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Abstract

Synonymous single nucleotide variants (sSNVs), traditionally seen as neutral, are now recognized for their biological impact. To assess their
relevance, we developed SyMetrics, a framework that integrates predictors of splicing, RNA stability, evolutionary conservation, codon usage,
synonymous variation effects, sequence properties, and allele frequency. We analyzed all possible sSNVs across the human genome, and
our machine-learning model achieved 97 % accuracy in distinguishing deleterious from benign variants, with a ROC-AUC of 0.89, outperforming
individual predictors. Our estimates indicate that about 1.98 & 0.17% of sSNVs absent from population databases are damaging (roughly 900 000
sSNVs), with an odds ratio of 3.87 for deleteriousness compared to common sSNVs (P < 0.05). To validate predictions, we performed functional
assays on selected sSNVs in the AVPR2 gene and additionally used available large scale mutagenesis screens of RAD57C and BAP1 variants.
In a clinical cohort, we identified 15 predicted deleterious sSNVs in genes linked to patient phenotypes; 9 were classified as (likely) pathogenic
while 6 were variants of uncertain significance (VUS) per American College of Medical Genetics guidelines. For three VUS, segregation data
supported their suspected inheritance patterns (de novo, X-linked). Our findings underscore the functional importance of sSNVs. To support
further research and clinical applications, we provide a Python package and web application (https://symetrics.org/) for evaluating these variants
comprehensively.
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Introduction

Recent advancements in genomics and molecular diagnostics
have significantly enhanced our understanding of genetic vari-
ation. Emerging sequencing technologies have provided in-
valuable resources for research, enabling deeper exploration
of the human genome [1, 2] and greater insights into the
mechanisms underlying various diseases and complex traits
[3]. However, despite substantial progress in diagnostic yield
[4], a significant diagnostic gap remains, particularly in rare
diseases, with approximately 50% of cases still undiagnosed
[S, 6].

Single nucleotide variations (SNVs) constitute a major com-
ponent of human genomic variation and have drawn consid-
erable attention from the medical and research communities.
A coding SNV involves a single nucleotide change [7], which
can be classified as either synonymous (sSNV) or nonsynony-
mous (nSNV). sSNVs do not alter the amino acid sequence
during translation [1, 3, 8-13] and are often referred to as
silent mutations [1, 10]. In contrast, nSNVs change the pro-
tein sequence and potentially its function, making them the
primary focus of disease and trait-related studies [8, 14].

Traditionally, human genetics, mutagenesis screens, and
evolutionary analyses have suggested that sSNVs are more
likely to be neutral compared to nSNVs [15]. However, a
growing body of research challenges this assumption, with
studies indicating that sSNVs can have significant functional
consequences [15, 16]. Recent findings suggest that purifying
selection, a form of natural selection that removes harmful
genetic variants, also acts on synonymous mutations [17], re-
inforcing the idea that they are not necessarily neutral. Even
without altering amino acid sequences, sSSNVs can impact
gene expression and protein function through mechanisms
such as modifying mRNA stability, altering splicing efficiency,
and affecting translation kinetics [13].

Furthermore, the human genome contains alternative open
reading frames (ORFs) embedded within canonical mRNAs
[18, 19]. Although these alternative ORFs are less well-
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annotated and often exhibit lower expression levels, they add
an additional layer of complexity to genetic interpretation.
Notably, an sSNV in a canonical transcript may result in
a nonsynonymous change when translated in an alternative
reading frame, further highlighting the functional potential of
sSN'Vs.

Given this complexity, annotating phenotype-affecting vari-
ants as “synonymous” may be misleading in clinical settings.
To address this, it has been proposed that functionally con-
sequential sSNVs be termed “unsense” mutations for more
precise communication [20]. However, existing methods for
quantifying variant effects are largely tailored to nSNVs [21,
22], with few tools specifically designed for assessing sS-
NVs. In response, several synonymous variant effect predic-
tors have been developed, including Silent Variant Analyzer
(SilVA) [23], Identification of Deleterious Synonymous Vari-
ants (IDSV) [10], and others [24]. These initial efforts have
demonstrated the need for robust predictors and have driven
further interest in developing and benchmarking bioinfor-
matic tools for synonymous variant interpretation [24, 25].

In this study, we sought to understand how sSNVs disrupt
biological processes or impair gene function. To develop a pre-
dictive framework, we integrated existing functional conse-
quence scores (synVEP) [22], splicing effect predictors (MES,
SpliceAl) [4, 26], RNA stability and folding metrics (SURF)
[27], phylogenetic conservation scores (GERP++) [28], codon
usage measures (RSCU and dRSCU), and sequence properties
(e.g. CpG sites, CpG exons, and relative distance to end of
mature mRNA and pre-mRNA) [29]. To classify sSNVs, we
trained an ensemble machine learning model using a dataset
of known benign and deleterious sSSNVs [30], incorporating
synonymous variant effect measures and allele frequency as
features. Our model estimates that ~1.98 4 0.17% (95% CI)
of synonymous variants absent from population databases are
deleterious. Exemplarily, functional validation demonstrated
that predicted deleterious variants in the vasopressin recep-
tor type 2 (AVPR2) gene impairs function. Finally, we re-
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analyzed a large clinical cohort, identifying potentially dele-
terious sSNVs in genes associated with the probands’ phe-
notypes. To facilitate research and clinical applications, we
provide the results through the Python library (https:/pypi.
org/project/symetrics/) and web platform—SyMetrics (https:
//symetrics.org/), enabling researchers and clinicians to differ-
entiate deleterious sSNVs from benign ones.

Materials and methods

OBSERVED and “NOT SEEN” synonymous variants

The sSNVs in the synVep or generated database were classified
as follows:

* observed: variants which can be found in the gnomAD
v4.1.0 database with allele count >1 (AC > 1).

* not seen: variants which cannot be found in the gnomAD
v4.1.0 database.

* singleton: variants which can be found in the gnomAD
v4.1.0 database but with AC = 1.

* unobservable: variants which are not likely to be ob-
served in the future were discarded in the previous study
as it was deemed to have little to no effect in the analysis.

We regrouped the variants by putting both singleton and
observed together as observed and unobservable and not seen
as not seen while using only the variants which passed the QC
filter of latest gnomAD version (v4.1.0).

sSNV Effect predictor, features, and scores

There are several existing tools and effect predictors designed
to target sSSNV [21, 22, 31]. We used SynVep, SpliceAl, SURF
RNA stability, and SILVA to generate scores. For SILVA, we
focused on the intermediate output of the model, as these are
easier to explain and relate to biological implications and rel-
evance. We used these tools to acquire scores reflecting the
sSNV’s metrics related to its consequences: splicing effects,
RNA stability, phylogenetic and conservation scores, codon
usage, and sequence properties, as described in Supplementary
Table ST—Model metrics.

Functional effect—synVEP

One of the recently developed tools for assessing the func-
tional impact of synonymous variants is the machine learning-
based tool synVep. This tool assigns scores to sSNVs—
synVEP scores—by using a sequential extreme gradient boost-
ing model to differentiate pathogenic from benign variants.
The score generated reflects the potential impact of the sSNVs.
The implications of the scores are shown in the following no-
tation:

s= {0, x <051, x >0.5} (1)
Where 0 = no effect and 1 = effect [25].

