ+1 denotes the relative time with
respect to the start of the window. For each future time step,
we append a predicted relative time scalar:

trel,pred,h = tpred,h − tk, where tpred,h = tk + h ·∆tpred.

This design offers two primary advantages:
• Trajectory alignment: Using relative time scalars normal-

izes trajectories, reducing model sensitivity to absolute
timestamps and improving generalization.

• Temporal awareness: The model is explicitly informed of
the prediction horizon for each output step, enhancing its
ability to model time-dependent vessel dynamics.
b) Trajectory Reconstruction.: After predicting velocity

components, we reconstruct the future positions through iter-
ative integration over the prediction horizon:

Latpred,h = Latlast + v̂
(h)
lat ·∆t, Lonpred,h = Lonlast + v̂

(h)
lon ·∆t,

where (Latlast,Lonlast) are the coordinates at the final observed
timestep, and ∆t is the time interval between predictions. This
recursive multistep integration ensures temporal coherence and
minimizes error propagation, especially in irregular and noisy
sequences.

Overall, this velocity-centric formulation provides a
lightweight yet expressive framework for trajectory prediction,
requiring only timestamps and positional data as inputs. This
simplifies deployment in real-world NTN-enabled maritime
systems while maintaining strong predictive accuracy.

I. Loss Function for Velocity-Based Prediction

To train the sequence-to-sequence model described in Sec-
tion III-F, we adopt the mean squared error (MSE) as the
objective function. This loss function penalizes deviations
between predicted and ground-truth velocity components over
a prediction horizon of length H . The loss is formally defined
as:

L =
1

H

H∑
h=1

[(
v
(h)
lat − v̂

(h)
lat

)2

+
(
v
(h)
lon − v̂

(h)
lon

)2
]
,

where v
(h)
lat and v

(h)
lon denote the ground-truth velocity compo-

nents in the latitude and longitude directions at time step h,
and v̂

(h)
lat , v̂(h)lon are the corresponding model predictions.

This formulation helps the model to accurately learn the
motion dynamics of vessels over time. By focusing on velocity
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rather than absolute positional coordinates, the loss function
inherently supports smoother transitions and improves robust-
ness to irregular temporal sampling, an inherent characteristic
of AIS data in real-world maritime environments. In practical
settings, velocity components are computed from consecutive
AIS observations by measuring geospatial displacement over
time. These components are typically expressed in inter-
pretable physical units (e.g., kilometers per hour), derived by
applying appropriate scaling factors to account for Earth’s
curvature and latitude-dependent distance distortions. Such
normalization ensures consistency between model outputs and
real-world measurements, enhancing the interpretability and
deployability of the learned model.

J. Algorithm Overview

To summarize the proposed trajectory prediction pipeline,
we present Algorithm 1, which outlines the core stages,
including data preprocessing, sequence segmentation, velocity
computation, and model training. This process ensures a
consistent preparation of AIS data for sequence-to-sequence
learning using the proposed velocity-based framework.

Algorithm 1 Velocity-Based Vessel Trajectory Prediction

1: Input: Raw AIS dataset C with tuples (MMSI, t, lat, lon)
2: Output: Trained model Fℓ,H(·) for velocity prediction
3: Step 1: Preprocess and Segment Trajectories
4: for each vessel trajectory Si in C do
5: Sort Si by timestamp
6: Compute ∆t and ∆d between observations
7: Start new segment if ∆t > δt or ∆d > δd
8: Discard short segments or with low speed
9: end for

10: Step 2: Compute Velocity
11: for each segment do
12: Compute vlat = ∆lat/∆t, vlon = ∆lon/∆t
13: end for
14: Step 3: Generate Training Data
15: for each segment do
16: Apply sliding window of length ℓ for inputs and H for

outputs
17: Normalize lat, lon, and time features using min-max

scaling
18: Generate and store (Xk,Yk)
19: end for
20: Step 4: Train Model
21: Initialize model Fℓ,H(·) (LSTM with Attention and Resid-

ual Connections)
22: Train using MSE loss on predicted vs. ground-truth ve-

locity components
23: return Trained model Fℓ,H(·)