Splicing effect—SpliceAl and MES

One of the most important aspects that essentially affects
gene activities as well as protein diversity is splicing—the pro-
cess involving the removal of introns to join exons together
hence forming the mature messenger RNA—and disrupting
this process can lead to aberrant production of messenger
RNA (mRNA) which can manifest as disease or unexpected
phenotypes [32, 33]. SpliceAl is a deep learning tool developed
to predict the probability of whether a given position of pre-
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mRNA sequence is a splice acceptor or donor site in terms of
Delta Scores (A Score) for acceptor loss, donor loss, acceptor
gain, and donor gain [34]. High scores, at least >0.22 [35], are
indicative that the position has a higher probability of being a
splice acceptor or donor site. However, the threshold may vary
depending on the context. In this study, we used the maximum
delta scores (Max A Score or MAX_DS) among the four delta
scores for a given genetic variant to simply indicate that the
variant indeed can cause splicing. Additionally, we used scores
generated from MaxEntScan (MES) to estimate the splice site
motif or junction strength [26, 36]. The values represent the
maximum efficiency of splicing at the sites. We used MES > 3
as a threshold to indicate a relevant and potential influence
of the genetic variation to splicing. The established threshold
was based on the empirical observations on overall and com-
bined score distribution of both observed and not-seen and is
best to represent at least the top 2% of the population.

RNA stability—SURF

Summarized RNA Folding (SURF) is another metric under
consideration that focuses on how genetic variants, especially
sSNVs, affect RNA stability and folding. It calculates a broad
range of RNA folding metrics for each SNV and evaluates the
changes induced by this genetic variation, including, but not
limited to, free energy, edge distance, and centroid distance.
From these metrics, a unified score is derived to represent the
impact of the variants under observation. For our analysis, we
used a SURF threshold of >3 to indicate that the variant may
have a potential influence on RNA stability [27].

Conservation and phylogenetic relevance—GERP++

The evolutionary constrained elements were estimated using
GERP++ which is a valuable tool capable of quantifying
the level of evolutionary constraint which can be indicative
of their functional influence and selection pressure. This tool
calculates site-specific rejected substitution scores (RS) where
higher positive scores imply more deleterious genetic variants
and/or stronger selection [28] similar to its predecessor GERP
[37]. The threshold is set as GERP++ > 4, which is consid-
ered to have a large deleterious effect associated with a high
selection coefficient [38, 39, 40].

Codon usage

Two essential metrics used for codon usage analysis are RSCU
(Relative Synonymous Codon Usage) and dRSCU, which rep-
resent the standardized differences in RSCU values. RSCU as-
sumes that all synonymous codons are used equally, and based
on this assumption, it compares the observed and expected
frequencies of codons. A value >1 implies overrepresenta-
tion, while a value <1 indicates under-representation [41, 42].
Therefore, for this score, we established two criteria to ob-
serve the outcomes: one for when the threshold is RSCU > 1
and another for RSCU < 1. On the other hand, dRSCU helps
assess the deviation of specific codons from common usage
patterns in a dataset [43]. The range of observed values for
dRSCU is from 0 to 2, and we decided to set the threshold at
dRSCU > 1, as we aim to focus on values that are significantly
different from 0, where there are minimal or no observed stan-
dard differences.

Sequence features

Although nucleotide sequences may appear complex and un-
intuitive at first glance, closer examination reveals recurring
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patterns that are associated with molecular signatures and bi-
ological processes [44,45]. We used CpG and relative distance
to pre mRNA (f_premrna) and mature mRNA (f_mrna). CpG
sites are DNA regions where cytosine (C) and guanine (G) and
the overall occurrence of CpG contents provides a baseline
reference with which actual observations can be compared.
Significant deviations from the expected CpG might suggest
functional relevance. The features f_mrna and f_premrna cap-
ture the relative position of the genetic variant in a mature and
pre mRNA transcript [29].

Gene-wise scoring function and constraints group
comparison
With the listed effect measures, we aimed to identify signals
that could be induced by different features related to these
measures. This approach provides insight into the relevance
of the features as well as the effectiveness of the selected scor-
ing scheme. Specifically, we determined which genes had more
sSNVs with high scores, i.e. where the score for a particular
effect measure exceeded the set threshold, in relation to the
proportions of the observed and not seen groups. To assess
the difference in proportions between these groups for each
given effect measure/scoring scheme, we used a Z proportion
test.

= (P1—12) 2)

Jo - p(E+ 2)

Where:

e p —the pooled proportion of variants meeting the given
criterion and score threshold for both NOT SEEN and
OBSERVED.

e p —the proportion of NOT SEEN variants meeting a
given criterion and score threshold.

* p ,—the proportion of OBSERVED variants meeting a
given criterion and score threshold.

* 1;—the number of NOT SEEN variants.

¢ 11,—the number of OBSERVED variants

o z—the resulting statistic from the proportion test as
a function of the selected/given variant effect measure
(synonymous Z-score).

Using the proportion also allows to account for the length
of the genes since with this approach we normalized the aggre-
gated value by the number of observed values. A synonymous
Z-score means that there are more not seen variants having a
high effect measure score compared to the observed variants
and lower score means otherwise.

The variant effect and gene-wise scores can aid in the de-
terministic interpretation of the results. The combined impli-
cations of the scores can be represented as follows:

0, s<t

Vix)= {1’ s>t where 0 = no effect, 1 = effect (3)

Where:

e tis the set threshold for the selected effect measure

* s is the effect measure score

* V(x)is whether that score implies that the variant has an
effect or none.

G(x)= {?’ 2;; where O = tolerant, 1 = intolerant

(4)
Where:

e t—is the set threshold for the selected effect measure

* s —is the gene-wise score

* G(x)— whether the score implies that the gene is tolerant
or not.

Functional implications and enrichment analysis

To further interpret the scores, we related them to existing
gene constraints given in gnomAD—specifically, pL.I and Mis-
sense Z scores. After scoring the genes, we grouped them into
categories based on whether they had HIGH or LOW scores
in the selected gene constraints. This categorization was done
to determine if genes with high gene constraints tend to have
higher gene-wise synonymous scores as described in the pre-
vious step. The group definition is as follows:

_ LOW, score < thr ()
group = HIGH, score > thr
Where:
score € { pLI, Missense Z Score} (6)

To test in which functional pathway the genes identified to
have a high gene-wise score play a role, we performed enrich-
ment analysis and overrepresentation analysis across different
gene sets in Gene Ontology (GO), KEGG, and Reactome using
the R package clusterProfiler [46, 47], which uses hypergeo-
metric test [48] to assess the probability of observing at least
k genes from the list of the pathway database:

P(X >kn;N;K)_i6)<<j?>fg> (7)

Variant classification model

Dataset for known deleterious and benign sSNV

The known disease-causing dataset, representing the positive
class, was retrieved and benchmarked from an existing study
on synonymous variants [30]. The list consisted of variants
from the Database of Deleterious Synonymous Mutations
(dbDSM v1.2) [49] and the ClinVar database, with variants
labeled as “likely pathogenic” and “pathogenic” considered
as true positives. The negative class was represented by vari-
ants labeled as “likely benign” and “benign” in ClinVar [30,
50]. The pooled dataset included 4696 benign sSNVs and
367 deleterious sSNVs, all mapped to the GRCh37 reference
genome. For model training and validation, the dataset was
split into 70% for training, 15% for testing, and 15% for
validation, while Synthetic Minority Oversampling (SMOTE)
[51] was applied exclusively to the training dataset to address
the class imbalance at 7:100 ratio which is a moderate class
imbalance (https://developers.google.com/machine-learning/
crash-course/overfitting/imbalanced-datasets?hl=en, accessed
19 August 2025). The application of SMOTE has proven
effective for minority class-prevalence below 15% or 20%
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Table 1. Performance metrics are used to evaluate the models

Statistical
measure Formula Explanation
TP+TN . .

Accuracy TPIFPATNTTN Ratio of correctly classified sets and
the total number of elements in the
set which is being classified [53],
this estimates the probability of the
true value of the class and the
model’s overall effectiveness.

Recall % Pro_be_ability of the label to be the
positive class

Precision %IFP Estimates the Tn.odel’s pr.edictive
value of a positive/negative class
[54]

F1 Score %‘MW The harmonic mean of precision

recision+recall

and recall [53]

AUC w Also known as also known as

balanced accuracy [54]

demonstrating a significant improvement in F1-score and re-
call which is important to our use case [52]. This method aug-
ments the minority class by randomly selecting an instance
and finding its k-nearest neighbors, generating a new instance
that is a convex combination of the selected instance and its
nearest neighbors. This helps the model build larger decision
regions around the minority class points without compromis-
ing data integrity [51]. We verified the integrity of the resam-
pled data by checking the distance between clusters formed
from the resampled data and their original class, confirm-
ing that the resampled clusters were near the original ones
(Supplementary Fig. S4).

Model selection and evaluation

For the ease of model selection, we used the Python library—
Lazy Predict (https://lazypredict.readthedocs.io/en/latest/, ac-
cessed 19 August 2025). This library automates the training
and evaluation of multiple classification models from the most
traditional up to the advanced methods. The output does not
give the models themselves but rather yields the metrics of the
baseline models that can aid in the selection. Upon selection,
it is still necessary to train it in the main library supporting
the selected model from the Lazy Predict module. The follow-
ing metrics and/or statistical measures (Table 1) were used to
evaluate the performance of the models.

Symetrics web and stand-alone package

We created a python package (https:/pypi.org/project/
symetrics) and a web platform (https://symetrics.org) to allow
developers, clinicians, and researchers to access the records of
the synonymous variants along with the selected variant effect
measures as well as the predictions.

Functional assay and analysis of selected
synonymous human genetic variant materials

If not stated otherwise, materials used for cell culture were
obtained from Sarstedt or ThermoFisher. Standard chemicals
were purchased from Merck or Carl Roth GmbH. Primers
were synthesized by Microsynth.

Cloning and introduction of point mutation

The genomic sequence of human AVPR2 consisting of three
exons and two introns was amplified using human genomic
DNA. Thereby, an N-terminal hemagglutinin (HA)-tag and a
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C-terminal FLAG-tag were introduced after the start codon
and in front of the stop codon, respectively. Both tags have
been shown to not interfere with receptor expression and
function [55, 56]. Furthermore, the amplification primers:

e forward primer: 5-TGTACCCCTACGACGTCCCCG
ACTACGCCCTCATGGCGTCCACCACTTCCG-3'

® reverse primer:

5'-ATCATGTCTGGATCCACTAGTCACTTAT CGTCA
TCGTCCTTATAATCCGATGAAGTGTC  CTTGGCC-3
contained restriction sites for Aatll and Spel to allow for
cloning into the pcDps-derived plasmid pL [57]. To insert the
point mutations, quick change mutagenesis was performed.
Thus, two complement primers were designed carrying the
desired point mutation in the middle of the primer sequence
(Supplementary Table S1—Primers used to insert point mu-
tations). PCR was performed using Phusion high fidelity
polymerase (ThermoFisher) according to the manufacturer’s
protocol using AVPR2 pL as template plasmid at an annealing
temperature of 55°C. Prior to transformation into chemical
competent cells, template plasmid was digested using Dpnl
(NEB). Sanger sequencing was performed by Microsynth to
ensure the correct sequences of the mutants derived.

Cell culture

HEK293T cells were cultured in DMEM media (Ther-
moFisher) supplemented with 10% fetal bovine serum (FBS),
100 U/ml penicillin, and 100 pg/ml streptomycin at 37°C in a
humidified atmosphere containing 5% CO,. Cells were regu-
larly split twice a week. For the different analysis, cells were
counted using a Neubauer chamber and seeded into poly-L-
lysine (Sigma-Aldrich)-coated well plates with the following
cell numbers: 96-well plates—20 000 cells in 200 ul media,
48-well plates—40 000 cells per well in 500 pl media, six-well
plates—300 000 cells in 2 ml media.

Determination of total receptor expression

HEK293T cells were cultured in Dulbecco’s Modified Eagle’s
Medium (DMEM) media as described above. Six-well plates
were transfected with plasmid DNA (125 ng) using Lipofec-
tamine2000 (ThermoFisher) according to the manufacturer’s
protocol. A sandwich ELISA taking advantage of the HA- and
Flag-tags were used to estimate the total amounts of receptor
proteins as previously described [58]. In brief, after lysis of
transfected HEK293T cells (10 mM Tris—=HCI, 150 mM NaCl,
1 mM DTT, 1 mM EDTA, 1% sodium deoxycholate, and 0.2
mM NP-40) the total expression of receptors was analyzed
with an anti-FLAG-M2-antibody (Sigma—-Aldrich) coated to
microtiter plates (10 pg/ml anti-Flag-antibody in 0.15 M
sodium tetraborate/HCI, pH 8). After washing with PBS-T
(0.05% Triton X-100 in PBS), unspecific binding was blocked
with DMEM + 10% FBS for 1 h at 37°C followed by incu-
bation of the solubilized cells for 1 h. Detection was achieved
using an anti-HA peroxidase-conjugated antibody (Roche) di-
luted 1:1000 in blocking solution and o-phenylenediamine
(10 mg in 0.1M citric acid, 0.1 M Na,HPO4, and 0.2%
H,0,;). Using 1 M HCI the reaction was stopped, and OD
readings were recorded at 492 and 620 nm (Tecan Sunrise).

Determination of cell surface expression

Cell surface expression of AVPR2 mutants was determined
in HEK293T cells using a direct ELISA [59] (Supplementary
Fig. S5). In this assay, the anti-HA-POD-conjugated anti-
body binds to the introduced N-terminal HA-tag of receptors
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present at the cell surface. Thereto, 24 h after seeding into
48-well plates, cells were transfected with 25 ng of different
plasmid DNA using Lipofectamine2000 (ThermoFisher) ac-
cording to the manufacturer’s protocol. Forty-eight hours post
transfection, cells were fixed with formaldehyde for 20 min
at room temperature before blocking (DMEM + 10% FBS)
for 1 h at 37°C. Later, cells were incubated with an anti-
HA peroxidase-conjugated antibody (Roche) diluted 1:1 000
in blocking solution. Detection of receptor expression on the
cell surface was performed using o-phenylenediamine solved
in substrate buffer (0.1 M citric acid and 0.1 M Na,HPO4)
containing 0.2% H,O,. The reaction was stopped after 3 min
by adding 1 M HCIL. OD values at 492 nm were measured
using the Sunrise microplate reader (Tecan) and normalized
by subtracting the background OD at 620 nm. Expression
is given after subtracting the OD values of mock-transfected
cells in percentage compared to wt AVPR2 pL.

Determination of receptor activity

The AVPR2 is coupled to the Gy protein and its activa-
tion results in an increase in intracellular cAMP which can
be detected using the AlphaScreen™ cAMP functional assay
(PerkinElmer). Thus, 24 h after seeding into 96-well plates,
cells were transfected with 12.5 ng of plasmid DNA per well.
Forty-eight hours after the transfection, cells were washed
with phenol red-free DMEM containing 1 mM IBMX (Sigma—
Aldrich), an inhibitor of phosphodiesterases. Cells were then
stimulated for 30 min 1 uM AVP (Sigma—Aldrich) at 37°C in
media containing IBMX. To stop the stimulation, plates were
placed onto ice, media was removed, and 20 ul of lysis buffer
(20 mM Tween 20, 1 mM IBMX, 5§ mM HEPES, and 0.1%
BSA diluted in ddH,O, pH = 7.4) was added to each well.
Samples were stored at —20°C until measurement. Determina-
tion of cAMP was performed according to the manufacturer’s
specifications using EnVision 2105 Multimode Plate Reader
(PerkinElmer).