Computational Complexity. The computational complexity
of the proposed LSTM-RA model, which integrates L stacked
LSTM layers with an attention mechanism. For a given input
sequence length ℓ, hidden dimension d, and batch size B,
the forward-pass complexity per layer is O(B × ℓ × d2),
corresponding to the recurrent matrix multiplications within

each LSTM cell. The self-attention block contributes an addi-
tional O(B× ℓ2×d) term, which remains moderate given the
relatively short AIS temporal windows used in our experiments
(ℓ = 12, H = 5). Hence, the overall model complexity can be
expressed as:

O(L×B × ℓ× d2 +B × ℓ2 × d).

The memory complexity scales linearly with ℓ and L, as each
LSTM layer maintains hidden and cell states of size O(d).
These characteristics show that the proposed approach remains
computationally efficient and scalable for deployment in large-
scale maritime monitoring systems.

IV. EXPERIMENTAL SETUP

This section details the data preprocessing pipeline, model
configuration, and training procedures employed to evaluate
the proposed velocity-based trajectory prediction framework.
Given the irregular and often noisy nature of AIS data, careful
preprocessing is essential to ensure reliable learning signals.
We first describe how raw AIS messages are transformed into
structured input-output pairs suitable for sequence-to-sequence
modeling. This includes MMSI-based grouping, segmentation
based on spatio-temporal thresholds, velocity computation, and
sliding window sampling. The goal of this preparation is to
align raw vessel trajectories with the specific requirements of
our deep learning framework while preserving critical motion
dynamics.

A. Dataset Preparation

The datasets used in this study comprise two distinct mar-
itime regions: the Atlantic and Malaysia areas. The Atlantic
dataset includes over 50,000 trajectory segments, while the
Malaysia dataset contains more than 5,000 segments, both
derived from real AIS messages collected between 2024 and
2025. Each vessel trajectory is derived from AIS data, which
contains timestamped position messages (latitude, longitude)
uniquely identified by the vessel’s MMSI number. The main
steps are as follows:

1) Grouping by MMSI: AIS messages are first sorted
chronologically and grouped by their MMSI numbers,
yielding individual vessel-specific trajectories in time-
ordered format.

2) Trajectory Segmentation: To manage irregular sam-
pling and potential anomalies (e.g., large temporal or
spatial gaps), each vessel trajectory is split into smaller,
continuous segments whenever time or distance thresh-
olds are exceeded. Segments with insufficient points are
discarded to ensure reliability for velocity estimation
and subsequent modeling. Then the AIS messages are
sorted and grouped by their segment id instead of MMSI
numbers.

3) Velocity Computation: Within each segment, velocity
components in the latitude and longitude directions
are computed from consecutive positional observations,
capturing how the vessel’s latitude and longitude change
over time.
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4) Sliding Window: A sliding window technique is then
applied to each segmented trajectory to generate fixed-
length input-output pairs. Each input sequence covers ℓ
historical observations (including the associated veloci-
ties), while each target sequence spans H future steps.
By systematically advancing this window across each
segment, overlapping pairs are created for model training
and evaluation.

This preprocessing step consolidates the raw AIS mes-
sages into well-defined segments and windows that align
with the velocity-based prediction framework. By grouping,
segmenting, computing velocity, and forming consistent input-
output pairs, the data is made ready for training sequence-
to-sequence models aimed at robust and accurate maritime
trajectory prediction.