Statistical analysis

Statistical and graphical analyses were performed using
Python. All experiments were performed as technical tripli-
cate in four separate batches. Each tested variant is presented
as % of the corresponding wild type value in the batch. Statis-
tical significance was determined using the Wilcoxon-Mann-
Whitney test. P-values below 0.05 were considered to be sig-
nificant.

Functional and experimental validation of
SyMetrics with large scale saturation mutagenesis
screens of RAD51C and BAP1T variants

To further validate SyMetrics with experimentally tested sS-
NVs, we leveraged recently published large scale saturation
mutagenesis screens performed on human tumor suppressor
genes i.e. RADS1C and BAP1 via Saturation Genome Edit-
ing (SGE). SGE is a high-throughput multiplexed assay of
variant effect (MAVE) which enables direct measurement of
the impact of thousands of genetic variants on cellular fitness
(60, 61].

Methodological approach for MAVE

A Cas8/sgRNA complex and a variant repair library were
introduced to human near-haploid (HAP1) cells. Given that
RADS1C and BAP1 are genes of known functional relevance,

the presence of deleterious alleles is expected to deplete the
variant carrying cells over time. This depletion was captured
on different time points for both studies—RADS1C (Days 4,
7,and 14) [61] and BAP1 (Days 4, 7, 10, 14, and 21) [62]. The
functional scores were calculated from the log2-fold changes
(LFCs) of the variant abundance and were normalized with re-
spect to their apparent growth rates per unit time. Scores are
classified into deleterious (score < 0), enriched (score > 0),
or unchanged. Those variants classified as deleterious (score
< 0) are variants which reduce cell viability and proliferation
[61, 62].

BAP1 and RADS1C high-resolution functional mapping and
assessment via SGE

This experiment involved the use of 9188 unique RADS51C
variants across its 9 coding sequence exons which include over
99.5% of all possible coding sequence single nucleotide alter-
ations. The functional classification resulted in >99.9% accu-
racy/concordance with clinical data [61]. For BAP1, 18 108
unique variants were characterized of which 6196 were found
to have abnormal functions. The SGE functional scores for
BAP1 variants have shown >99% sensitivity and >98%
specificity in variant classification. It has demonstrated a con-
cordance of 90% between independent SGE libraries indicat-
ing the robustness of the approach [62].

RNA analysis of a sSNV in ARHGEF9 identified in a
patient cohort

RNA was isolated from cultivated fibroblasts and subse-
quently ¢cDNA was synthesized. Parts of ARHGEF9 were
amplified by long-range PCR and sequenced using Oxford
Nanopore Technologies (ONT) using the 96 native barcoding
library prep kit (SQK-NBD114.96) according to the manu-
facturer’s instructions. Pool of barcoded libraries was loaded
onto a MinION flow cell type R10.4.1 and sequenced on a
MinION device Mk1b (ONT). Raw data was base-called, and
demultiplexed using dorado (ONT) and subsequently aligned
against the Human reference genome build hg38 using min-
imap2 in splice-aware mode. Aligned reads were analyzed
using the Integrative Genomics Viewer (IGV). Presence of
the variant on DNA level was confirmed by extracting DNA
from the same cultivated fibroblasts and subsequent Sanger
sequencing of parts of the ARGHEF9 gene.

Results

Genes with known functional relevance are more
likely to exhibit intolerance to synonymous
variation

We initially hypothesized that if synonymous variation affects
gene function, genes intolerant to loss-of-function or missense
variation would be more likely to show depletion of sSNVs
compared to neutrally evolving genes.

To test this, we used a pooled Z proportion test (synony-
mous Z-score) to calculate the difference in the proportion
of observed and not observed sSNVs (i.e, those absent in the
general population) within each gene. A high proportion of
not observed variants may indicate negative selection due to
functional impairment.

For this analysis, we used all human protein-coding tran-
scripts from Ensembl Biomart [63], filtering out those with
unknown nucleotides, missing start/stop codons, or patched
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Figure 1. Comparison of Z-scores for synonymous variants across previously reported metrics in genes categorized by (A) high and low pLI (probability
of loss-of-function intolerance) scores or by (B) high and low missense Zscores (intolerance to missense variation). The significantly (Mann-\Whitney
test) higher synonymous Z-scores were observed among the metrics derived from synVep, MES, SpliceAl, SURF, GERP++, and dRSCU, suggesting
higher scores for genes that are intolerant to functional variation. (C) Top 10 overrepresented GO categories for genes with high synonymous Z-scores
(> 1.96) in at least one metric. Genes with high synonymous Zscores show enrichment among pathways related to brain and nervous system pathways
and cellular activities. (D) Clustering of GO pathways based on gene community detection. The clustering of pathways is based on the co-occurrence of
genes with high synonymous Z-scores across different GO categories. The analysis reveals distinct clusters of pathways that are enriched in genes
(nodes in the network) frequently found together (edges that connect nodes), which identified five key biological themes. x P-value < 0.05, **x P-value

< 0.001, %% P-value < 0.0001.

chromosome IDs. We annotated sSNVs using synVEP v1 [22]
with an updated reference from gnomAD v4.1 [64], classify-
ing variants as either “observed” or “not seen.”

We then calculated Z-scores (from proportion of “not seen”
to “observed” variants for a gene) for various previously re-
ported metrics related to sSNVs: synVEP (functional effect
of synonymous variants), MES (splice site strength), Splice Al
(splice site prediction), GERP++ (evolutionary conservation),
RSCU and dRSCU (codon usage), CpG and CpG exon con-
tent, and distances to pre-mRNA (f_premRNA) and mRNA
(f_mRNA). Only sSNVs passing synVEP quality checks were
included.

Genes depleted from a specific class of variation, based on
gnomAD data, where high pLI (> 0.8) indicates intolerance
to loss-of-function and high missense Z-score (> 3) suggests
intolerance to missense variation [64], were considered func-
tionally constrained. We compared synonymous Z-scores be-

5

tween genes with high and low pLI, as well as between genes
with high and low missense Z-scores.

Our analysis revealed that genes under stronger selection
(high pLI or missense Z-score) exhibited significantly higher
synonymous Z-scores (Fig. 1A and B) for several metrics:
synVEP, MES, SpliceAl, SURF (RNA stability), GERP++,
and dRSCU. However, RSCU, CpG, CpG exon, and dis-
tances to pre-mRNA and mRNA did not show significantly
higher synonymous Z-scores in functionally constrained genes
(Supplementary Fig. S1).

This suggests that the high proportion of not seen sSNVs in
these genes may reflect their deleteriousness, leading to neg-
ative selection. Among 3295 genes with high pLI, 674 had a
high synonymous Z-score (> 1.96) across all significant met-
rics. Similarly, 394 of the 1589 genes with a high missense Z-
score showed a high synonymous Z-score across all signifi-
cant metrics. In total, we identified 1865 genes with a high
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Figure 2. (A) Overview of model construction. This flowchart outlines the process of model construction, encompassing data preprocessing, training,
evaluation, and calibration. During data preprocessing, an oversampling strategy was applied using SMOTE (Synthetic Minority Over-sampling
Technique) to address class imbalances. The balanced dataset was then annotated with scores corresponding to selected features and subsequently
divided into training, testing, and validation subsets. Before finalizing the model, we calibrated it to optimize and balance the performance metrics. (B)
Area Under the Curve (AUC) for Receiver Operating Characteristic (ROC) to evaluate model performance evaluation of top 5 models identified by Lazy
Predict. All models show good discrimination between classes (AUC > 0.8). (C) Comparison of top 5 models identified by Lazy Predict. The dataset
consisted of 457 synonymous variants (benign: 234, deleterious: 223). The different models were used to classify the variants. The model based on
ExtraTreesClassifier (blue) outperforms other models in most metrics (metrics definition available in Table 1). (D) Threshold adjustment affects the
performance of ExtraTreesClassifier. Using the calibrated model, we determined the best threshold that can yield a good balance of all the metrics. We
used the prediction probabilities and adjusted the threshold from 0 to 1 and recalculated the metrics based on each threshold. The best threshold
(marked with gray vertical line) shows the point where all the metrics have high values and hence represents the optimum. (Created in BioRender.

Garten, A. (2025) https://BioRender.com/ ove998a)

synonymous Z-score (>1.96) in at least one metric, regardless
of their intolerance to loss-of-function or missense variation
(Supplementary Table S1).

To explore whether genes intolerant to synonymous varia-
tion are enriched in specific biological processes, we conducted
a gene ontology (GO) enrichment analysis. The top 10 over-
represented pathways were predominantly related to synaptic
and neuronal development (Fig. 1C).

For further insight, we applied the Leiden Algorithm [65],
a complex network analysis method for community de-
tection. This approach groups genes based on their GO
network connections, revealing functional relationships. We
configured the analysis with a maximum of 10 iterations
and a fixed random seed for reproducibility, resulting in
five clusters. Most genes in these clusters were associ-
ated with nervous system function and cellular processes
(Fig. 1D).

Taken together, the depletion of synonymous variation in
functionally constrained genes suggests that sSSN'Vs may have
functional effects and are subject to negative selection, as re-
cently proposed by Gudkov et al. [17].

ExtraTreesClassifier best discriminates between
“benign” and “deleterious” classes in a public
dataset

While deterministic approaches provide explainability, they
are insufficient for reliably determining the deleteriousness of
an sSNV. To achieve a more generalized and conclusive classi-
fication of sSNVs as either “benign” or “deleterious,” we de-
veloped a supervised ensemble machine learning model. This
model integrates 11 effect measures related to splicing, RNA
stability, distance to premature and mature mRNA, codon us-
age, and CpG content, along with allele frequency in the gen-
eral population, to predict the probability of deleteriousness
(workflow in Fig. 2A). Our approach leverages existing pub-
lic databases of known deleterious and benign genetic variants
[30], including the Database of Deleterious Synonymous Mu-
tations (dbDSM v1.2) [49] and ClinVar database [30, 50].
We incorporated 12 features—the 11 effect measures plus
allele frequency—and used Lazy Predict (https://lazypredict.
readthedocs.io/en/latest/, accessed 19 August 2025) in Python
to estimate the performance of different models before build-
ing them. The best-performing models in terms of accu-
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Table 2. Model Comparison of Lazy Predict Top 5 Models

ROC
Model Accuracy Precision Recall F1 Score AUC
Extra Trees 0.963 0.814 0.636 0.714 0.879
LGBM 0.958 0.750 0.627 0.683 0.873
Nu SVC 0.882 0.338 0.664 0.448 0.831
XGB 0.955 0.725 0.600 0.657 0.881

Random Forest 0.953 0.683 0.645 0.664 0.878

The selection of the best model is based on their performance on accuracy,
precision, recall, F1 Score, and ROC-AUC. Note that emphasis on the bal-
ance of precision and recall should be considered along with accuracy. (Note:
ExtraTrees—Extremely Randomized Trees, LGBM—Light Gradient Boost-
ing Machine, Nu SVC—Nu Support Vector Classification, XGB—Extreme
Gradient Boosting).

racy, balanced accuracy, F1-score, and ROC-AUC were pre-
dominantly tree-based ensemble machine learning models
(Supplementary Table S1—Ranked models in Lazy Predict;
Supplementary Fig. S2).

We then trained and evaluated the top five models pre-
dicted to perform best. Consistent with the Lazy Predict evalu-
ation, the Extremely Randomized Trees (ExtraTreesClassifier)
emerged as the top-performing model (Fig. 2C and Table 2).
ExtraTrees is an ensemble learning technique that trains multi-
ple decision trees and aggregates their outputs to classify vari-
ants. Unlike standard decision trees, ExtraTrees introduces ad-
ditional randomness by selecting features for splitting at ran-
dom, reducing bias while maintaining diversity among trees
[66].

To enhance model reliability, we calibrated the trained
ExtraTrees model using hyperparameters identified via Lazy
Predict. We assessed model accuracy using stratified 10-fold
cross-validation, yielding a mean accuracy of 96.3% and a
ROC-AUC of 0.89, meaning the model correctly distinguishes
between deleterious and benign variants 89% of the time.

The final calibrated model, trained on the entire dataset,
achieved 97% accuracy, a ROC-AUC of 0.87, and higher pre-
cision compared to the uncalibrated version (Supplementary
Fig. S3). While a default classification threshold of 0.5 is com-
monly used, we evaluated performance across multiple thresh-
olds to identify an optimal balance between accuracy, preci-
sion, and recall. The most balanced performance was observed
at t = 0.875, with: accuracy = 97.10%, precision = 90.23%,
recall/sensitivity = 67.27%, specificity = 99.43%, and F1
Score = 0.77 (Fig. 2D). The full reference table for thresh-
old adjustments is available in Supplementary Table S1—
Threshold Adjustment. The model output score represents the
probability of a variant being deleterious, termed SyMetrics
Probability.

Our analysis demonstrates that ExtraTreesClassifier is
the most effective model for distinguishing between benign
and deleterious sSNVs, achieving high accuracy and robust-
ness through ensemble learning and calibrated threshold
optimization.

SyMetrics demonstrates a strong performance in
predicting the deleteriousness of sSNVs compared
to individual variant effect measures

We further evaluated the performance of SyMetrics by com-
paring it against individual variant effect measures—synVEP,
SpliceAl, SURF, MES, and GERP++—to assess its predictive
power relative to the individual effect measures incorporated
in the model. These metrics were selected because they directly

SyMetrics 9

relate to deleteriousness and selection. Additionally, we com-
pared SyMetrics to CADD [67], an established and reliable
score for detecting deleterious variants.

For this analysis, only variants found in dbDSM v1.2 [30,
49] were retained to represent the positive class. dbDSM v1.2
is a manually curated database of deleterious sSNVs com-
piled from published literature and resources such as Clin-
Var, GRASP, GWAS Catalog, GWASdb, PolymiRTS, PubMed,
and Web of Knowledge. The negative class (neutral variants)
was extracted from VariSNP [21, 68], which contains benign
variants.

The variants were annotated based on their determined
classes per variant effect measures using a simple determin-
istic scheme presented as:

Where:

e tis the set threshold for the selected effect measure.

® s is the effect measure score.

* V(x)is whether that score implies that the variant is dele-
terious or benign.

The thresholds selected per variant effect measures are set
as follows: synVEP (¢ = 0.5), SpliceAl (¢ = 0.5), SURF (¢ = 4),
MES (t = 3), GERP++ (¢ = 4), and CADD (¢t = 20).