B. Scenario Description
In this study, we use two distinct AIS datasets cover-

ing maritime operations in (i) the Atlantic region and (ii)
the Indonesia–Malaysia region, exclusively on cargo vessel
types. Both areas exhibit complex traffic patterns, irregular
reporting intervals, and noise in AIS transmissions, making
them challenging yet representative environments for testing
trajectory prediction models. The Atlantic dataset spans from
January to December 2023, featuring variable time intervals
between reported positions, with an average of approximately
one hour. Due to the high volume of traffic and diverse vessel
routes, data segmentation criteria (Section III-E) are applied
to break trajectories into more homogeneous segments. This
ensures consistent temporal and spatial properties across the
resulting segments. After segmentation, velocity components
are computed to capture vessel motion dynamics. Similar pre-
processing steps are conducted on a second dataset collected
from the Indonesia–Malaysia region, which also covers a range
of vessel types and routes with varying sampling intervals.
This dataset was collected in 2024. The same segmentation
and velocity computation procedures are employed to maintain
methodological consistency, allowing for comparative evalu-
ation across two distinct maritime domains. For each seg-
mented trajectory in both datasets, a sliding window approach
(Section III-E) is applied to generate fixed-length input and
output sequences. Specifically, each input sequence has length,
ℓ and each target sequence has length H . The combination of
segmentation, velocity computation, and windowing produces
final datasets of fixed-size input-output pairs suitable for train-
ing and evaluating sequence-to-sequence prediction models.
By leveraging two geographically and operationally diverse
datasets, we demonstrate the robustness and generalizability
of the proposed velocity-based trajectory prediction framework
using an advanced LSTM-based model.

C. Models
We compare the performance of different DL-based mod-

els—LSTM, BiLSTM, GRU, and Transformer—that can be
applied to trajectory prediction problems. We test different
DL models, whose hyperparameters have been selected after
an extensive hyperparameter optimization procedure aimed at
finding the most suitable configurations.

D. Training Settings

The final goal of the learning process is to find the optimal
approximation for the predictive function, i.e., the function
that maps past trajectories into future ones, both composed of
continuous values. We first normalize the data, and the training
was performed for a maximum of 150 epochs with a learning
rate of 0.001, 250 hidden units, 7 LSTM layers, a batch size
of 256, and 0.2 dropout. These hyperparameters were selected
through empirical tuning based on validation performance. We
initially experimented with multiple configurations, including
learning rates in {1 × 10−3, 5 × 10−4, 1 × 10−4}, hidden
units in {64, 128, 250, 512}, and the number of LSTM
layers ranging from 2 to 10. The final configuration yielded the
best trade-off between convergence speed, predictive accuracy,
and training stability across both the Atlantic and Malaysia
datasets. We use the early-stopping criterion, evaluating the
error measure (MSE between prediction and ground truth se-
quences) on the validation set and guiding how many iterations
we can perform before the model begins to overfit.

E. Experimental Setup

In all experiments, the input sequence length (l) and pre-
diction horizon (H) were empirically set to l = 12 and H = 5,
corresponding respectively to 12 historical AIS observations
and 5 future prediction steps. Model training and evaluation
were performed on an Ubuntu 22.04 workstation equipped
with two NVIDIA RTX A6000 GPUs (48 GB VRAM each),
an 80-core (40 physical) CPU, and 503 GB of RAM, run-
ning Python 3.11.5, PyTorch 2.2 + CUDA 12.1. Energy
consumption reported in Table II was monitored using the
CodeCarbon library1. This configuration ensures reproducible
runtime and energy measurements and allows fair comparison
among models.

V. PERFORMANCE EVALUATION ON THE ATLANTIC
DATASET

A. Velocity-Based Prediction vs. Direct Position Prediction

In this section, using our LSTM-RA model, we present
a comparative analysis of two distinct prediction strategies
evaluated on the Atlantic dataset: (i) velocity-based prediction
and (ii) direct position (latitude and longitude) prediction.
Figures 3 and 4 depict the error distributions for the two
approaches. To note, the LSTM-RA model operates only over
three input features—latitude, longitude, and timestamps—for
both strategies.

The velocity-based prediction method, shown in Figure 3,
exhibits a highly concentrated error distribution, with most
errors clustered at lower magnitudes. This method achieves a
mean positional error of 2.62 km, which attests to its high
level of accuracy. By predicting incremental velocity compo-
nents and integrating them over time, the approach effectively
minimizes cumulative errors. In contrast, the direct position
prediction approach, illustrated in Figure 4, yields a consider-
ably broader error distribution, with an average error of 55.43
km. This method demonstrates lower predictive accuracy and a

1https://github.com/mlco2/codecarbon
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much higher dispersion of errors. The disparity in performance
can be attributed to the velocity-based method that benefits
from a stepwise estimation process that mitigates cumulative
errors, whereas direct position prediction—requiring the model
to predict absolute spatial coordinates in a single step—is
inherently more susceptible to error propagation. Moreover,
the direct position prediction approach could achieve more
precise results if augmented with additional features, such as
vessel heading, speed, or environmental conditions. However,
obtaining these supplementary features in a clean and reliable
form is often challenging, as they are typically provided as
reported values (or from the vessel captain) that may lack
consistency and accuracy. Thus, the results highlight that the
velocity-based prediction strategy not only delivers enhanced
precision and consistency but also circumvents the difficulties
associated with relying on auxiliary features for direct position
prediction.

Fig. 3: Error distribution for velocity-based prediction.

Fig. 4: Error distribution for direct position (latitude and
longitude) prediction.

Additionally, the comparative analysis of vessel trajectory
prediction strategies presented in Figure 5 highlights the clear
advantages of the velocity-based prediction approach over
direct position prediction. The results demonstrate that the
velocity-based method consistently produces trajectories that
closely follow the actual vessel movement, maintaining high
accuracy across different trajectory patterns. This stability is
due to its incremental nature, where predicted velocity compo-
nents are integrated over time, reducing the risk of cumulative
errors. In contrast, the direct position prediction approach
exhibits significant deviations, particularly in segments with

complex or nonlinear paths, where errors propagate more
rapidly. The observed discrepancies suggest that predicting
absolute latitude and longitude values directly is inherently
more challenging, as it requires the model to capture spatial
and temporal dependencies simultaneously without leveraging
incremental updates. Moreover, direct position prediction lacks
the contextual information necessary to correct deviations
over time, which further limits its reliability. Therefore, by
leveraging velocity predictions, the proposed method not only
improves accuracy but also ensures greater robustness, making
it a more suitable framework for large-scale vessel trajectory
forecasting and autonomous navigation applications.

B. Comparison with DL-based models
In this section, we compare our LSTM-RA model against

several DL-based models such as transformer, standard LSTM,
BiLSTM, and GRU, which are widely used in state-of-the-art
maritime trajectory prediction [3].

The results presented in Table I demonstrate the superior
performance of our proposed model, which integrates an
attention mechanism and residual connections into the LSTM
framework. Our model achieves an MAE of 0.0164, an MSE
of 0.00063, and an RMSE of 0.02523, corresponding to
an average positional error of 2.62 km. In comparison, the
standard LSTM model reports an average error of 5.74 km,
and the GRU model yields an average error of 3.21 km.
Thus, our model reduces the average error by approximately
54% relative to the standard LSTM (from 5.74 km to 2.62
km) and by roughly 18% compared to the GRU model.
These improvements can be attributed to two key architectural
features. First, the attention mechanism effectively identifies
and emphasizes critical temporal patterns in the input data,
enabling the model to focus on the most informative segments
of a vessel’s trajectory. Second, the integration of residual
connections facilitates improved gradient flow across the net-
work, allowing for better capture of long-term dependencies
and reducing the risk of vanishing gradients.

TABLE I: Prediction performance for GRU, LSTM, and
BiLSTM Models.

Model mae mse rmse average error (km)

BiLSTM 0.0176 0.0007 0.0270 2.81
GRU 0.0205 0.0008 0.0289 3.21
LSTM 0.0356 0.0022 0.0479 5.74
Transformer 0.0212 0.0006 0.0254 3.41
LSTM-RA (Our model) 0.0164 0.0006 0.0252 2.62

Table II provides a comparative analysis of the computa-
tional costs associated with each model. While our model
requires 2211 seconds for training and 593 seconds for in-
ference, with an energy consumption of 0.318 Wh, these
values are competitive when balanced against the substantial
gains in prediction accuracy. For instance, even though the
GRU model offers faster training and inference times with
lower energy consumption, it does so at the expense of a
higher average error. Overall, our proposed approach achieves
an excellent trade-off between predictive performance and
computational efficiency, making it well-suited for real-world
maritime trajectory prediction tasks.
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(a) (b) (c)

(d) (e) (f)

Fig. 5: Comparison of vessel trajectory prediction strategies with some segments in the Atlantic area.