The varying sensitivity and specificity among individual ef-
fect measures indicate that no single mechanism (e.g. splicing
via SpliceAl or RNA stability via SURF) can fully capture the
deleteriousness of sSSNVs. However, combining multiple effect
scores enhances predictive accuracy, as reflected in the SyMet-
rics model performance metrics: accuracy (92.69%), F1-Score
(0.92), and ROC-AUC (0.93). Among the individual effect
measures, SyMetrics outperformed all others, correctly iden-
tifying all 234 negative variants and 188 of the 223 positive
variants (Fig. 3).

In sum, SyMetrics outperforms individual variant effect
measures in predicting the deleteriousness of sSSNVs, achieving
higher accuracy and reliability by integrating multiple predic-
tive features.

Predicted deleterious sSNVs are depleted in
general population and enriched in genes under
strong selection

To determine whether predicted deleterious sSNVs are de-
pleted in the general population, we scored the generated sS-
NVs and categorized them by maximum allele frequency (AF)
in all gnomAD v4.1 populations into five groups: very com-
mon, common, low frequency, rare, and not seen. We then per-
formed a pairwise comparison of the number of sSNVs with
a SyMetrics score exceeding the threshold (¢ = 0.875) across
the following groups: common (0.05 < AF < 0.1) versus very
common (0.1 < AF < 1), common versus low-frequency vari-
ants (0.01 < AF < 0.05), common versus rare (0 < AF < 0.01),
and common versus not seen (AF = 0).

We observed significant differences in score distribution for
all pairwise comparisons except for the very common group.
This suggests that variants with higher SyMetrics scores are
depleted in the general population due to selection.

To further investigate these findings, we calculated the odds
ratio of a variant being deleterious in “very common, low-
frequency, rare, and not seen” groups relative to the “com-
mon” group using Fisher’s Exact Test. The predicted delete-
rious sSNVs were found to be significantly enriched among
low-frequency, rare, and not seen groups (Fig. 4A).
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Figure 3. Heatmap of confusion matrices for variant effect predictions based on different metrics. The test dataset consisted of 457 synonymous
variants (benign: 234, deleterious: 223). We calculated the number of true positives, false positives, true negatives, and false negatives, depicted across
actual and predicted, for each metric based on the recommended thresholds. Compared to all other metrics, SyMetrics performed best in classifying the

actual/true class among others.

Using stratified bootstrapping, we estimated the proportion
of potentially deleterious synonymous variants: 1.98 +0.15%
in the not seen category, 1.60 = 0.15% in singletons,
1.07 £ 0.13% in rare variants, 0.53 4+ 0.1% in common vari-
ants. This corresponds to 7 = 931841 (95% CI: 861247-
1002 435) deleterious variants in the not seen group.

Next, we compared synonymous Z-scores using SyMetrics
probability under the same grouping scheme, further stratify-
ing genes by their pLI (probability of loss-of-function intoler-
ance) and missense Z-score. As expected, genes under stronger
selection (high pLI > 0.8 or missense Z-score > 3) exhibited
significantly higher synonymous Z-scores (Fig. 4B), reinforc-
ing the idea that sSSNVs in these genes are absent in the general
population due to their deleteriousness.

Altogether, we identified 309 genes with a high synony-
mous SyMetrics Z-score (>1.96), independent of the group-
ing scheme based on pLI or missense Z-score (Supplementary
Table S1—High SyMetrics Z). In sum, predicted deleterious
sSN'Vs are significantly depleted in the general population and

enriched in genes under strong selection, highlighting their po-
tential functional impact.

Experimental validation of sSNVs affecting AVPR2
function

To determine the extent to which our predictions can be val-
idated, we conducted functional testing of eight sSNVs in
the AVPR2 gene. AVPR2 encodes the arginine vasopressin
receptor type 2, and pathogenic variants in this gene cause
X-linked nephrogenic diabetes insipidus type 1. To mitigate
potential bias toward functionally critical genes, we selected
an X chromosome-located gene for which no constraint met-
rics are currently available in gnomAD v4.1. Additionally, we
chose AVPR2 because it does not exhibit an overall synony-
mous Z-score indicative of intolerance to synonymous varia-
tion (Z-score: 1.006).

None of the predicted deleterious variants was observed in
the general population (gnomAD v4.1). The variants are dis-
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is the best represented category.

tributed across exons 2 and 3. Additionally, we included two
predicted benign variants in our analysis.

We evaluated the impact of these variants on receptor func-
tion by measuring total cellular and cell surface expression
(indicators of protein production, folding, and/or trafficking
defects) and cAMP formation (agonist-induced receptor acti-
vation) in comparison with the wild-type receptor. We used
minigene constructs containing all three exons, interrupted
by their natural introns, cloned into a eukaryotic expression
vector.

Among the investigated variants, three had a SpliceAl
score > 0.5 (Supplementary Table S1--- AVPR2 Vari-
ants). Interestingly, the variant NM_000054.7:c.27T > A,
p-(Ala9=), with a SpliceAl score of 0.99 and SyMetrics 0.8735,
showed no functional effect (Fig. SA-C). However, variant
NM_000054.7:c.276A > G, p.(GIn92=) exhibited the low-

est expression and the strongest functional effect among all
tested variants (Fig. 5). While the SpliceAl score of this vari-
ant is 0.5, the SURF score is 27.54, suggesting high mRNA
instability.

To assess whether a similar level of protein reduction could
be observed for another splicing variant, we introduced a vari-
ant in the canonical splice site NM_000054.7:¢.910 + 2T >
C, p.2. This mutation is expected to result in the loss of an ac-
ceptor site, intron retention of 20 base pairs, and a premature
stop codon. While the reduction in protein expression was sig-
nificant, it was less pronounced than that observed for variant
NM_000054.7:c.276A > G, p.(GIn92=).

For NM_000054.7: c.909A > G, p.(GIn303=), we also
identified reduced cell surface expression, although to a lesser
extent than in NM_000054.7:¢.276A > G, p.(GIn92=). Splic-
ing prediction indicates a donor site loss (SpliceAl = 0.62),
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Figure 5. Synonymous variants affect the functionality of the human vasopressin 2 receptor (encoded by AVPR2 gene). We predicted sSNVs that do not
alter the amino acid residue but may affect receptor function—either predicted to be deleterious (light gray) or benign (dark gray). These variants were
inserted into the genomic sequence of the human AVPR2 and functionally tested. (A) First, total receptor protein expression was determined in an
ELISA taking advantage of the N-terminal HA-tag and the C-terminal Flag-tag. (B) Then, cell surface expression of the receptor protein was determined.
(C) Finally, cAMP accumulation was detected after receptor stimulation. For all variants, experiments show a consistent trend, albeit only for variants 2,
3, and 8, all experiments showed a significant result. * P-value (Wilcoxon Mann-Whitney test) < 0.05. All experiments are presented as a percentage of
the corresponding matched wild-type receptor. The dashed horizontal line represents the wild-type level (100%)

leading to the same transcript as the canonical splice site
variant. However, NM_000054.7: c.909A > G, p.(GIn303=)
exhibited significantly higher expression than the canonical
splice site variant.

Lastly, we examined two predicted deleterious vari-
ants: NM_000054.7:¢.948C > A, p.(Leu316=) and
NM_000054.7:¢.960C > T, p.(Thr320=), with SpliceAl
scores of 0.23 and 0.42, respectively, suggesting a low
probability of having a splicing effect. However, both had
SURF scores exceeding the significance threshold of 3,
suggesting potential effects on RNA stability. Interestingly,
variant NM_000054.7:c.948C > A, p.(Leu316=) exhib-
ited significantly higher cell surface expression (Fig. 5B),
while variant NM_000054.7:c.960C > T, p.(Thr320=)
showed significantly lower cell surface expression. How-
ever, total cell expression for these two variants did not
reach significance, although the trend followed the same
direction (Fig. 5). A similar pattern was observed in cAMP
accumulation, but due to high variability, it did not reach
statistical significance. We also tested two variants pre-
dicted to be benign - variants NM_000054.7:c.441G > A,
p-(Ala147=) and NM_000054.7:c.117G > A, p.(Ala39=),
both of which showed no significant difference from the
wild-type.

In conclusion, among the five predicted deleterious vari-
ants, we observed significant alterations in cell surface ex-
pression in four cases, including one with higher expres-
sion than the wild-type. Considering RNA stability may im-
prove predictions of a variant’s deleteriousness, particularly
in cases of potential gain-of-function effects, such as variant
NM_000054.7:c.948C > A, p.(Leu316=).

SyMetrics recapitulates experimentally determined
effects of sSNVs in saturation genome editing of
BAP1 and RAD51C

To further validate the model’s capability to predict the dele-
teriousness of sSSN'Vs at scale, we utilized the variants filtered
from the large-scale mutagenesis screening of RADS51C and

BAP1. The sSNVs were filtered to only include the deleterious
ones as indicated by their functional score in SGE (score < 0).
For BAP1,we found 30 unique depleted sSSNVs which are con-
cordant to independent SGE libraries. SyMetrics predicted 25
of them to be deleterious. On the other hand, we found 15
RADS1C variants that were classified as depleted by SGE. No-
tably, 14 of these variants were predicted to be deleterious by
SyMetrics demonstrating a high concordance and highlight-
ing the model’s predictive capability for functionally relevant
sSN'Vs.

Altogether, the results of the validation against the BAP1
and RADS51C SGE studies demonstrate effectiveness of the Sy-
Metrics in predicting the functional relevance of sSNVs. The
high concordance of the results highlights the feasibility of us-
ing SyMetrics to support and advance sSNV interpretation in
clinical and research settings.

SyMetrics predicts deleterious potential of sSNVs
identified in a patient cohort

At the Human Genetics Institute at Leipzig University Clinics,
we reanalyzed data from 11 903 patients who had undergone
genetic evaluation either through exome/trio-exome sequenc-
ing or using a morbid gene panel (TruSight One, [llumina). We
identified 767 774 unique variants, which were scored using
SyMetrics. Of these, 8088 sSNVs were predicted to be delete-
rious.

To refine our analysis, we applied additional filters, requir-
ing that the variant be absent from the general population and
that the Human Phenotype Ontology (HPO) terms associated
with the affected gene match those assigned to the patient, ac-
cording to the HPOsim score [69].

We identified 15 variants in genes that matched the pa-
tient’s phenotype and were predicted to be deleterious. Among
these, nine variants were classified and reported as either likely
pathogenic (7 = 4) or pathogenic (7 = §). Additionally, six
variants were reported as variants of uncertain significance
(VUS). Parental segregation analysis was available for only
three of these VUS cases.
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In one case, the variant ¢.3015G > A, p.(Val1005=) in
IOQOSEC2—a gene encoding a guanine nucleotide exchange
factor for the ARF family of GTP-binding proteins—occurred
de novo. Of all the effect measures considered, only synVEP
was above the deleteriousness threshold. Notably, the variant
had a SpliceAl score of only 0.47, meaning it could have been
missed in routine clinical screening. Unfortunately, RNA anal-
ysis was not available for this proband.

In another case, a variant of uncertain significance
c.1077G > A, p.(Lys359=) in ARHGEF9—a gene encoding
collybistin, the guanine nucleotide exchange factor 9—was
hemizygous in the affected proband and inherited from a car-
rier mother. Since developmental and epileptic encephalopa-
thy 8 follows X-linked inheritance, segregation analysis alone
could not clarify its pathogenicity. However, we recommended
further familial segregation analysis, as a maternal uncle ex-
hibited a similar phenotype. In this case, the SpliceAl score
was only 0.18, meaning the variant would likely have been
missed by routine clinical screening. However, both synVEP
and SURF were above the threshold, suggesting potential
RNA instability. RNA analysis based on cultivated fibroblasts
from the heterozygous mother showed only transcripts from
the wildtype allele confirming the suggested RNA instability.
Hence, the variant should be denoted as c.1077G > A, r.0,
p-(0) and was classified as likely pathogenic.

Similarly, we identified a patient who was a homozygous
carrier of the variant ¢.729G > A, p.(Thr243=) in SLC39A4,
a gene associated with acrodermatitis enteropathica. Both par-
ents were carriers, making segregation analysis uninformative.
However, the variant had a SpliceAl score of 0.76, strongly
suggesting a splicing effect, for which we recommended RNA
analysis.

In conclusion, applying SyMetrics in a clinical setting can be
particularly beneficial for detecting deleterious variants that
may not affect splicing and where segregation analysis can
provide additional insights.

Discussion

Recent developments in sequencing technologies have greatly
improved our understanding of how genetic variation is asso-
ciated with phenotypes or diseases. The role of sSNVs in the
context of human disease has garnered increasing attention in
recent years, challenging the traditional view that these vari-
ants are functionally neutral [15]. sSNVs, defined as single-
nucleotide changes that do not alter the amino acid sequence
of proteins, can nonetheless have significant biological impli-
cations. Evidence suggests that these variants can affect gene
expression by interfering with mRNA splicing, stability, and
translation efficiency, potentially contributing to disease sus-
ceptibility and phenotypic variation.

The scarcity of reliable genetic datasets on synonymous
variants is evident in the comparatively lower level of research
and investigation they receive, especially when compared to
missense or nonsense variants. However, the association of
synonymous variants with various rare diseases, as well as
with cancer, where 6%-8% of pathogenic single nucleotide
substitutions are synonymous variants, underscores the im-
portance of studying these variants more comprehensively.
These variants frequently act as driver mutations in human
cancers.

The evaluation of sSNVs has been significantly advanced
by the development of iz silico scores that assess their po-
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tential impact on splicing, RNA stability, sequence conserva-
tion, translation efficiency, and other functional mechanisms.
To explore whether genes known to be intolerant to loss-
of-function or missense variation, which are often associated
with disease, are also sensitive to synonymous changes, we
compared the distribution of various functional scores be-
tween genes under strong selective constraints and those with-
out such constraints. Specifically, we analyzed metrics assess-
ing overall functional impact (synVEP), splicing effects (MES,
spliceAl), RNA stability and folding (SURF), evolutionary
conservation (GERP++), codon usage (RSCU, dRSCU), and
sequence properties like CpG, CpG exons, and proximity to
mRNA and pre-mRNA boundaries. Our analysis revealed a
significantly higher distribution of five of these scores, related
to splicing and RNA stability, for intolerant genes (Fig. 1).
This is in line with accumulating evidence indicating that syn-
onymous changes can modulate the stability of mRNA and
its translation kinetics, ultimately affecting protein synthesis.
Similarly, Gaither and colleagues showed that sSSNVs that may
disrupt mRNA structure have significantly lower rates in hu-
man populations [27]. Strong evidence that sSNVs can al-
ter protein function and expression is provided by functional
studies, which, although limited to particular genes, provide
proof-of-concept. To this end, synonymous variants have been
shown to influence blood group expression [70] or even cause
hemophilia (¢.459G > A (Val=) in the F9 gene) by slowing
factor IX translation and affecting its conformation, which
results in decreased extracellular protein levels [71].