TABLE II: Time (s) and energy cost (Wh).

Model Training time Inference Energy

BiLSTM 2460 453 0.321
GRU 1141 134 0.133
LSTM 1604 201 0.191
Transformer 13996 238 1.92
LSTM-RA (Our model) 2211 593 0.318

VI. PERFORMANCE EVALUATION ON THE MALAYSIA
DATASET

In this section, we extend our evaluation to the Malaysia
dataset with dual scenarios. In the first scenario, the LSTM-RA
model is fully trained on the Malaysia dataset, allowing it to
learn the unique spatiotemporal dynamics and patterns of the
region. This setup establishes a robust in-domain performance
benchmark by enabling the model to tailor its predictions to the
specific characteristics of the dataset. In the second scenario,
we test the cross-domain generalization capabilities of the
model trained on the Atlantic area, called zero-shot learning. In
this zero-shot evaluation setting, the model is directly applied
to the Malaysia data without additional retraining or fine-
tuning, providing valuable insights into its ability to generalize
across geographically distinct domains.

The comparative results are presented in Figure 6, showing
a clear performance difference between the two approaches.
The in-domain training achieves an average error of 0.91 km,
demonstrating its ability to learn and adapt to the specific
dynamics of the Malaysia dataset. In contrast, the zero-shot
learning yields a slightly higher average error of 1.26 km,
indicating a reasonable level of cross-domain generalization
despite the lack of retraining. These findings demonstrate
the effectiveness of our LSTM-RA model and velocity-based
prediction approach, as they demonstrate competitive perfor-

mance in both in-domain and cross-domain scenarios. While
in-domain training naturally achieves superior accuracy due to
its dataset-specific optimization, the zero-shot learning results
affirm the robustness and the generalization of our approach,
which performs well even without adaptation.

Fig. 6: Average prediction errors (in km) for the Malaysia
dataset.

VII. ABLATION STUDY

This section analyzes two complementary aspects that in-
fluence the performance of the proposed framework: (i) the
impact of evaluation strategies on prediction accuracy, and
(ii) the contribution of the architectural components (residual
connections and attention mechanisms) to model effectiveness.

A. Impact of Evaluation Strategies

Figure 7 compares the proposed model with a conventional
Moving Average (MA) baseline for velocity-based trajectory
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prediction. A significant performance gap is observed between
the two approaches. On the Atlantic dataset, the MA model
yields an average prediction error of 23.59 km, while our
proposed model achieves only 2.62 km. Similarly, on the
Malaysia dataset, the MA model records an error of 9.08 km.
The poor performance of the MA model demonstrates its in-
ability to capture nonlinear and time-varying vessel dynamics,
particularly in regions with complex traffic patterns such as
the Atlantic. In contrast, our model, enhanced with residual
connections and attention mechanisms, effectively learns tem-
poral dependencies and nonlinear velocity variations, leading
to substantially improved predictive accuracy.

Fig. 7: Performance evaluation of our model vs. the MA model
for velocity-based prediction.

To further assess the influence of evaluation methodol-
ogy, Figure 8 compares results obtained under MMSI-based
(without segmentation) and segmentation-based evaluation
schemes across both datasets. When adopting the MMSI-based
approach—treating each vessel’s full trajectory as a single
sequence—the average prediction error increases to 2.92 km
for the Atlantic region and 5.36 km for the Malaysia dataset.
This degradation occurs because AIS messages are temporally
heterogeneous: the same vessel (MMSI) can report irregularly,
experience signal gaps, or represent multiple voyages in a
single trajectory. Consequently, MMSI-based grouping often
merges discontinuous trips, distorting temporal dependencies
and impairing model learning. In contrast, segmentation-based
evaluation partitions AIS data into temporally coherent sub-
trajectories, better capturing intra-vessel motion continuity
and producing more reliable error estimates. These results
demonstrate that segmentation-based evaluation provides a
more strong measure of predictive performance in real-world
AIS conditions.