To assess which genes appeared to be most intolerant to
synonymous variation, we performed a gene ontology analy-
sis, which revealed clustering of these genes in neuronal devel-
opment and structural cellular processes (Fig. 1C and D). This
further strengthens the idea that sSNVs in these genes could
have significant functional consequences, and as these are fun-
damental processes under strong evolutionary constraint, any
disruption could have detrimental effects on the organism.

While the above-mentioned individual scores are valuable
for identifying variants that disrupt specific processes, we de-
veloped a comprehensive tool that predicts the overall dele-
teriousness of an sSNV by integrating multiple metrics. The
allele frequency in the general population of the variants ap-
pears to be an important predictor of deleteriousness, as sug-
gested by Gaither et al. and Zeng et al. [22, 27]. This is
supported by our analysis, which shows a depletion of sS-
NVs in genes under constraint. Thus, in our model, we also
integrated allele frequency in the general population (gno-
mAD v4.1) [64] as one of the parameters. We identified Ex-
traTreesClassifier to be the best-performing machine learning
model, which, after calibration and setting the threshold to
t = 0.875, reached an accuracy of 97.10%, a precision of
90.23%, and specificity of 99.43% (Fig. 2 and Table 1). Our
model, which integrates multiple aggregated metrics, demon-
strated improved accuracy in identifying both benign sSNVs
and those with potential pathogenic consequences (Fig. 3),
outperforming individual metrics as well as the widely es-
tablished CADD score [67]. Interestingly, evolutionary con-
servation represented by GERP++ discerned all the benign
variants but missed all known pathogenic sSNVs, suggesting
that evolutionary conservation is a poor metric for synony-
mous variants. Conversely, SURF, which predicts RNA stabil-
ity, managed to detect many of the true positives (177/223)
but showed low specificity in discriminating against the true
negatives (67/234) (Fig. 3). SpliceAl was able to properly de-
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tect all true negatives but showed lower performance for the
true positives (102/223). This may suggest that many of the
sSNVs may have a functional consequence other than splic-
ing. Overall, SyMetrics performed best, properly identifying
all true negatives and 188/223 (ca. 84%) of the true positives
(Fig. 3).

We were then prompted to determine which genes are de-
pleted of synonymous variation based on the SyMetrics pre-
dictions. We initially showed that variants not present in the
general population have an odds ratio of approximately 4
to be deleterious (Fig. 4A). Furthermore, we reproduced the
synonymous constraint, as determined by the SyMetrics Z-
score for the functionally relevant genes (Fig. 4B), and fi-
nally, we identified 309 genes with a high SyMetrics Z-score
(Supplementary Table S1—High SyMetrics Z). Gene ontol-
ogy clustering revealed seven key biological themes, among
which developmental processes and cell differentiation were
the best represented, followed by neuronal development and
cytoskeletal and cellular organization. The depletion of such
pathways from synonymous variation further underscores the
functional relevance of sSNVs.

To confirm the functional importance of sSNVs, we tested
predicted deleterious and benign variants in the AVPR2
gene. The variant with the strongest effect was variant
NM_000054.7: c.276A > G, p.(GIn92=) (Fig. 5). This vari-
ant had been previously reported in patients with diabetes in-
sipidus. It was shown that it introduces an alternative acceptor
site leading to a 5’ truncated exon 2 lacking its first 251 bases
[72]. The truncation causes a frameshift followed by a prema-
ture stop codon, which may trigger nonsense-mediated decay.
However, compared to a variant located in the canonical splice
site, which also leads to a premature stop codon, the reduction
in protein expression for variant NM_000054.7: ¢.276A > G,
p-(GIn92=) was significantly lower. This may suggest that for
variant NM_000054.7: ¢.276A > G, p.(GIn92=), RNA in-
stability may additionally contribute to the almost absent ex-
pression of the protein, given the SURF score of 27.54. More-
over, for variant NM_000054.7: ¢.909A > G, p.(GIn303=),
the splicing prediction is of a donor loss (SpliceAl = 0.62),
which would lead to the same transcript as in the case of a
variant in the canonical splice site. However, in the case of
variant NM_000054.7: c.909A > G, p.(GIn303=), we ob-
serve much higher expression than in the case of the canon-
ical splice site variant. While in our functional setup we
cannot test whether splicing is affected, the higher expres-
sion level of this variant makes it very likely that splicing
is not affected in this case. In turn, the reduced expression
could be a result of altered RNA stability. Two of the tested
variants did not have high SpliceAl scores. For these vari-
ants, we showed significantly altered cell surface expression
(Fig. 5B). Variant NM_000054.7:c.948C > A, p.(Leu316=)
showed higher expression, and the SURF score in this case
was 5.93. Increased mRNA stability after synonymous vari-
ation had been demonstrated for the synonymous variant
in the prothrombin gene, F2 (NM_000506.4: c.1824C > T;
p-Arg608=, SURF = 15.88). The variant causes increased
prothrombin mRNA and plasma protein levels, such that
carriers of the variant are at increased risk of thromboem-
bolism [73]. Thus, considering RNA stability may improve
the prediction for deleteriousness, especially in cases where
the mechanism may be gain-of-function. Although the ef-
fect of variants NM_000054.7:¢.948C > A, p.(Leu316=) and
NM_000054.7:¢.960C > T, p.(Thr320=) seems more limited,

the consistent trend across all tests—total expression, cell sur-
face expression, and cAMP accumulation (Fig. 5)—strongly
suggests a functional impact.

Lastly, to check whether SyMetrics could be useful in a clin-
ical setup, we revisited 11 903 cases presenting the suspicion
of a genetic disease. We identified 15 sSNVs that were pre-
dicted to be deleterious, and the affected gene matched the
proband’s phenotype. Nine of these variants were classified
according to American College of Medical Genetics (ACMG)
criteria [74] as pathogenic or likely pathogenic. For the rest of
6 VUS, we had parental information only in three cases. One
of the variants in ¢.3015G > A, p.(Val1005=) in IQSEC2 oc-
curred de novo, making it very likely to be causative for the
reported symptoms. We recommended RNA analysis, which
could shed more light on the functional mechanism, however
the analysis was currently not possible, as no patient sample
was available.

Furthermore, we identified a hemizygous variant
c.1077G > A, p.(Lys359=) in ARHGEF9 in a proband
with epileptic encephalopathy and ataxia. The variant is
inherited from a carrier mother, and there is a similarly
affected maternal uncle, for whom no genetic testing is
available. The phenotype is consistent with OMIM #300 607
(ARHGEF9-related disorder), and the pattern of inheritance
in the family supports pathogenicity. Although the variant
was initially classified as a variant of uncertain significance
(VUS) according to ACMG criteria, our tool predicted
pathogenicity through RNA instability. Subsequent RNA
analysis indeed demonstrated RNA instability consistent with
a loss-of-function effect. Based on these findings, the variant
could be reclassified as likely pathogenic, confirming its role
as the cause of disease in this family.

In conclusion, this study underscores the significant impact
of sSNVs on essential biological processes, highlighting their
potential role in disease mechanisms. The observed link be-
tween genetic variants and functional outcomes, especially in
early-onset conditions like epileptic encephalopathy and re-
lated disorders, emphasizes the need to consider these variants
in clinical research and diagnostics. Overlooking the func-
tional relevance of sSSNVs may lead to missed disease etiolo-
gies, ultimately limiting our understanding of the genetic foun-
dations of complex disorders. To aid in this effort, we present
a tool that predicts functionally relevant synonymous vari-
ations. This tool is freely available online and provides re-
searchers with insights into the underlying mechanisms of a
variant, displaying all relevant metrics and allele frequencies
in the general population. As the availability of genetic data
increases, we will likely better understand the “silence” of syn-
onymous variants.
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