B. Impact of Model Components

To assess the contribution of individual architectural ele-
ments, we performed a detailed ablation analysis by selectively
removing the residual connections and attention mechanism
from the proposed LSTM-RA model. The results, summa-
rized in Table III, clearly show the incremental improvements
brought by each component.

Fig. 8: Comparison of average prediction errors (km) for
MMSI-based evaluation on the Atlantic and Malaysia datasets.

The baseline LSTM exhibits the highest error (5.74 km),
reflecting its limited capacity to capture long-term temporal
dependencies in noisy AIS sequences. Introducing residual
connections (LSTM + Residual) significantly reduces the error
to 3.39 km by improving gradient flow, mitigating vanishing
gradients, and stabilizing training. Incorporating only the at-
tention mechanism (LSTM + Attention) yields a further im-
provement to 2.98 km, as the model learns to focus on the most
relevant temporal observations within each input window. The
combination of both mechanisms in the final LSTM-RA model
achieves the lowest prediction error of 2.62 km, confirming
that residual and attention components complement each other
by enhancing both convergence stability and temporal selec-
tivity.

TABLE III: Ablation study results for the proposed LSTM-RA
model.

Model Variant MAE MSE RMSE Average Error (km)

LSTM (Baseline) 0.0356 0.0022 0.0479 5.74
LSTM+Residual 0.0209 0.0009 0.0301 3.39
LSTM+Attention 0.0187 0.0007 0.0265 2.98
LSTM-RA (our model) 0.0164 0.0006 0.0252 2.62

Table IV further compares the training and inference ef-
ficiency of each variant. Although adding attention slightly
increases computation time and energy cost, the performance
gain justifies the trade-off, especially for deployment scenarios
requiring reliable long-horizon predictions. As illustrated in
Figure 9, the proposed LSTM-RA achieves the fastest and
most stable convergence across epochs, demonstrating efficient
learning dynamics and robust generalization compared to its
reduced variants.

TABLE IV: Training and inference efficiency of ablation
variants.

Model Variant Training Time (s) Inference (s) Energy (Wh)

LSTM (Baseline) 1604 201 0.191
LSTM+Residual 1875 243 0.226
LSTM+Attention 2030 317 0.261
LSTM-RA (our model) 2211 593 0.318
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Fig. 9: Training loss convergence of ablation variants.

Overall, the ablation analysis validates that both resid-
ual learning and temporal attention are key enablers of the
proposed LSTM-RA framework, jointly improving accuracy,
convergence speed, and robustness in velocity-based vessel
trajectory prediction.

VIII. CONCLUSION

In this work, we proposed a robust and scalable deep
learning framework for maritime trajectory prediction based on
velocity estimation, tailored to the challenges posed by noisy
and irregularly sampled AIS data. By shifting the modeling fo-
cus from direct position forecasting to latitude- and longitude-
velocity prediction, our approach improves accuracy, stability,
and interpretability. The use of LSTM units enhanced with
attention mechanisms and residual connections enables the
model to effectively capture complex temporal dependencies in
vessel movement, even under sparse or fragmented input con-
ditions. Extensive experiments conducted on realistic datasets
from the Atlantic and Malaysia regions demonstrated that
our velocity-based model significantly outperforms conven-
tional baselines, including moving average and direct position-
prediction models. The ablation studies further showed the
importance of careful data segmentation and trajectory group-
ing strategies, highlighting that segmentation-based structuring
consistently yields superior predictive accuracy compared to
MMSI-based grouping. Overall, this study underscores the
value of velocity-centric learning and principled data pre-
processing in enhancing predictive performance in maritime
applications. Our results pave the way for more reliable and
computationally efficient trajectory forecasting frameworks
in next-generation satellite-driven and AIS-integrated NTN
ecosystems. Future work will explore multimodal learning
strategies incorporating environmental and vessel-specific fea-
tures to further improve generalization in complex operational
scenarios.
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